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Abstract. This paper studies the question of when the Rees algebras
associated to arbitrary filtration of ideals are sequentially Cohen–Macaulay.
Although this problem has been already investigated by [CGT], their situation
is quite a bit of restricted, so we are eager to try the generalization of their
results.

1. Introduction.

The notion of sequentially Cohen–Macaulay property was originally introduced by

R. P. Stanley ([St]) for Stanley–Reisner algebras and then it has been furiously explored

by many researchers, say D. T. Cuong, N. T. Cuong, S. Goto, P. Schenzel and others (see

[CC], [CGT], [GHS], [Sch]), from the view point of not only combinatorics, but also

commutative algebra. The purpose of this paper is to investigate the question of when the

Rees algebras are sequentially Cohen–Macaulay, which has a previous research by [CGT].

In [CGT] they gave a characterization of the sequentially Cohen–Macaulay Rees algebras

of m-primary ideals ([CGT, Theorem 5.2, Theorem 5.3]). However their situation is not

entirely satisfactory, so we are eager to analyze the case where the ideal is not necessarily

m-primary. More generally we want to deal with the sequentially Cohen–Macaulayness

of the Rees modules since the sequentially Cohen–Macaulay property is defined for any

finite modules over a Noetherian ring. Thus the main problem of this paper is when

the Rees modules associated to arbitrary filtration of modules are sequentially Cohen–

Macaulay.

Let R be a commutative Noetherian ring, M �= (0) a finitely generated R-module

with d = dimR M <∞. Then we consider a filtration

D : D0 := (0) � D1 � D2 � · · · � D� = M

of R-submodules of M , which we call the dimension filtration of M , if Di−1 is the largest

R-submodule of Di with dimR Di−1 < dimR Di for 1 ≤ i ≤ �, here dimR(0) = −∞ for

convention. We note here that our notion of dimension filtration is based on [GHS]

and slightly different from that of the original one given by P. Schenzel ([Sch]), however

let us adopt the above definition throughout this paper. Then we say that M is a

2010 Mathematics Subject Classification. Primary 13A30; Secondary 13H10.
Key Words and Phrases. dimension filtration, sequentially Cohen–Macaulay module, Rees module.
The first author was partially supported by Grant-in-Aid for JSPS Fellows 26-126 and by JSPS

Research Fellow. The second author was partially supported by JSPS KAKENHI 26400054. The third
and the fourth author were partially supported by a Grant of Vietnam Institute for Advanced Study
in Mathematics (VIASM) and Vietnam National Foundation for Science and Technology Development
(NAFOSTED) 101.04-2014.15.

http://dx.doi.org/10.2969/jmsj/06910293


294 N. Taniguchi, T. T. Phuong, N. T. Dung and T. N. An

sequentially Cohen–Macaulay R-module, if the quotient module Ci = Di/Di−1 of Di

is a Cohen–Macaulay R-module for every 1 ≤ i ≤ �. In particular, a Noetherian ring

R is called a sequentially Cohen–Macaulay ring, if dimR < ∞ and R is a sequentially

Cohen–Macaulay module over itself.

Let us now state our results, explaining how this paper is organized. In Section 2

we sum up the notions of the sequentially Cohen–Macaulay properties and filtrations

of ideals and modules. In Section 3 we shall give the proofs of the main results of this

paper, which are stated as follows.

Suppose that R is a local ring with maximal ideal m. Let F = {Fn}n∈Z be a filtration

of ideals of R such that F1 �= R, M = {Mn}n∈Z a F-filtration of R-submodules of M .

Then we put

R =
∑
n≥0

Fnt
n ⊆ R[t], R′ =

∑
n∈Z

Fnt
n ⊆ R[t, t−1], G = R′/t−1R′

and call them the Rees algebra, the extended Rees algebra and the associated graded ring

of F , respectively. Similarly we set

R(M) =
∑
n≥0

tn ⊗Mn ⊆ R[t]⊗R M, R′(M) =
∑
n∈Z

tn ⊗Mn ⊆ R[t, t−1]⊗R M

and

G(M) = R′(M)/t−1R′(M)

which we call the Rees module, the extended Rees module and the associated graded module

of M, respectively. Here t stands for an indeterminate over R. We also assume that R
is a Noetherian ring and R(M) is a finitely generated R-module. Set

Di = {Mn ∩Di}n∈Z, Ci = {[(Mn ∩Di) +Di−1]/Di−1}n∈Z.

for every 1 ≤ i ≤ �. Then Di (resp. Ci) is a F-filtration of R-submodules of Di (resp.

Ci). With this notation the main results of this paper are the following, which are the

natural generalization of the results [CGT, Theorem 5.2, Theorem 5.3].

Theorem 1.1. The following conditions are equivalent.

(1) R′(M) is a sequentially Cohen–Macaulay R′-module.

(2) G(M) is a sequentially Cohen–Macaulay G-module and {G(Di)}0≤i≤� is the dimen-

sion filtration of G(M).

When this is the case, M is a sequentially Cohen–Macaulay R-module.

