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Abstract. We give a precise behavior of spectral functions for symmet-
ric stable processes applying the asymptotic expansion of resolvent kernels.

1. Introduction.

Let {Xt}t≥0 be the rotationally invariant α-stable process on Rd, the Hunt process

with generator H = (−∆)α/2 (0 < α < 2). We denote by (E ,F) the associated Dirichlet

form on L2(Rd,m), i.e. E(u, v) = 〈
√
Hu,
√
Hv〉 for u, v ∈ F = D(

√
H). Here m is the

Lebesgue measure on Rd and 〈·, ·〉 is the inner product of L2(Rd,m).

Let V (x) be a non-negative continuous function on Rd with compact support and

define the Schrödinger-type operator Hλ = H − λV for λ ≥ 0. Then the equation

∂u/∂t = −Hλu admits the fundamental solution pλ(t, x, y), in particular, p0(t, x, y) is

the transition density function of {Xt}t≥0. We write simply p(t, x, y) for p0(t, x, y). In

[12], we established a necessary and sufficient condition for pλ(t, x, y) to satisfy

c1p(t, x, y) ≤ pλ(t, x, y) ≤ c2p(t, x, y)

for some positive constants c1 and c2; we call this property stability of fundamental

solution. To show this, we define the bottom of the spectrum of the operator (1/V )H by

λV = inf

{
E(u, u)

∣∣∣ u ∈ F ,∫
Rd
u2(x)V (x)dx = 1

}
.

Note that λV describes the smallness of V (x); if V1 ≤ V2, λV1 ≥ λV2 . The stability of the

fundamental solution is equivalent to λ < λV , and then λV (x) is said to be subcritical.

Takeda and Uemura [11] established other conditions equivalent to the subcriticality.

More specifically, they defined the Feynman–Kac expectation eλV (t, x) by

eλV (t, x) = Ex
[
exp

(
λ

∫ t

0

V (Xs)ds

)]
and showed that the subcriticality of λV (x) is equivalent to the gaugeability, i.e.

supx∈Rd eλV (∞, x) < ∞. In particular, eλV (t, x) converges to eλV (∞, x) as t → ∞.

If λ = λV (resp.λ > λV ), λV (x) is said to be critical (resp. supercritical). In these
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cases, the Feynman–Kac expectation diverges as t → ∞. To know the growth order of

the Feynman–Kac expectation, we consider the logarithmic moment generating function

Λ(x) defined by

Λ(x) = lim
t→∞

1

t
logEx

[
exp

(
λ

∫ t

0

V (Xs)ds

)]
.

Takeda [9] showed that Λ(x) is equal to the bottom of the spectrum for Hλ, that is,

C(λ) = − inf

{
Eλ(u, u)

∣∣∣ u ∈ F ,∫
Rd
u2(x)dx = 1

}
,

where Eλ is the corresponding form to the operator Hλ given by

Eλ(u, u) = E(u, u)− λ
∫
Rd
u2(x)V (x)dx. (1.1)

We see that C(λV ) = 0 by the definition of λV . Moreover, Takeda and Tsuchida [10]

proved that C(λ) > 0 if and only if λ > λV . For λ = λV , there exists a positive function

h0(x)(/∈ F in general) which attains the minimum of (1.1), i.e. EλV (h0, h0) = 0. h0(x)

is uniquely determined up to multiple constant and is called ground state of H − λV V .

It was proved in [10] that for a transient {Xt}t≥0 with 1 < d/α ≤ 2, the spectral

function C(λ) is differentiable on R, in particular, at λ = λV . The purpose of this paper

is to give more precise asymptotic behavior of the spectral function as λ ↓ λV . Moreover,

we also treat recurrent processes. Note that λV = 0 for recurrent processes, while λV > 0

for transient ones. We then prove the following main theorem:

Theorem 1.1. If {Xt} is recurrent, the spectral function C(λ) satisfies the follow-

ing asymptotics as λ ↓ 0:

C(λ) ∼
(

CV λ

α sin(π/α)

)α/(α−1)
, CV =

∫
Rd
V (x)dx (d = 1 < α < 2),

C(λ) � exp

(
− π

CV λ

)
(d = α = 1),

where A ∼ B means B/A → 1 and A � B means c1 ≤ B/A ≤ c2 for some positive

constants c1 and c2.

If {Xt} is transient, the spectral function C(λ) satisfies the following asymptotics as

λ ↓ λV :

C(λ) ∼

{
αΓ(d/2) sin(((d/α)− 1)π)〈

√
V h0,

√
V h0〉

21−dπ1−(d/2)〈λV
√
V ,
√
V h0〉2

(λ− λV )

}α/(d−α)
(1 < d/α < 2),

C(λ) ∼ Γ(α+ 1)〈
√
V h0,

√
V h0〉

21−dπ−d/2〈λV
√
V ,
√
V h0〉2

· λ− λV
log(λ− λV )−1

(d/α = 2),

C(λ) ∼ 〈
√
V h0,

√
V h0〉

〈h0, h0〉
(λ− λV ) (d/α > 2).
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Note that this result is an extension of Cranston et al [2, Theorem 6.1] where the

same problem was studied for the Brownian motion on Rd, i.e. the Hunt process with

generator (−∆). Indeed, substituting α = 2, we can obtain their preceding result. In [2],

they first considered the asymptotic expansion of β-order resolvent as β ↓ 0 to obtain the

asymptotic behavior of the spectral function. This is easy for the Brownian motion, since

the resolvent is expressed through the Hankel functions. For the rotationally invariant

α-stable processes, we cannot express the resolvent through a special function. We first

express the heat kernel by means of the function with respect to |x− y|/t1/α. Using this

expression, we obtain the asymptotic expansion of β-order resolvent as β ↓ 0.

