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Abstract. In this paper we present many new families of identities for
multiple harmonic sums using binomial coefficients. Some of these generalize
a few recent results of Hessami Pilehrood, Hessami Pilehrood and Tauraso
[Trans. Amer. Math. Soc. 366 (2014), pp. 3131–3159]. As applications we
prove several conjectures involving multiple zeta star values (MZSV): the
Two-one formula conjectured by Ohno and Zudilin, and a few conjectures
of Imatomi et al. involving 2-3-2-1 type MZSV, where the boldfaced 2 means
some finite string of 2’s.

1. Introduction.

For over two hundred years, Euler’s pioneering work on double zeta values [5] was
largely neglected, until in the early 1990s when Zagier showed the importance of the more
general multiple zeta values in his famous paper [25]. Since then these values have come
up in many areas of current research in mathematics and physics, such as knot theory,
motivic theory, mirror symmetry and Feynman integrals, to name just a few. One of the
central problems is to determine various Q-linear relations among these values, many of
which have been discovered numerically first and then proved rigorously later. One such
family that still defies a proof until now is the celebrated Two-one formula discovered by
Ohno and Zudilin [19].

The main goal of this paper is to give a comprehensive study of multiple zeta star
values of a few special types using the corresponding identities established first for mul-
tiple harmonic sums. As one of the applications, we give a concise proof of the Two-one
formula.

We now recall some definitions. In order to unify MHS, MZV and their alternating
versions we first define a sort of double cover of the set N0 = N ∪ {0} where N is the set
of positive integers.

Definition 1.1. Let D0 := N0∪N0 and D := N∪N be the sets of signed nonnegative
and signed positive numbers, respectively, where

N0 = {k̄ : k ∈ N0} and N = {k̄ : k ∈ N}.
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In some sense, k̄ is k dressed by a negative sign, but k̄ is not a negative number. Define
for all k ∈ N0 the absolute value function | · | on D0 by |k| = |k̄| = k and the sign function
by sgn(k) = 1 and sgn(k̄) = −1. We make D0 a semi-group by defining a commutative
and associative binary operation ⊕ (called O-plus) as follows: for all a, b ∈ D0

a⊕ b =

{|a|+ |b|, if only one of a or b is in N0;

|a|+ |b|, if a, b ∈ N0 or if a, b ∈ N0.
(1)

For any ` ∈ N and s = (s1, s2, . . . , s`) ∈ D` we define the (alternating) multiple
harmonic sum (MHS for short)

Hn(s1, s2, . . . , s`) =
∑

n≥k1>k2>···>k`≥1

∏̀

i=1

sgn(si)ki

k
|si|
i

, (2)

H?
n(s1, s2, . . . , s`) =

∑

n≥k1≥k2≥···≥k`≥1

∏̀

i=1

sgn(si)ki

k
|si|
i

. (3)

This star-version has been denoted by Sn in the literature but it seems to be more
appropriate to use H? in this paper due to its close connection with multiple zeta star
values to be defined momentarily. Conventionally, we call `(s) := ` the depth and
|s| :=

∑`
i=1 |si| the weight. For convenience we set Hn(s) = 0 if n < l(s), Hn(∅) =

H?
n(∅) = 1 for all n ≥ 0, and {s1, s2, . . . , s`}r the set formed by repeating the composition

(s1, s2, . . . , s`) exactly r times.
When s = (s1, s2, . . . , s`) ∈ D` with (s1, sgn(s1)) 6= (1, 1) we set, respectively, the

(alternating) Euler sum and the (alternating) star Euler sum by

ζ(s) = lim
n→∞

Hn(s), ζ?(s) = lim
n→∞

H?
n(s). (4)

When s ∈ N` they are called the multiple zeta value (MZV) and the multiple zeta star
value (MZSV), respectively.

We now state the Two-one formula conjectured by Ohno and Zudilin [19].

Theorem 1.2. Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1) where a1 ∈ N and
aj ∈ N0 for all j ≥ 2. Then we have

ζ?(s) =
∑

p

2`(p)ζ(p),

where p runs through all indices of the form (2a1 + 1) ◦ · · · ◦ (2ar + 1) with “ ◦” being
either the symbol “ ,” or the symbol “+”.

Until recently, not many nontrivial families of identities relating MZVs or MZSVs
with truly alternating Euler sums have been proved. One such result is proved by Zlobin
[32]
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ζ?({2}n) = −2ζ(2n) for all n ≥ 1. (5)

Another is proved in [30]: ζ({3}n) = 8nζ({2, 1}n). Recently, two more appear as (27)
and (28) of [7] one of which yields a new proof of an identity of [26]. Notice that [7,
(22)] implies (5) easily (see Lemma 4.5). To provide more such families in this paper we
need some book-keeping first. A boldface of a single digit number means the number
is repeated a few times. We underline a string pattern to mean the whole pattern is
repeated. Thus the Two-one formula should be written as 2-1 formula and in each
repetition the 2’s may have different lengths.

Besides the 2-1 formula in Theorem 1.2 we show many analogous formulas in this
paper. For example, the following is the 2-1-2 formula.

Theorem 1.3. Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1, {2}ar+1) where a1, ar+1 ∈
N and aj ∈ N0 for all 2 ≤ j ≤ r. Then we have

ζ?(s) = −
∑

p

2`(p)ζ(p),

where p runs through all indices of the form (2a1 + 1) ◦ · · · ◦ (2ar + 1) ◦ 2ar+1 with “ ◦”
being either the symbol “ ,” or the symbol O-plus “⊕” defined by (1).

When r = 2, we have checked numerically the following identities for all 0 ≤ a, b, c ≤
2 and ac 6= 0 with the help of EZ-face [3]:

ζ?({2}a, 1, {2}b, 1, {2}c) = − 2ζ(2(a + b + c) + 2)− 4ζ(2a + 2 + 2b, 2c)

− 4ζ(2a + 1, 2b + 1 + 2c)− 8ζ(2a + 1, 2b + 1, 2c).

The main idea is to find out what happens when a new component is attached to
the front of a composition of positive integers. To state our main theorems we need some
additional notations first. For s = (s1, . . . , s`) ∈ D`

0 we define the mollified companion
of Hn(s) by

Hn(s) := 2`
∑

n≥k1>···>k`≥1

(
n
k1

)
(
n+k1

k1

)
∏̀

j=1

sgn(sj)kj

k
|sj |
j

=2`
n∑

k=1

sgn(s1)k

k|s1|

(
n
k

)
(
n+k

k

) Hk−1(s2, . . . , s`). (6)

We further define Π(s) to be the set of all indices of the form (s1 ◦ · · · ◦ s`) where “◦”
being either the symbol “,” or the symbol O-plus“⊕” defined by (1). We also define a
sequence of compositions of nonzero integers si (i = `, . . . , 2, 1) (backward) inductively
if s ∈ N`:

s(`) =

{
(1), if s` = 1;

(2, {1}sm−2), if s` ≥ 2,
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s(i) =





(1) · s(i+1), if si = 1;

(2)⊕ s(i+1), if si = 2;

(2, {1}sm−3, 1̄)⊕ s(i+1), if si ≥ 3,

for all i < `. Here, for any two compositions a = (a1, . . . , ar), b = (b1, . . . , bt)

(1) · a = (1, a1, . . . , ar), a⊕ b = (a1, . . . , ar−1, ar ⊕ b1, b2, . . . , bt).

