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Abstract. To each of regular polyhedra and a soccer ball, we associate

degenerating families (degenerations) of Riemann surfaces. More specifically:
To each orientation-preserving automorphism of a regular polyhedron (and

also of a soccer ball), we associate a degenerating family of Riemann surfaces

whose topological monodromy is the automorphism. The complete classifica-
tion of such degenerating families is given. Besides, we determine the Euler

numbers of their total spaces. Furthermore, we affirmatively solve the com-

pactification problem raised by Mutsuo Oka — we explicitly construct com-
pact fibrations of Riemann surfaces that compactify the above degenerating

families. Their singular fibers and Euler numbers are also determined.

1. Introduction.

Degenerating families (or simply, degenerations) of Riemann surfaces of genus 1

are classified by Kodaira [7], and those of genus 2 by Namikawa and Ueno [8]. These

classifications, as for moduli spaces, are considered for individual genus. We introduce

another class of degenerations from a view point of symmetry : To regular polyhedra and

the soccer ball, we associate degenerations of Riemann surfaces. They are very symmetric

and expected to carry interesting properties. Moreover they are naturally ‘compactified’

to fibrations over the projective line P1 (this solves M. Oka’s compactification problem).

It is well-known that there are five kinds of regular polyhedra. We embed a regular

polyhedron P in R3 in such a way that its barycenter is the origin of R3. The automor-

phism group Aut(P) := {f ∈ O(3) : f(P) = P} is a finite subgroup of O(3), and the

orientation-preserving automorphism group Aut+(P) := {f ∈ SO(3) : f(P) = P} is a

finite subgroup of SO(3). In what follows, we consider Aut+(P) rather than Aut(P).

The following holds (see [12, p. 84]) (Table 1):

We remark that the soccer ball is obtained by cutting off vicinities of vertices from

the icosahedron, and the orientation-preserving automorphism group of the soccer ball

coincides with that of the icosahedron — both are A5. The soccer ball is a so-called

semi-regular polyhedron ([2, p. 80]).

Conjugacy classes of Aut+(P).

The order of elements of a conjugacy class of a group are all equal. This common

number is called the order of the conjugacy class. Table 2 describes the number m of the
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Table 1. An and Sn denote the alternating group

and the symmetric group of order n.

P Aut(P) Aut+(P)

Tetrahedron S4 A4

Hexahedron Z/2Z×S4 S4

Octahedron Z/2Z×S4 S4

Dodecahedron Z/2Z× A5 A5

Icosahedron Z/2Z× A5 A5

conjugacy classes of order n (n = 2, 3, . . .); the trivial conjugacy class of 1 ∈ Aut+(P) is

omitted. See [4, p. 18, p. 29] for details.

Table 2

P n (m)

Tetrahedron 2 (one), 3 (two)
Hexahedron 2 (two), 3 (one), 4 (one)
Octahedron 2 (two), 3 (one), 4 (one)
Dodecahedron 2 (one), 3 (one), 5 (two)
Icosahedron 2 (one), 3 (one), 5 (two)
Soccer ball 2 (one), 3 (one), 5 (two)

Recall the definition of degeneration. A surjective proper holomorphic map π : M →
∆ from a smooth complex surface M to the unit disk ∆ := {t ∈ C : |t| < 1} is called

a degenerating family (or simply, a degeneration) of Riemann surfaces (of genus g) if

π−1(0) is singular and every π−1(s) (s 6= 0) is a Riemann surface (of genus g). For

example, see Figure 1.

2

1 1

Mπ−1(0)

0
∆

π

Figure 1. A degenerating family of Riemann surfaces of genus 2: The integer on each

irreducible component of π−1(0) is the multiplicity of that component. Each intersection

is transversal.

Main Result 1 (New Construction).

To each orientation-preserving automorphism of a regular polyhedron, we associate

a degeneration of Riemann surfaces.

We introduce some terminology. The cable surface Σ of a regular polyhedron (and
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Figure 2

also of a soccer ball) P is a closed oriented surface obtained from P by ‘thickening’ its

edges. If the number of faces of P is n, then the genus of Σ is n− 1; for instance, it is 3

if P is the tetrahedron and 5 if P is the hexahedron:

The orientation-preserving automorphism group Aut+(P) of a regular polyhedron P
naturally acts on its cable surface Σ. By Kerckhoff’s theorem [6], there exists a complex

structure on Σ such that Aut+(P) acts holomorphically. We may thus regard Σ as a

Riemann surface on which Aut+(P) acts holomorphically. (Alternatively: Let Σ be the

boundary of an ε-neighborhood of P in R3 with respect to the Euclidean metric of R3.

Then Aut+(P) acts on it isometrically, and by the uniformization theorem, there exists

a complex structure on it, on which Aut+(P) acts holomorphically.)

Note that since the order of Aut+(P) is finite, the order of any element f ∈ Aut+(P)

is necessarily finite. Say that the order of f is m. Then let g : Σ×∆→ Σ×∆ be a periodic

automorphism defined by (x, t) 7→ (f−1(x), e2πi/mt) and G be the cyclic group generated

by g. Let φ : Σ×∆→ ∆ be a G-invariant holomorphic function defined by (x, t) 7→ tm.

It determines a holomorphic map φ : (Σ×∆)/G→ ∆. Where r : M → (Σ×∆)/G is the

resolution that minimally resolves each of the (cyclic quotient) singularities of (Σ×∆)/G,

the composition π := φ◦r : M → ∆ is a degeneration of Riemann surfaces associated with

f . Any smooth fiber π−1(s) (s 6= 0) is Σ, and the topological monodromy of π : M → ∆

is f : Σ→ Σ (see [10]). The singular fiber X := π−1(0) is star-shaped , that is, branches

emanate from the core — the irreducible component of multiplicity m (for example, see

Figure 3). Here:

• A branch is a chain of complex projective lines (that is the exceptional set of the

minimal resolution of a cyclic quotient singularity).

• Intersections of irreducible components are transversal.

Strong holomorphic-equivalence.

The orientation-preserving automorphism group Aut+(P) of P naturally acts on

the cable surface Σ, so each element f ∈ Aut+(P) may be regarded as the orientation-

preserving automorphism of Σ. Let πf : Mf → ∆ denote the degeneration of Riemann

surfaces associated with f . Then the topological monodromy of πf : Mf → ∆ is f : Σ→
Σ.

Proposition 2.2 states that if two elements f, f ′ ∈ Aut+(P) are conjugate, then two

degenerations πf : Mf → ∆ and πf ′ : Mf ′ → ∆ are holomorphically equivalent (see
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Figure 3. (1) P is the tetrahedron, f1 : Σ → Σ is a 1/2-rotation and X1 is the singular

fiber. (2) P is the hexahedron, f2 : Σ→ Σ is a 1/3-rotation and X2 is the singular fiber.

(Each circle denotes a projective line and the integer on each irreducible component is

the multiplicity of that component.)

the paragraph containing (1)). In this case, they are said to be strongly holomorphically

equivalent. Note that

conjugacy class strong holomorphic equivalence class

[f ]
1-1←→

[πf : Mf → ∆].

