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Abstract. Given a simple graph G, the graph associahedron PG is a
convex polytope whose facets correspond to the connected induced subgraphs

of G. Graph associahedra have been studied widely and are found in a broad

range of subjects. Recently, S. Choi and H. Park computed the rational Betti
numbers of the real toric variety corresponding to a graph associahedron un-

der the canonical Delzant realization. In this paper, we focus on a pseudo-

graph associahedron which was introduced by Carr, Devadoss and Forcey, and
then discuss how to compute the Poincaré polynomial of the real toric variety

corresponding to a pseudograph associahedron under the canonical Delzant

realization.

1. Introduction.

A toric variety of complex dimension n is a normal algebraic variety over C with an

effective algebraic action of (C \ {O})n having an open dense orbit. A compact smooth

toric variety is called a toric manifold, and the subset consisting of points with real

coordinates of a toric manifold is called a real toric manifold. One of the most important

facts in toric geometry, the so called fundamental theorem of toric geometry, is that

there is a 1-1 correspondence between the class of toric varieties of complex dimension

n and the class of fans in Rn. In particular, a toric manifold X of complex dimension n

corresponds to a complete non-singular fan ΣX in Rn. Furthermore, if X is projective,

then ΣX can be realized as the normal fan of some simple polytope of real dimension n. A

simple polytope P of dimension n is called Delzant if for each vertex p ∈ P , the outward

normal vectors of the facets containing p can be chosen to make up an integral basis

for Zn. Note that the normal fan of a Delzant polytope is a complete non-singular fan

and thus defines a projective toric manifold and a real toric manifold by the fundamental

theorem as well.

The (integral) Betti numbers of a toric manifold X of complex dimension n are

easily computed. It is known by the theorem of Danilov [7]–Jurkiewicz [8] that the Betti

numbers of X vanish in odd degrees and the 2ith Betti number of X is equal to hi,

where (h0, h1, . . . , hn) is the h-vector of ΣX . Unlike toric manifolds, however, only little

is known about the topology of real toric manifolds. In [10] and [11], Suciu and Trevisan

have found a formula for the rational cohomology groups of a real toric manifold, see also

[6]. Let P be a Delzant polytope of dimension n. Let F = {F1, . . . , Fm} be the set of

facets of P . Then, the outward normal vectors of P can be understood as a function φ

from F to Zn, and the composition map λ : F φ→ Zn mod 2−−−−→ Zn2 is called the (mod 2)

characteristic function over P . Note that λ can be represented by a Z2-matrix Λ of size
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n×m as

Λ =
(
λ(F1) · · · λ(Fm)

)
,

where the ith column of Λ is λ(Fi) ∈ Zn2 . For ω ∈ Zm2 , we define Pω to be the union

of facets Fj such that the jth entry of ω is nonzero. Denote by Mλ(P ) the real toric

manifold corresponding to P and λ. Then the ith rational Betti number of Mλ(P ) is

given by

βi(Mλ(P )) =
∑

ω∈Row(λ)

rankQ H̃
i−1(Pω;Q), (1.1)

where Row(λ) is the space of m-dimensional Z2-vectors spanned by the rows of Λ as-

sociated with λ. S. Choi and H. Park [6] reproved the formula (1.1) by using different

methods, and showed that it holds even for the cohomology group of arbitrary coefficient

ring in which 2 is a unit. Furthermore, it is known in [4] that the suspension of M

localized at an odd prime p (or p = 0, which is known as the rationalization) can be

decomposed as

ΣM 'p Σ
∨

ω∈Row(λ)

ΣPω. (1.2)

Recently, the rational Betti numbers of some interesting family of real toric mani-

folds, arising from simple graphs, have been computed by using (1.1) in [5]. Let G be a

simple graph with node set [n+ 1] := {1, . . . , n+ 1} and B(G) the graphical building set

which is the collection of subsets of [n + 1] all of whose elements are obtained from the

connected induced subgraphs of G. For I ⊂ [n + 1], let ∆I be the simplex given by the

convex hull of points ei, i ∈ I, where ei is the ith standard basis vector. Then define the

graph associahedron PG as the Minkowski sum of simplices

PG =
∑

I∈B(G)

∆I . (1.3)

One can see that G is connected if and only if PG is n-dimensional. We note that, for

every connected graph G with n + 1 nodes, there is a canonical way to realize PG as a

Delzant polytope from ∆n in Rn by truncating its faces corresponding to elements of

B(G) \ {[n + 1]} (refer [12] or [9, Proposition 7.10]). We note that to each facet of PG
there is an assigned element I of B(G)\{[n+1]}. In this case, by choosing an appropriate

basis of Zn2 , the characteristic function λG is

λG(I) =


∑
i∈I

ei, if n+ 1 6∈ I;

∑
i 6∈I

ei, if n+ 1 ∈ I.

We denote by MG the real toric manifold MλG
(PG) corresponding to PG under the

canonical Delzant realization.
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In [5], the rational Betti numbers of MG are computed in terms of the a-numbers

of G. The authors noted that, for each simple graph G with an even number of nodes,

there is the unique element ω0(G) ∈ Row(λG) such that the component of ω0(G) corre-

sponding to every singleton in B(G) is nonzero. The remarkable fact discovered in [5] is

that for ω ∈ Row(λG), (PG)ω is homotopy equivalent to (PH)ω0(H) for some subgraph

H of G induced by an even number of nodes. Furthermore, (PH)ω0(H) is homotopy

equivalent to a wedge of spheres of the same dimension. Therefore, they concluded that

(PG)ω is homotopy equivalent to a wedge of spheres of the same dimension for each

ω ∈ Row(λG).

In this paper, we discuss the pseudographical analogue of the above phenomena. A

pseudograph G is a graph in which both loops and multiple edges are permitted. The

notion of a pseudograph associahedron is originally introduced in [3] as a generalization

of a graph associahedron. Indeed, it coincides with the graph associahedron PG if G is a

connected simple graph. However, if G is disconnected, then it does not coincide with PG
since the dimension of the corresponding pseudograph associahedron in [3] is always

greater than the dimension of the graph associahedron. So in this paper, we introduce a

slightly modified definition of a pseudograph associahedron, see Section 2, which totally

agrees with the notion of a graph associahedron when G is simple. Then, we will denote

again by PG the (our modified) pseudograph associahedron of a pseudograph G. We also

remark that if G does not have a loop, then there is the canonical Delzant realization

of PG, and, hence, it provides a real toric manifold MG.

For a topological space X, if X has the homotopy type of a finite CW-complex, then

we let PoinX(t) and P̃oinX(t) be the polynomials defined by

PoinX(t) =

∞∑
i=0

βi(X)ti and P̃oinX(t) =

∞∑
i=0

β̃i(X)ti,

where βi(X) is the ith rational Betti number of X and β̃i(X) is the ith reduced rational

Betti number of X. The polynomial PoinX(t) is called the Poincaré polynomial of X.

Our main result is about computing the Poincaré polynomial of MG.