Let M be a unique graded maximal ideal of R. We set

a(N) = max{n ∈ Z | [Ht
M(N)]n �= (0)}

for a finitely generated graded R-module N of dimension t, and call it the a-invariant

of N (see [GW, Definition (3.1.4)]). Here {[Ht
M(N)]n}n∈Z stands for the homogeneous
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components of the t-th graded local cohomology module Ht
M(N) of N with respect to

M.

Theorem 1.2. Suppose that M is a sequentially Cohen–Macaulay R-module and

F1 � p for every p ∈ AssRM . Then the following conditions are equivalent.

(1) R(M) is a sequentially Cohen–Macaulay R-module.

(2) G(M) is a sequentially Cohen–Macaulay G-module, {G(Di)}0≤i≤� is the dimension

filtration of G(M) and a(G(Ci)) < 0 for every 1 ≤ i ≤ �.

When this is the case, R′(M) is a sequentially Cohen–Macaulay R′-module.

In Section 4 we focus our attention on the case of graded rings. In the last section we

will explore the application of Theorem 4.5 to the Stanley–Reisner algebras of shellable

complexes (Theorem 5.2).

2. Preliminaries.

In this section we summarize some basic results on sequentially Cohen–Macaulay

properties and filtration of ideals and modules, which we will use throughout this paper.

Let R be a Noetherian ring, M �= (0) a finitely generated R-module of dimension d.

We put

AsshRM = {p ∈ SuppRM | dimR/p = d}.

For each n ∈ Z, there exists the largest R-submodule Mn of M with dimR Mn ≤ n. Let

S(M) = {dimR N | N is an R-submodule of M,N �= (0)}
= {dimR/p | p ∈ AssRM}.

We set � = �S(M) and write S(M) = {d1 < d2 < · · · < d� = d}. Let Di = Mdi
for each

1 ≤ i ≤ �. We then have a filtration

D : D0 := (0) � D1 � D2 � · · · � D� = M

of R-submodules of M , which we call the dimension filtration of M . We put Ci =

Di/Di−1 for every 1 ≤ i ≤ �.

Definition 2.1 ([Sch], [St]). We say that M is a sequentially Cohen–Macaulay R-

module, if Ci is Cohen–Macaulay for every 1 ≤ i ≤ �. The ring R is called a sequentially

Cohen–Macaulay ring, if dimR < ∞ and R is a sequentially Cohen–Macaulay module

over itself.

The typical examples of sequentially Cohen–Macaulay ring is the Stanley–Reisner algebra

k[Δ] of a shellable complex Δ over a field k. Also every one-dimensional Noetherian local

ring is sequentially Cohen–Macaulay. Moreover, if M is a Cohen–Macaulay module over

a Noetherian local ring, then M is sequentially Cohen–Macaulay, and the converse holds

if M is unmixed.
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Firstly let us note the non-zerodivisor characterization of sequentially Cohen–

Macaulay modules.

Proposition 2.2. Let (R,m) be a Noetherian local ring, M �= (0) a finitely gen-

erated R-module. Let x ∈ m be a non-zerodivisor on M . Then the following conditions

are equivalent.

(1) M is a sequentially Cohen–Macaulay R-module.

(2) M/xM is a sequentially Cohen–Macaulay R/(x)-module and {Di/xDi}0≤i≤� is the

dimension filtration of M/xM .

Proof. Notice that x ∈ m is a non-zerodivisor on Ci and Di for all 1 ≤ i ≤ � (See

[Sch, Corollary 2.3]). Therefore we get a filtration

D0/xD0 = (0) � D1/xD1 � · · · � D�/xD� = M/xM

of R/(x)-submodules of M/xM . Then the assertion is a direct consequence of [GHS,

Theorem 2.3]. �

The implication (2) ⇒ (1) is not true without the condition that {Di/xDi}0≤i≤� is

the dimension filtration of M/xM . For instance, let R be a 2-dimensional Noetherian

local domain of depth 1 (e.g., Nagata’s bad example [N]). Then R/(x) is sequentially

Cohen–Macaulay for every 0 �= x ∈ R, but R is not. Besides this, let I be an m-primary

ideal in a regular local ring (R,m) of dimension 2. Then I is not a sequentially Cohen–

Macaulay R-module, even though I/xI is, where 0 �= x ∈ m. These examples show that

[Sch, Theorem 4.7] is not true in general.

From now on, we shall quickly review some preliminaries on filtrations of ideals and

modules. Let R be a commutative ring, F = {Fn}n∈Z a filtration of ideals of R, that is,

Fn is an ideal of R, Fn ⊇ Fn+1, FmFn ⊆ Fm+n for all m,n ∈ Z and F0 = R. Then we

put

R = R(F) =
∑
n≥0

Fnt
n ⊆ R[t], R′ = R′(F) =

∑
n∈Z

Fnt
n ⊆ R[t, t−1]

and call them the Rees algebra, the extended Rees algebra of R with respect to F , respec-
tively. Here t stands for an indeterminate over R.