Clearly if two degenerations are strongly holomorphically equivalent, they are topologi-

cally equivalent. The converse is however not true, in fact:

Main Result 2.

In Section 3.4, we give an example of two degenerations that are topologically equiv-

alent but not strongly holomorphically equivalent — they are associated with automor-

phisms of order 2 of the octahedron.

The results in Section 3 are summarized as follows (below, the five kinds of regular

polyhedra are denoted by their initials T , H, O, D, I and the soccer ball by S):

Main Result 3 (Classification Theorem).

(A) The number of strong holomorphic equivalence classes of degenerations associated

with the regular polyhedra and the soccer ball is twenty three. (Table 3 describes

their singular fibers and the Euler numbers of their total spaces.)

(B) The two degenerations associated with each of the following are topologically equiv-

alent (see ∗1, ∗2, ∗3, ∗4 in Table 3 for their singular fibers for each case):

(1) the two conjugacy classes of order 3 in Aut+(T ),

(2) the two conjugacy classes of order 2 in Aut+(O),

(3) the two conjugacy classes of order 5 in Aut+(D),

(4) the two conjugacy classes of order 5 in Aut+(S).

In Table 3, the singular fibers [T.1], [T.2], [T.3] appear in Section 3.1, [H.1], [H.2], [H.3], [H.4] in Sec-

tion 3.2, [O.1], [O.2], [O.3], [O.4] in Section 3.3, [D.1], [D.2], [D.3], [D.4] in Section 3.4, [I.1], [I.2], [I.3], [I.4]

in Section 3.5, and [S.1], [S.2], [S.3], [S.4] in Section 3.6.
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Table 3. For a representative f of a conjugacy class, Xf := π−1f (0) denotes the singular

fiber of πf : Mf → ∆.

P ord(f) Xf χ(Mf )

2 [T.1] 4
Tetrahedron

3 ∗1 [T.2], [T.3] 3

2 [H.1] 2

2 [H.2] −4
Hexahedron

3 [H.3] 6

4 [H.4] −2

2 ∗2 [O.1], [O.2] 0

Octahedron 3 [O.3] −4

4 [O.4] 8

2 [D.1] −4

Dodecahedron 3 [D.2] 2

5 ∗3 [D.3], [D.4] −4

2 [I.1] −12

3 [I.2] −12
Icosahedron

5 [I.3] 6

5 [I.4] 4

2 [S.1] −24

Soccer ball 3 [S.2] −20

5 ∗4 [S.3], [S.4] −12

Concerning the above result, Mutsuo Oka raised a question: Is there natural way

to compactify the above degenerations? Or: Are there fibrations over P1 whose singular

fibers are appearing above? We construct such fibrations. Each of them is associated

with a regular polyhedral group Aut+(P) itself rather than its conjugacy classes, and is

referred to as the cable fibration associated with P. We determine the singular fibers of

all cable fibrations as well as the Euler numbers of their total spaces. In fact, in Section

4 the following is shown:

Main Result 4 (Classification of cable fibrations).

Let π : WP → P1 be the cable fibration associated with P. The singular fibers of

π : WP → P1 and the local monodromies around them and the Euler number χ(WP) are

as follows:

On further development of our work, we give some comments:

(i) The total space of any cable fibration actually admits another fibering. We show

that after blowing-down, it becomes a ruled surface.

(ii) Degenerations and cable fibrations of Riemann surfaces associated with all semi-

regular polyhedra will be described.

(iii) The second author [11] developed the theory of splitting deformation. It is expected

that splitting singular fibers of a cable fibration yields a Lefshetz fibration, which
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Table 4

P Singular fibers Local monodromies χ(WP)

Tetrahedron [T.1], [T.2], [T.3] f1, f2, f3 = (f2)2 in Section 3.1 14

Hexahedron [H.1], [H.3], [H.4] f1, f3, f4 in Section 3.2 14

Octahedron [O.1], [O.3], [O.4] f1, f3, f4 in Section 3.3 16

Dodecahedron [D.1], [D.2], [D.3] f1, f2, f3 in Section 3.4 14

Icosahedron [I.1], [I.2], [I.3] f1, f2, f3 in Section 3.5 18

Soccer ball [S.1], [S.2], [S.3] f1, f2, f3 in Section 3.6 4

may have interesting properties (inherited from regular polyhedra). This will be

investigated.

Acknowledgements. We would like to thank Professor Mutsuo Oka for useful

discussion.

2. Preparation.

2.1. Equivalences of degenerations of Riemann surfaces.

A surjective proper holomorphic map π : M → ∆ from a smooth complex surface M

to ∆ := {t ∈ C : |t| < 1} is a degenerating family (or simply, a degeneration) of Riemann

surfaces (of genus g) if π−1(0) is singular and every π−1(s) (s 6= 0) is a Riemann surface

(of genus g). Two degenerations of Riemann surfaces π : M → ∆ and π′ : M ′ → ∆ are

topologically equivalent if there exist homeomorphisms Ψ : M →M ′ and ψ : ∆→ ∆ that

make the following diagram commute:

M
Ψ //

π
��

M ′

π′
��

∆
ψ // ∆.

(1)

If Ψ and ψ are biholomorphic maps, π : M → ∆ and π′ : M ′ → ∆ are said to be

holomorphically equivalent .

Now given a periodic automorphism of a Riemann surface, we may construct a

degeneration of Riemann surfaces whose topological monodromy is the automorphism

(here an automorphism means a biholomorphic map).

Let Σ be a Riemann surface and f : Σ → Σ be a periodic automorphism of order

m. Consider then a periodic automorphism g : Σ × ∆ → Σ × ∆ (of order m) defined

by g(x, t) := (f−1(x), e2πi/mt), and let G denote the cyclic group generated by g. Define

then a holomorphic function φ : Σ ×∆ → ∆ by (x, t) 7→ tm. Then φ is G-invariant, so

determines a holomorphic map φ : (Σ×∆)/G→ ∆. Here the quotient space (Σ×∆)/G

is a complex surface with cyclic quotient singularities. Let r : M → (Σ ×∆)/G be the

resolution that minimally resolves each of the (cyclic quotient) singularities of (Σ×∆)/G.

The composite map π := φ ◦ r : M → ∆ is then a degeneration of Riemann surfaces
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associated with f (the topological monodromy of π : M → ∆ is f). This construction of

a degeneration is called the cyclic quotient construction.

We show that if two periodic automorphisms f, f ′ of Σ are conjugate in the group of

automorphisms of Σ, then the degenerations obtained from them by the cyclic quotient

construction are holomorphically equivalent. To that end, we need some preparation.