Theorem 1.4. For all s = (s1, . . . , s`) ∈ N` we have

H?
n(s) = ε(s)

∑

p∈Π(s(1))

Hn(p), where ε(s) =

{
1, if s` = 1;

−1, if s` ≥ 2.

Applying this theorem repeatedly we can derive many different types of identities.
For ease of reference we list them as follows:

1. 2-1: Corollary 4.1 for MHS, Theorem 1.2 for MZSV;
2. 2-1-2 (nontrivial substring 2 at the end): Corollary 4.3 for MHS, Theorem 1.3 for

MZSV;
3. 2-c-2 (c ≥ 3 and 2 at the end may be trivial): appeared in a joint work with my

student Erin Linebarger [16];
4. 2-c-2-1 and 2-1-2-c-2-1: Corollary 4.7 for MHS, Theorem 4.8 for MZSV;
5. 2-c-2-1-2 and 2-1-2-c-2-1-2 (nontrivial 2 at the end): Corollary 4.9 for MHS, Theorem

4.10 for MZSV;
6. 2-1-2-c-2 and 2-c-2-1-2-c-2 (2 at the end may be trivial): Corollary 4.11 for MHS,

Theorem 4.12 for MZSV;
7. 1-c-1 (c ≥ 1 and 1 at the end may be trivial): Theorem 7.1 for MHS.

One of the main results contained in [7, Theorem 2.3] is the following theorem.

Theorem 1.5 ([7, Theorem 2.3]). Let a ∈ N0 and b ∈ N. Then for any n ∈ N

H?
n({2}a, 1) = 2

n∑

k=1

(
n
k

)

k2a+1
(
n+k

k

) , (A)

H?
n({2}a, 1, {2}b) = −2

n∑

k=1

(−1)k
(
n
k

)

k2a+1+2b
(
n+k

k

) − 4
n∑

k=1

Hk−1(2b)
(
n
k

)

k2a+1
(
n+k

k

) . (B)

We want to caution the reader that the convention of index ordering in [7] is opposite
to ours in the definitions (2) and (3) of MHS. This is the reason why a and b in Theorem
1.5(B) is switched from the original statement in [7, Theorem 2.3].

Corollary 4.1 and Corollary 4.3 generalize Theorem 1.5(A) and (B) respectively by
allowing the arguments to contain an arbitrary number of 2-strings, which lead to the 2-1
and 2-1-2 formulas for MHS. The proofs are straight-forward, however, the difficult part
is the discovery of the corollaries and the theorems (using a lot of Maple experiments).
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By taking limits in these two theorems so that MHS become MZSV we can prove the
2-1 formula and the 2-1-2 formula for MZSV in Theorems 1.2 and 1.3, respectively.

In Section 5 and Section 6 we provide new and concise proofs of a few conjectures first
formulated by Imatomi et al. in [13] concerning MZSV of types 2-3-2-1 and 2-3-2-1-2.

In the last section we propose a few possible future research directions, one of which
will be carried out in a sequel to this work in which we will study congruence properties
of MHS as further applications of the results we have obtained in this paper.

Acknowledgements. We would like to thank Roberto Tauraso for sending us
their preprint [7], the anonymous referee for his/her careful reading of the first draft
and suggesting Theorem 1.4. Thanks are also due to the Max Planck Institute for
Mathematics where the final revision was carried out. This work is partially supported by
NSF grant DMS1162116 which enables me to work with my students more productively.
In particular, this paper is inspired by a recent collaboration with one of my students,
Erin Linebarger [16]. We are able to generalize Theorems 2.1 of [7] to arbitrary number
of strings of 2’s using similar ideas contained in this paper.

2. A combinatorial lemma.

In this short section we prove the following combinatorial identities which are similar
in spirit to [7, Lemma 2.2].

Lemma 2.1. Let k, n ∈ N, a ∈ N0, c ∈ N, A
(m)
n,k = (−1)k

(
mn
n−k

)
c
(m)
n where c

(m)
n is an

arbitrary sequence independent of k, and B
(m)
n,k =

(
mn
n−k

)
c
(m)
n . Then for any composition

v the following statements hold.
(i) We have

1
nc

n∑

k=1

Hk−1(v)A(m)
n,k

ka
=

n∑

k=1

Hk−1(v)A(m)
n,k

ka+c
+

∑

j+|x|=a+c

j≥0,xr>a

ml(x)
n∑

k=1

Hk−1(x,v)A(m)
n,k

kj
, (7)

where xr denotes the last component of x ∈ Nr.
(ii) We have

n
n∑

k=1

Hk−1(v)B(2)
n,k

ka
=

n∑

k=1

Hk−1(v)B(2)
n,k

ka−1
+ 2

n∑

k=1

Hk−1(a,v)kB
(2)
n,k. (8)

(iii) We have

1
nc

n∑

k=1

Hk−1(v)B(m)
n,k

ka
=

n∑

k=1

Hk−1(v)B(m)
n,k

ka+c
+

∑

j+|x|=a+c

j≥0,xr<−a

ml(x)
n∑

k=1

Hk−1(x,v)A(m)
n,k

kj
, (9)

where xr denotes the last component of x ∈ Nr−1 × D.
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(iv) We have

n
n∑

k=1

Hk−1(v)A(2)
n,k

ka
=

n∑

k=1

Hk−1(v)A(2)
n,k

ka−1
+ 2

n∑

k=1

Hk−1(a,v)kB
(2)
n,k. (10)

Proof. We need to mention again that the ordering is reversed in this paper so
s1 in [7, Lemma 2.2] should be the last component of x, namely, xr in our setup. Now,
equation (7) follows from [7, Lemma 2.2] directly. We may also use this proof for (9) by
taking the sign of xr into consideration.

Now by the identity proved in [7, Lemma 2.1]

2
n∑

k=l+1

k
(
n
k

)
(
n+k

k

) =
n
(
n−1

l

)
(
n+l

l

) =
(n− l)

(
n
l

)
(
n+l

l

) (11)

we see that

2
n∑

k=1

Hk−1(a,v)kB
(2)
n,k =

n∑

l=1

Hl−1(v)
la

n∑

k=l+1

2kB
(2)
n,k

=
n∑

l=1

Hl−1(v)
la

(n− l)B(2)
n,l

= n
n∑

l=1

Hl−1(v)B(2)
n,l

la
−

n∑

l=1

Hl−1(v)B(2)
n,l

la−1

which is (8). Similar argument yields (10). We leave the details of the rest of the proof
to the interested reader. ¤

Remark 2.2. In this paper we will always choose c
(1)
n = 1 so that A

(1)
n,k = (−1)k

(
n
k

)

and B
(1)
n,k =

(
n
k

)
, and c

(2)
n = (n!)2/(2n)! so that A

(2)
n,k = (−1)k

(
n
k

)
/
(
n+k

k

)
and B

(2)
n,k =(

n
k

)
/
(
n+k

k

)
.