This paper is organized as follows: In Section 2, we give the asymptotic behavior of

the β-order resolvent. In Section 3, we define a compact operator on L2(Rd) from the

resolvent kernel and the function V (x), following the method of Klaus and Simon [5].

We also give a relation between the principal eigenvalue of the compact operator and

the spectral function. In Section 4, we give the asymptotic expansion of the principal

eigenvalue applying the first order perturbation theory in Kato [4], and prove Theorem

1.1. ci’s are unimportant positive constants varying from line to line.

2. The asymptotic behavior of the resolvent.

Let {Xt}t≥0 be the rotationally invariant α-stable process (0 < α < 2) on Rd. Then

the associated Dirichlet form is given by

E(u, v) =
1

2

∫∫
Rd×Rd

(u(y)− u(x))(v(y)− v(x))
Ad,α

|x− y|d+α
dxdy, F = Hα/2(Rd).

Here Hα/2(Rd) is the Sobolev space with order α/2 and Ad,α is a positive constant

Ad,α =
α · 2α−1Γ((α+ d)/2)

πd/2Γ(1− (α/2))
, Γ(s) :=

∫ ∞
0

xs−1e−xdx.

The characteristic function of {Xt}t≥0 is

Ex[exp(iξ · (Xt − x))] =

∫
Rd

exp(iξ · (y − x))p(t, x, y)dy = e−t|ξ|
α

, ξ ∈ Rd.

Here p(t, x, y) is the transition density function. Applying the Fourier inverse transfor-

mation, we have

p(t, x, y) =
1

(2π)d

∫
Rd

exp(−t|ξ|α + iξ · (x− y))dξ. (2.1)

The following lemma is a precise version of Kolokoltsov [6, p. 314] or Blumenthal

and Getoor [1, (2,1)].

Lemma 2.1. The transition density function of {Xt}t≥0 is expressed by

p(t, x, y) = Cd,αt
−d/αg

(
|x− y|
t1/α

)
, (2.2)
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where

Cd,α =


(πα)−1 (d = 1)(

2d−1π(d+1)/2Γ

(
d− 1

2

)
α

)−1
(d ≥ 2)

and g is the function on [0,∞) defined by

g(w) =

∫ ∞
0

s(1/α)−1e−s cos
(
ws1/α

)
ds (d = 1), (2.3)

g(w) =

∫ π

0

∫ ∞
0

s(d/α)−1e−s cos
(
ws1/α cos θ

)
sind−2 θdsdθ (d ≥ 2). (2.4)

Proof. For d = 1, (2.1) implies

p(t, x, y) =
1

π

∫ ∞
0

exp(−trα) cos(|x− y|r)dr

=
t−1/α

πα

∫ ∞
0

s(1/α)−1e−s cos

(
|x− y|
t1/α

s(1/α)
)
ds.

For d ≥ 2, (2.1) implies

p(t, x, y) = Cd

∫ π

0

∫ ∞
0

exp(−trα + ir|x− y| cos θ) · rd−1 sind−2 θdrdθ

= Cd

∫ π

0

∫ ∞
0

exp(−trα) cos(r|x− y| cos θ) · rd−1 sind−2 θdrdθ, (2.5)

where

Cd =
2

(2π)d

d−3∏
n=0

∫ π

0

sinn θdθ =
1

2d−1π(d+1)/2Γ ((d− 1)/2)
.

Substituting trα = s in (2.5), we have

t−d/α

2d−1π(d+1)/2Γ ((d− 1)/2)α

∫ π

0

∫ ∞
0

s(d/α)−1e−s cos

(
|x− y|
t1/α

s1/α cos θ

)
sind−2 θdsdθ.

�

We next consider the properties of the function g in (2.3)–(2.4).

Lemma 2.2. The function g in (2.3)–(2.4) satisfies the following properties:

(i) It follows that

g(0) =


Γ

(
1

α

)
(d = 1)

√
πΓ

(
d

α

)
Γ

(
d− 1

2

)/
Γ

(
d

2

)
(d ≥ 2).

(2.6)
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(ii) There exists positive constants c1, c2 satisfying

c1(1 ∧ w−d−α) ≤ g(w) ≤ c2(1 ∧ w−d−α). (2.7)

(iii) There exists a positive constant c3 depending on d and α such that

g(0)− g(w) ≤ c3w2. (2.8)

Proof. We obtain (i) by simple calculation. Blumenthal and Getoor [1] showed

that g(w) is a positive continuous function and satisfies

lim
w→∞

wd+αg(w) = c1.

Hence, we have (ii). For d = 1,

g(0)− g(w) =

∫ ∞
0

s(1/α)−1e−s(1− cos(ws1/α))ds

= 2

∫ ∞
0

s(1/α)−1e−s sin2

(
ws1/α

2

)
ds ≤ w2

2

∫ ∞
0

s(3/α)−1e−sds = c1w
2.

For d ≥ 2,

g(0)− g(w) =

∫ π

0

∫ ∞
0

s(d/α)−1e−s
(

1− cos
(
ws1/α cos θ

))
sind−2 θdsdθ

= 2

∫ π

0

∫ ∞
0

s(d/α)−1e−s sin2

(
ws1/α cos θ

2

)
sind−2 θdsdθ

≤ w2

2

∫ π

0

∫ ∞
0

s(d+2)/α−1e−s cos2 θ sind−2 θdsdθ = c1w
2.

Hence, we have (iii). �

For β > 0, let Gβ(x, y) be the β-resolvent kernel,

Gβ(x, y) :=

∫ ∞
0

p(t, x, y)e−βtdt. (2.9)

We next consider the asymptotic behavior of the β-resolvent when β tends to 0. If

{Xt}t≥0 is recurrent, Gβ(x, y) diverges as β ↓ 0. The following theorem describes an

exact behavior of this divergence.