As above, let g and g′ be the periodic automorphisms of Σ × ∆ given by g(x, t) :=

(f−1(x), e2πi/mt) and g′(x, t) := (f ′−1(x), e2πi/mt), and G and G′ denote the cyclic groups

generated by g and g′. Let r : M → (Σ × ∆)/G and r′ : M ′ → (Σ × ∆)/G′ be the

resolutions that minimally resolve each singularity of (Σ×∆)/G and (Σ×∆)/G′. Then

the following holds:

Lemma 2.1. If there exists a biholomorphic map ψ : (Σ × ∆)/G → (Σ × ∆)/G′,
then there exists a biholomorphic map Ψ : M → M ′ that makes the following diagram

commute:

M
Ψ //

r
��

M ′

r′
��

(Σ×∆)/G
ψ // (Σ×∆)/G′.

Proof. ψ ◦ r : M → (Σ × ∆)/G′ and r′ : M ′ → (Σ × ∆)/G′ are resolutions of

(Σ×∆)/G′ that minimally resolve each singularity of (Σ×∆)/G′. Such resolutions are

unique up to isomorphism, so there exists a biholomorphic map Ψ : M → M ′ such that

ψ ◦ r = r′ ◦Ψ. �

Now Authol(Σ) denotes the group of automorphisms of Σ. If genus(Σ) ≥ 2, this

group is finite. In fact, #Authol(Σ) ≤ 84(genus(Σ) − 1) by Hurwitz’s theorem. In

particular, any automorphism of Σ is of finite order, so periodic. If f, f ′ ∈ Authol(Σ) are

conjugate in Authol(Σ), then their orders are equal. Moreover:

Proposition 2.2. Two degenerations π : M → ∆ and π′ : M ′ → ∆ (constructed

from f and f ′ by the cyclic quotient construction) are holomorphically equivalent, in

fact there exists a biholomorphic map Ψ : M → M ′ that makes the following diagram

commute:

M
Ψ //

π
��

M ′

π′
��

∆
id // ∆.

(2)

Proof. Say f ′ = hfh−1 (h ∈ Authol(Σ)). Next let g and g′ be the periodic

automorphisms of Σ×∆ (of order m) given by g(x, t) := (f−1(x), e2πi/mt) and g′(x, t) :=

(f ′−1(x), e2πi/mt), then the following diagram commutes:
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Σ×∆
h× id //

g
��

Σ×∆

g′
��

Σ×∆
h× id // Σ×∆.

Hence the biholomorphic map h × id : Σ × ∆ → Σ × ∆ induces a biholomorphic map

h× id : (Σ×∆)/G→ (Σ×∆)/G′.
Now the holomorphic function φ : Σ × ∆ → ∆ determines holomorphic maps φ :

(Σ × ∆)/G → ∆ and φ′ : (Σ × ∆)/G′ → ∆. Next noting that φ = φ ◦ (h × id),

φ = φ′ ◦ h× id, that is, the following diagram commutes:

(Σ×∆)/G
h× id //

φ
��

(Σ×∆)/G′

φ′
��

∆
id // ∆.

(3)

On the other hand, by Lemma 2.1 (applied to the case ψ = h× id) there exists a

biholomorphic map Ψ : M →M ′ that makes the following diagram commute:

M
Ψ //

r
��

M ′

r′
��

(Σ×∆)/G
h× id // (Σ×∆)/G′.

(4)

Combining the diagrams (3) and (4) yields the desired diagram (2). �

2.2. Automorphism groups and mapping class groups.

The mapping class group MCG(Σ) of Σ is the group of isotopy classes of orientation-

preserving self-homeomorphisms of Σ. The isotopy class of f ∈ Authol(Σ) is denoted by

[f ]. Note that if genus(Σ) ≥ 2, then Authol(Σ) may be regarded as a finite subgroup of

MCG(Σ). In fact, the following holds:

Lemma 2.3. The map ρ : f ∈ Authol(Σ) 7→ [f ] ∈ MCG(Σ) gives a group homomor-

phism. Moreover if genus(Σ) ≥ 2, ρ is injective. (Note: If genus(Σ) ≥ 2, then Authol(Σ)

is finite, while MCG(Σ) is infinite — a Dehn twist is an element of infinite order. If

genus(Σ) = 0, 1, then ρ is not injective.)

Proof. The first assertion is obvious. We show the second assertion. If

genus(Σ) ≥ 2, then the order of any f ∈ Authol(Σ) is finite (that is, f is periodic),

accordingly the quotient map Σ → Σ/〈f〉 is a finite covering. We now show that ρ is

injective, or equivalently that [f ] = id implies that f = id. This may be confirmed by

contradiction. If f 6= id, then genus(Σ/〈f〉) < genus(Σ) (from the Riemann–Hurwitz

formula). However genus(Σ/〈f〉) = genus(Σ) (because [f ] = id). This is a contradiction.

�
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Now let P be a regular polyhedron (or a soccer ball) and Σ be the cable surface of

P, which is obtained by thickening the edges of P. Note that if P is a regular n-hedron

where n = 4, 6, 8, 12, 20, then genus(Σ) = n− 1.

The orientation-preserving automorphism group Aut+(P) of P naturally acts on Σ.

Noting that genus(Σ) ≥ 2, the same argument as that used in the proof of Lemma 2.3

shows the following:

Lemma 2.4. The group homomorphism f ∈ Aut+(P) 7→ [f ] ∈ MCG(Σ) is injec-

tive.

Kerckhoff’s theorem [6] then ensures the existence of a complex structure on Σ

such that the action of the finite group Aut+(P) on Σ is holomorphic, so Aut+(P) ⊂
Authol(Σ). This with Lemma 2.4 yields

Aut+(P) ⊂ Authol(Σ) ⊂ MCG(Σ). (5)

Example 2.5. Let Σ be the cable surface of the octahedron P. It appears that

there is an isotopy between 1/2-rotations f and f ′ as illustrated in Figure 4. This is

actually not true: since f 6= f ′ in Aut+(P), necessarily [f ] 6= [f ′] in MCG(Σ), so f

and f ′ are not isotopic. Moreover they are not conjugate in Aut+(P) (Example 2.8

below). In contrast, [f ] and [f ′] are conjugate in MCG(Σ), which follows from Nielsen’s

theorem (see Section 2.4), because (i) the valency data of f and f ′ are equal (both are

(1/2, 1/2, 1/2, 1/2)) and (ii) the ramification data of the cyclic coverings Σ→ Σ/〈f〉 and

Σ→ Σ/〈f ′〉 are equal.

f = f1
f = f0

Σ

ft

Figure 4. Each ft (0 ≤ t ≤ 1) is a 1/2-rotation.

2.3. Examples of equivalent degenerations.

Let P be a regular polyhedron (or a soccer ball) and Σ be its cable surface. The

orientation-preserving automorphism group Aut+(P) of P naturally acts on Σ. Kerck-

hoff’s theorem [6] then ensures the existence of a complex structure on Σ such that the

action of Aut+(P) on Σ is holomorphic. We regard Σ as a Riemann surface equipped

with this complex structure. Any f ∈ Aut+(P) then acts on Σ biholomorphically and

is periodic. Let πf : Mf → ∆ denote the degeneration of Riemann surfaces associated

with f (see Section 2.1) and Xf := π−1f (0) denote its singular fiber.