Taking m = 2 in Lemma 2.1 we immediately get the following results.

Corollary 2.3. Let a ∈ D0, n, c ∈ N. Then for any composition v, we have

1
nc
Hn(a,v) =

∑

p∈{0◦1◦(c−1)◦(a⊕1)}
Hn(p,v).

Corollary 2.4. Let c ∈ N0 and Π(c) = {0 ◦ 1◦c}. Then

1
nc

= −
∑

p∈Π(c)

Hn(p).
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Proof. By [7, (2.12)] we have

2
n∑

k=l+1

A
(2)
n,k =

(
l

n
− 1

)
A

(2)
n,l .

The case c = 0 follows from this by setting l = 0. For c ≥ 1, using the c = 0 case we get

1
nc

= − 1
nc
Hn(0̄) = −

∑

p∈Π(c)

Hn(p)

by taking a = 0̄ and v = ∅ in Corollary 2.3. Hence the corollary is proved. ¤

3. Proof of Theorem 1.4.

We now prove the key result in Theorem 1.4. We break it into a series of lemmas.

Lemma 3.1. Let s = ({2}a, c) with a, c ∈ N0 and c ≥ 3. Then

H?
n(s) = −

∑

p∈Π(s)

Hn(p), (12)

where the set Π(s) = {(2a + 2) ◦ 1◦(c−2)}.

Proof. We proceed by induction on n. When n = 1 we have H?
1 ({2}a, c) = 1.

On the other hand,

∑

p∈Π(s)

H1(p) = H1(2a + c) = −1,

and therefore the formula is true. Suppose the statement is true for n − 1. Then by
definition

H?
n(s) =

a∑

i=0

1
n2(a−i)

H?
n−1({2}i, c) +

1
n2a+c

.

Applying inductive hypothesis, we obtain

H?
n(s) = −

a∑

i=0

1
n2(a−i)

∑

p∈Π({2}i,c)

Hn−1(p) +
1

n2a+c
. (13)

Set Π(u−1) = {0 ◦ 1◦(c−2)}. Then the inner sum in (13) becomes

∑

p∈Π({2}i,c)

Hn−1(p) =
∑

p=(p1,p2,...,pr)∈Π(u−1)

Hn−1(2i + 2 + p1, p2, . . . , pr)
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=
∑

p=(p1,p2,...,pr)∈Π(u−1)

∑

n>k1>···>kr≥1

A
(2)
n−1,k1

k2i+2+p1
1

r∏

j=2

2
k

pj

j

,

where A
(2)
n,k = (−1)k

(
n
k

)
/
(
n+k

k

)
(see Remark 2.2). Plugging this into (13) and summing

over i by the formula

A
(2)
n−1,k

a∑

i=0

n2i

k2i
= A

(2)
n,k

(
n2a

k2a
− k2

n2

)
, (14)

we obtain

H?
n(s) = −

∑

p=(p1,p2,...,pr)∈Π(u−1)

∑

n≥k1>···>kr≥1

A
(2)
n,k1

k2a+2+p1
1

r∏

j=2

2
k

pj

j

+
1

n2a+2

∑

p=(p1,p2,...,pr)∈Π(u−1)

∑

n≥k1>···>kr≥1

A
(2)
n,k1

kp1
1

r∏

j=2

2
k

pj

j

+
1

n2a+c
,

which implies

H?
n(s) = −

∑

p∈Π(s)

Hn(p) +
1

n2a+2

∑

p∈Π(û−1)

Hn(p) +
1

n2a+c
,

where Π(û−1) = {0◦1◦(c−2)}. Hence the theorem follows from Corollary 2.4 immediately
(by replacing c by c− 2 there). ¤

Lemma 3.2. Suppose s is a composition of positive integers and there exists λ =
(λ1, . . . , λm) such that there is an expansion of the form

H?
n(s) = ε(s)

∑

p∈{λ1◦···◦λm}
Hn(p).

Then for any integers a ∈ N0 we have

H?
n({2}a, s) = ε(s)

∑

p∈Π2a

Hn(p), (15)

where Π2a = {(2a⊕ λ1) ◦ λ2 ◦ · · · ◦ λm}.

Proof. Set Π(s) = {λ1 ◦ · · · ◦ λm}. The proof of the identities is by induction on
n + a or n + b. When n = 1 the theorem is clear. Assume formulas (15) and (17) are
true for all a + n ≤ N where N ≥ 2. Suppose now we have n ≥ 2 and n + a = N + 1. We
start proving the first identity. By definition, we have

H?
n({2}a, s) =

a∑

i=1

1
n2a−2i

H?
n−1({2}i, s) +

1
n2a

H?
n(s).
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Applying induction assumption, we obtain

ε(s)H?
n({2}a, s) =

a∑

i=1

1
n2a−2i

∑

p∈Π2i

Hn−1(p) +
1

n2a

∑

p∈Π(s)

Hn(p). (16)

Expanding the inner sum

∑

p∈Π2i

Hn−1(p) =
∑

p=(p1,p2,...,pr)∈Π(s)

Hn−1(2i⊕ p1, p2, . . . , pr)

=
∑

p=(p1,p2,...,pr)∈Π(s)

∑

n>k1>···>kr≥1

(
n−1
k1

)
(
n−1+k1

k1

) 1
k2i
1

r∏

j=1

2 sgn(pj)kj

k
|pj |
j

and summing over i in (16), we obtain

ε(s)H?
n({2}a, s) =

∑

p=(p1,p2,...,pr)∈Π(s)

∑

n≥k1>···>kr≥1

(
n
k1

)
(
n+k1

k1

)
(

1
k2a
1

− 1
n2a

) r∏

j=1

2 sgn(pj)kj

k
|pj |
j

+
1

n2a

∑

p∈Π(s)

Hn(p),

which implies (15) by definition and straightforward cancelation. ¤

Lemma 3.3. Suppose s is a composition of positive integers and there exists λ =
(λ1, . . . , λm) such that there is an expansion of the form

H?
n(s) = ε(s)

∑

p∈{λ1◦···◦λm}
Hn(p).

Then for any integers a ∈ N0 we have

H?
n({2}a, 1, s) = ε(s)

∑

p∈Π2a1

Hn(p), (17)

where Π2a1 = {(2a + 1) ◦ λ1 ◦ · · · ◦ λm},

Proof. By definition

H?
n({2}a, 1, s) =

a∑

i=0

1
n2a−2i

H?
n−1({2}i, 1, s) +

1
n2a+1

H?
n(s).