Let M be an R-module,M = {Mn}n∈Z an F-filtration of R-submodules of M , that

is, Mn is an R-submodule of M , Mn ⊇ Mn+1, FmMn ⊆ Mm+n for all m,n ∈ Z and

M0 = M . We set

R(M) =
∑
n≥0

tn ⊗Mn ⊆ R[t]⊗R M, R′(M) =
∑
n∈Z

tn ⊗Mn ⊆ R[t, t−1]⊗R M

which we call the Rees module, the extended Rees module of M with respect to M, re-

spectively, where

tn ⊗Mn = {tn ⊗ x | x ∈Mn} ⊆ R[t, t−1]⊗R M
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for all n ∈ Z. Then R(M) (resp. R′(M)) is a graded module over R (resp. R′).
If F1 �= R, then we define the associated graded ring G of R with respect to F and

the associated graded module G(M) of M with respect to M as follows.

G = G(F) = R′/uR′, G(M) = R′(M)/uR′(M),

where u = t−1. Then G(M) is a graded module over G and the composite map

ψ : R(M)
i−→ R′(M)

ε−→ G(M)

is surjective and Kerψ = uR′(M) ∩ R(M) = u[R(M)]+, where [R(M)]+ =
∑

n>0 t
n ⊗

Mn.

For the rest of this section, we assume that F1 �= R, R = R(F) is Noetherian and

R(M) is finitely generated. Then we have the following. The proof of Proposition 2.3

is based on the results [CGT, Proposition 5.1]. Since it plays an important role in this

paper, let us give a brief proof for the sake of completeness.

Proposition 2.3. The following assertions hold true.

(1) Let P ∈ AssRR(M). Then p ∈ AssRM , P = pR[t] ∩R and

dimR/P =

{
dimR/p+ 1 if dimR/p <∞, F1 � p,

dimR/p otherwise,

where p = P ∩R.

(2) pR[t] ∩R ∈ AssRR(M) for every p ∈ AssRM .

(3) Suppose that M �= (0), d = dimR M < ∞ and there exists p ∈ AsshRM such that

F1 � p. Then dimRR(M) = d+ 1.

Proof. (1) Let P ∈ AssRR(M). Then P ∈ AssRR[t]⊗R M , so that P = Q ∩R
for some

Q ∈ AssR[t]R[t]⊗R M =
⋃

p∈AssRM

AssR[t]R[t]/pR[t].

Thus there exists p ∈ AssRM such that p = Q ∩ R and Q = pR[t]. Therefore P =

pR[t] ∩ R, p = P ∩ R. Put R = R/p. Then F = {FnR}n∈Z is a filtration of ideals of

R and R/P ∼= R(F) as graded R-algebras. Hence the assertion holds by [GN, Part II,

Lemma (2.2)].

(2) Let p ∈ AssRM . We write p = (0) :R x for some x ∈ M . Then (0) :R ξ =

pR[t] ∩R where ξ = 1⊗ x ∈ [R(M)]0.

(3) Follows from the assertions (1), (2). �

Corollary 2.4. Suppose that R is a local ring and M �= (0). Then

dimRR(M) =

{
dimR M + 1 if there exists p ∈ AsshRM such that F1 � p,

dimR M otherwise.
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Similarly we are able to determine the structure of associated prime ideals of the

extended Rees modules.

Proposition 2.5. The following assertions hold true.

(1) Let P ∈ AssR′R′(M). Then p ∈ AssRM , P = pR[t, t−1] ∩ R′ and dimR/P =

dimR/p+ 1, where p = P ∩R.

(2) pR[t, t−1] ∩R′ ∈ AssR′R′(M) for every p ∈ AssRM .

(3) Suppose that M �= (0). Then dimR′ R′(M) = dimR M + 1.

Apply Proposition 2.5, we get the following.

Corollary 2.6. Suppose R is a local ring and M �= (0). Then dimG G(M) =

dimR M .

3. Proof of Theorem 1.1 and Theorem 1.2.

This section aims to prove Theorem 1.1 and Theorem 1.2. In what follows, let (R,m)

be a Noetherian local ring, M �= (0) a finitely generated R-module of dimension d. Let

F = {Fn}n∈Z be a filtration of ideals of R with F1 �= R,M = {Mn}n∈Z a F-filtration of

R-submodules of M . We put a = R(F)+ =
∑

n>0 Fnt
n.

Throughout this section we assume that R = R(F) is a Noetherian ring and R(M)

is finitely generated. Let 1 ≤ i ≤ �. We set

Di = {Mn ∩Di}n∈Z, Ci = {[(Mn ∩Di) +Di−1]/Di−1}n∈Z.

Then Di (resp. Ci) is a F-filtration of R-submodules of Di (resp. Ci). Look at the

following exact sequence

0→ [Di−1]n → [Di]n → [Ci]n → 0

of R-modules for all n ∈ Z. We then have the exact sequences

0→ R(Di−1)→ R(Di)→ R(Ci)→ 0

0→ R′(Di−1)→ R′(Di)→ R′(Ci)→ 0 and

0→ G(Di−1)→ G(Di)→ G(Ci)→ 0

of graded modules. Since R(Di) is a finitely generated R-module, so is R(Ci).

Lemma 3.1 (cf. [CGT, Proposition 5.1]). {R′(Di)}0≤i≤� is the dimension filtration

of R′(M). If F1 � p for every p ∈ AssRM , then {R(Di)}0≤i≤� is the dimension filtration

of R(M).