If two elements f, f ′ ∈ Authol(Σ) are conjugate in Authol(Σ), then two degenerations

πf : Mf → ∆ and πf ′ : Mf ′ → ∆ are holomorphically equivalent (Proposition 2.2). Since

Aut+(P) ⊂ Authol(Σ) (see (5)), the following holds:
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Lemma 2.6. If two elements f, f ′ ∈ Aut+(P) are conjugate in Aut+(P), then two

degenerations πf : Mf → ∆ and πf ′ : Mf ′ → ∆ are holomorphically equivalent. (In this

case, they are said to be strongly holomorphically equivalent.)

Example 2.7. The 1/4-rotation f and the −(1/4)-rotation f−1 of the hexahedron

P are conjugate in Aut+(P). (This follows from the facts that (i) the orders of both

f and f−1 are 4 and (ii) Aut+(P) ∼= S4 and any two elements of order 4 in S4 are

conjugate.) Hence two degenerations πf : Mf → ∆ and πf−1 : Mf−1 → ∆ are strongly

holomorphically equivalent.

Even if f and f ′ are not conjugate in Aut+(P), two degenerations πf : Mf → ∆

and πf ′ : Mf ′ → ∆ are possibly topologically equivalent:

Example 2.8. The automorphism group Aut+(P) of the octahedron P may be

identified S4. The 1/2-rotation f of P about the axis through the midpoints of two

opposite edges is an odd permutation, and the 1/2-rotation f ′ of P about the axis through

two opposite vertices is an even permutation. In particular, they are not conjugate in

Aut+(P), so Lemma 2.6 is not applicable, and it is not clear whether two degenerations

πf : Mf → ∆ and πf ′ : Mf ′ → ∆ are holomorphically equivalent. However they

are indeed topologically equivalent, because [f ] and [f ′] are conjugate in MCG(Σ) (see

Example 2.5).

2.4. Singular fibers.

Let Σ be a Riemann surface and f : Σ → Σ be a periodic automorphism of order

m. For a point p ∈ Σ, the least positive integer c (1 ≤ c ≤ m) satisfying f c(p) = p is the

recurrence number of p. Here:

• If c < m, then p is a ramification point of f (or, a ramification point of a cyclic

covering ψ : Σ→ Σ/〈f〉). In the special case c = 1, p is a fixed point of f .

• If c = m, then p is a generic point with respect to the action of f .

Remark 2.9. For the action of Aut+(P) on the cable surface Σ of a regular

polyhedron P, each element of Aut+(P) is a rotation about some axis and for any

f ∈ Aut+(P), any ramification point of Σ is a fixed point of f .

Given a periodic automorphism f : Σ → Σ of order m, the m-fold cyclic covering

ψ : Σ → Σ/〈f〉 maps the ramification points to the branch points. Say v1, v2, . . . , vl
are the branch points of ψ. The recurrence number of a ramification point ṽj over vj
(that is, ṽj ∈ ψ−1(vj)) is independent of the choice of a ramification point. Denote it

by cj . Below, the genus of Σ/〈f〉 is denoted by h and the ramification index of vj by

nj := m/cj . The set (h;n1, n2, . . . , nl) is called the ramification data of f .

For any ramification point ṽj over vj , the automorphism f−cj : Σ → Σ is locally a

rotation about ṽj , say, a 2πaj/nj-rotation where aj (0 < aj < nj) is an integer relatively

prime to nj . Take the integer qj (0 < qj < nj) satisfying ajqj ≡ 1 mod nj .

Definition 2.10. The fraction qj/nj is the valency of vj and the set

(q1/n1, q2/n2, . . . , ql/nl) is the valency data of f .
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Nielsen’s theorem [9] states that if two periodic automorphisms f and f ′ of a Rie-

mann surface Σ have the same ramification data and the same valency data, then f

and f ′ are conjugate: f ′ = ΦfΦ−1 for some orientation-preserving homeomorphism

Φ : Σ → Σ. In this case, Φ descends to an orientation-preserving homeomorphism

ϕ : Σ/〈f〉 → Σ/〈f ′〉, and two cyclic coverings Σ → Σ/〈f〉 and Σ → Σ/〈f ′〉 are topologi-

cally equivalent, that is, the following diagram commutes:

Σ
Φ //

��

Σ

��
Σ/〈f〉

ϕ // Σ/〈f ′〉.

(6)

We now return to degenerations of Riemann surfaces. Let f : Σ→ Σ be a periodic

automorphism of order m. Where ∆ := {t ∈ C : |t| < 1}, let g : Σ ×∆ → Σ ×∆ be a

periodic automorphism (of order m) defined by (x, t) 7→ (f−1(x), e2πi/mt). Denote by G

the cyclic group generated by g.

In what follows, suppose that any of the ramification points of f is a fixed point —

this is, for instance, the case when f ∈ Aut+(P) and Σ is the cable surface of P. Regard

a fixed point of f as a fixed point of g under the identification of Σ with Σ× {0}.
The image p ∈ (Σ × ∆)/G of a fixed point p ∈ Σ × {0} under the quotient map

Σ × ∆ → (Σ × ∆)/G is a cyclic quotient singularity. Let r : M → (Σ × ∆)/G be the

resolution that minimally resolves each of the (cyclic quotient) singularities of (Σ×∆)/G.

Now let φ : Σ×∆→ ∆ be a G-invariant holomorphic function given by (x, t) 7→ tm. It

determines a holomorphic map φ : (Σ×∆)/G→ ∆. The composition π := φ◦r : M → ∆

is a degeneration associated with f .

Resolving a cyclic quotient singularity of (Σ × ∆)/G yields a chain of (complex)

projective lines. We explain how the multiplicity of each component of this chain is

determined. First let p ∈ (Σ×∆)/G be the cyclic quotient singularity that is the image

of a fixed point p of the automorphism g. Let q/m be the valency of p (with respect

to the automorphism f) and m0,m1,m2, . . . ,mλ be the sequence of integers determined

from m0 := m, m1 := q by the negative division algorithm:{
mi−1 = rimi −mi+1 (0 ≤ mi+1 < mi), i = 1, 2, . . . , λ− 1,

mλ−1 = rλmλ,
(7)

where ri is an integer greater than 1. Then the minimal resolution of p yields the following

chain of projective lines with multiplicities:

m0D0 +m1Θ1 +m2Θ2 + · · ·+mλΘλ,

where D0 is a disk and Θ1,Θ2, . . . ,Θλ are projective lines such that D0 and Θ1 intersect

transversally and Θi and Θi+1 (i = 1, 2, . . . , λ − 1) intersect transversally. We say that

m1Θ1 +m2Θ2 + · · ·+mλΘλ is a branch.

Let p1, p2, . . . , pl ∈ Σ be the fixed points of f . The degeneration π : M → ∆ is then

obtained by resolving the (cyclic quotient) singularities p1, p2, . . . , pl of (Σ×∆)/G. Let
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Ej := m
(j)
1 Θ

(j)
1 +m

(j)
2 Θ

(j)
2 + · · ·+m

(j)
λj

Θ
(j)
λj

be the branch emanating from pj (λj is called

the length of Ej). Then the singular fiber X := π−1(0) of π : M → ∆ is star-shaped, that

is, from the core C := Σ/〈f〉 the branches E1, E2, . . . , El emanate:

X = mC +

l∑
j=1

Ej (for example, see Figure 3).