Theorem 2.3. Suppose d = 1 and 1 ≤ α < 2, that is, {Xt}t≥0 is recurrent. Then

the resolvent kernel Gβ(x, y) satisfies the following asymptotics as β tends to 0.

Gβ(x, y) =
β(1/α)−1

α sinπ/α
+ Eβ(x, y) (1 < α < 2), (2.10)

Gβ(x, y) =
log β−1

π
+ Eβ(x, y) (α = 1), (2.11)
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where Eβ(x, y) satisfies

|Eβ(x, y)| ≤

{
c1|x− y|α−1 (1 < α < 2)

c2(1 + | log |x− y||+ β|x− y|) (α = 1).

Proof. Suppose 1 < α < 2. Using (2.2), we have

Gβ(x, y) =

∫ ∞
0

1

πα
t−1/αg

(
|x− y|
t1/α

)
e−βtdt

=
β(1/α)−1

πα

∫ ∞
0

s−1/αg

(
β1/α|x− y|

s1/α

)
e−sds.

Note that

1

πα

∫ ∞
0

s−1/αg

(
β1/α|x− y|

s1/α

)
e−sds→ 1

πα
g(0)Γ

(
1− 1

α

)
=

1

α sinπ/α

as β tends to 0. Setting the function Eβ(x, y) by

Eβ(x, y) =
−1

πα

∫ ∞
0

t−1/α
(
g(0)− g

(
|x− y|
t1/α

))
e−βtdt,

we obtain (2.10). Moreover, (2.7) and (2.8) imply g(0)− g(w) ≤ c1(1 ∧ w2), and thus

|Eβ(x, y)| ≤
∫ |x−y|α
0

c1t
−1/αdt+

∫ ∞
|x−y|α

c2t
−3/α|x− y|2dt ≤ c3|x− y|α−1.

Suppose α = 1. First we express Gβ(x, y) as follows:

Gβ(x, y) =

∫ |x−y|
0

p(t, x, y)e−βtdt+

∫ ∞
|x−y|

p(t, x, y)e−βtdt =: I1 + I2.

By the upper bound of the heat kernel, the first term satisfies

I1 ≤ c1
∫ |x−y|
0

t

|x− y|2
dt = c2.

For the second term, we have

I2 =
1

π

∫ ∞
|x−y|

g

(
|x− y|
t

)
· e
−βt

t
dt =

1

π

∫ ∞
β|x−y|

g

(
β|x− y|

s

)
· e
−s

s
ds

=
g(0)

π

∫ ∞
β|x−y|

e−s

s
ds− 1

π

∫ ∞
β|x−y|

(
g(0)− g

(
β|x− y|

s

))
e−s

s
ds =: J1 − J2.

To obtain the asymptotic expansion for J1, we first note∫ ∞
β|x−y|

e−s

s
ds = lim

N→∞

∫ N

β|x−y|

(
1 +

∞∑
n=1

(−s)n

n!

)
1

s
ds
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= − log(β|x− y|)−
∞∑
n=1

(−β|x− y|)n

n · n!
+ lim
N→∞

{
logN +

∞∑
n=1

(−N)n

n · n!

}

= − log(β|x− y|)−
∞∑
n=1

(−β|x− y|)n

n · n!
− γ + lim

N→∞

{
N∑
k=1

1

k
−
∫ N

0

1− e−w

w
dw

}
,

(2.12)

where

γ = lim
N→∞

{
N∑
k=1

1

k
− logN

}
.

We see that the last term of (2.12) converges to 0 as N →∞. Indeed, we have

N∑
k=1

1

k
−
∫ N

0

1− e−w

w
dw =

N∑
k=1

1

k
− (1− e−N ) logN +

∫ N

0

e−w logwdw

→ γ +

∫ ∞
0

e−w logwdw (N →∞). (2.13)

Since the Gamma function has the representation

Γ(z) =
e−γz

z

∞∏
k=1

{(
1 +

z

k

)−1
ez/k

}
,

we obtain ∫ ∞
0

e−w logwdw = Γ′(1) =
Γ′(1)

Γ(1)
=
d log Γ(z)

dz

∣∣∣
z=1

= −γ. (2.14)

Hence, J1 has the asymptotic expansion

J1 =
1

π

(
− log(β|x− y|)− γ −

∞∑
n=1

(−β|x− y|)n

n · n!

)
=:

log β−1

π
+ Ẽβ(x, y).

Furthermore, noting that for z ≤ 0,

0 ≤ −
∞∑
n=1

zn

n · n!
= −

∫ z

0

∞∑
n=1

wn−1

n!
dw =

∫ 0

z

ew − 1

w
dw ≤ −z,

we have

|Ẽβ(x, y)| ≤ c1(1 + | log |x− y||+ β|x− y|).

For J2, we obtain from (2.8)

J2 ≤ c1
∫ ∞
β|x−y|

β2|x− y|2

s2
· e
−s

s
ds ≤ c1

∫ ∞
β|x−y|

β2|x− y|2

s3
ds ≤ c2.
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Define Eβ(x, y) by Eβ(x, y) = I1 + Ẽβ(x, y)− J2. Then we have (2.11) and

|Eβ(x, y)| ≤ I1 + |Ẽβ(x, y)|+ J2 ≤ c1(1 + | log |x− y||+ β|x− y|). �

If {Xt}t≥0 is transient, (2.9) makes a sense for β = 0, i.e. G0(x, y) < ∞ for x 6= y.

G0(x, y) is called Green kernel and in the sequel we write G(x, y) for G0(x, y) simply.

The next theorem gives us the asymptotic expansion of Gβ(x, y) as β ↓ 0.

Theorem 2.4. Suppose d/α > 1, that is, {Xt}t≥0 is transient.

(i) For 1 < d/α < 2,

Gβ(x, y) = G(x, y)− 21−dπ1−(d/2)

αΓ (d/2) sin(((d/α)− 1)π)
β(d/α)−1 + Eβ(x, y), (2.15)

Eβ(x, y) ≤ c1β|x− y|2α−d.