Proof. Let 1 ≤ i ≤ �. Then dimR′ R′(Di) = di + 1, since Di �= (0). Let

P ∈ AssR′R′(Ci). Thanks to Proposition 2.5, we then have dimR′/P = di + 1 =

dimR′ R′(Ci). By using [GHS, Theorem 2.3], {R′(Di)}0≤i≤� is the dimension filtration

of R′(M). Similarly we obtain the last assertion. �
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We now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The equivalence of conditions (1) and (2) is similar to

the proof of Proposition 2.2. Let us make sure of the last assertion. Look at the following

exact sequences

0→ R′(Ci) ϕ→ R[t, t−1]⊗R Ci → X = Cokerϕ→ 0

of gradedR′-modules for 1 ≤ i ≤ �. SinceR′(Ci) is a Cohen–MacaulayR′-module and the

localization of X at u = t−1 vanishes, we have R[t, t−1]⊗RCi is Cohen–Macaulay. There-

fore M is a sequentially Cohen–Macaulay R-module, because Ci is Cohen–Macaulay. �

From now on, we focus our attention on the proof of Theorem 1.2. To do this, we

need some auxiliaries.

Lemma 3.2. Let P ∈ SpecR such that P � a. If G(M)P �= (0) (resp. R(M)P �=
(0) and P ⊇ ua), then R(M)P �= (0) (resp. G(M)P �= (0)). When this is the case, the

following assertions hold true.

(1) R(M)P is a Cohen–Macaulay RP -module if and only if G(M)P is a Cohen–Macaulay

GP -module.

(2) dimRP
R(M)P = dimRP

G(R)P + 1.

Proof. Let P ∈ SpecR such that P � a, but P ⊇ ua. We choose a homogeneous

element ξ = atn ∈ a \ P where n > 0, a ∈ Fn. Then we get x = uξ = atn−1 ∈ P , since

P ⊇ ua.

Claim 3.3. If Q ∈ AssRR(M) such that Q ⊆ P , then x /∈ Q. Therefore x is a

non-zerodivisor on R(M)P .

Proof of Claim 3.3. We assume that there exists Q ∈ AssRR(M) such that

Q ⊆ P , but x ∈ Q. Write Q = (0) :R η where η = t� ⊗m (� ∈ Z, m ∈ M�). Then we

have ξ = atn ∈ (0) :R η = Q ⊆ P , which implies a contradiction. �

Since P � a, we get RP = R′P and R(M)P = R′(M)P . Therefore

(ua)RP = (ua)R′P = uR′P = xR′P and (ua)R(M) ⊆ u[R(M)]+.

Hence [uR(M)+]P = xR′(M)P = xR(M)P , so that

R(M)P /xR(M)P ∼= G(M)P

as RP -modules. On the other hand, let P ∈ SpecR such that G(M)P �= (0). Then

P ⊇ ua, since ua = uR′ ∩R = Ker(R i→ R′ ε→ G). Therefore the assertions immediately

come from the above isomorphism. �

Here we need the following fact, which was originally given by G. Faltings.
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Fact 3.4 ([F]). Let I be an ideal of R and t ∈ Z. Consider the following two

conditions.

(1) There exists an integer � > 0 such that I�·Hi
m(M) = (0) for each i �= t.

(2) Mp is a Cohen–Macaulay Rp-module and t = dimRp
Mp + dimR/p for every p ∈

SuppRM but p � I.

Then the implication (1) ⇒ (2) holds true. The converse holds, if R is a homomorphic

image of a Gorenstein local ring.

For an arbitrary ideal I of a graded ring, we define I∗ to be the ideal generated by

every homogeneous element in I. Let M be a unique graded maximal ideal of R.

Although a part of the proof of Proposition 3.5 is due to the result [TI], we note

the brief proof for the sake of completeness.

Proposition 3.5. Suppose that Hi
M(G(M)) is a finitely graded R-module for all

i �= d. Then Hi
M(R(M)) is a finitely graded R-module for all i �= d+ 1.

Proof. Passing to the completion we may assume that R is a homomorphic image

of a Gorenstein local ring, and so is RM. Thanks to the local duality theorem, it is

enough to show that there exists an integer � > 0 such that a�·Hi
M(R(M)) = (0) for

every i �= d + 1. To see this, let P ∈ SuppRR(M) such that P � a and P ⊆ M. Put

L = ua = uR′ ∩R.

Claim 3.6.
√
P ∗ + L � a.

Proof of Claim 3.6. Suppose that P ∗ + L ⊇ a� for some � > 0. Since R/a� is

finitely graded, we can choose an integer s > 0 such that [R/a�]n = (0) for all n ≥ s.

Then

Rn = Fnt
n ⊆ [P ∗]n + Fn+1t

n

for all n ≥ s. On the other hand, for each n ≥ 0, we set

In = {a ∈ R | atn ∈ P ∗}.