Convention 2.11. Write C of genus g as Cgenus g and Ej = m
(j)
1 Θ

(j)
1 +m

(j)
2 Θ

(j)
2 +

· · ·+m
(j)
λj

Θ
(j)
λj

as Ej = (m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
λj

). For example, X = 3C+Θ
(1)
1 +2Θ

(2)
1 +Θ

(2)
2

is expressed as X = 3Cgenus g + (1) + (2, 1).

The Euler number χ(|X|) of the underlying topological space |X| of X is equal to

(2 − 2 genus(C)) +
∑l
j=1 λj , where λj is the length of Ej . Since |X| is a deformation

retract of M (see the proof of [3, Corollary 17, p. 178]), χ(M) = χ(|X|), so

χ(M) = χ(|X|) = (2− 2 genus(C)) +

l∑
j=1

λj . (8)

3. Degenerations associated with regular polyhedra and soccer ball.

Let Aut+(P) denote the orientation-preserving automorphism group of a regular

polyhedron P. For each f ∈ Aut+(P), we shall describe the degeneration πf : Mf → ∆

associated with it. Here recall that if f, f ′ ∈ Aut+(P) are conjugate in Aut+(P), then

πf : Mf → ∆ and πf ′ : Mf ′ → ∆ are holomorphically equivalent — in fact, strongly

holomorphically equivalent (Lemma 2.6). It thus suffices to describe the degeneration

πf : Mf → ∆ for each representative f of a conjugacy class of Aut+(P). Note that

distinct strong holomorphic equivalence class may be topologically equivalent — we will

describe which strong holomorphic classes are topologically equivalent.

3.1. Tetrahedron case.

The orientation-preserving automorphism group Aut+(T ) of the tetrahedron T has

three conjugacy classes other than the trivial conjugacy class (that is the conjugacy class

of 1 ∈ Aut+(T )): one conjugacy class of order 2 and two conjugacy classes of order 3

(Table 2). The 1/2-rotation f1 about the axis through the midpoints of two opposite

edges is a representative of the conjugacy class of order 2, and the 1/3-rotation f2 about

the axis through a vertex and the barycenter of the opposite face is a representative of

a conjugacy class of order 3, and f3 := (f2)2 is a representative of the other conjugacy

class of order 3.

The automorphisms f1 and f2 of the tetrahedron T naturally act on the cable surface

Σ of T . The orientation-preserving homeomorphism f1 : Σ → Σ has four fixed points

and the orientation-preserving homeomorphism f2 : Σ→ Σ has two fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 and Xf3 are as follows (see Convention 2.11):
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[T.1] Xf1 = 2Cgenus 1 + (1) + (1) + (1) + (1),

[T.2] Xf2 = 3Cgenus 1 + (1) + (2, 1),

[T.3] Xf3 = 3Cgenus 1 + (1) + (2, 1).

Note that although f2 and f3 are not conjugate in Aut+(T ), their isotopy classes [f2]

and [f3] are conjugate in the mapping class group MCG(Σ) (Remark 3.1). Consequently,

the degenerations πf2 : Mf2 → ∆ and πf3 : Mf3 → ∆ are topologically equivalent.

Remark 3.1. The valency data of f2 and f3 are equal (both are (1/3, 2/3)) and

the ramification data of the cyclic coverings Σ→ Σ/〈f2〉 and Σ→ Σ/〈f3〉 are equal. By

Nielsen’s theorem [9], [f2] and [f3] are thus conjugate in MCG(Σ).

Next the Euler numbers of Mfi (i = 1, 2, 3) may be determined by the formula (8)

as follows: χ(Mf1) = 4, χ(Mf2) = χ(Mf3) = 3.

We summarize the above result as follows:

Proposition 3.2. (1) The singular fibers of the degenerations associated with

f1, f2, f3 are [T.1], [T.2], [T.3], and their Euler numbers χ(Xfi) (= χ(Mfi)) are as

follows: χ(Xf1) = 4, χ(Xf2) = χ(Xf3) = 3.

(2) The two degenerations πf2 : Mf2 → ∆ and πf3 : Mf3 → ∆ are topologically equiva-

lent.

3.2. Hexahedron case.

The orientation-preserving automorphism group Aut+(H) of the hexahedron H has

four conjugacy classes other than the trivial conjugacy class (that is the conjugacy class

of 1 ∈ Aut+(H)): two conjugacy classes of order 2, one conjugacy class of order 3 and

one conjugacy class of order 4 (Table 2). Representatives of the two conjugacy classes

of order 2 are given by 1/2-rotations f1 and f2, respectively, about the axis through

the midpoints of two opposite edges and about the axis through the barycenters of two

opposite faces. A representative of the conjugacy class of order 3 is a 1/3-rotation f3
about the axis through two opposite vertices, and a representative of the conjugacy class

of order 4 is a 1/4-rotation f4 about the axis through the barycenters of two opposite

faces. (We may take (f4)2 as f2.)

The automorphisms f1, f2, f3 and f4 of the hexahedron H naturally act on the cable

surface Σ of H. The orientation-preserving homeomorphisms f1 : Σ→ Σ and f3 : Σ→ Σ

have four fixed points and the orientation-preserving homeomorphisms f2 : Σ → Σ and

f4 : Σ→ Σ have no fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3, 4) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 , Xf3 and Xf4 are as follows (see Convention 2.11):

[H.1] Xf1 = 2Cgenus 2 + (1) + (1) + (1) + (1),

[H.2] Xf2 = 2Cgenus 3,

[H.3] Xf3 = 3Cgenus 1 + (1) + (1) + (2, 1) + (2, 1),

[H.4] Xf4 = 4Cgenus 2.
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Next the Euler numbers of Mfi (i = 1, 2, 3, 4) may be determined by the formula

(8) as follows: χ(Mf1) = 2, χ(Mf2) = −4, χ(Mf3) = 6, χ(Mf4) = −2.

We summarize the above result as follows:

Proposition 3.3. The singular fibers of the degenerations associated with

f1, f2, f3, f4 are [H.1], [H.2], [H.3], [H.4], and their Euler numbers χ(Xfi) (= χ(Mfi))

are as follows: χ(Xf1) = 2, χ(Xf2) = −4, χ(Xf3) = 6, χ(Xf4) = −2.

3.3. Octahedron case.

The orientation-preserving automorphism group Aut+(O) of the octahedron O has

four conjugacy classes other than the trivial conjugacy class (that is the conjugacy class

of 1 ∈ Aut+(O)): two conjugacy classes of order 2, one conjugacy class of order 3 and

one conjugacy class of order 4 (Table 2). Representatives of the two conjugacy classes

of order 2 are given by 1/2-rotations f1 and f2, respectively, about the axis through

the midpoints of two opposite edges and about the axis through two opposite vertices.