Applying induction assumption, we obtain

ε(s)H?
n({2}a, 1, s) =

a∑

i=0

1
n2a−2i

∑

p∈Π2i1

Hn−1(p) +
1

n2a+1

∑

p∈Π(s)

Hn(p). (18)
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Setting Π(s) = {λ1 ◦ · · · ◦ λm} we have

∑

p∈Π2i1

Hn−1(p)

=
∑

p∈Π(s)

Hn−1(2i + 1,p) +
∑

p=(p1,p2,...,pr)∈Π(s)

Hn−1((2i + 1)⊕ p1, p2, . . . , pr)

=
∑

p=(p1,p2,...,pr)∈Π(s)

( ∑

n>k0>k1>···>kr≥1

(
n−1
k0

)
(
n−1+k0

k0

) 2
k2i+1
0

r∏

j=1

2 sgn(pj)kj

k
|pj |
j

+
∑

n>k1>···>kr≥1

(
n−1
k1

)
(
n−1+k1

k1

) 2 sgn(p1)k1

k
2i+1+|p1|
1

r∏

j=2

2 sgn(pj)kj

k
|pj |
j

)
.

Substituting the above expression into (18) and summing over i by (14) we obtain

ε(s)H?
n({2}a, 1, s)− 1

n2a+1

∑

p∈Π(s)

Hn(p)

=
∑

p=(p1,p2,...,pr)∈Π(s)

( ∑

n≥k0>k1>···>kr≥1

(
n
k0

)
(
n+k0

k0

) 2
k2a+1
0

r∏

j=1

2 sgn(pj)kj

k
|pj |
j

− 1
n2a+2

∑

n≥k0>k1>···>kr≥1

(
n
k0

)
(
n+k0

k0

)2k0

r∏

j=1

2 sgn(pj)kj

k
|pj |
j

+
∑

n≥k1>···>kr≥1

(
n
k1

)
(
n+k1

k1

) 2 sgn(p1)k1

k
2a+1+|p1|
1

r∏

j=2

2 sgn(pj)kj

k
|pj |
j

− 1
n2a+2

∑

n≥k1>···>kr≥1

(
n
k1

)
(
n+k1

k1

) 2 sgn(p1)k1

k
|p1|−1
1

r∏

j=2

2 sgn(pj)kj

k
|pj |
j

)
.

Noticing that the first and third sums on the right-hand side of the above add up to

∑

p∈Π2a1

Hn(p),

we have

ε(s)H?
n({2}a, 1, s)− 1

n2a+1

∑

p∈Π(s)

Hn(p)−
∑

p∈Π2a1

Hn(p)

= − 1
n2a+2

∑

p∈Π(s)

∑

n≥k1>···>kr≥1

(
r∏

j=1

2 sgn(pj)kj

k
|pj |
j

n∑

k0=k1+1

2k0

(
n
k0

)
(
n+k0

k0

)

+

(
n
k1

)
(
n+k1

k1

) 2 sgn(p1)k1

k
|p1|−1
1

r∏

j=2

2 sgn(pj)kj

k
|pj |
j

)
.
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Observe that [7, (2.2)] can be rewritten as

n∑

k=l+1

2k

(
n
k

)
(
n+k

k

) = (n− l)

(
n
l

)
(
n+l

l

) .

Using this to simplify the sum over k0 in the above we obtain

ε(s)H?
n({2}a, 1, s) =

∑

p∈Π2a1

Hn(p).

This proves identity (17) by induction. ¤

Lemma 3.4. Suppose s is a composition of positive integers and there exists λ =
(λ1, . . . , λm) such that there is an expansion of the form

H?
n(s) = ε(s)

∑

p∈{λ◦}
Hn(p).

Then for any integers b ∈ N0 and c ≥ 3 we have

H?
n({2}b, c, s) = ε(s)

∑

p∈Π
2bc

Hn(p), (19)

where Π2bc = {(2b + 2) ◦ 1◦(c−3) ◦ (λ1 ⊕ 1̄) ◦ λ◦b1}.

Proof. We proceed by induction on n + b. Assume formula (19) is true for all
b + n ≤ N . Now suppose b + n = N + 1. By definition we have

H?
n({2}b, c, s) =

b∑

i=0

1
n2b−2i

H?
n−1({2}i, c, s) +

1
n2b+c

H?
n(s).

By the induction assumption, we see that

ε(s)H?
n({2}b, c, s) =

b∑

i=0

1
n2b−2i

∑

p∈Π2ic

Hn−1(p) +
1

n2b+c

∑

p∈Π(s)

Hn(p). (20)

Setting Π1 = {0 ◦ 1◦(c−3) ◦ (λ1 ⊕ 1̄) ◦ λ2 ◦ · · · ◦ λm} we have

∑

p∈Π2ic

Hn−1(p) =
∑

p=(p1,...,pr)∈Π1

Hn−1(2i + 2⊕ p1, p2, . . . , pr)

=
∑

p=(p1,...,pr)∈Π1

∑

n>k1>···>kr≥1

(
n−1
k1

)
(
n−1+k1

k1

) 1

(− sgn(p1))k1 k
2i+2+|p1|
1

r∏

j=2

2 sgn(pj)kj

k
|pj |
j

.
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Plugging this into (20) and summing over i by (14), we obtain

ε(s)H?
n({2}b, c, s) =

∑

p=(p1,...,pr)∈Π1

Hn((2b + 2)⊕ p1, p2, . . . , pr))

+
1

n2b+c

∑

p∈Π(s)

Hn(p)− 1
n2b+2

∑

p∈Π1

Hn(p1, p2, . . . , pr),

which implies

ε(s)H?
n({2}b, c, s) =

∑

p∈Π
2bc

Hn(p)− 1
n2b+2

∑

p∈Π2

Hn(p) +
1

n2b+c

∑

p∈Π(s)

Hn(p), (21)

where Π2 = {0 ◦ 1◦(c−3) ◦ (λ1 ⊕ 1) ◦ λ2 ◦ · · · ◦ λm}. Expanding the second sum from (21),
we have

∑

p∈Π2

Hn(p) =
∑

p∈Π(s)

∑

w=0◦1◦(c−3)◦(p1⊕1)

Hn(w, p2, . . . , pr),

where Π(s) = {λ1◦· · ·◦λm}. Applying Lemma 7 to the inner sum with a = p1, c replaced
by c− 2, and x = (p2, . . . , pr), we obtain

∑

p∈Π2

Hn(p) =
∑

p∈Π(s)

1
nc−2

Hn(p1,x) =
1

nc−2

∑

p∈Π(s)

Hn(p). (22)

Now by (21) and (22) we see that (19) is true when n + b = N + 1. We have completed
the proof of the lemma. ¤

By combining the four lemmas we have proved in this section we can finally derive
Theorem 1.4 by a straight-forward case by case analysis. We leave the details to the
interested reader.

4. A few corollaries.

The following result generalizes Theorem 1.5(A).

Corollary 4.1. Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1) where a1 ∈ N and
aj ∈ N0 for all j ≥ 2. Then we have

H?
n(s) =

∑

p∈Π(2a1+1,...,2ar+1)

Hn(p).

Proof. Apply Theorem 1.4 repeatedly. ¤

Remark 4.2. (a). When r = 1 Corollary 4.1 becomes Theorem 1.5(A).
(b). When r = 2 we get: for all n ∈ N and a, b ∈ N0
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H?
n({2}a, 1, {2}b, 1) = 2

n∑

k=1

(
n
k

)

k2(a+b)+2
(
n+k

k

) + 4
n∑

k=1

Hk−1(2b + 1)
(
n
k

)

k2a+1
(
n+k

k

) .