Then In is an ideal of R and In ⊆ Fn and In ⊇ In+1 for all n ≥ 0. Hence Fn ⊆ In + Fk

for all n ≥ s, k ∈ Z. Since R is Noetherian, we get R(d) = R[Fdt
d] for some d > 0, so

that Fd� = (Fd)
� for all � > 0. We then have

Fn ⊆
⋂
�>0

[In + (Fd)
�] = In

for all n ≥ s, whence Rn ⊆ P ∗. Thus

as ⊆
∑
n≥s

Rn ⊆ P ∗ ⊆ P.

which is impossible, because a � P . �
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Therefore we can take Q ∈ MinRR/[P ∗+L] such that a � Q ⊆M. Then R(M)Q �=
(0), because R(M)P∗ �= (0) and P ∗ ⊆ Q. Thanks to Lemma 3.2, G(M)Q �= (0). Then

G(M)Q is Cohen–Macaulay and dimRQ
G(M)Q +dimRM/QRM = d by using Fact 3.4.

Hence R(M)Q is Cohen–Macaulay and dimRQ
R(M)Q + dimRM/QRM = d + 1 by

Lemma 3.2.

Since P ∗ ⊆ Q, R(M)P∗ is Cohen–Macaulay, so is R(M)P . We also have

d+ 1 = dimRQ
R(M)Q + dimRM/QRM

= (dimRP∗ R(M)P∗ + dimRQ/P
∗RQ) + (dimRM/P ∗RM − dimRQ/P

∗RQ)

= dimRP∗ R(M)P∗ + dimRM/P ∗RM

= dimRP
R(M)P + dimRM/PRM.

Thanks to Fact 3.4 again, there exists � > 0 such that

a�·Hi
M(R(M)) = (0) for each i �= d+ 1

which shows Hi
M(R(M)) is finitely graded. �

We set

a(N) = max{n ∈ Z | [Ht
M(N)]n �= (0)}

for a finitely generated graded R-module N of dimension t, and call it the a-invariant of

N (see [GW, Definition (3.1.4)]). With this notation we have the following.

Lemma 3.7. The following assertions hold true.

(1) [Hd+1
M (R(M))]n = (0) for all n ≥ 0.

(2) If [Hd+1
M (R(M))]−1 = (0), then Hd+1

M (R(M)) = (0).

Consequently a(R(M)) = −1, if dimRR(M) = d+ 1.

Proof. We look at the following exact sequences

0→ L→ R(M)→M → 0

0→ L(1)→ R(M)→ G(M)→ 0

of graded R-modules, where L = R(M)+. By applying the local cohomology functors

to the above sequences, we get

Hd
m(M)→ Hd+1

M (L)→ Hd+1
M (R(M))→ 0

and

Hd
M(G(M))→ Hd+1

M (L)(1)→ Hd+1
M (R(M))→ 0.

Thus
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[Hd+1
M (L)]n ∼= [Hd+1

M (R(M))]n for n �= 0, and

[Hd+1
M (L)]n+1 → [Hd+1

M (R(M))]n → 0 for n ∈ Z.

Therefore [Hd+1
M (R(M))]n = (0) for n ≥ 0, because Hd+1

M (R(M)) is Artinian. Moreover

we have

[Hd+1
M (R(M))]−1 → [Hd+1

M (R(M))]n → 0

for n < 0, so we get the assertion (2). �

We finally arrive at the following Theorem 3.8 which is a module version of the

results [GN, Part II, Theorem (1.1)], [V, Theorem 1.1] (see also [TI, Theorem 1.1],

[GS, Theorem (1.1)]).

Theorem 3.8. The following conditions are equivalent.

(1) R(M) is a Cohen–Macaulay R-module and dimRR(M) = d+ 1.

(2) Hi
M(G(M)) = [Hi

M(G(M))]−1 for every i < d and a(G(M)) < 0.

When this is the case, [Hi
M(G(M))]−1

∼= Hi
m(M) as R-modules for all i < d.

Proof. Consider the following exact sequences

· · ·→Hi
m(L)→Hi

M(R(M))→Hi
m(M)→Hi+1

M (L)→Hi+1
M (R(M))→··· (∗)

· · ·→Hi
m(L)(1)→Hi

M(R(M))→Hi
M(G(M))→Hi+1

M (L)(1)→Hi+1
M (R(M))→··· (∗∗)

for each i<d.

Firstly we assume that R(M) is a Cohen–Macaulay R-module of dimension d+ 1.

Then

Hi
m(M) ∼= Hi+1

M (L) and Hi
M(G(M)) ∼= Hi+1

M (L)(1)

for i < d. Therefore we get Hi
M(G(M)) = [Hi

M(G(M))]−1 and [Hi
M(G(M))]−1

∼= Hi
m(M)

as R-modules. Since R(M) is Cohen–Macaulay, we have

0→ Hd
m(M)→ Hd+1

M (L)→ Hd+1
M (R(M))→ 0

0→ Hd
M(G(M))→ Hd+1

M (L)(1).

Therefore a(G(M)) < 0 by using Lemma 3.7.

Conversely, let i < d. Thanks to the above sequences (∗), (∗∗) and our hypothesis,

we get

[Hi+1
M (L)]n+1

∼= [Hi+1
M (R(M))]n

[Hi+1
M (L)]n+1

∼= [Hi+1
M (R(M))]n+1

for each n ≥ 0. Hence [Hi
M(R(M))]n = (0) for n ≥ 0, since Hi+1

M (R(M)) is Artinian.