A pseudograph H is an induced subgraph of G if H is a subgraph that includes all

edges between every pair of nodes in H if such edges of G exist. A pseudograph G′ is

a partial underlying pseudograph of G if G′ can be obtained from G by replacing some

bundles with simple edges. We denote by HlG if H is a partial underlying pseudograph

of an induced subgraph of G. The main result of this paper may be stated as follows, and

all definitions and notations related to Theorem 1.1 are explained in Section 3, with more

observations and examples. Throughout this paper, for simplicity, we also denote by K

the topological realization of a simplicial complex K if there is no danger of confusion.

Theorem 1.1. For any pseudograph G, we have

PoinMG
(t) = 1 + t

∑
HlG

∑
C⊂CH

admissible to H

P̃oinKodd
C,H

(t),

where CH is the set of all nodes and all multiple edges of H.
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Roughly, for C ⊂ CH , C is said to be admissible to H if C has an even number

of nodes and an even number of multiple edges of H satisfying certain conditions, and

Kodd
C,H is a subcomplex of the dual of ∂PH satisfying certain conditions related to C.

In our formula,
∑

C⊂CH
admissible to H

P̃oinKodd
C,H

(t) is completely determined by H lG, and

so we define it by the a-polynomial aH(t) of H. Interestingly, our main theorem says

that for the computation of PoinMG
(t), it is sufficient to consider some subgraphs of

G, instead of considering Pω for all ω ∈ Row(λG). One of the main ideas to prove

Theorem 1.1 is to show that for ω ∈ Row(λG), (PG)ω is homotopy equivalent to Kodd
C,H

for some collection C and some H lG, see Proposition 4.7. Hence, not only this result

reduces the computation of PoinMG
(t) remarkably, but enhances the understanding of

the topology of suspended MG as (1.2), since the dimension of Kodd
C,H is much less than

that of (PG)ω.

Our result is a generalization of [5] in a sense that the a-polynomial of a simple

graph H corresponds to the a-number of H. More precisely, if a graph G is simple, then

an induced subgraph H of G having an admissible collection must have an even number

of nodes and its node set is a unique admissible collection of H, and therefore the a-

polynomial aH(t) is a monomial of degree |V (H)|/2 and the coefficient of the monomial

is exactly equal to the a-number of H.

This paper is organized as follows: in Section 2, we review the slightly modified

definition of a pseudograph associahedron, and show that pseudograph associahedra are

Delzant. In Section 3, we define the a-polynomial of a pseudograph, and prepare the

notions necessary to state the main theorem. In Section 4, we show that (PG)ω is

homotopy equivalent to Kodd
C,H and prove the main theorem. We conclude in Section 5

with some remarks.

2. Pseudograph associahedron and its associated real toric manifold.

In this section, we briefly review the construction of the pseudograph associahedron

PG for a pseudograph G based on [3]. However, we modify some notions in order to

improve the explanation, but the essential ideas are the same.

A pseudograph G is an ordered pair G := (V,E), where V is a set of nodes1 and E is

a multiset of unordered pairs of nodes, called edges. If the endpoints of an edge e are the

same then e is called a loop. A pseudograph is said to be finite if both V and E are finite

sets. Throughout this paper, we only consider a finite pseudograph. An edge e ∈ E is

said to be multiple if there exists an edge e′ ( 6= e) in E such that e and e′ have the same

pair of endpoints. An edge is called a simple edge if it is not a multiple edge. A bundle

is a maximal set of multiple edges which have the same pair of endpoints. For example,

the pseudograph G in Figure 1 on page 697 has five multiple edges and two bundles.

The underlying simple graph of G is created by deleting all loops and replacing each

bundle with a simple edge. A pseudograph G is said to be connected if its underlying

simple graph is connected. A pseudograph H is an induced (respectively, semi-induced)

subgraph of G if H is a subgraph that includes all edges (respectively, at least one edge)

1In this paper, we use ‘node’ for a graph or a pseudograph, and we use ‘vertex’ for a 0-dimensional

simplex.
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between every pair of nodes in H if such edges exist in G. Note that for a simple graph,

semi-induced subgraphs and induced subgraphs are the same concept. For example, in

Figure 1, I1, I4, and I5 are induced subgraphs and I3 is a semi-induced subgraph of G.

Definition 2.1. Let G be a (not necessarily connected) pseudograph. A tube is a

proper connected semi-induced subgraph I of some connected component of G.2 A tube

is said to be full if it is an induced subgraph of G. Two tubes meet by inclusion if one

properly contains the other, and they meet by separation if they are disjoint and cannot

be connected by an edge of G. Two tubes are compatible if they meet by inclusion or

separation. A tubing of G is a set of pairwise compatible tubes.

From now on, we will consider only pseudographs without loops. We give labels

to the nodes and the multiple edges of a pseudograph. In addition, when we consider

a subgraph H of a pseudograph G, the labels of H are inherited from the labels of G.

Thus, if a pseudograph H is considered as a subgraph of a pseudograph G, then H might

have a labelled simple edge, which is not in a bundle of H (actually, it is in a bundle of

G). Here are examples for tubes and tubings.

Example 2.2. Let G be a pseudograph labelled as Figure 1. Then G has two

bundles {a, b} and {c, d, e}. The subgraphs I1, I3, I4, and I5 are tubes of G, but I2 is

not a tube. In particular, I1, I4, and I5 are full tubes. Note that {I1, I4, I5} is a tubing

since I1 and I4 meet by inclusion, I4 and I5 meet by inclusion, and I1 and I5 meet by

separation. But, {I1, I3, I4} is not a tubing since I3 and I4 are not compatible.

1 2

3

4 5
a

b

c

d
e

G

2

I1

1 2 4

I2

1 2a

I3

2 4 5c

d
e

I4

5

I5

Figure 1. A pseudograph G and its subgraphs.

For a pseudograph G, a subgraph I of G will be denoted by the set of nodes of I

and edges of I in a bundle of G. For instance, for the five subgraphs of G in Figure 1,

I1 = {2}, I2 = {1, 2, 4}, I3 = {1, 2, a}, I4 = {2, 4, 5, c, d, e}, and I5 = {5}.

2This is different from the definition of a tube in [2] by Carr and Devados. They defined a tube by a
proper connected subgraph that includes at least one edge between every pair of nodes in I if such edges

exist, and so a connected component itself can be a tube while our definition does not allow it.
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It should be noted that for a semi-induced subgraph I, this set expression makes sense

because I is the subgraph of G induced by the corresponding set. In the same sense, for

a subgraph I of G, we denote by α ∈ I if α is a node of I or a multiple edge of G. From

now on, for simplicity, we omit the braces and commas, and we always denote it in a way

that the nodes proceed to the multiple edges, and the nodes are arranged in increasing

order, like as I1 = 2, I3 = 12a, I4 = 245cde, and I5 = 5.

Before we define a polyhedron associated with a pseudograph G, we introduce a

specific labelling LI corresponding to a tube I of G. For each tube I of G, LI is defined

to be the minimal collection of nodes and edges of G such that

– LI contains I as a set, and

– if a bundle B of G satisfies that B ∩ I = ∅, then B ⊂ LI .

For simplicity, we also omit the braces and commas when we denote LI . For instance,

the tubes I1, I3, I4, and I5 in Figure 1 have the associated labels

LI1 = 2abcde, LI3 = 12acde, LI4 = 245abcde, and LI5 = 5abcde.