(ii) For d/α = 2,

Gβ(x, y) = G(x, y)− 21−dπ−d/2

Γ(α+ 1)
β log β−1 + Eβ(x, y), (2.16)

|Eβ(x, y)| ≤ c1β(1 + | log |x− y||+ β|x− y|α).

(iii) For d/α > 2,

Gβ(x, y) = G(x, y)− G̃(x, y)β + Eβ(x, y), (2.17)

where G̃(x, y) is defined by

G̃(x, y) =

∫ ∞
0

tp(t, x, y)dt = c1|x− y|2α−d

and Eβ(x, y) satisfies

Eβ(x, y) ≤


c2β

(d/α)−1 (2 < d/α < 3)

c2β
2 log β−1 + c3β

2(1 + | log |x− y||+ β|x− y|α) (d/α = 3)

c2β
2|x− y|3α−d (d/α > 3).

Proof. Suppose 1 < d/α < 2. Applying (2.2), we have

G(x, y)−Gβ(x, y) = Cd,α

∫ ∞
0

t−d/αg

(
|x− y|
t1/α

)
(1− e−βt)dt

= Cd,αβ
(d/α)−1

∫ ∞
0

s−d/αg

(
β1/α|x− y|

s1/α

)
(1− e−s)ds.

Note that
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0

s−d/α(1− e−s)ds = −
(

1− d

α

)−1 ∫ ∞
0

s1−(d/α)e−sds =
α

d− α
Γ

(
2− d

α

)
.

Thus, we obtain

Gβ(x, y) = G(x, y)− Cd,αg(0) · α

d− α
Γ

(
2− d

α

)
β(d/α)−1 + Eβ(x, y)

= G(x, y)− 21−dπ1−(d/2)

αΓ(d/2) sin(((d/α)− 1)π)
βd/α−1 + Eβ(x, y),

where Eβ(x, y) is defined by

Eβ(x, y) = Cd,α

∫ ∞
0

t−d/α(1− e−βt)
(
g(0)− g

(
|x− y|
t1/α

))
dt.

Since g(0)− g(w) ≤ c1(1 ∧ |w|2) from (2.7)–(2.8),

Eβ(x, y) ≤ c2β
∫ ∞
0

t1−(d/α)
(
g(0)− g

(
|x− y|
t1/α

))
dt

≤ c3β

(∫ |x−y|α
0

t1−(d/α)dt+

∫ ∞
|x−y|α

t1−((2+d)/α)|x− y|2dt

)
≤ c4β|x− y|2α−d

and we obtain (2.15).

Suppose d/α = 2. Similarly to the case d = α = 1, we first have

G(x, y)−Gβ(x, y) =

∫ |x−y|α
0

p(t, x, y)(1− e−βt)dt

+

∫ ∞
|x−y|α

p(t, x, y)(1− e−βt)dt =: I1 + I2. (2.18)

Using the upper bound of the heat kernel, we have

I1 ≤ c3
∫ |x−y|α
0

t

|x− y|d+α
· βtdt = c3β

∫ |x−y|α
0

t2

|x− y|3α
dt = c4β. (2.19)

For I2, we have

I2 = Cd,αβ

∫ ∞
β|x−y|α

s−2g

(
β1/α|x− y|

s1/α

)
(1− e−s)ds.

Since s−2(1− e−s) is integrable on [β|x− y|α,∞),

I2 = Cd,αg(0)β

∫ ∞
β|x−y|α

s−2(1− e−s)ds

− Cd,αβ
∫ ∞
β|x−y|α

s−2
(
g(0)− g

(
β1/α|x− y|

s1/α

))
(1− e−s)ds

=: J1 − J2. (2.20)
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Using integration by parts, we have

J1 = Cd,αg(0)β

(
1− e−β|x−y|α

β|x− y|α
+

∫ ∞
β|x−y|α

e−s

s
ds

)
.

Substituting β|x − y|α for β|x − y| in (2.12) and combining with (2.13) and (2.14), we

have ∫ ∞
β|x−y|α

e−s

s
ds = − log(β|x− y|α)−

∞∑
n=1

(−β|x− y|α)n

n · n!
− γ.

Thus, J1 admits the asymptotic expansion

J1 = Cd,αg(0)β

(
1− e−β|x−y|α

β|x− y|α
− log(β|x− y|α)− γ −

∞∑
n=1

(−β|x− y|α)n

n · n!

)

=:
β log β−1

2d−1πd/2Γ(α+ 1)
+ Ẽβ(x, y). (2.21)

Similarly to the case d = α = 1,

|Ẽβ(x, y)| ≤ c2β(1 + | log |x− y||+ β|x− y|α). (2.22)

Moreover, (2.8) implies

J2 ≤ c1β
∫ ∞
β|x−y|α

s−1 ·
(
β1/α|x− y|

s1/α

)2

ds

= c1β
1+(2/α)|x− y|2

∫ ∞
β|x−y|α

s−1−(2/α)ds ≤ c2β. (2.23)

Combining the formulae (2.18), (2.20) and (2.21), we have

Gβ(x, y) = G(x, y)− (I1 + I2) = G(x, y)− I1 − J1 + J2

= G(x, y)− β log β−1

2d−1πd/2Γ(α+ 1)
− Ẽβ(x, y)− I1 + J2.

Set Eβ(x, y) = −Ẽβ(x, y)− I1 + J2. Then we see from (2.19), (2.22) and (2.23) that

|Eβ(x, y)| ≤ c3β(1 + | log |x− y||+ β|x− y|α)

and obtain (2.16).

It follows that for d/α > 2,∫ ∞
0

tp(t, x, y)dt =

∫ ∞
0

Cd,αt
1−(d/α)g

(
|x− y|
t1/α

)
dt = c1|x− y|2α−d.