Moreover, we then have
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0→ [Hi+1
M (R(M))]n → [Hi+1

M (R(M))]n−1.

for n < 0 by above sequences (∗) and (∗∗). Thanks to Proposition 3.5, Hi+1
M (R(M))

is a finitely graded R-module for i < d. Whence [Hi+1
M (R(M))]n = (0), which shows

Hi+1
M (R(M)) = (0) for all i < d. Hence R(M) is a Cohen–Macaulay R-module of

dimension d+ 1. �

Corollary 3.9. Suppose that M is a Cohen–Macaulay R-module. Then the fol-

lowing conditions are equivalent.

(1) R(M) is a Cohen–Macaulay R-module and dimRR(M) = d+ 1.

(2) G(M) is a Cohen–Macaulay G-module and a(G(M)) < 0.

We now reach the goal of this section.

Proof of Theorem 1.2. Thanks to Lemma 3.1, R(M) is a sequentially Cohen–

Macaulay R-module if and only if R(Ci) is Cohen–Macaulay for every 1 ≤ i ≤ �. The

latter condition is equivalent to saying that G(Ci) is a Cohen–Macaulay G-module and

a(G(Ci)) < 0 for all 1 ≤ i ≤ � by Corollary 3.9. Hence we get the equivalence between

(1) and (2). �

We close this section by stating the ring version of Theorem 1.1 and Theorem 1.2. Let

(R,m) be a Noetherian local ring, F = {Fn}n∈Z a filtration of ideals of R such that F1 �=
R. We assume that R = R(F) is a Noetherian ring. Let {Di}0≤i≤� be the dimension

filtration of R. Then Di = {Fn ∩Di}n∈Z (resp. Ci = {[Fn ∩Di +Di−1]/Di−1}n∈Z) is a
F-filtration of Di (resp. Ci) for all 1 ≤ i ≤ �.

Theorem 3.10. The following conditions are equivalent.

(1) R′ is a sequentially Cohen–Macaulay ring.

(2) G is a sequentially Cohen–Macaulay ring and {G(Di)}0≤i≤� is the dimension filtration

of G.
When this is the case, R is a sequentially Cohen–Macaulay ring.

Theorem 3.11. Suppose that R is a sequentially Cohen–Macaulay ring and F1 � p

for every p ∈ AssR. Then the following conditions are equivalent.

(1) R is a sequentially Cohen–Macaulay ring.

(2) G is a sequentially Cohen–Macaulay ring, {G(Di)}0≤i≤� is the dimension filtration

of G and a(G(Ci)) < 0 for all 1 ≤ i ≤ �.

When this is the case, R′ is a sequentially Cohen–Macaulay ring.
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4. Sequentially Cohen–Macaulay property in E�.

In this section let R =
∑

n≥0 Rn be a Z-graded ring. We put Fn =
∑

k≥n Rk for

all n ∈ Z. Then Fn is a graded ideal of R, F = {Fn}n∈Z is a filtration of ideals of R

and F1 := R+ �= R. Let E be a graded R-module with En = (0) for all n < 0. Put

E(n) =
∑

k≥n Ek for all n ∈ Z. Then E(n) is a graded R-submodule of E, E = {E(n)}n∈Z
is an F-filtration of R-submodules of E and E(0) = E. Then we have R = G(F) and

E = G(E). Set R� := R(F) and E� := R(E).
Suppose that R is a Noetherian ring and E �= (0) is a finitely generated graded R-

module with d = dimR E <∞. Notice that R� is Noetherian and E�, R′(E) are finitely

generated.

We note the following.

Lemma 4.1. The following assertions hold true.

(1) dimR′ R′(E) = d+ 1.

(2) Suppose that there exists p ∈ AsshRE such that F1 � p. Then dimR� E� = d+ 1.

Proof. See Proposition 2.3, Proposition 2.5. �

Let D0 � D1 � · · · � D� = E be the dimension filtration of E. We set Ci =

Di/Di−1, di = dimR Di for every 1 ≤ i ≤ �. Then Di is a graded R-submodule of E for

all 0 ≤ i ≤ �. Let 1 ≤ i ≤ �. Then from the exact sequence

0→ [Di−1](n) → [Di](n) → [Ci](n) → 0

of graded R-modules for all n ∈ Z, we get the exact sequences

0→ R(Di−1)→ R(Di)→ R(Ci)→ 0

0→ R′(Di−1)→ R′(Di)→ R′(Ci)→ 0 and

0→ G(Di−1)→ G(Di)→ G(Ci)→ 0

of graded modules, where Di = {[Di](n)}n∈Z, Ci = {[Ci](n)}n∈Z. By the same technique

as in the proof of Lemma 3.1, we obtain the dimension filtration of R′(E) and E� as

follows.

Lemma 4.2. {R′(Di)}0≤i≤� is the dimension filtration of R′(E). If F1 � p for

every p ∈ AssRE, then {R(Di)}0≤i≤� is the dimension filtration of E�.

Hence we get the following, which characterize the sequentially Cohen–Macaulayness

of R′(E).

Proposition 4.3. The following conditions are equivalent.

(1) R′(E) is a sequentially Cohen–Macaulay R′-module.

(2) E is a sequentially Cohen–Macaulay R-module.
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Proof. (1)⇒ (2) Follows from the fact that Ci = G(Ci) for each 1 ≤ i ≤ �.