When r = 3 we have: for all n ∈ N and a, b, c ∈ N0

H?
n({2}a, 1, {2}b, 1, {2}c, 1)

= 2
n∑

k=1

(
n
k

)

k2(a+b+c)+3
(
n+k

k

) + 4
n∑

k=1

Hk−1(2c + 1)
(
n
k

)

k2a+2b+2
(
n+k

k

)

+ 4
n∑

k=1

Hk−1(2b + 2c + 2)
(
n
k

)

k2a+1
(
n+k

k

) + 8
n∑

k=1

Hk−1(2b + 1, 2c + 1)
(
n
k

)

k2a+1
(
n+k

k

) .

Using Maple we have verified both formulas numerically for a, b, c ≤ 5 and n ≤ 100.

We now generalize Theorem 1.5(B).

Corollary 4.3. Suppose r ∈ N0 and s = ({2}a1 , 1, . . . , {2}ar , 1, {2}ar+1) where
aj ∈ N0 for all j ≤ r and ar+1 ∈ N. Then we have

H?
n(s) = −

∑

p∈Π(2a1+1,...,2ar+1,2ar+1)

Hn(p).

Proof. Apply Theorem 1.4 repeatedly. ¤

Remark 4.4. When r = 0 Corollary 4.3 implies [7, (19)]. When r = 1 Corollary
4.3 becomes Theorem 1.5(B). When r = 2 we get the following: for all n, c ∈ N and
a, b ∈ N0

H?
n({2}a, 1, {2}b, 1, {2}c) = −2

n∑

k=1

(−1)k
(
n
k

)

k2(a+b+c)+2
(
n+k

k

) − 4
n∑

k=1

Hk−1(2c)
(
n
k

)

k2a+2b+2
(
n+k

k

)

− 4
n∑

k=1

Hk−1(2b + 1 + 2c)
(
n
k

)

k2a+1
(
n+k

k

) − 8
n∑

k=1

Hk−1(2b + 1, 2c)
(
n
k

)

k2a+1
(
n+k

k

) .

(23)

We can now prove Theorems 1.2 and 1.3 by using Corollary 4.1 and 4.3 and the
following key lemma proved in [16].

Lemma 4.5 ([16, Lemma 4.2]). Let d ∈ N0 and let e be a real number with e > 1.
Then for all s ∈ Dd (s = ∅ if d = 0) we have

lim
n→∞

n∑

k=1

|Hk−1(s)|
ke

(
1−

(
n
k

)
(
n+k

k

)
)

= 0. (24)

Proof of Theorem 1.2 and Theorem 1.3. We observe that in Corollary 4.1
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the first component ≥ 2a1 + 1 ≥ 3, and in Corollary 4.3 the absolute value of first
component ≥ 2a1 +1 ≥ 3. Therefore both theorems follow from Lemma 4.5 immediately.

¤

Remark 4.6. In [24] Yamamoto considers some algebraic structures depending on
a variable t which reflect the properties of MZV and MZSV when t = 0 and t = 1, respec-
tively. As he pointed out [23, Conjecture 4.4] the validity of the 2-1 formula Theorem
1.2 implies that the algebra structure of MZSVs of the form ζ?({2}a1 , 1, . . . , {2}ar , 1) is
reflected by setting t = 1/2.

Corollary 4.7. Let aj , bj , cj − 3 ∈ N0 for all j ≥ 0. Then
(2-c-2-1) : For s = ({2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1), r ≥ 1, we have

H?
n(s) =

∑

p∈Π(2b1+2, {1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2)

Hn(p).

(2-1-2-c-2-1) : For s = ({2}a0 , 1, {2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1), r ≥ 0,
we have

H?
n(s) =

∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2)

Hn(p).

Proof. Apply Theorem 1.4 repeatedly. ¤

When r = 1 we get the following: for all n ∈ N and a, b ∈ N0

H?
n({2}b, 3, {2}a, 1) = 2

n∑

k=1

(
n
k

)

k2(b+a)+4
(
n+k

k

) + 4
n∑

k=1

(−1)kHk−1(2a + 2)
(
n
k

)

k2b+2
(
n+k

k

) , (25)

in case (2-c-2-1), and in case (2-1-2-c-2-1)

H?
n({2}a1 , 1, {2}b, 3, {2}a2 , 1)

= 2
n∑

k=1

(
n
k

)

k2(a1+b+a2)+5
(
n+k

k

) + 4
n∑

k=1

Hk−1(2b + 2a2 + 4)
(
n
k

)

k2a1+1
(
n+k

k

)

+ 4
n∑

k=1

(−1)kHk−1(2a2 + 2)
(
n
k

)

k2a1+2b+3
(
n+k

k

) + 8
n∑

k=1

Hk−1(2b + 2, 2a2 + 2)
(
n
k

)

k2a1+1
(
n+k

k

) . (26)

Theorem 4.8. Let r ∈ N and aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Then
(2-c-2-1) : For s = ({2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1), r ≥ 1, we have

ζ?(s) =
∑

p∈Π(2b1+2, {1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2)

2`(p)ζ(p). (27)
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(2-1-2-c-2-1) : For s = ({2}a0 , 1, {2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1), r ≥ 0
and a0 ≥ 1, we have

ζ?(s) =
∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2)

2`(p)ζ(p). (28)

Proof. This follows from Corollary 4.7 and Lemma 4.5 easily. ¤

For example, by (25) and (26) we see that

ζ?({2}b, 3, {2}a, 1) = 2ζ(2a + 2b + 4) + 4ζ(2b + 2, 2a + 2), (29)

and

ζ?({2}a1 , 1, {2}b, 3, {2}a2 , 1) = 2ζ(2(a1 + b + a2) + 5) + 4ζ(2a1 + 1, 2b + 2a2 + 4)

+ 4ζ(2a1 + 2b + 3, 2a2 + 2) + 8ζ(2a1 + 1, 2b + 2, 2a2 + 2).

Corollary 4.9. Let t, r ∈ N and aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Then
(2-c-2-1-2). For s = ({2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1, {2}t) we have

H?
n(s) = −

∑

p∈Π(2b1+2, {1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2,2t)

Hn(p).

(2-1-2-c-2-1-2). For s = ({2}a0 , 1, {2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1, {2}t),
r ≥ 0, we have

H?
n(s) = −

∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2,2t)

Hn(p).

By taking n →∞ and using Lemma 4.5 we get immediately the following results.