Thus, we have
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G(x, y)−Gβ(x, y) =

∫ ∞
0

p(t, x, y)(1− e−βt)dt

= G̃(x, y)β +

∫ ∞
0

p(t, x, y)(1− βt− e−βt)dt.

Setting

Eβ(x, y) =

∫ ∞
0

p(t, x, y)(βt− 1 + e−βt)dt,

we obtain (2.17). For the estimate of Eβ(x, y), first note that

0 ≤ βt− 1 + e−βt ≤ (βt)2

2
. (2.24)

For d/α > 3,

Eβ(x, y) ≤
∫ ∞
0

(βt)2

2
p(t, x, y)dt

≤ c1β2

∫ ∞
0

(
t2−(d/α) ∧ t3

|x− y|d+α

)
dt ≤ c2β2|x− y|3α−d

and the desired result follows.

For d/α < 3,

Eβ(x, y) =

∫ ∞
0

p(t, x, y)(βt− 1 + e−βt)dt

= c1β
(d/α)−1

∫ ∞
0

s−d/αg

(
β1/α|x− y|

s1/α

)
(s− 1 + e−s)ds

≤ c2β(d/α)−1
∫ ∞
0

s−d/α(s− 1 + e−s)ds ≤ c3β(d/α)−1

on account of the integrability of s−d/α(s− 1 + e−s) and the inequality g(w) ≤ g(0).

For d/α = 3, we have

Eβ(x, y) =

∫ |x−y|α
0

p(t, x, y)(βt− 1 + e−βt)dt

+

∫ ∞
|x−y|α

Cd,αt
−3g

(
|x− y|
t1/α

)
(βt− 1 + e−βt)dt =: I1 + I2.

By the upper bound of the heat kernel and (2.24),

I1 ≤ c1
∫ |x−y|α
0

t

|x− y|4α
· β2t2dt ≤ c2β2.

For I2, we have
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I2 ≤ Cd,αg(0)

∫ ∞
|x−y|α

t−3(βt− 1 + e−βt)dt = c1β
2

∫ ∞
β|x−y|α

s−3(s− 1 + e−s)ds

= c2β
2

(
β|x− y|α − 1 + e−β|x−y|

α

2(β|x− y|α)2
+

∫ ∞
β|x−y|α

1

2s2
(1− e−s)ds

)
.

Thus, similarly to the case d/α = 2, we have

I2 ≤ c3β2 log β−1 + c4β
2(1 + | log |x− y||+ β|x− y|α)

and we can conclude

Eβ(x, y) ≤ c1β2 log β−1 + c2β
2(1 + | log |x− y||+ β|x− y|α). �

3. Construction of compact operators and their principal eigenvalues.

Let V be a positive continuous function with support contained in {x : |x| ≤ R} for

some R > 0. We define the bottom of the spectrum of the operator (1/V )H by

λV = inf

{
E(u, u)

∣∣∣ u ∈ Fe, ∫
Rd
u2(x)V (x)dx = 1

}
, (3.1)

where Fe is an extended Dirichlet space, i.e., the family of m-measurable functions u

such that |u| <∞ m-a.e. and there exists an E-Cauchy sequence {un} of functions in F
such that limn→∞ un = u m-a.e. For λ ≥ 0, we define the Schrödinger form Eλ and the

spectral function C(λ) by

Eλ(u, v) = E(u, v)− λ
∫
Rd
u(x)v(x)V (x)dx,

C(λ) = − inf

{
Eλ(u, u)

∣∣∣ u ∈ F ,∫
Rd
u2(x)dx = 1

}
. (3.2)

Lemma 3.1. The function C(λ) is positive if and only if λ > λV .

Proof. Suppose {Xt}t≥0 is recurrent. Since 1 ∈ Fe and E(1, 1) = 0, we have

λV = 0. Let {un} ⊂ F be an approximating sequence for 1 ∈ Fe. For λ > 0,

Eλ(un, un) = E(un, un)− λ
∫
Rd
u2n(x)V (x)dx.

By Fatou’s lemma, we have

lim inf
n→∞

∫
Rd
u2n(x)V (x)dx ≥

∫
Rd
V (x)dx > 0.

Thus, for large n ∈ N, Eλ(un, un) < 0 and it follows that C(λ) > 0.

Let {vn} be the normalization of {un} in L2(Rd). Noting that ‖un‖2 → ∞ as

n→∞, we have
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E(vn, vn)→ 0 (n→∞).

Hence, C(0) = 0 and the assertion follows. For transient {Xt}t≥0, the assertion follows

from [10, Lemma 2.2]. �

For β ≥ 0, we define λβ by

λβ = inf

{
Eβ(u, u)

∣∣∣ u ∈ Fe,∫
Rd
u2(x)V (x)dx = 1

}
. (3.3)

where Eβ(u, u) = E(u, u)+β〈u, u〉. In particular, λ0 = λV . The next lemma follows from

Rellich’s theorem [7, Theorem 8.6].

Lemma 3.2. For β > 0, (F , Eβ) is compactly embedded into L2(V ·m). If {Xt}t≥0
is transient, (Fe, E) is also compactly embedded into L2(V ·m).

The next lemma gives a relation between (3.2) and (3.3).

Lemma 3.3. C(λ) is the inverse function of λβ, i.e. C(λβ) = β for β ≥ 0.

Proof. We first assume that β > 0. By the definition of λβ , we have for h ∈ F

Eβ(h, h) ≥ λβ
∫
Rd
h2(x)V (x)dx. (3.4)

By Lemma 3.2, there exists an element hβ in F which attains the infimum of the right

hand side of (3.3). Thus hβ satisfies the equality in (3.4) and we have

Eλβ (hβ , hβ) = −β
∫
Rd
h2β(x)dx. (3.5)

hβ/‖hβ‖2 attains the infimum of (3.2) and thus C(λβ) = β.