Now we are ready to define a pseudograph associahedron corresponding to a finite

pseudograph without loops.3 Let G be a connected pseudograph with n+ 1 nodes. Let

B1, . . . , Bk be the bundles of G, and bi + 1 the number of edges in Bi for i = 1, . . . , k.

Define ∆G as the product

∆G := ∆n ×
k∏
i=1

∆bi

of simplices endowed with the following labels on its faces:

1. each facet of the simplex ∆n is labelled with a particular node of G, and each face

of ∆n corresponds to a proper subset of nodes of G, defined by the intersection of

the facets associated with those nodes;

2. each vertex of the simplex ∆bi is labelled with a particular edge in Bi, and each

face of ∆bi corresponds to a subset of Bi defined by the vertices spanning the face;

and

3. these labels naturally induce a labelling on ∆G.

We note that a full tube of G is determined by the element of the graphical building

set B(Gs), where Gs is the underlying simple graph of G. Hence, one can see that, for a

connected pseudograph G, truncating the faces of ∆G labelled by LI for full tubes I, in

increasing order of dimension, constructs

∆∗G := PGs ×
k∏
i=1

∆bi .

3In [3], a pseudograph associahedron is defined for any pseudograph even if it has a loop. However, in
this case, the pseudograph associahedron is not bounded. In this paper, since we are interested in only
Delzant polytopes that are bounded, we shall deal with only pseudographs having no loops.
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As each face f of ∆∗G corresponding to a full tube is truncated, those subfaces of f that

correspond to tubes but have not yet been truncated are removed. It is natural, however,

to assign these defunct tubes to the combinatorial images of their original subfaces.

Definition 2.3 (Modifying the definition in [3]). Let G be a pseudograph. If G

is connected, then truncating the remaining faces of ∆∗G labelled with LI for tubes I,

in increasing order of dimension, results in the pseudograph associahedron PG. If G is

a pseudograph with connected components G1, . . . , Gq, then the pseudograph associahe-

dron is PG = PG1 × · · · × PGq .4

Example 2.4. Let G be a pseudograph with three nodes and one bundle of size

two labelled as in Figure 2. Then the pseudograph G has nine tubes, and five of them

are full. The following table shows all the tubes I of G and their labellings LI .

31
2

a

b

G

13

12

23
3

21 ×

a

b

∆2 × ∆1
13b 23b

12b

13a 23a

12a

123a

3ab

1ab 2ab

3b

3a

1a 2a

1b 2b

13ab 23ab

12ab

∆G

Figure 2. An example of ∆G whose facets are labelled with LI .

I LI I LI I LI
1 1ab full 23 23ab full 12a 12a not full

2 2ab full 12ab 12ab full 12b 12b not full

3 3ab full 123a 123a not full

123b 123b not full

First, we truncate the faces of ∆G corresponding to full tubes. Then we get the

first polytope in Figure 3 and the defunct tubes 12a and 12b correspond to some edges

of the new facet obtained from the truncation of the face corresponding to 12ab. Now

we truncate the faces of ∆∗G whose labels correspond to the remaining tubes. Then we

obtain the pseudograph associahedron with nine facets labelled by LI . See Figure 3.

For simplicity, we will use the same notation for tubes and facets, that is, we denote

by I the facet labelled by LI . The face poset of PG is isomorphic to the set of tubings of

G, ordered under reverse subset containment. Two facets meet by inclusion (respectively,

4We note that, for a connected simple graph G, we have PG = QG, where PG is the graph associ-
ahedron corresponding to G as in (1.3), and QG is the polytope defined by the original definition of

pseudograph associahedron in [3]. However, if G is not connected, that is, G has connected components
G1, . . . , Gq , then QG is defined to be QG = PG1 × · · · × PGq × ∆q−1 while PG = PG1 × · · · × PGq

by (1.3). In order to avoid this confusion, we shall use a slightly modified definition of pseudograph
associahedron as in Definition 2.3.
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3ab

1ab 2ab

23ab

12a

12b

123a

12ab

∆∗G

12b

12a

123a

3ab

1ab 2ab

23ab

12ab

PG PG

Figure 3. The pseudograph associahedron PG.

meet by separation) if their corresponding tubes meet by inclusion (respectively, meet by

separation). In addition, the set of tubes of G also represents the set of facets of PG.

An n-dimensional convex polytope P is called a Delzant polytope if the outward normal

vectors to the facets meeting at each vertex form an integral basis of Zn. In the rest of

this section, we shall discuss the Delzant construction of PG.

Lemma 2.5. Let P be a Delzant polytope and F a proper face of P . Then there is

the canonical truncation of P along F such that the result is a Delzant polytope.

Proof. Assume dimP = n. Suppose that F is the intersection of facets F1, . . . , Fk
for 1 ≤ k ≤ n whose outward normal vectors are λ(F1), . . . , λ(Fk), respectively. We

truncate P along F by a hyperplane whose normal vector is λ(F1) + · · · + λ(Fk), and

obtain a convex simple polytope cutF (P ). We claim that cutF (P ) is Delzant. In order

to prove the claim, by the convexity of cutF (P ), the only thing what we have to show

is that for every new vertex v of cutF (P ), the normal vectors of facets containing v are

unimodular. If k = 1, then cutF (P ) is clearly a Delzant polytope. Now assume that

k > 1. Then at each vertex v of F , there exist facets F vk+1, . . . , F
v
n such that the outward

normal vectors λ(F1), . . . , λ(Fk), λ(F vk+1), . . . , λ(F vn ) form an integral basis of Zn. Let

F̃ be the facet of cutF (P ) which is the new facet arising from the truncation of the face

F . Note that the facets F1, . . . , Fk and F vk+1, . . . , F
v
n are also cut when we truncate the

face F of P . Let F̃1, . . . , F̃k, F̃ vk+1, . . . , F̃
v
n be the facets of cutF (P ) which are the cuts of

F1, . . . , Fk, F vk+1, . . . , F
v
n , respectively. We note that each new vertex of F̃ can be written

as the intersection of F̃1, . . . , F̃i−1, F̃ , F̃i+1, . . . , F̃k, F̃ vk+1, . . . , F̃
v
n , where v is a vertex of

F . Furthermore, in this case, {F1, . . . , Fk, F
v
k+1, . . . , F

v
n} should meet at the vertex v in

P . Since P is Delzant, their normal vectors are unimodular. Therefore, we have

det
(
λ(F1) · · · λ(Fk) λ(F vk+1) · · · λ(F vn )

)
= det

(
λ(F̃1) · · · λ(F̃i−1) λ(F̃ ) λ(F̃i+1) · · · λ(F̃k) λ(F̃ vk+1) · · · λ(F̃ vn )

)
,

and hence cutF (P ) is also Delzant. �

Let G be a connected pseudograph with node set V = [n+1] and bundles B1, . . . , Bk,

and let |Bi| = bi+1 for i = 1, . . . , k. Each edge in a bundle Bi is labelled by eji for i ∈ [k]

and j ∈ [bi + 1]. We set CG = V ∪B1 ∪ · · · ∪Bk and RG = CG \ {n+ 1, eb1+1
1 , . . . , ebk+1

k }.
We note that ∆G is |RG|-dimensional. Consider an integral matrix A = (aα,β) of size
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|RG| × |CG| whose rows are labelled by elements in RG and columns are labelled by

elements in CG. Then, there is a Delzant realization of ∆G such that the normal vector

of the facet corresponding to β ∈ CG is the column Aβ of A labelled by β if we put

aα,β =


−1, if α = β;

1, if α ∈ V and β = n+ 1, or α ∈ Bi and β = ebi+1
i ;

0, otherwise.