(2)⇒ (1) We get G(Ci) is Cohen–Macaulay for all 1 ≤ i ≤ �. Let Q ∈ SuppR′R′(Ci).
We may assume u /∈ Q. Then R′(Ci)u = R[t, t−1] ⊗R Ci is Cohen–Macaulay since Ci is

Cohen–Macaulay. Hence R′(Ci)Q is a Cohen–Macaulay R′Q-module. �

Now we study the question of when E� is sequentially Cohen–Macaulay. The key is

the following.

Lemma 4.4. Suppose R0 is a local ring, E is a Cohen–Macaulay R-module and

F1 � p for some p ∈ AsshRE. Then the following conditions are equivalent.

(1) E� is a Cohen–Macaulay R�-module.

(2) a(E) < 0.

Proof. Let P = mR + R+, where m denotes the maximal ideal of R0. Then

P ⊇ F1. Since R+(E(n)/E(n+1)) = (0), R+(Fn/Fn+1) = (0) for all n ∈ Z, we have

E = G(E) ∼= G(EP ), R = G(F) ∼= G(FP ).

Suppose that E� is a Cohen–Macaulay R�-module. Then R(EP ) is Cohen–Macaulay and

dimR(RP )R(EP ) = d+1, whence G(EP ) is Cohen–Macaulay and a(G(EP )) < 0. Therefore

we get a(E) < 0.

On the other hand, suppose that a(E) < 0. Then R(EP ) is a Cohen–Macaulay

R(RP )-module of dimension d+ 1. Thus R(E)P is Cohen–Macaulay. Now we regard R
as a Z2-graded ring with the Z2-grading as follows:

R(i,j) =

{
Rit

j i ≥ j ≥ 0

(0) otherwise.

Moreover we set

R(E)(i,j) =
{
tj ⊗ Ei i ≥ j ≥ 0

(0) otherwise,

where tj ⊗ Ei = {tj ⊗ x | x ∈ Ei}. Then R(E) is a Z2-graded R-module with the above

grading R(E)(i,j). Notice that R(0,0) = R0 is a local ring, so that R is H-local, that is Z2-

graded ring R has a unique graded maximal ideal L ([GW2, Definition (1.1.6)]). Then

we get P ⊆ L, whence L ∩ R = P . Therefore R(E)L is a Cohen–Macaulay RL-module,

so that E� is Cohen–Macaulay. �

Our answer is the following.

Theorem 4.5. Suppose that R0 is a local ring, E is a sequentially Cohen–Macaulay

R-module and F1 � p for every p ∈ AssRE. Then the following conditions are equivalent.

(1) E� is a sequentially Cohen–Macaulay R�-module.

(2) a(Ci) < 0 for all 1 ≤ i ≤ �.
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5. Application —Stanley–Reisner algebras—.

In this section, let V = {1, 2, . . . , n} (n > 0) be a vertex set, Δ a simplicial complex

on V such that Δ �= ∅. We denote F(Δ) a set of facets of Δ and m = �F(Δ) (> 0) its

cardinality. Let S = k[X1, X2, . . . , Xn] be a polynomial ring over a field k, R = k[Δ] =

S/IΔ the Stanley–Reisner ring of Δ of dimension d, where IΔ = (Xi1Xi2 · · ·Xir | {i1 <

i2 < · · · < ir} /∈ Δ) is the Stanley–Reisner ideal of R.

We consider the Stanley–Reisner ring R =
∑

n≥0 Rn as a Z-graded ring and put

In =
∑
k≥n

Rk = mn for all n ∈ Z

where m = R+ =
∑

n>0 Rn is a graded maximal ideal of R. Then I = {In}n∈Z is a

m-adic filtration of R and I1 := R+ �= R.

If Δ is shellable, then R is a sequentially Cohen–Macaulay ring, so by Proposition

4.3 we get the following.

Proposition 5.1. If Δ is shellable, then R′(m) is a sequentially Cohen–Macaulay

ring.

Notice that p � I1 for every p ∈ AssR if and only if F �= ∅ for all F ∈ F(Δ), which

is equivalent to saying that Δ �= {∅}.
The goal of this section is the following. Here |Fi| denotes the cardinality of Fi.

Theorem 5.2. Suppose that Δ is shellable with shelling order F1, F2, . . . , Fm ∈
F(Δ) such that dimF1 ≥ dimF2 ≥ · · · ≥ dimFm and Δ �= {∅}. Then the following

conditions are equivalent.

(1) R(m) is a sequentially Cohen–Macaulay ring.

(2) m = 1 or if m ≥ 2, then |Fi| > �F(Δ1 ∩ Δ2) for every 2 ≤ i ≤ m, where Δ1 =

〈F1, F2, . . . , Fi−1〉, Δ2 = 〈Fi〉.

Proof. Thanks to Theorem 4.5, R is sequentially Cohen–Macaulay if and only

if a(Ci) < 0 for all 1 ≤ i ≤ �, where {Di}0≤i≤� is the dimension filtration of R, Ci =

Di/Di−1 and di = dimR Di for all 1 ≤ i ≤ �. If m = 1, then R = k[Δ] ∼= k[Xi | i ∈ F1],

which is a polynomial ring, so that � = 1 and a(R) = −|F1| < 0. Hence R is a Cohen–

Macaulay ring by Lemma 4.4.