If {Xt}t≥0 is recurrent and β = 0, we have the assertion from C(0) = λ0 = 0. If

{Xt}t≥0 is transient and β = 0, we can prove that there exists an element h0 in Fe such

that

Eλ0(h0, h0) = 0

by the same argument as in β > 0. If h0 ∈ L2(Rd), h0/‖h0‖2 attains the infimum of (3.2)

and C(λ0) = 0. If h0 /∈ L2(Rd), let {un} ⊂ F be an approximating sequence for h0. By

the definition of λ0, we have

lim inf
n→∞

Eλ0(un, un) ≥ 0.

Moreover, Fatou’s lemma implies

lim sup
n→∞

Eλ0(un, un) ≤ Eλ0(h0, h0) = 0

and thus, Eλ0(un, un) → 0 as n → ∞. Noting that ‖un‖2 → ∞ as n → ∞ by Fatou’s



686 M. Wada

lemma, we see that

lim
n→∞

Eλ0(vn, vn) = 0,

where {vn} is the normalization of {un} in L2(Rd). Thus, we have C(λ0) = 0. �

Remark 3.4. We call the function h0(x) ground state of the Schrödinger operator

HλV = H − λV V . Takeda and Tsuchida [10] showed

c1(1 ∧ |x|α−d) ≤ h0(x) ≤ c2(1 ∧ |x|α−d).

In particular, h0(x) ∈ L2(Rd) if and only if d/α > 2.

Define the operator Kβ : L2(Rd)→ L2(Rd) by

Kβf(x) =
√
V (x)

∫
Rd
Gβ(x, y)

√
V (y)f(y)dy.

Theorem 3.5. For β > 0, the operator Kβ is a compact operator. If {Xt} is

transient, K0 is also compact.

Proof. Let f be in L2(Rd). For β > 0, Gβ(
√
V f) belongs to F . Since F is

compactly embedded into L2(V ·m) by Lemma 3.2, Kβ is a compact operator. If {Xt}t≥0
is transient and β = 0, it is sufficient to prove that Gβ(

√
V f) belongs to the class Fe

similarly to the case β > 0. We first show that K0 is a bounded operator. Since

supp[V ] ⊂ {x | |x| ≤ R} for some R > 0, we have

|K0f(x)| ≤ c1
√
V (x)

∫
Rd
U(x− y)

√
V (y)|f(y)|dy,

where U(x) = G(0, x) ·1{|x|≤2R}. Applying the Young inequality and the Hölder inequal-

ity, we have∥∥∥∥√V (·)
∫
Rd
U(· − y)

√
V (y)|f(y)|dy

∥∥∥∥
2

≤ ‖
√
V ‖∞‖U‖1‖

√
V ‖∞‖f‖2 ≤ c2‖f‖2.

Hence ‖K0f‖2 ≤ c3‖f‖2 and K0 is a bounded operator. If f is non-negative, G(
√
V f)

satisfies ∫
Rd

√
V f(x) ·G(

√
V f)(x)dx =

∫
Rd
f(x) ·K0f(x)dx <∞.

Hence, [3, Theorem 1.5.4] implies G(
√
V f) ∈ Fe. For general f ∈ L2(Rd), we have

f = f+ − f− for non-negative functions f+ := f ∨ 0 and f− := −(f ∧ 0), and thus the

assertion holds. �

The following theorem describes a relation between the eigenvalue of Kβ and the

bottom of the spectrum λβ .
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Theorem 3.6. The compact operator Kβ admits the principal eigenvalue λ−1β .

Proof. Note that

Eβ(hβ , hβ) = λβ

∫
Rd
h2β(x)V (x)dx = λβEβ(Gβ(V hβ), hβ). (3.6)

Setting γβ = λ−1β , we have

Eβ(Gβ(V hβ)− γβhβ , hβ) = 0.

Let kβ be the function satisfying Gβ(V hβ) = γβhβ + kβ . Then we see that kβ = 0.

Indeed, (3.3) implies

Eβ(γβhβ + kβ , γβhβ + kβ) ≥ γ−1β
∫
Rd

(γβhβ(x) + kβ(x))2V (x)dx.

Noting that Eβ(hβ , kβ) = 0 and hβ satisfies (3.6), we have

Eβ(kβ , kβ) ≥ 2

∫
Rd
hβ(x)kβ(x)V (x)dx+ γ−1β

∫
Rd
k2β(x)V (x)dx

= 2Eβ(Gβ(V hβ), kβ) + γ−1β

∫
Rd
k2β(x)V (x)dx

= 2Eβ(kβ , kβ) + γ−1β

∫
Rd
k2β(x)V (x)dx.

For β > 0 (resp. β = 0), F (resp. Fe) is a Hilbert space with inner product Eβ (resp.

E). Thus, we have kβ = 0 and Gβ(V hβ) = γβhβ . Substituting gβ =
√
V hβ , we see that

Kβgβ = γβgβ and γβ is the eigenvalue of Kβ . If γβ were not maximum, there would be

ĝβ ∈ L2(Rd) and γ̂β > γβ such that Kβ ĝβ = γ̂β ĝβ . Set ĥβ = Gβ(
√
V ĝβ). Then we see

that ĥβ ∈ Fe from Theorem 3.5 and thus

Eβ(ĥβ , ĥβ) = γ̂β
−1Eβ(Gβ(V ĥβ), ĥβ)

= γ̂−1β

∫
Rd
ĥ2β(x)V (x)dx < γ−1β

∫
Rd
ĥ2β(x)V (x)dx.