Since PG is obtained from ∆G by truncating facets canonically, it follows from Lemma 2.5

that for a pseudograph G, the pseudograph associahedron PG becomes a Delzant poly-

tope. More precisely, the outward normal vector of the facet corresponding to a tube I

is
∑
β∈LI

Aβ =
∑
β∈I Aβ . Let λG be the mod 2 characteristic function of PG. Then,

λG(I) ≡
∑
β∈I Aβ (mod 2). For simplicity, let MG := MλG

(PG), which is a real toric

manifold associated with λG.

3. The a-polynomial of a pseudograph and the main result.

In this section, we will define the a-polynomial of a pseudograph and explain our

main result.

Let G be a connected pseudograph with node set V and bundles B1, . . . , Bk, and

CG = V ∪B1 ∪ · · · ∪Bk. We set

2CGeven = {C ⊂ CG | |C ∩ V | ≡ |C ∩B1| ≡ · · · ≡ |C ∩Bk| ≡ 0 (mod 2)} ⊂ 2CG .

A collection C ⊂ CG is said to be admissible to G if it satisfies the following (a1)–(a3):

(a1) C ∈ 2CGeven,

(a2) C contains the nodes which are not endpoints of any bundle of G, and

(a3) for each bundle B of G, B ∩ C 6= ∅.

If G has q connected components G1, . . . , Gq, then C ⊂ CG is said to be admissible to G

if C ∩ Gi is admissible to Gi for every i = 1, . . . , q. If C ⊂ CG is admissible to G, then

C is called an admissible collection of G. For example, Figure 4 shows all admissible

collections of the pseudograph G in Figure 2 and Figure 5 shows some non-admissible

collections.

3
2

a

b

C1 = 23ab

31

a

b

C2 = 13ab

Figure 4. Admissible collections.

For a pseudograph G and for each collection C ⊂ CG, let P odd
C,G denote the union of

all facets I of PG such that |I ∩ C| is odd, and Kodd
C,G its dual simplicial complex.

For a topological space X, if X has the homotopy type of a finite CW-complex, then

we let PoinX(t) and P̃oinX(t) be the polynomials defined by
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31
2

a

b

C3 = 123ab

3

a

b

C4 = 3ab

3
2

b

C5 = 23b

Figure 5. Non-admissible collections.

PoinX(t) =

∞∑
i=0

βi(X)ti and P̃oinX(t) =

∞∑
i=0

β̃i(X)ti, respectively,

where βi(X) = rankQH
i(X;Q) and β̃i(X) = rankQH̃

i(X;Q). Then we define the a-

polynomial aG(t) of G by

aG(t) =
∑

C⊂CG
admissible to G

P̃oinKodd
C,G

(t). (3.1)

Note that if G has no admissible collection then the a-polynomial aG(t) of G is defined

to be the zero polynomial. Hence, if G is a simple graph with odd number of nodes, then

aG(t) is the zero polynomial. For example, recall that the pseudograph G in Figure 2

has only two admissible collections C1 and C2 in Figure 4. Figure 6 says that Kodd
C1,G

is

homotopy equivalent to S1, and Kodd
C2,G

is null-homotopic. Thus P̃oinKodd
C1,G

(t) = t and

P̃oinKodd
C2,G

(t) = 0, and hence the a-polynomial of G is aG(t) = t.

2 3

123a

123b

12ab

Kodd
C1,G

1 3

123a

123b

12ab

Kodd
C2,G

Figure 6. Simplicial complexes corresponding to admissible collections.

Note that for a pseudograph G, by (1.1), we already know that the rational Betti

numbers of the real toric manifold MG corresponding to G are computed as

PoinMG
(t) = 1 + t

∑
ω∈Row(λG)

P̃oin(PG)ω (t),

where λG is the mod 2 characteristic function of MG defined at the end of Section 2.

We define a matrix Λ′ = (λ′α,I) over Z2 whose rows are labelled by elements in CG
and columns are labelled by the tubes of G such that

λ′α,I =

{
1, if α ∈ I
0, otherwise.
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Let G be a connected pseudograph with node set V = [n + 1] and bundles B1, . . . , Bk,

where |Bi| = bi + 1 for each i = 1, . . . , k. Then λG can be obtained from Λ′ by adding

the row Λ′n+1 to the rows Λ′1, . . . ,Λ
′
n, adding the row Λ′

e
bi+1

i

to the rows Λ′
e1i
, . . . ,Λ′

e
bi
i

for i = 1, . . . , k, and then deleting the rows Λ′n+1, Λ′
e
b1+1
1

, . . . ,Λ′
e
bk+1

k

from Λ′, where Λ′α

is the row vector of Λ′ corresponding to α ∈ CG. Each subset C of CG is assigned to an

element ωC :=
∑
c∈C Λ′c of Row(Λ′). Define

Row(Λ′even) := {ωC ∈ Row(Λ′) | C ∈ 2CGeven}.

Then, Row(Λ′even) is a subspace of Row(Λ′).

Let RG = CG \ {n+ 1, eb1+1
1 , . . . , ebk+1

k }. For R ⊂ RG, there is a bijection from 2RG

to 2CGeven defined by R 7→ C, where

C ∩ V =

{
R ∩ V, if |R ∩ V | is even;

(R ∩ V ) ∪ {n+ 1}, if |R ∩ V | is odd,

and for i = 1, . . . , k,

C ∩Bi =

{
R ∩Bi, if |R ∩Bi| is even;

(R ∩Bi) ∪ {ebi+1
i }, if |R ∩Bi| is odd.

Note that each element of Row(λG) is associated with a subset R in R, and this

bijection identifies Row(λG) with Row(Λ′even). Furthermore, one can see that (PG)ωC
is

the union of all facets I such that |I ∩ C| is odd. Hence, by (1.1), the ith rational Betti

number βi(MG) of MG is given by

βi(MG) =
∑

C∈2
CG
even

β̃i−1(P odd
C,G). (3.2)

Hence, for a pseudograph G,

PoinMG
(t) = 1 + t

∑
C∈2

CG
even

P̃oinKodd
C,G

(t).

Recall that a pseudograph G′ is a partial underlying pseudograph of G if G′ can be

obtained from G by replacing some bundles with simple edges, that is, the set of all the

bundles of G′ is a subset of that of G. We denote by H lG if H is a partial underlying

pseudograph of an induced subgraph of G. See Figure 7 for illustrations. We now restate

the main theorem. The proof will be presented in Section 4.

Theorem 1.1 For any pseudograph G, we have

PoinMG
(t) = 1 + t

∑
HlG

aH(t) = 1 + t
∑
HlG

∑
C⊂CH

admissible to H

P̃oinKodd
C,H

(t).