Theorem 4.10. Let t, r ∈ N and aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Then
(2-c-2-1-2). For s = ({2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1, {2}t), r ≥ 1, we have

ζ?(s) = −
∑

p∈Π(2b1+2, {1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2,2t)

2`(p)ζ(p). (30)

(2-1-2-c-2-1-2) : For s = ({2}a0 , 1, {2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1, {2}t),
r ≥ 0 and a0 ≥ 1, we have

ζ?(s) = −
∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2,...,2br+2, {1}cr−3, 2ar+2,2t)

2`(p)ζ(p). (31)

For example, taking r = 1 and c1 = 3 we get in case (2-c-2-1-2)
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ζ?({2}b, 3, {2}a, 1, {2}t) = −2ζ(2b + 2a + 2t + 4)− 4ζ(2b + 2a + 4, 2t)

− 4ζ(2b + 2, 2a + 2t + 2)− 8ζ(2b + 2, 2a + 2, 2t),

and in case (2-1-2-c-2-1-2)

ζ?({2}a1 , 1, {2}b, 3, {2}a2 , 1, {2}t)

= −2ζ(2a1 + 2b + 2a2 + 2t + 5)− 4ζ(2a1 + 2b + 2a2 + 5, 2t)

− 4ζ(2a1 + 2b + 3, 2a2 + 2t + 2)− 8ζ(2a1 + 2b + 3, 2a2 + 2, 2t)

− 4ζ(2a1 + 1, 2b + 2a2 + 2t + 4)− 8ζ(2a1 + 1, 2b + 2a2 + 4, 2t)

− 8ζ(2a1 + 1, 2b + 2, 2a2 + 2t + 2)− 16ζ(2a1 + 1, 2b + 2, 2a2 + 2, 2t).

We have verified these formulas numerically for a1, a2, a, b, t ≤ 2 using EZ-face [3].

Corollary 4.11. Let r ∈ N and t, aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Then
(2-1-2-c-2). For s = ({2}a1 , 1, {2}b1 , c1, . . . , {2}ar , 1, {2}br , cr, {2}t), we have

H?
n(s) = −

∑

p∈Π(2a1+1, 2b1+2, {1}c1−3, 2a2+2, ..., 2ar+2, 2br+2, {1}cr−3, 2t+1)

Hn(p).

(2-c-2-1-2-c-2). For s = ({2}b1 , c1, {2}a1 , 1, . . . , {2}br , cr, {2}ar , 1, {2}br+1 , cr+1, {2}t)
we have

H?
n(s) = −

∑

p∈Π(2b1+2,{1}c1−3, 2a1+2,...,2ar+2, 2br+1+2, {1}cr+1−3, 2t+1)

Hn(p).

Setting r = 0 in Corollary 4.11 we recover [7, Theorem 2.1]. When r = 1 and t = 0
we get the following: for all n ∈ N and a, b ∈ N0

H?
n({2}a, 1, {2}b, 3) = −2

n∑

k=1

(−1)k
(
n
k

)

k2(a+b)+4
(
n+k

k

) − 4
n∑

k=1

Hk−1(2b + 3)
(
n
k

)

k2a+1
(
n+k

k

)

− 4
n∑

k=1

Hk−1(1)(−1)k
(
n
k

)

k2a+2b+3
(
n+k

k

) − 8
n∑

k=1

Hk−1(2b + 2, 1)
(
n
k

)

k2a+1
(
n+k

k

)

in case (2-1-2-c-2), and in case (2-c-2-1-2-c-2):

H?
n({2}b1 , 3, {2}a, 1, {2}b2 , 3)

= −2
n∑

k=1

(−1)k
(
n
k

)

k2(b1+a+b2)+7
(
n+k

k

) − 4
n∑

k=1

Hk−1(2b2 + 3)
(
n
k

)

k2b1+2a+4
(
n+k

k

)



Multiple harmonic sums and multiple zeta star values 1685

− 4
n∑

k=1

Hk−1(2a + 2b2 + 5)(−1)k
(
n
k

)

k2b1+2
(
n+k

k

) − 8
n∑

k=1

Hk−1(2a + 2, 2b2 + 3)(−1)k
(
n
k

)

k2b1+2
(
n+k

k

)

− 4
n∑

k=1

Hk−1(1)(−1)k
(
n
k

)

k2b1+2a+2b2+6
(
n+k

k

) − 8
n∑

k=1

Hk−1(2a + 2b2 + 4, 1)(−1)k
(
n
k

)

k2b1+2
(
n+k

k

)

− 8
n∑

k=1

Hk−1(2b2 + 2, 1)
(
n
k

)

k2b1+2a+4
(
n+k

k

) − 16
n∑

k=1

Hk−1(2a + 2, 2b2 + 2, 1)(−1)k
(
n
k

)

k2b1+2
(
n+k

k

) .

By taking n →∞ in Corollary 4.11 and using Lemma 4.5 we obtain

Theorem 4.12. Let r ∈ N and aj , bj , cj − 3 ∈ N0 for all j ≥ 1. Then
(2-1-2-c-2). For s = ({2}a1 , 1, {2}b1 , c1, . . . , {2}ar , 1, {2}br , cr, {2}t) with a1 ≥ 1, we

have

ζ?(s) = −
∑

p∈Π(2a1+1, 2b1+2, {1}c1−3, 2a2+2,...,2ar+2, 2br+2, {1}cr−3, 2t+1)

2`(p)ζ(p). (32)

(2-c-2-1-2-c-2). For s = ({2}b1, c1, {2}a1, 1, . . . , {2}br, cr, {2}ar, 1, {2}br+1, cr+1, {2}t)
we have

ζ?(s) = −
∑

p∈Π(2b1+2,{1}c1−3, 2a1+2,...,2ar+2, 2br+1+2, {1}cr+1−3, 2t+1)

2`(p)ζ(p). (33)

For example, taking r = 1 and t = 0 in case (2-1-2-c-2) we get

ζ?({2}a, 1, {2}b, 3) = −2ζ(2a + 2b + 4)− 4ζ(1 + 2a, 2b + 3)

− 4ζ(2a + 2b + 3, 1)− 8ζ(2a + 1, 2b + 2, 1).

and in case (2-c-2-1-2-c-2) we get

ζ?({2}b1 , 3, {2}a, 1, {2}b2 , 3)

= −2ζ(2(b1 + a + b2) + 7)− 4ζ(2b1 + 2a + 4, 2b2 + 3)

− 4ζ(2b1 + 2, 2a + 2b2 + 5)− 4ζ(2b1 + 2a + 2b2 + 6, 1)

− 8ζ(2b1 + 2, 2a + 2, 2b2 + 3)− 8ζ(2b1 + 2, 2a + 2b2 + 4, 1)

− 8ζ(2b1 + 2a + 4, 2b2 + 2, 1)− 16ζ(2b1 + 2, 2a + 2, 2b2 + 2, 1).

We have numerically verified these formulas with a, b1, b2 ≤ 2 using EZ-face [3].
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5. Conjectures of Imatomi et al. on MZSV of type 2-3-2-1 and
2-3-2-1-2-1.

The following Theorem 5.2 was first conjectured by Imatomi et al. [13, Conjectures
4.1 and 4.3]. Special cases have been proved in [13, Theorem 1.1] and by Tasaka and
Yamamoto in [21]. Yamamoto proves a more precise version in [23]. We now give a
different and concise proof using the identities we have found in the above. We begin
with a lemma first.