This is a contradiction to the minimum property of λβ = γ−1β . �

4. Asymptotics of spectral functions.

To know the behavior of the spectral function, we first consider the behavior of γβ ,

the principal eigenvalue of Kβ . We give the asymptotic behavior of γβ as β ↓ 0 via the

asymptotic expansion for Kβ obtained from the asymptotic expansion for Gβ(x, y) in

Section 2.

Lemma 4.1. Suppose d = 1 and 1 ≤ α < 2, namely {Xt}t≥0 is recurrent. For

β ↓ 0, the principal eigenvalue γβ satisfies
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γβ =
CV

α sinπ/α
β(1/α)−1 +O(1), CV =

∫
R
V (x)dx (1 < α < 2),

γβ =
CV log β−1

π
+O(1) (α = 1).

Proof. For 1 < α < 2, the operator Kβ satisfies

Kβ =
β(1/α)−1

α sinπ/α
D1 +D2,

where the operators D1 and D2 are defined by

D1f(x) =
√
V (x)

∫
R

√
V (y)f(y)dy, (4.1)

D2f(x) =
√
V (x)

∫
R
Eβ(x, y)

√
V (y)f(y)dy. (4.2)

Since D1 and D2 are bounded operators, this formula gives an asymptotic expansion for

Kβ . Indeed, for f ∈ L2(R) it follows that

‖D1f‖22 =

∫
R
V (x)

∣∣∣∣∫
R

√
V (y)f(y)dy

∣∣∣∣2 dx
≤ ‖V ‖1

(∫
R

√
V (y)|f(y)|dy

)2

≤ ‖V ‖21‖f‖22 ≤ c1‖f‖22

and thus D1 is a bounded operator. Since |Eβ(x, y)| ≤ c1|x− y|α−1, we have

|D2f(x)| ≤ c1
√
V (x)

∫
R
U(x− y)

√
V (y)|f(y)|dy,

where U(x) = 1{|x|≤2R}|x|α−1. Applying the Young inequality and the Hölder inequality,

we have∥∥∥∥√V (·)
∫
R
U(· − y)

√
V (y)|f(y)|dy

∥∥∥∥
2

≤ ‖
√
V ‖∞‖U‖1‖

√
V ‖∞‖f‖2 ≤ c2‖f‖2.

Hence D2 is a bounded operator.

Let γβ be the principal eigenvalue of Kβ and gβ be the corresponding eigenfunction.

Note that gβ =
√
V hβ for some hβ ∈ F . Using the Schwartz inequality, we have for

h ∈ F

〈
√
V h,D1(

√
V h)〉 =

(∫
R
V (y)h(y)dy

)2

≤
∫
R
V (y)dy

∫
R
V (y)h2(y)dy. (4.3)

Thus, we see that

γβ ≤
CV

α sinπ/α
β(1/α)−1 +O(1). (4.4)
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Furthermore, there exists h0 ∈ F such that h0(x) = 1 on the support of V (x), since

C∞0 (R) is dense in F = Hα/2(R). Here C∞0 (R) is the family of infinitely differentiable

functions with compact support. Then, h0 is an element which attains the equality in

(4.3) and we have

γβ ≥
CV

α sinπ/α
β(1/α)−1 +O(1). (4.5)

Combining (4.4) and (4.5), we have the desired result.

Suppose α = 1. Kβ satisfies

Kβ =
log β−1

π
D1 +D2

for D1 and D2 defined by (4.1) and (4.2). Similarly to the case 1 < α < 2, we obtain the

desired assertion. �

Setting γ−10 = 0 for convention, we see that γ−1β is the inverse function of the spectral

function C(λ) for β ≥ 0.

If {Xt}t≥0 is transient, we obtain the asymptotic expansion for γβ by the first order

perturbation theory of compact operators in Kato [4].

Lemma 4.2. Suppose d/α > 1, namely {Xt}t≥0 is transient. For β ↓ 0, the

principal eigenvalue γβ satisfies

γβ = γ0−
21−dπ1−(d/2)〈

√
V ,
√
V h0〉2

αΓ(d/2)sin(((d/α)− 1)π)〈
√
V h0,

√
V h0〉

β(d/α)−1 + o(β(d/α)−1) (1< d/α < 2),

γβ = γ0−
21−dπ−d/2〈

√
V ,
√
V h0〉2

Γ(α+ 1)〈
√
V h0,

√
V h0〉

β logβ−1 + o(β logβ−1) (d/α= 2),

γβ = γ0−
〈h0,h0〉

〈λV
√
V h0,λV

√
V h0〉

β+ o(β) (d/α > 2).

Proof. Suppose 1 < d/α < 2. By (2.15), the operator Kβ admits the asymptotic

expansion as follows:

Kβ = K0 − κ1β(d/α)−1D1 +D2, κ1 =
21−dπ1−(d/2)

αΓ (d/2) sin(((d/α)− 1)π)
,

where the operators D1 and D2 are defined by

D1f(x) =
√
V (x)

∫
Rd

√
V (y)f(y)dy, (4.6)

D2f(x) =
√
V (x)

∫
Rd
Eβ(x, y)

√
V (y)f(y)dy. (4.7)

We first consider the principal eigenvalue of the operator K0− κ1β(d/α)−1D1. Since

K0 is a compact operator and D1 is a bounded operator, we can apply [4, Theorem

VIII.2.6]. Recall that γ0 is the principal eigenvalue of K0 and
√
V h0 is the corresponding
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eigenfunction, where h0 is the ground state for the Schrödinger operator H − λV V . Let

P be the projection operator defined by

Pf(x) =
〈f,
√
V h0〉

〈
√
V h0,

√
V h0〉

√
V h0(x).

Then the eigenvalue of the operator PD1P considered in the principal eigenspace is

calculated by

〈PD1P (
√
V h0),

√
V h0〉

〈
√
V h0,

√
V h0〉

=
〈
√
V ,
√
V h0〉2

〈
√
V h0,

√
V h0〉

.