One should note that if H lG, then we have CH ⊆ CG and the dimension of Kodd
C,H
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is much less than the dimension of Kodd
C,G for each collection C ⊂ CH . We will see in the

next section that for each collection C admissible to H, Kodd
C,H is a simplicial subcomplex

of Kodd
C,G, and Kodd

C,H and Kodd
C,G have the same homotopy type.

Here is an example. Let us compute PoinMG
(t) for the pseudograph G in Figure 2.

Figure 7 shows all pseudographs H l G, where only four pseudographs can have an

admissible collection, that is, H1 = 123ab, H2 = 12ab, H3 = 23, and H4 = 12. We

computed that aH1(t) = t right after the definition of the a-polynomial. The admissible

collections of H2 are 12ab and ab, where Kodd
12ab,H2

and Kodd
ab,H2

are homotopy equivalent

to S1 and S0, respectively. Thus aH2
(t) = 1+t. Since 23 is the only admissible collection

of H3 and Kodd
23,H3

is homotopy equivalent to S0, we have aH3(t) = 1. In addition, 12 is

the only admissible collection of H4 and Kodd
12,H4

is homotopy equivalent to S0. Hence,

aH4
(t) = 1. Thus PoinMG

(t) = 1 + t(t+ (1 + t) + 2) = 1 + 3t+ 2t2.

31
2

a

b

1
2

a

b 2 3 1 3

31
2

1 2
1 2 3

Figure 7. All pseudographs H lG for the pseudograph G in Figure 2.

4. A simplicial complex Kodd
C,G and its subcomplexes.

In this section, we will show that a simplicial complex Kodd
C,G is homotopy equivalent

to Kodd
C,H for some H lG, and we will prove Theorem 1.1.

Let G be a connected pseudograph with node set V = [n+1] and bundles B1, . . . , Bk,

where |Bi| = bi + 1 for each i = 1, . . . , k, as in the previous section.

The following lemma is useful to find a simplicial subcomplex which is homotopy

equivalent to a given simplicial complex.

Lemma 4.1 (Lemma 5.2 of [5]). Let I be a vertex of a simplicial complex K and

suppose that the link Lk I of I in K is contractible. Then K is homotopy equivalent to

the complex K \ St I, where St I is the star of I.

For each C ∈ 2CGeven, let Γ̃G(C) be the subgraph of G induced by the node set

VC := {v ∈ V | v ∈ C or v is an endpoint of an edge e ∈ C}. We define a simplicial

subcomplex K ′C,G of Kodd
C,G by

{the vertices of K ′C,G} = {tubes I of G such that I ⊆ Γ̃G(C) and |I ∩ C| is odd}.

We note that the vertices of K ′C,G are tubes of Γ̃G(C) unless I = Γ̃G(C).

Example 4.2. Let G be a connected pseudograph with four nodes and two bundles

in Figure 8. Let C1 = 13ab and C2 = 12cd, then Γ̃G(C1) = 123ab and Γ̃G(C2) = 124abcd.

Note that the vertices of K ′C1,G
are
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3 4

1 2

a

b

c d

A pseudograph G

3

1 2

a

b

Γ̃G(13ab) = 123ab.

4

1 2

a

b

c d

Γ̃G(12cd) = 124abcd.

Figure 8. Examples of Γ̃G.

1

12ab
124abcd

124abd

124abc

1234ac

123a

1234ad

1234bc

123b

1234bd

3

1234bcd

1234acd

Kodd
C1,G

112ab

123a

123b

3

K′C1,G

Figure 9. For the pseudograph G and C1 = 13ab in Figure 8, two simplicial complexes

Kodd
C1,G

and K ′C1,G
are homotopy equivalent.

1, 3, 12ab, 123a, and 123b,

and the vertices of Kodd
C1,G

are 124abc, 124abd, 124abcd, 1234ac, 1234ad, 1234acd, 1234bc,

1234bd, 1234bcd, together with vertices of K ′C1,G
. Figure 9 shows that Kodd

C1,G
and K ′C1,G

are homotopy equivalent.

The following lemma shows that the phenomenon in the above example holds for

any C ∈ 2CGeven.

Lemma 4.3. Kodd
C,G is homotopy equivalent to K ′C,G.

Proof. It is enough to consider the case when Γ̃G(C) is a proper subgraph of G.

For simplicity, we write KG and K ′ instead of Kodd
C,G and K ′C,G, respectively. We will

show that we can eliminate the stars of all vertices in KG \K ′, one by one, from KG to

K ′, without changing the homotopy type.

Suppose that we cannot eliminate the stars of all vertices in KG \ K ′ one by one,

without changing the homotopy type. Then we can obtain a minimal complex K∗ ) K ′,

which is obtained by eliminating the stars of some vertices in KG \K ′ without changing

the homotopy type. Then take a vertex I which is minimal in K∗\K ′. Since I ∈ KG and

I 6∈ K ′, |I ∩C| is odd and I \ Γ̃G(C) 6= ∅. Since Γ̃G(C) is an induced subgraph, I \ Γ̃G(C)

contains a node. Let Ĩ be the subgraph of I which is obtained from I by deleting the

nodes not in Γ̃G(C). Note that from the definitions of Γ̃G(C) and Ĩ, I ∩ C = Ĩ ∩ C.
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Then we can choose a connected component Ĩ0 of Ĩ such that |Ĩ0 ∩ C| is odd. Since

Ĩ0 ⊂ Ĩ ⊂ Γ̃G(C), we conclude that Ĩ0 ∈ K ′.
We will show that any vertex of Lk I meets with Ĩ0. Let L ∈ Lk I in K∗. If I and

L meet by separation, then Ĩ0 and L also meet by separation. Now assume that I and

L meet by inclusion. If I ⊂ L, then Ĩ0 ⊂ L. Suppose that L ( I. The minimality of I

implies that L ∈ K ′, and hence L ⊆ Γ̃G(C). As L is a connected subgraph contained in

I and I ∩ Γ̃G(C) = Ĩ, L must be contained in some connected component of Ĩ. Hence,

either L is contained in Ĩ0, or L and Ĩ0 meet by separation. Therefore, Lk I is contractible

and K∗ is homotopy equivalent to K∗ \ St I by Lemma 4.1. Then K∗ \ St I is smaller

than K∗, which contradicts the minimality of K∗. �

Let us consider a simplicial subcomplex K ′′C,G of K ′C,G whose vertex set consists of

vertices I of K ′C,G such that, for each bundle B of Γ̃G(C) satisfying B ∩ C = ∅, if the

endpoints of B are in I, then B ⊂ I. That is, we obtain K ′′C,G from K ′C,G by removing

the stars of the vertices I if there exists a bundle B of Γ̃G(C) such that B ∩ C = ∅, I
contains the endpoints of B, and B 6⊂ I.

Back to Example 4.2, the vertices of K ′′C2,G
are

1, 2, 24cd, 124abc, and 124abd,

and the vertices of K ′C2,G
are 124ac, 124bc, 124ad, 124bd, together with the vertices of

K ′′C2,G
. Figure 10 shows that K ′C2,G

and K ′′C2,G
are homotopy equivalent.