A representative of the conjugacy class of order 3 is a 1/3-rotation f3 about the axis

through the barycenters of two opposite faces, and a representative of the conjugacy

class of order 4 is a 1/4-rotation f4 about the axis through two opposite vertices. (We

may take (f4)2 as f2.)

The automorphisms f1, f2, f3 and f4 of the octahedron O naturally act on the cable

surface Σ of O. The orientation-preserving homeomorphisms f1 : Σ → Σ, f2 : Σ → Σ

and f4 : Σ → Σ have four fixed points and the orientation-preserving homeomorphism

f3 : Σ→ Σ has no fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3, 4) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 , Xf3 and Xf4 are as follows (see Convention 2.11):

[O.1] Xf1 = 2Cgenus 3 + (1) + (1) + (1) + (1),

[O.2] Xf2 = 2Cgenus 3 + (1) + (1) + (1) + (1),

[O.3] Xf3 = 3Cgenus 3,

[O.4] Xf4 = 4Cgenus 1 + (1) + (1) + (3, 2, 1) + (3, 2, 1).

Note that although f1 and f2 are not conjugate in Aut+(O), their isotopy classes [f1]

and [f2] are conjugate in the mapping class group MCG(Σ) (Remark 3.4). Consequently,

the degenerations πf1 : Mf1 → ∆ and πf2 : Mf2 → ∆ are topologically equivalent.

Remark 3.4. The valency data of f1 and f2 are equal (both are

(1/2, 1/2, 1/2, 1/2)) and the ramification data of the cyclic coverings Σ → Σ/〈f1〉 and

Σ → Σ/〈f2〉 are equal. By Nielsen’s theorem [9], [f1] and [f2] are thus conjugate in

MCG(Σ).

Next the Euler numbers of Mfi (i = 1, 2, 3, 4) may be determined by the formula

(8) as follows: χ(Mf1) = χ(Mf2) = 0, χ(Mf3) = −4, χ(Mf4) = 8.

We summarize the above result as follows:

Proposition 3.5. (1) The singular fibers of the degenerations associated with

f1, f2, f3, f4 are [O.1], [O.2], [O.3], [O.4], and their Euler numbers χ(Xfi) (=

χ(Mfi)) are as follows: χ(Xf1) = χ(Xf2) = 0, χ(Xf3) = −4, χ(Xf4) = 8.



Degenerations and fibrations of Riemann surfaces 1227

(2) The two degenerations πf1 : Mf1 → ∆ and πf2 : Mf2 → ∆ are topologically equiva-

lent.

3.4. Dodecahedron case.

The orientation-preserving automorphism group Aut+(D) of the dodecahedron D
has four conjugacy classes other than the trivial conjugacy class (that is the conjugacy

class of 1 ∈ Aut+(D)): one conjugacy class of order 2, one conjugacy class of order 3 and

two conjugacy classes of order 5 (Table 2). The 1/2-rotation f1 about the axis through

the midpoints of two opposite edges is a representative of the conjugacy class of order 2,

and the 1/3-rotation f2 about the axis through two opposite vertices is a representative

of the conjugacy class of order 3, and the 1/5-rotation f3 about the axis through the

barycenters of two opposite faces is a representative of a conjugacy class of order 5, and

f4 := (f3)2 is a representative of the other conjugacy class of order 5.

The automorphisms f1, f2 and f3 of the dodecahedron D naturally act on the cable

surface Σ of D. The orientation-preserving homeomorphisms f1 : Σ→ Σ and f2 : Σ→ Σ

have four fixed points and the orientation-preserving homeomorphism f3 : Σ → Σ has

no fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3, 4) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 , Xf3 and Xf4 are as follows (see Convention 2.11):

[D.1] Xf1 = 2Cgenus 5 + (1) + (1) + (1) + (1),

[D.2] Xf2 = 3Cgenus 3 + (1) + (1) + (2, 1) + (2, 1),

[D.3] Xf3 = 5Cgenus 3,

[D.4] Xf4 = 5Cgenus 3.

Note that although f3 and f4 are not conjugate in Aut+(D), their isotopy classes [f3]

and [f4] are conjugate in the mapping class group MCG(Σ) (Remark 3.6). Consequently,

the degenerations πf3 : Mf3 → ∆ and πf4 : Mf4 → ∆ are topologically equivalent.

Remark 3.6. The valency data of f3 and f4 are equal (indeed, they have no

ramification points, so their valency data are both vacuous) and the ramification data of

the cyclic coverings Σ → Σ/〈f3〉 and Σ → Σ/〈f4〉 are equal. By Nielsen’s theorem [9],

[f3] and [f4] are thus conjugate in MCG(Σ).

Next the Euler numbers of Mfi (i = 1, 2, 3, 4) may be determined by the formula

(8) as follows: χ(Mf1) = χ(Mf3) = χ(Mf4) = −4, χ(Mf2) = 2.

We summarize the above result as follows:

Proposition 3.7. (1) The singular fibers of the degenerations associated with

f1, f2, f3, f4 are [D.1], [D.2], [D.3], [D.4], and their Euler numbers χ(Xfi) (=

χ(Mfi)) are as follows: χ(Xf1) = χ(Xf3) = χ(Xf4) = −4, χ(Xf2) = 2.

(2) The two degenerations πf3 : Mf3 → ∆ and πf4 : Mf4 → ∆ are topologically equiva-

lent.



1228 R. Hirakawa and S. Takamura

3.5. Icosahedron case.

The orientation-preserving automorphism group Aut+(I) of the icosahedron I has

four conjugacy classes other than the trivial conjugacy class (that is the conjugacy class

of 1 ∈ Aut+(I)): one conjugacy class of order 2, one conjugacy class of order 3 and

two conjugacy classes of order 5 (Table 2). The 1/2-rotation f1 about the axis through

the midpoints of two opposite edges is a representative of the conjugacy class of order

2, and the 1/3-rotation f2 about the axis through the barycenters of two opposite faces

is a representative of the conjugacy class of order 3, and the 1/5-rotation f3 about the

axis through two opposite vertices is a representative of a conjugacy class of order 5, and

f4 := (f3)2 is a representative of the other conjugacy class of order 5.

The automorphisms f1, f2 and f3 of the icosahedron I naturally act on the cable

surface Σ of I. The orientation-preserving homeomorphisms f1 : Σ→ Σ and f3 : Σ→ Σ

have four fixed points and the orientation-preserving homeomorphism f2 : Σ → Σ has

no fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3, 4) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 , Xf3 and Xf4 are as follows (see Convention 2.11):

[I.1] Xf1 = 2Cgenus 9 + (1) + (1) + (1) + (1),

[I.2] Xf2 = 3Cgenus 7,

[I.3] Xf3 = 5Cgenus 3 + (1) + (1) + (4, 3, 2, 1) + (4, 3, 2, 1),

[I.4] Xf4 = 5Cgenus 3 + (2, 1) + (2, 1) + (3, 1) + (3, 1).