Lemma 5.1. Let n1, . . . , n` ∈ D such that |nj | is even for every j. Set m =
|n1|+ · · ·+ |n`|. Then

∑

g∈S`

ζ
(
ng(1), . . . , ng(`)

)

=
∑

e1+···+ep=`

(−1)`−p

p∏
s=1

(es − 1)!
∑

ζ

( ⊕

k∈π1

nk

)
. . . ζ

( ⊕

k∈πp

nk

)
∈ Qπm

where the sum in the right is taken over all the possible unordered partitions of the set
{1, . . . , `} into p subsets π1, . . . , πp with e1, . . . , ep elements respectively.

Proof. When all the arguments n1, . . . , n` are positive the lemma becomes [9,
Theorem 2.2]. Its proof there can be used here almost word for word. Notice that [9,
Theorem 2.2] is re-proved as [15, Proposition 9.4] whose proof is different from that of
[9] but also works here. Thus we leave the details to the interested reader. ¤

Theorem 5.2. Let r be a positive integer, and e1, . . . , e2r+1 nonnegative integers.

( i ) Put m = e1 + · · ·+ e2r. Then we have

∑

τ∈S2r

ζ?({2}eτ(1) , 3, {2}eτ(2) , 1, {2}eτ(3) , . . . , 3, {2}eτ(2r) , 1) ∈ Q · π2m+4r.

( ii ) Put m = e1 + · · ·+ e2r+1. Then we have

∑

τ∈S2r+1

ζ?({2}eτ(1) , 3, {2}eτ(2) , 1, . . . , 3, {2}eτ(2n) , 1, {2}eτ(2r+1)+1) ∈ Q · π2m+4r+2.

Proof. We start with (i) first. When r = 1 this follows quickly from (29) by
shuffle relation. For general r let aj = e2j and bj = e2j−1 for all j ≤ r and let Aj =
2ej + 2 for all j ≤ 2r. Then we can apply (27) of Theorem 4.8 to the string s =
({2}b1 , 3, {2}a1 , 1, . . . , {2}br , 3, {2}ar , 1) and get

ζ?(s) =
∑

p∈Π(A1,...,A2r)

2`(p)ζ(p).

For any permutation τ ∈ S2r and s = ({2}e1 , 3, {2}e2 , 1, . . . , {2}e2r−1 , 3, {2}e2r , 1) we
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define

sτ = ({2}eτ(1) , 3, {2}eτ(2) , 1, . . . , {2}eτ(2r−1) , 3, {2}eτ(2r) , 1)

Let A = (A1, . . . , A2r), Aτ = (Aτ(1), . . . , Aτ(2r)), and P`(2r) be the set of all partitions
of [2r] := {1, 2, . . . , 2r} into ` consecutive subsets. If λ = (λ1, . . . , λ`) ∈ P`(2r) then we
set λj(Aτ ) = (Aτ(i))i∈λj so that the concatenation

⊔`
j=1 λj(Aτ ) = Aτ . Because of the

permutation we see that

∑

τ∈S2r

ζ?(sτ ) =
∑

τ∈S2r

2r∑

`=1

2`
∑

λ∈P`(2r)

ζ
(⊕ λ1(Aτ ), . . . ,⊕λ`(Aτ )

)

=
∑

τ∈S2r

2r∑

`=1

2`

`!

∑

λ∈P`(2r)

∑

g∈S`

ζ
(⊕ λg(1)(Aτ ), . . . ,⊕λg(`)(Aτ )

)
,

where ⊕t is the ⊕-sum of all the components of t for any composition t. Hence Theorem
5.2(i) follows readily from the Lemma 5.1 since all Aj ’s are even numbers.

Theorem 5.2 (ii) follows from Theorem 4.10 in a similar fashion so we leave the
details to the interested reader. ¤

Remark 5.3. We notice that in [23, Theorem 1.1] Yamamoto obtains a more
precise formula by using partial sums and generating functions:

∑

e0,e1,...,e2r≥0
e0+e1+···+e2r=m

ζ?({2}e0 , 3, {2}e1 , 1, {2}e2 , 3, . . . , 3, {2}e2r−1 , 1, {2}e2r )

=
∑

2i+k+u=2r
j+l+v=m

(−1)j+k

(
k + l

k

)(
u + v

u

)(
2i + j

j

)
βk+lβu+vπ4r+2m

(2i + 1)(4i + 2j + 1)!
, (34)

where βn = (−1)n(2− 22n)B2n/(2n)!. It is possible to modify our proof of Theorem 5.2
to give this more quantified version.

6. More Conjetures of Imatomi et al.

The following results were first conjectured by Imatomi et al. [13, Conjecture 4.5].

Theorem 6.1. Let m and n be two nonnegative integers.

( i ) We have

ζ?({2}n, 3, {2}m, 1) + ζ?({2}m, 3, {2}n, 1) = ζ?({2}n+1)ζ?({2}m+1).

( ii ) We have

(2n + 1)ζ?({3, 1}n, 2) =
∑

j+k=n

ζ?({3, 1}j)ζ?({2}2k+1).
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(iii) If n ≥ 1 then we have

∑
e1+e2+···+e2n=1

e1,e2,...,e2n≥0

ζ?({2}e1 , 3, {2}e2 , 1, . . . , {2}e2n−1 , 3, {2}e2n , 1)

=
∑

j+k=n−1

ζ?({3, 1}j , 2)ζ?({2}2k+2).

Proof. (i). This follows immediately from (5) and (29).

(ii). We notice that by taking ai = bi = 0 and ci = 3 for all i ≤ r = j in Corollary
4.7(2-c-2-1) we get

ζ?({3, 1}j) =
∑

p2j∈Π({2}2j)

2`(p2j)ζ(p2j).

All of the components aj of 2 ◦ · · · ◦ 2 must satisfy the following sign rule:

aj > 0 if and only if 4|aj . (35)

On the other hand, by Corollary 4.9(2-c-2-1-2) we have

ζ?({3, 1}n, 2) = −
∑

p2n+1∈Π({2}2n+1)

2`(p2n+1)ζ(p2n+1).

Hence by (5) we need to show that

(2n + 1)
∑

p2n+1∈Π({2}2n+1)

2`(p2n+1)ζ(p2n+1)

=
n∑

j=0

∑

p2j∈Π({2}2j)

2`(p2j)ζ(p2j) · 2ζ(4(n− j) + 2). (36)

Suppose an index p2n+1 in Π({2}2n+1) has length t (1 ≤ t ≤ 2n + 1) given as

(a1, . . . , at), ai ∈ D, ∀i = 1, . . . , t.

We now show that there are exactly 2t(2n + 1) copies of such term produced by stuffle
product on the right hand side of (36). Indeed, for each i = 1, . . . , t the entry ai has two
possibilities:

(1). ai = 4bi > 0. Then for each k = 1, . . . , bi we may produce such a term on the
right hand side of (36) by stuffing

2tζ(a1, . . . , ai−1, 4k − 2, ai+1, . . . , at)
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from p2j having length t with the term 2ζ(4(bi − k) + 2) at the right end of (36). Notice
no shuffle is possible since 4(n− j) + 2 is not a multiple of 4. Hence these contribute to
2t+1bi = 2t−1ai copies of ζ(a1, . . . , at).