113

1234ad

1234abd

1234bd

1234ac

1234abc

1234bc

124ad

124abd

124bd

124ac

124abc

124bc

2 24cd

Kodd
C2,G

1 124ad

124abd

124bd

124ac

124abc

124bc

2 24cd

K′C2,G

1

124abd

124abc

2 24cd

K′′C2,G

Figure 10. For C2 = 12cd, three simplicial complexes Kodd
C2,G

, K ′C2,G
, and K ′′C2,G

are

homotopy equivalent.

Lemma 4.4. K ′C,G is homotopy equivalent to K ′′C,G.

Proof. For simplicity, we write K ′ and K ′′ instead of K ′C,G and K ′′C,G, respec-

tively. We give a surjective map from the vertices of K ′ to the vertices of K ′′ so that

I ∈ K ′ corresponds to Ĩ ∈ K ′′ where Ĩ is a subgraph of G obtained from I by trans-

forming I ∩ B (if it is non-empty) into a bundle B whenever there exists a bundle B of

G such that C ∩B = ∅. Note that for any I ∈ K ′, I = Ĩ if and only if I ∈ K ′′.
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Now we will show that we can eliminate the stars of all vertices in K ′ \K ′′, one by

one, from K ′ to K ′′, without changing the homotopy type. Suppose we cannot eliminate

the stars of all vertices in K ′ \ K ′′ one by one, without changing the homotopy type.

Then we can obtain a minimal complex K∗ ) K ′′, which is obtained by eliminating the

stars of some vertices in K ′ \K ′′ as long as eliminating does not change the homotopy

type. Then take a vertex I which is maximal in K∗ \ K ′′. Then I ( Ĩ and Ĩ ∈ K ′′.

We will show that Ĩ meets every vertex in Lk I. Take L ∈ Lk I. If I and L meet by

separation, then so do Ĩ and L because I and Ĩ have the same node set. If L ⊆ I, then

clearly L ⊆ Ĩ. Now assume that I ( L. Then the maximality of I implies L ∈ K ′′.

Therefore L = L̃. Since I ( L, Ĩ ⊂ L̃ = L. Thus Ĩ and L meet by inclusion. Therefore

K∗ is homotopy equivalent to K∗ \ St I by Lemma 4.1. Then K∗ \ St I is smaller than

K∗, which contradicts the minimality of K∗. �

By Lemmas 4.3 and 4.4, formula (3.2) for the ith rational Betti number of MG for

a connected pseudograph G can be written as follows:

βi(MG) =
∑

C∈2
CG
even

β̃i−1(K ′′C,G). (4.1)

Before we give a proof of Theorem 1.1, let us prepare the following lemma which

enables us to determine whether Kodd
C,G is contractible or not for a given collection C ∈

2CGeven. For C ∈ 2CG , a subgraph J of a pseudograph G is odd (respectively, even) with

respect to C if |J ∩ C| is odd (respectively, even).

Lemma 4.5. For C ∈ 2CGeven, let Γ1, . . . ,Γq be the connected components of Γ̃G(C),

and let Cj = C ∩ Γj for j = 1, . . . , q.

(i) If some connected component of Γ̃G(C) is odd with respect to C (equivalently, |Cj |
is odd for some j), then K ′′C,G is contractible.

(ii) The simplicial complex K ′′C,G is the simplicial join of all K ′′Cj ,G’s for j = 1, . . . , q,

and hence

H̃i−1(K ′′C,G;Q) =
⊕

∑
kj=i−q

⊗
H̃kj (K ′′Cj ,G;Q).

Proof. We first assume that some connected component of Γ̃G(C) is odd with

respect to C. Without loss of generality, we may assume that I1 is odd with respect to

C. Then I1 is a vertex of K ′′C,G. Let J be a tube in K ′′C,G. Then J is contained in Γj

for some j. If j = 1, then J ⊂ Γ1, and hence Γ1 and J meet by inclusion. If j 6= 1 then

Γ1 and J meet by separation. Therefore Γ1 meets every other vertex of K ′′C,G. Hence,

K ′′C,G is contractible, which proves the statement (i).

Note that Γj = Γ̃G(Cj) for j = 1, . . . , q. If q = 1 then C = C1 and so (ii) is true.

Suppose that q ≥ 2. Note that each vertex I of K ′′C,G corresponds to a vertex of K ′′Ci,G for

some i. Take two vertices I and J of K ′′C,G such that I ⊂ Γi and J ⊂ Γj for i 6= j. Then,

I and J meet by separation, and so the simplex spanned by I and J in K ′′C,G corresponds
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to the simplex in K ′′Ci,G ∗K
′′
Cj ,G. Note that the join A ∗B is homotopy equivalent to the

(reduced) suspension of the smash product A ∧B, and Σ(A ∧B) = S1 ∧A ∧B. Hence,

we have

K ′′C,G = K ′′C1,G ∗ · · · ∗K ′′Cq,G

' S1 ∧ · · · ∧ S1︸ ︷︷ ︸
q−1

∧K ′′C1,G ∧ · · · ∧K ′′Cq,G

= Sq−1 ∧K ′′C1,G ∧ · · · ∧K ′′Cq,G.

Therefore, we have

H̃i−1(K ′′C,G;Q) =
⊕

∑
kj=i−q

⊗
H̃kj (K ′′Cj ,G;Q)

as desired in (ii). �

Let 2CGeven∗ be the set of collections C in 2CGeven such that the intersection of C and

each of the connected components of Γ̃G(C) belongs to 2CGeven, that is,

2CGeven∗ = {C ∈ 2CGeven | each connected component of Γ̃G(C) is even with respect to C}.

Due to Lemma 4.5, equation (4.1) is equivalent to

βi(MG) =
∑

C∈2
CG
even∗

β̃i−1(K ′′C,G). (4.2)

Now, we obtain a pseudograph ΓG(C) from Γ̃G(C) by replacing each bundle B of

Γ̃G(C) satisfying C ∩B = ∅ by a (unlabelled) simple edge. Note that ΓG(C) is a partial

underlying pseudograph of the induced subgraph Γ̃G(C) of G, and hence ΓG(C) lG.

Example 4.6. Recall the pseudograph G in Figure 8. Then ΓG(13ab) = 123ab

and ΓG(12cd) = 124cd. See Figure 11.

3 4

1 2

a

b

c d

A pseudograph G

3

1 2

a

b

ΓG(13ab) = 123ab.

4

1 2

c d

ΓG(12cd) = 124cd.

Figure 11. Examples of ΓG.

Proposition 4.7. For C ∈ 2CGeven∗, K
odd
C,G is homotopy equivalent to Kodd

C,ΓG(C), and

hence, the ith rational Betti number of MG is
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βi(MG) =
∑

C∈2
CG
even∗

β̃i−1(Kodd
C,ΓG(C)). (4.3)

Proof. By equation (4.2), it is sufficient to show that K ′′C,G and Kodd
C,ΓG(C) are

the same for C ∈ 2CGeven∗. Figure 12 shows a diagram of this proof.