Next the Euler numbers of Mfi (i = 1, 2, 3, 4) may be determined by the formula

(8) as follows: χ(Mf1) = χ(Mf2) = −12, χ(Mf3) = 6, χ(Mf4) = 4.

We summarize the above result as follows:

Proposition 3.8. The singular fibers of the degenerations associated with

f1, f2, f3, f4 are [I.1], [I.2], [I.3], [I.4], and their Euler numbers χ(Xfi) (= χ(Mfi)) are as

follows: χ(Xf1) = χ(Xf2) = −12, χ(Xf3) = 6, χ(Xf4) = 4.

3.6. Soccer ball case.

A convex polyhedron is a semi-regular polyhedron if its faces are regular polygons

and all vertices are congruent. As the cases of the regular polyhedra, we can construct

degenerations associated with semi-regular polyhedra. In this paper, we consider only

the soccer ball case. (The cases of the other semi-regular polyhedra are considered

elsewhere.)

The soccer ball S is a convex polyhedron whose faces are twelve regular pentagons

and twenty regular hexagons. The soccer ball is also called the truncated icosahedron,

for it is obtained by cutting off parts of the icosahedron about vertices. Therefore the

orientation-preserving automorphism group of the soccer ball is equal to that of the

icosahedron: Aut+(S) ∼= Aut+(I).

The automorphism group Aut+(S) has four conjugacy classes other than the trivial

conjugacy class (that is the conjugacy class of 1 ∈ Aut+(S)): one conjugacy class of

order 2, one conjugacy class of order 3 and two conjugacy classes of order 5 (Table

2). The 1/2-rotation f1 about the axis through the barycenters of two opposite edges

adjacent to hexagonal faces is a representative of the conjugacy class of order 2, and
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the 1/3-rotation f2 about the axis through the barycenters of two opposite pentagonal

faces is a representative of the conjugacy class of order 3, and the 1/5-rotation f3 about

the axis through the barycenters of two opposite hexagonal faces is a representative of

a conjugacy class of order 5, and f4 := (f3)2 is a representative of the other conjugacy

class of order 5.

The automorphisms f1, f2 and f3 of the soccer ball S naturally act on the cable

surface Σ of S. The orientation-preserving homeomorphism f1 : Σ → Σ has four fixed

points and the orientation-preserving homeomorphisms f2 : Σ→ Σ and f3 : Σ→ Σ have

no fixed points.

Now let πfi : Mfi → ∆ (i = 1, 2, 3, 4) be the degeneration associated with fi. The

singular fibers Xf1 , Xf2 , Xf3 and Xf4 are as follows (see Convention 2.11):

[S.1] Xf1 = 2Cgenus 15 + (1) + (1) + (1) + (1),

[S.2] Xf2 = 3Cgenus 11,

[S.3] Xf3 = 5Cgenus 7,

[S.4] Xf4 = 5Cgenus 7.

Note that although f3 and f4 are not conjugate in Aut+(S), their isotopy classes [f3]

and [f4] are conjugate in the mapping class group MCG(Σ) (Remark 3.9). Consequently,

the degenerations πf3 : Mf3 → ∆ and πf4 : Mf4 → ∆ are topologically equivalent.

Remark 3.9. The valency data of f3 and f4 are equal (indeed, they have no

ramification points, so their valency data are both vacuous) and the ramification data of

the cyclic coverings Σ → Σ/〈f3〉 and Σ → Σ/〈f4〉 are equal. By Nielsen’s theorem [9],

[f3] and [f4] are thus conjugate in MCG(Σ).

Next the Euler numbers of Mfi (i = 1, 2, 3, 4) may be determined by the formula

(8) as follows: χ(Mf1) = −24, χ(Mf2) = −20, χ(Mf3) = χ(Mf4) = −12.

We summarize the above result as follows:

Proposition 3.10. (1) The singular fibers of the degenerations associated with

f1, f2, f3, f4 are [S.1], [S.2], [S.3], [S.4], and their Euler numbers χ(Xfi) (= χ(Mfi))

are as follows: χ(Xf1) = −24, χ(Xf2) = −20, χ(Xf3) = χ(Xf4) = −12.

(2) The two degenerations πf3 : Mf3 → ∆ and πf4 : Mf4 → ∆ are topologically equiva-

lent.

4. Compactification problem.

Let P be a regular polyhedron or the soccer ball. To conjugacy classes of Aut+(P),

we associated degenerations of Riemann surfaces. Mutsuo Oka raised a question: Is

there a natural way to compactify these degenerations? Or: Is there a compact fibration

of Riemann surfaces over P1 whose singular fibers are those of the above degenerations?

From Aut+(P) itself (not from each of conjugacy classes of Aut+(P)), we explicitly

construct such a fibration.
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Note the fact that the automorphism group Γ := Aut+(P), being a subgroup of

SO(3), acts on the sphere S2 (as a spherical triangle group) — observe that S2 is regarded

as the ‘sphering’ of P, so the action of Γ on P naturally defines its action on S2.

In the sequel, we regard S2 as P1 on which Γ acts holomorphically. Γ also acts on

the cable surface Σ of P holomorphically. Next let Γ act holomorphically on the product

space Σ× P1 by γ(x, y) 7→ (γx, γy).

Remark 4.1. This action is slightly different from the action (x, t) 7→
(f−1(x), e2πi/m) in Section 2.1. Notice that (x, y) 7→ (γ−1x, γy) does not define a group

action, because Γ is not abelian, so in general γ−11 γ−12 6= (γ1γ2)−1. (On the other hand,

the group generated by f is cyclic.)

Now the projection pr : Σ× P1 → P1 is Γ-equivariant, so determines a holomorphic

map pr : (Σ× P1)/Γ→ P1/Γ ∼= P1. Here (Σ× P1)/Γ is a compact complex surface with

singularities — all are cyclic quotient singularities. Take the resolution map r : WP →
(Σ × P1)/Γ that minimally resolves every singularity. We say that the composition

π := pr ◦ r : WP → P1/Γ (∼= P1) is a cable fibration of Riemann surfaces associated with

P. By construction, every smooth fiber of π : WP → P1/Γ is Σ. The singular fibers lie

over the branch points of the quotient map ψ : P1 → P1/Γ. In fact the following holds:

Lemma 4.2. Take a sufficiently small disk D centered at a branch point p ∈ P1/Γ

of ψ : P1 → P1/Γ. Then the restriction π : M → D of π : WP → P1/Γ to M := π−1(D)

is a degeneration associated with P.