Suppose that m > 1 and the assertion holds for m − 1. We put Δ1 =

〈F1, F2, . . . , Fm−1〉 and Δ2 = 〈Fm〉. If � = 1, then Δ is pure. Look at the following

exact sequence

0→ S/IΔ → S/IΔ1
⊕ S/IΔ2

→ S/IΔ1
+ IΔ2

→ 0

of graded R-modules. We then have

S/IΔ1
+ IΔ2

∼= k[Δ2]/(ξ)



Sequentially Cohen–Macaulay Rees algebras 307

for some monomials ξ ∈ IΔ1 \ IΔ2 in X1, X2, . . . , Xn with 0 < deg ξ = �F(Δ1 ∩ Δ2).

Therefore a(S/IΔ1 + IΔ2) = �F(Δ1 ∩Δ2) − |Fm|. We put m = R+. Then we have the

exact sequence of local cohomology modules as follows

0→ Hd−1
m (S/IΔ1

+ IΔ2
)→ Hd

m(S/IΔ)→ Hd
m(S/IΔ1

)⊕Hd
m(S/IΔ2

)→ 0.

Thus a(R) = max{�F(Δ1 ∩ Δ2) − |Fm|, a(k[Δ1]), a(k[Δ2])}. Hence R is sequentially

Cohen–Macaulay if and only if �F(Δ1 ∩ Δ2) < |Fm| and a(k[Δ1]) < 0. By using the

induction arguments, we get the equivalence between (1) and (2).

Suppose now that � > 1. Consider the following exact sequence

0→ IΔ1
/IΔ → S/IΔ → S/IΔ1

→ 0

of graded R-modules. Then we have

IΔ1
/IΔ ∼= IΔ1

+ IΔ2
/IΔ2

= IΔ1∩Δ2
/IΔ2

= (ξ)

where ξ ∈ IΔ1
\ IΔ2

is a homogeneous element with 0 < deg ξ = �F(Δ1 ∩ Δ2) =: t.

Therefore IΔ1
/IΔ ∼= S/IΔ2

(−t), so that

0→ S/IΔ2
(−t) σ−→ S/IΔ

ε−→ S/IΔ1
→ 0.

We put L = Imσ. Then L �= (0), dimR L = d1 and a(L) = t− |Fm|. We notice here that

L ⊆ D1. Now we set Di
′ = ε(Di) for every 1 ≤ i ≤ �. Then D1

′ � D2
′ � · · · � D�

′ =
k[Δ1] and Ci

′ := Di
′/Di−1

′ ∼= Ci for all 2 ≤ i ≤ �. Hence a(Ci) = a(Ci
′) for 2 ≤ i ≤ �.

Case 1: L � D1 (i.e., D1
′ �= (0))

In this case D0
′ := (0) � D1

′ � D2
′ � · · · � D�

′ = k[Δ1] is the dimension filtration

of k[Δ1]. Look at the following exact sequence

0→ L→ D1 → D′1 → 0

of R-modules. Then a(D1) = max{a(L), a(D1
′)}.

Case 2: L = D1 (i.e., D1
′ = (0))

Similarly (0) = D1
′ � D2

′ � · · · � D�
′ = k[Δ1] is the dimension filtration of k[Δ1].

Summing up, in any case R is a sequentially Cohen–Macaulay ring if and only if

a(L) < 0 and the assertion (1) holds for the ring k[Δ1]. Hence we get the equivalence of

conditions (1) and (2) by using the induction hypothesis. �

Remark 5.3. If Δ is shellable, then we can take a shelling order F1, F2, . . . , Fm ∈
F(Δ) such that dimF1 ≥ dimF2 ≥ · · · ≥ dimFm.

Apply Theorem 5.2, we get the following.

Corollary 5.4. Under the same notation in Theorem 5.2. Suppose that |Fm| ≥ 2.

If 〈F1, F2, . . . , Fi−1〉 ∩ 〈Fi〉 is a simplex for every 2 ≤ i ≤ m, then R(m) is a sequentially
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Cohen–Macaulay ring.

Let us give some examples.

Example 5.5. Let Δ = 〈F1, F2, F3〉, where F1 = {1, 2, 3}, F2 = {2, 3, 4} and

F3 = {4, 5}. Then Δ is shellable with shelling order F1, F2, F3 ∈ F(Δ). Then

〈F1〉 ∩ 〈F2〉 , 〈F1, F2〉 ∩ 〈F3〉

are simplexes, so that R(m) is a sequentially Cohen–Macaulay ring.

Δ =
1 4 5

2

3

Example 5.6. Let Δ = 〈F1, F2, F3, F4〉, where F1 = {1, 2, 5}, F2 = {2, 3}, F3 =

{3, 4} and F4 = {4, 5}. Notice that Δ is a shellable simplicial complex with shelling order

F1, F2, F3, F4 ∈ F(Δ). We put Δ1 = 〈F1, F2, F3〉 and Δ2 = 〈F4〉. Then

�F(Δ1 ∩Δ2) = 2 = |F4|,

whence R(m) is not sequentially Cohen–Macaulay.

1

2

3 4

5

Δ =
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