Kodd
C,ΓG(C)

K ′′
C,Γ̃G(C)

K ′′C,G

Kodd
C,Γ̃G(C)

K ′
C,Γ̃G(C)

K ′C,G

∪ ∪

= =

=
∃ a bijection f

preserving faces

Figure 12. A diagram for the proof of Proposition 4.7, where C ∈ 2CGeven∗.

We first claim that K ′C,G is equal to Kodd
C,Γ̃G(C)

for C ∈ 2CGeven∗. Recall that the

vertices of K ′C,G are tubes I of G such that I is odd with respect to C and I ⊆ Γ̃G(C).

By the connectedness of a tube, if I is a vertex of K ′C,G, then I is contained in some

connected component of Γ̃G(C) and I is odd with respect to C. If C ∈ 2CGeven∗, each

connected component of Γ̃G(C) is even with respect to C by definition. Hence, I is

properly contained in some connected component of Γ̃G(C), which implies that I is also

a tube of Γ̃G(C) such that I is odd with respect to C. Therefore, I is also a vertex

of Kodd
C,Γ̃G(C)

, which implies that K ′C,G is a subcomplex of Kodd
C,Γ̃G(C)

. Since Γ̃G(C) is an

induced subgraph of G, if I is a tube of Γ̃G(C) such that I is odd with respect to C, then

it is also a tube of G such that I ( Γ̃G(C) and I is odd with respect to C. Therefore,

every vertex of Kodd
C,Γ̃G(C)

is also a vertex of K ′C,G, which implies that Kodd
C,Γ̃G(C)

is also a

subcomplex of K ′C,G. This proves the claim.

Note that we obtain K ′′C,G (respectively K ′′
C,Γ̃G(C)

) from K ′C,G (respectively,

K ′
C,Γ̃G(C)

) by removing the stars of the vertices I if there exists a bundle B of Γ̃G(C) such

that B ∩ C = ∅, I contains the endpoints of B, and B 6⊂ I. Since K ′C,G = Kodd
C,Γ̃G(C)

=

K ′
C,Γ̃G(C)

for C ∈ 2CGeven∗, we can see that K ′′C,G = K ′′
C,Γ̃G(C)

.

From a tube I of ΓG(C), we can find a tube Ĩ of Γ̃G(C) such that I is a partial

underlying pseudograph of Ĩ as follows; for each bundle B of Γ̃G(C) satisfying B∩C = ∅,
whenever I has an unlabelled simple edge e whose endpoints are the same with the

endpoints of B, we transform such a simple edge e into a bundle B. Then |I∩C| ≡ |Ĩ∩C|
(mod 2), and hence if I is a vertex of Kodd

C,ΓG(C), then Ĩ is also a vertex of K ′′
C,Γ̃G(C)

. Now

we define a map f from the vertex set of Kodd
C,ΓG(C) to the vertex set of K ′′

C,Γ̃G(C)
by

I 7→ Ĩ. Let us show that f is bijective and preserves faces.

(i) f is one-to-one. If I and I ′ are different vertices of Kodd
C,ΓG(C), then they have

different node sets or different labelled edges. From the definition of the map f , Ĩ and

Ĩ ′ also have different node sets or different labelled edges. Hence, f(I) and f(I ′) are

different vertices of K ′′
C,Γ̃G(C)

.
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(ii) f is surjective. Let J be a vertex of K ′′
C,Γ̃G(C)

. If J does not have a bundle B

of Γ̃G(C) satisfying B ∩ C = ∅, then J is also an odd tube of ΓG(C) with respect to C,

which implies that f(J) = J . If J has a bundle B of Γ̃G(C) satisfying B ∩ C = ∅, then

we can obtain an odd tube I of ΓG(C) with respect to C from J by transforming such

bundles B into unlabelled simple edges. Furthermore, Ĩ = J , that is, f(I) = J .

(iii) f preserves faces. Take two vertices I and I ′ in Kodd
C,ΓG(C). Since I and Ĩ have

the same node set, if I and I ′ meet by separation, then Ĩ and Ĩ ′ also meet by separation

clearly. Now assume that I and I ′ meet by inclusion. Without loss of generality, we

may further assume that I ⊆ I ′. Hence, if I has an unlabelled simple edge e whose

endpoints are the same with the endpoints of B for some bundle B of Γ̃G(C) satisfying

B ∩ C = ∅, then I ′ also has the edge e. Hence, Ĩ ⊆ Ĩ ′. Thus, if the vertices I1, . . . , Ik
form a tubing in ΓG(C), then Ĩ1, . . . , Ĩk also form a tubing in Γ̃G(C). Consequently,

if the vertices I1, . . . , Ik form a simplex in Kodd
C,ΓG(C), then f(I1), . . . , f(Ik) also form a

simplex in K ′′
C,Γ̃G(C)

.

Therefore, Kodd
C,ΓG(C) is isomorphic to K ′′

C,Γ̃G(C)
. �

Remark 4.8. The simplicial subcomplex Kodd
C,ΓG(C) is an optimal simplicial sub-

complex of Kodd
C,G having the same homotopy type, in a sense that Kodd

C,H might not have

the same homotopy type with Kodd
C,G when H is a proper subgraph of ΓG(C). Let G

be a complete graph with node set {1, 2, 3, 4} and one bundle B = {a, b, c}, where the

endpoints of B are 1 and 2. Then ΓG(1234ab) = G. Let us consider a semi-induced

subgraph H of G which has four nodes {1, 2, 3, 4} and a bundle B′ = {a, b}. Then the

simplicial complex Kodd
C,H is a simplicial subcomplex of Kodd

C,G. The simplicial complex

Kodd
C,G (respectively, Kodd

C,H) is the order complex of a poset consisting of odd tubes of G

(respectively, H) with respect to C, ordered by inclusion. We can compute the reduced

Euler characteristic of the order complex of a poset by computing the Möbius function

of the poset. Then one can see that the reduced Euler characteristics of Kodd
C,G and Kodd

C,H

are 5 and 1, respectively. Hence, Kodd
C,G is not homotopy equivalent to Kodd

C,H .

Recall that a collection C ⊂ CG is admissible to a connected pseudograph G if it

satisfies the following (a1)–(a3):

(a1) C ∈ 2CGeven,

(a2) C contains the nodes which are not endpoints of any bundle of G, and

(a3) for each bundle B of G, B ∩ C 6= ∅.

If G has q connected components G1, . . . , Gq, then C ⊂ CG is admissible to G if C ∩Gi
is admissible to Gi for i = 1, . . . , q.

Lemma 4.9. A collection C belongs to 2CGeven∗ if and only if C is admissible to

ΓG(C).

Proof. Let us show the forward direction. Assume that C ∈ 2CGeven∗. Put H =

ΓG(C), and H1, . . . ,Hq are the connected components of H. Let Ci = C ∩Hi for each
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i = 1, . . . , q. Then ΓG(Ci) = Hi. Hence, it is enough to show that each Ci is admissible

to Hi. By the definition of 2CGeven∗, each Ci belongs to 2
CHi
even, and so (a1) holds. If v is a

node in Hi \ C, then by definition of Γ̃G(C), v is an endpoint of some bundle of G, and

so (a2) holds. For any bundle B of Hi, by definitions of Γ̃G(C) and ΓG(C), B ∩ C 6= ∅,
and so (a3) holds. Hence, Ci is admissible to Hi as desired.