Thus, the principal eigenvalue of K0 − κ1βd/α−1D1 admits the asymptotic expansion as

follows:

γ0 − κ1
〈
√
V ,
√
V h0〉2

〈
√
V h0,

√
V h0〉

β(d/α)−1 + o(β(d/α)−1).

Furthermore, similarly to Lemma 4.1, Eβ(x, y) ≤ c1β|x−y|2α−d implies that the operator

norm of D2 is dominated by c2β. Hence, γβ satisfies

γβ = γ0 − κ1
〈
√
V ,
√
V h0〉2

〈
√
V h0,

√
V h0〉

β(d/α)−1 + o(β(d/α)−1).

Suppose d/α = 2. By (2.16),

Kβ = K0 − κ2β log β−1D1 +D2, κ2 =
21−dπ−d/2

Γ(α+ 1)
,

where D1 and D2 are defined by (4.6) and (4.7). Thus, the principal eigenvalue of

K0 − κ2β log β−1D1 admits the asymptotic expansion

γ0 − κ2
〈
√
V ,
√
V h0〉2

〈
√
V h0,

√
V h0〉

β log β−1 + o(β log β−1).

Furthermore, noting that the operator norm of D2 is dominated by c1β from the estimate

of Eβ(x, y) in Theorem 2.4, we obtain the desired formula.

Suppose d/α > 2. By (2.17),

Kβ = K0 − βD1 +D2,

where D1 is defined by

D1f(x) =
√
V (x)

∫
Rd
G̃(x, y)

√
V (y)f(y)dy, G̃(x, y) =

∫ ∞
0

tp(t, x, y)dt

and D2 is defined by (4.7). We see that D1 is a bounded operator. Indeed, G̃(x, y) =

c1|x − y|2α−d and supp[V ] ⊂ {x | |x| ≤ R} imply ‖D1f‖2 ≤ c2‖K0f‖2. Thus, the
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principal eigenvalue of K0 − βD1 admits the asymptotic expansion

γ0 −
〈PD1P (

√
V h0),

√
V h0〉

〈
√
V h0,

√
V h0〉

β + o(β).

Note that the operator H−2 = G2 has the integral kernel G̃(x, y) since the operator e−tH

has the integral kernel p(t, x, y). Hence we have

〈PD1P (
√
V h0),

√
V h0〉 = 〈

√
V G2(V h0),

√
V h0〉

= 〈G(V h0), G(V h0)〉 = λ−2V 〈h0, h0〉.

Furthermore, we see that the operator norm of D2 is dominated by c1β
((d/α)−1)∧3/2 from

the estimate of Eβ(x, y) in Theorem 2.4. Hence γβ satisfies

γβ = γ0 −
〈h0, h0〉

〈λV
√
V h0, λV

√
V h0〉

β + o(β). �

(Proof of Theorem 1.1)

The asymptotic behavior of γβ is given in Lemmas 4.1 and 4.2. The spectral function

C(λ) is the inverse function of γ−1β = λβ and we have the desired result.

Remark 4.3. Let δ0 be the Dirac measure at the origin. In [8] the principal

eigenvalue of (−∆)α/2/2− λδ0 is calculated for d = 1 and 1 < α < 2, which is consistent

with Theorem 1.1.

Acknowledgements. The author is grateful to Professors Masayoshi Takeda,

Kaneharu Tsuchida and Yuichi Shiozawa for helpful suggestions and comments.

References

[ 1 ] R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math.

Soc., 95 (1960), 263–273.

[ 2 ] M. Cranston, L. Koralov, S. Molchanov and B. Vainberg, Continuous model for homopolymers,

Journal of Funct. Anal., 256 (2009), 2656–2696.

[ 3 ] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, De

Gruyter, Studies in Mathematics, 19, 2011.

[ 4 ] T. Kato, Perturbation theory for linear operators, Reprint of the 1980 Edition, Springer, 1995.

[ 5 ] M. Klaus and B. Simon, Coupling constant thresholds in nonrelativistic quantum mechanics, I,

Short-range two-body case, Annals of Physics, 130 (1980), 251–281.

[ 6 ] V. N. Kolokoltsov, Markov processes, semigroups and generators, De Gruyter, Studies in Mathe-

matics, 38, 2011.

[ 7 ] E. H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Math., 14, American

Mathematical Society, 2001.

[ 8 ] Y. Shiozawa, Exponential growth of the numbers of particles for branching symmetric α-stable

processes, J. Math. Soc. Japan, 60 (2008), 75–116.

[ 9 ] M. Takeda, Large deviations for additive functionals of symmetric stable processes, J. Theor.

Probab., 21 (2008), 336–355.

[10] M. Takeda and K. Tsuchida, Differentiability of spectral functions for symmetric α-stable pro-

cesses, Trans. Amer. Math. Soc., 359 (2007), 4031–4054.

http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1016/j.jfa.2008.07.019
http://dx.doi.org/10.1016/0003-4916(80)90338-3
http://dx.doi.org/10.2969/jmsj/06010075
http://dx.doi.org/10.1007/s10959-007-0111-0
http://dx.doi.org/10.1007/s10959-007-0111-0
http://dx.doi.org/10.1090/S0002-9947-07-04149-9


692 M. Wada

[11] M. Takeda and T. Uemura, Subcriticality and gaugeability for symmetric α-stable processes,

Forum Math., 16 (2004), 505–517.

[12] M. Wada, Perturbation of Dirichlet forms and stability of fundamental solutions, Tohoku Math.

Journal, 66 (2014), 523–537.

Masaki Wada

Mathematical Institute

Tohoku University

Aoba, Sendai 980-8578, Japan

E-mail: wada@math.tohoku.ac.jp

http://dx.doi.org/10.1515/form.2004.024
http://dx.doi.org/10.2748/tmj/1432229195
http://dx.doi.org/10.2748/tmj/1432229195