Proof. Take a point q ∈ P1 such that ψ(q) = p and the disk D̃ ⊂ P1 centered

at q such that ψ(D̃) = D. Then q is a ramification point of ψ over p and D̃ is invariant

under the action of the stabilizer G := {γ ∈ Γ : γ(q) = q}. Say that the ramification

index of q is m, then G is a cyclic group of order m and a generator γ ∈ G acts on the

disk D̃ by a 1/m-rotation about q, and the action of G on Σ × D̃ is generated by the

automorphism

(x, y) ∈ Σ× D̃ 7−→ (γx, e2πi/my) ∈ Σ× D̃. (9)

Now π : M → D is reconstructed by the cyclic quotient construction as follows:

First note that the quotient of Σ× D̃ → D̃ under the G-action is naturally embedded in

pr : (Σ× P1)/Γ→ P1/Γ:

Σ× D̃

��
D̃

⊂

⊂

Σ× P1

pr
��

P1

quotient−−−−−−→

(Σ× D̃)/G

��
D̃/G

⊂

⊂

(Σ× P1)/Γ

pr
��

P1/Γ .

(10)

Accordingly π : M → D := D̃/G is embedded in π : WP → P1/Γ and is a degeneration of

Riemann surfaces associated with γ−1 (which is the local monodromy of π : WP → P1/Γ

around the singular fiber π−1(p)):
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M

π
��
D

⊂

⊂

WP

π
��

P1/Γ.

(11)

�

Remark 4.3. Precisely speaking, “local monodromy” γ−1 should be the conjugacy

class of γ−1 in the mapping class group of Σ. However by convention, any representative

of the conjugacy class is also called “local monodromy”.

For any P, the number of singular fibers of π : WP → P1/Γ is three, because so is

the number of branch points of ψ : P1 → P1/Γ; their ramification indices appear in Table

5 (see [12, p. 86]).

Table 5

T H O D I S
Ramification indices 2, 3, 3 2, 3, 4 2, 3, 4 2, 3, 5 2, 3, 5 2, 3, 5

For the three branch points of ψ : P1 → P1/Γ, the list of triples (m, f,Xf ), wherem is

the ramification index of a branch point and f is the local monodromy of π : WP → P1/Γ

around the singular fiber Xf of π over it, is as follows:

Table 6

(m, f,Xf )

T
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

2 , X
f−1
2

)
,
(
3, f−2

2 , X
f−2
2

)
; f1, f2 in Section 3.1

H
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

3 , X
f−1
3

)
,
(
4, f−1

4 , X
f−1
4

)
; f1, f3, f4 in Section 3.2

O
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

3 , X
f−1
3

)
,
(
4, f−1

4 , X
f−1
4

)
; f1, f3, f4 in Section 3.3

D
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

2 , X
f−1
2

)
,
(
5, f−1

3 , X
f−1
3

)
; f1, f2, f3 in Section 3.4

I
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

2 , X
f−1
2

)
,
(
5, f−1

3 , X
f−1
3

)
; f1, f2, f3 in Section 3.5

S
(
2, f−1

1 , X
f−1
1

)
,
(
3, f−1

2 , X
f−1
2

)
,
(
5, f−1

3 , X
f−1
3

)
; f1, f2, f3 in Section 3.6

Here note that if P 6= T , then any f ∈ Γ \ {1} is conjugate to f−1 ∈ Γ \ {1}. In

fact f−1 = h−1fh, where h ∈ Γ is the 1/2-rotation that reverses the rotation axis of f

as illustrated in Figure 5. In contrast if P = T , then for a 1/3-rotation f there exists no

such h and in fact f is not conjugate to f−1 in Γ (Figure 5).

The following thus holds (f ∼ f ′ means that f and f ′ are conjugate in Γ) (Table 7):

We may accordingly change representatives of local monodromies in their conjugacy

classes in Γ. Here note that if f and f−1 are conjugate in Γ, then πf : Mf → ∆

and πf−1 : Mf−1 → ∆ are holomorphically equivalent (Lemma 2.6), consequently the

following holds (Table 8):

Noting that P1 ∼= P1/Γ, in what follows we write π : WP → P1/Γ as π : WP → P1.

Euler numbers of total spaces.

For arbitrary fibration π : W → P1 of Riemann surfaces of genus g with singular

fibers X1, X2, . . . , Xl, the following holds ([1, Proposition 11.4, p. 118]):
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h

f

h

f f
f

h

f

h

Figure 5. T is not symmetric in the vertical direction.

Table 7. In all cases, f21 = 1, so f−11 = f1.

T f−1
1 = f1, f−1

2 = f2
2 , f−2

2 = f2

H f−1
1 = f1, f−1

3 ∼ f3, f−1
4 ∼ f4

O f−1
1 = f1, f−1

3 ∼ f3, f−1
4 ∼ f4

D f−1
1 = f1, f−1

2 ∼ f2, f−1
3 ∼ f3

I f−1
1 = f1, f−1

2 ∼ f2, f−1
3 ∼ f3

S f−1
1 = f1, f−1

2 ∼ f2, f−1
3 ∼ f3

Table 8

T X
f−1
1

= Xf1 = [T.1], X
f−1
2

= Xf2
2

= [T.3], X
f−2
2

= Xf2 = [T.2]

H X
f−1
1

= Xf1 = [H.1], X
f−1
3

= Xf3 = [H.3], X
f−1
4

= Xf4 = [H.4]

O X
f−1
1

= Xf1 = [O.1], X
f−1
3

= Xf3 = [O.3], X
f−1
4

= Xf4 = [O.4]

D X
f−1
1

= Xf1 = [D.1], X
f−1
2

= Xf2 = [D.2], X
f−1
3

= Xf3 = [D.3]

I X
f−1
1

= Xf1 = [I.1], X
f−1
2

= Xf2 = [I.2], X
f−1
3

= Xf3 = [I.3]

S X
f−1
1

= Xf1 = [S.1], X
f−1
2

= Xf2 = [S.2], X
f−1
3

= Xf3 = [S.3]

χ(W ) = (2− l)(2− 2g) +

l∑
i=1

χ(|Xi|), (12)

where χ(|Xi|) may be computed from (8). For W = WP , noting that l = 3, the Euler

numbers of the singular fibers of π : WP → P1 and the Euler number χ(WP) of WP are

as follows:

Table 9

P g χ(X): X is a singular fiber χ(WP)

T 3 χ(|T.1|) = 4, χ(|T.2|) = 3, χ(|T.3|) = 3 (Proposition 3.2) 14

H 5 χ(|H.1|) = 2, χ(|H.3|) = 6, χ(|H.4|) = −2 (Proposition 3.3) 14

O 7 χ(|O.1|) = 0, χ(|O.3|) = −4, χ(|O.4|) = 8 (Proposition 3.5) 16

D 11 χ(|D.1|) = −4, χ(|D.2|) = 2, χ(|D.3|) = −4 (Proposition 3.7) 14

I 19 χ(|I.1|) = −12, χ(|I.2|) = −12, χ(|I.3|) = 6 (Proposition 3.8) 18

S 31 χ(|S.1|) = −24, χ(|S.2|) = −20, χ(|S.3|) = −12 (Proposition 3.10) 4
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Generalization.

We may generalize the construction of π : WP → P1 by replacing P1 with a Riemann

surface on which Aut+(P) acts holomorphically. Any singular fiber of the resulting

fibration coincides with the singular fiber of some degeneration associated with P. We

will subsequently study these fibrations — among them the fibration constructed in the

present paper is most canonical.
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