The backward direction is clear from (a1) in the definition of admissibility. �

By the above lemma, for C ∈ 2CGeven∗, ΓG(C) has an admissible collection C. The

lemma below says that the converse also holds.

Lemma 4.10. If H lG and a collection C is admissible to H, then H = ΓG(C).

Proof. For a node v of H, by (a2) and (a3), either v ∈ C or v is an endpoint

of some bundle B of H such that B ∩ C 6= ∅, which is exactly equal to the node set of

ΓG(C). In addition, by (a3) and the definition of a partial underlying pseudograph, the

bundles of H are the bundles of G having a nonempty intersection with C, which exactly

coincide with the bundles of ΓG(C). Therefore, H = ΓG(C). �

Now we are ready to give a proof of our main result, Theorem 1.1.

Proof of Theorem 1.1. For a connected pseudograph G, equation (4.3) in

Proposition 4.7 implies

PoinMG
(t) = 1 + t

∑
C∈2

CG
even∗

P̃oinKodd
C,ΓG(C)

(t).

By Lemmas 4.9 and 4.10,

2CGeven∗ = {C ⊂ CG | C is admissible to ΓG(C)}
=
⋃̇

HlG
{C ⊂ CH | C is admissible to H},

where ∪̇ means the disjoint union. Thus we have

PoinMG
(t) = 1 + t

∑
HlG

∑
C⊂CH

admissible to H

P̃oinKodd
C,H

(t) = 1 + t
∑
HlG

aH(t).

If G has q connected components G1, . . ., Gq, then PG = PG1 × · · · × PGq and hence

MG = MG1 × · · · ×MGq . Therefore,

PoinMG
(t) =

q∏
i=1

PoinMGi
(t) =

q∏
i=1

(
1+ t

∑
HilGi

aHi(t)

)
= 1+ tq

∑
H1lG1,...,HqlGq

q∏
i=1

aHi(t).

By Lemma 4.5,

PoinMG
(t) = 1 + t

∑
H1lG1,...,HqlGq

aH1t···tHq (t) = 1 + t
∑
HlG

aH(t). �
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5. Further remarks on shellability.

So far, we have discussed how to compute the rational Betti numbers of the real toric

manifold corresponding to a pseudograph associahedron. The amount of the computation

of equation (1.1) can be reduced for the pseudograph associahedron associated with a

pseudograph G, since we showed that it is sufficient to consider Kodd
C,H for only admissible

collections C ∈ 2CGeven∗ of the pseudographs H l G, instead of considering P odd
C,G for all

C ∈ 2CGeven. Even though our results help to recognize the homotopy type of P odd
C,G by using

Kodd
C,H for some special pseudograph H, however, we do not have the rich information of

the homotopy type of Kodd
C,H in general.

We note that it is shown in [5] that if G is a simple graph then for any C ∈ 2CGeven,

Kodd
C,G and its complement Keven

C,G are homotopy equivalent to the order complexes of some

posets, respectively, and then they showed that Kodd
C,G is homotopy equivalent to a wedge

of spheres of the same dimension by showing that the corresponding order complex

of Keven
C,G is pure and shellable. Therefore it is natural to ask if similar phenomena

occur for pseudographs. The former part, the order complex, is naturally extended to

pseudographs, but the latter part, the shellability, is not.

Order complex.

Let G be a connected pseudograph, and let a collection C ⊂ CG be admissible to

G. We will see that Kodd
C,G is homotopy equivalent to the order complex of the poset

Sodd
C,G defined in the following. Let Sodd

C,G (respectively, Seven
C,G ) be the set of all subgraphs

I of G such that each connected component of I is an odd (respectively, even) tube with

respect to C, excluding both ∅ and C. For example, consider an admissible collection

C2 in Figure 4. Then the vertices of Kodd
C2,G

are 1, 3, 12ab, 123a, 123b and the elements of

Sodd
C2,G

are 1, 3, 12ab, 123a, 123b, 13. Figure 13 shows the order complex of Sodd
C2,G

.

1 3

123a

123ab

13
12ab

Figure 13. The order complex of Sodd
C2,G

for an admissible collection C2 = 13ab.

Then we can observe that when C is an admissible collection of G, the order complex

of Sodd
C,G is a geometric subdivision of Kodd

C,G, because the following are true for a vertex I

of the order complex of Sodd
C,G.

(i) If I is connected, then I is also a vertex of Kodd
C,G.

(ii) If I consists of connected components I1, . . . , I`, then I1, . . . , I` are vertices of

Kodd
C,G and they meet by separation.

Since a simplicial complex and its geometric subdivision are homotopy equivalent, Kodd
C,G

and the order complex of Sodd
C,G are homotopy equivalent. Hence, it follows that
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aG(t) =
∑

C⊂CG
admissible to G

PoinKodd
C,G

(t) =
∑

C⊂CG
admissible to G

PoinSodd
C,G

(t).

We note that this gives another definition of the a-polynomial, which might be more

useful to compute the a-polynomial when Sodd
C,G’s are shellable.

The order complex of Seven
C,G is a geometric subdivision of Keven

C,G if we define Keven
C,G

by the dual simplicial complex of the union of facets corresponding to the tubes of G

that are even with respect to C. Hence, since the rational Betti numbers of Kodd
C,G are

obtained by computing the rational Betti numbers of Keven
C,G by Alexander duality, one

might obtain aG(t) by computing PoinKeven
C,G

(t) or PoinSeven
C,G

(t).

Shellability.

A simplicial complex K is shellable if its facets can be arranged in linear order

F1, . . . , Ft in such a way that the subcomplex (
∑k−1
i=1 Fi) ∩ Fk is pure and (dimFk − 1)-

dimensional for all k = 2, . . . , t. For details, see [1].

As we mentioned above, it is shown in [5] that if G is a simple graph then for any

C ∈ 2CGeven, the order complex Seven
C,ΓG(C) is pure and shellable. This cannot be generalized

to pseudographs. Actually, there are infinitely many pseudographs such that Sodd
C,ΓG(C) is

not shellable for some C ∈ 2CGeven.

G

4 3

1 2

a

b

1 2 3 4

13 24

12a 12b 134 234

123ab 1234a 1234b124ab

14 23 34

12ab 124a 124b 123a 123b

Figure 14. Neither Sodd
CG,G nor Seven

CG,G is shellable.

Consider the pseudograph in Figure 14. Then, for C = CG, ΓG(C) = G and neither

Sodd
C,G nor Seven

C,G is shellable. However, both Sodd
C,G and Seven

C,G are homotopy equivalent

to a wedge of spheres; Sodd
C,G ' S2 ∨ S2 ∨ S2 and Seven

C,G ' S0 ∨ S0 ∨ S0. Therefore,

as a further direction of research, it would be interesting to see whether Sodd
C,ΓG(C) is

homotopy equivalent to a wedge of spheres for any C ∈ 2CGeven or not. At this moment, all

the examples we have are homotopy equivalent to a wedge of spheres. It would also be

interesting to characterize pseudographs G such that Seven
C,ΓG(C) or Sodd

C,ΓG(C) is shellable

for any C ∈ 2CGeven∗.
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