(2). ai = 4bi + 2. Then for each k = 1, . . . , bi we may produce such a term on the
right hand side of (36) by stuffing

2tζ(a1, . . . , ai−1, 4k, ai+1, . . . , at)

from p2j having length t with the term 2ζ(4(bi − k) + 2) at the right end of (36). Further,
there is exactly one possible shuffle given by

2t−1ζ(a1, . . . , ai−1, ai+1, . . . , at+1)x
{
2ζ(4bi + 2)

}
,

since the index (a1, . . . , ai−1, ai+1, . . . , at) has only length t−1. Altogether these produce
2t+1bi + 2t = 2t−1|ai| copies of ζ(a1, . . . , at).

By combining (1) and (2) we see that the right hand side of (36) produces exactly

t∑

i=1

2t−1|ai| = 2t−1 · |(a1, . . . , at)| = 2t(2n + 1)

copies of ζ(a1, . . . , at) since the weight is 4n + 2. This proves (ii).

(iii). We use the same analysis as above and see that we need to prove the following
identity:

∑
q2n

2`(q2n)ζ(q2n) =
n−1∑

j=0

∑

p2j+1∈Π({2}2j+1)

2`(p2j+1)ζ(p2j+1) · 2ζ(4(n− j)), (37)

where q2n runs through all indices of the form A1 ◦ · · · ◦ A2n with one of the Aj ’s (say
Aj0) equal to 4 and all the other Aj ’s equal to 2. For each choice of 2tζ(a1, . . . , at+1)
with length t + 1 from the left hand of (37), all but one of the argument components
a1, . . . , at+1 must satisfy the sign rule (35). The only exceptional component, say ai,
must involve a merge with the special entry Aj0 = 4. Now there are two possibilities:

(1). ai = 4bi + 2 > 0. Then for each k = 0, . . . , bi − 1 we may produce such a term
on the right hand side of (37) by stuffing

2tζ(a1, . . . , ai−1, 4k + 2, ai+1, . . . , at+1)

from p2j+1 having length t + 1 with the term 2ζ(4(bi − k)) at the right end of (37).
Notice no shuffle is possible since 4(n − j) is a multiple of 4. Hence these contribute to
2t+1bi copies of ζ(a1, . . . , at+1). On the left hand side, such a term must be produced by
setting all 2bi − 1 consecutive ◦’s around Aj0 = 4 to ⊕:

. . . , Ai ⊕Ai+1 ⊕ · · · ⊕Aj0 ⊕ · · · ⊕A`︸ ︷︷ ︸
2bi entries

, . . . .
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But Aj0 can be at any one of the 2bi possible positions, thus producing 2t+1bi copies of
ζ(a1, . . . , at+1) which match exactly the right hand side of (37).

(2). ai = 4bi. Then for each k = 1, . . . , bi − 1 we may produce such a term on the
right hand side of (37) by stuffing

2tζ(a1, . . . , ai−1, 4k, ai+1, . . . , at+1)

from p2j having length t+1 with the term 2ζ(4(bi − k)) at the right end of (37). Further,
there is exactly one possible shuffle given by

2t−1ζ(a1, . . . , ai−1, ai+1, . . . , at+1)x
{
2ζ(4bi)

}
.

Hence these contribute to 2t+1(bi−1)+2t = 2t(2bi−1) copies of ζ(a1, . . . , at+1). Similar to
(1), on the left hand side, such a term must be produced by setting all 2bi−2 consecutive
◦’s around Aj0 to ⊕. And Aj0 can be at any one of the 2bi − 1 possible positions, thus
producing 2t(2bi − 1) copies of ζ(a1, . . . , at+1) which match exactly the right hand side
of (37).

This concludes the proof of theorem. ¤

Note that Theorem 6.1(i) is the more precise version of the n = 1 case of Theorem
5.2(i). And Theorem 6.1(iii) can be written more compactly as

ζ?
({2}x{3, 1}n

)
=

n∑

k=0

ζ?({3, 1}n−k, 2)ζ?({2}2k),

which is the more precise version of the m = 1 case of the following result of Kondo
et al. [14]: For all nonnegative integers m and n we have

ζ?({2}m x{3, 1}n) ∈ Qπ2m+4n.

The case m = 0 case has the following precise formulation by Muneta [17]:

ζ?
({3, 1}n) =

n∑

i=0

{
2

(4i + 2)!

∑

n0+n1=2(n−i)
n0,n1≥0

(−1)n1
(22n0 − 2)B2n0

(2n0)!
(22n1 − 2)B2n1

(2n1)!

}
π4n.

Muneta also found precise form in case m = 1. Of course, these are all special cases of
Yamamoto’s general formula (34).

7. MHS: 1-c-1 formula.

In this section we turn to MHS of the type 1-c-1 where the trailing 1 may be vacuous
and the c’s may be any positive integers such that c ≥ 2 (which is different from the
requirement c ≥ 3 in the previous sections). The corresponding MZSVs diverge when the
leading 1 is non-empty, however, in a sequel to this paper we will study the congruence
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properties of MHS where the results of this section will be utilized.
The following theorem generalizes [7, Theorem 2.2]. For s = (s1, . . . , sm) ∈ Dm we

define

~n(s) :=
∑

n≥k1>···>km≥1

(
n

k1

) m∏

j=1

sgn(sj)kj

k
|sj |
j

=
n∑

k=1

sgn(s1)k

k|s1|

(
n

k

)
Hk−1(s2, . . . , sm).

Theorem 7.1. Let r ∈ N0 and s = ({1}a1 , c1, . . . , {1}ar , cr, {1}t) where t, aj ∈ N0

and positive integers cj ≥ 2 for all j ≥ 1. If r = 0 then we have

H?
n({1}t) = −~n(t). (38)

If r ≥ 1 then we have

H?
n(s) = −

∑

p∈Π(a1+1, {1}c1−2, a2+2,...,ar+2, {1}cr−2, t+1)

~n(p). (39)

Proof. Equation (38) follows from [22, Lemma 5.4]. We now assume r ≥ 1 and
proceed by induction on n + r ≥ 2 to prove (39). If n + r = 2 then n = 1 and it is clear
that both sides in (39) are equal to 1. Assume now the theorem is true for all n + r ≤ N

where N ≥ 2. Suppose we have n ≥ 2 and n + r = N + 1. By definition

H?
n(s) =

a1∑

l=0

1
na1−l

H?
n−1({1}l, c1, . . . , {1}ar , cr, {1}t)

+
1

na1+c1
H?

n({1}a2 , c2, . . . , {1}ar , cr, {1}t).

For ease of reading we define the following index sets: for any composition v of integers

I(v) = Π(v, {1}c1−2, a2 + 2, {1}c2−2, . . . , ar + 2, {1}cr−2, t + 1),

J = Π(a2 + 1, {1}c2−2, a3 + 2, . . . , ar + 2, {1}cr−2, t + 1)

if r ≥ 2 and I(v) = Π(v, {1}c1−2, t + 1), J = Π(t) if r = 1. By induction assumption

H?
n(s) = −

a1∑

l=0

1
na1−l

∑

q∈I(l+1)

~n−1(q)− 1
na1+c1

∑

p∈J

~n(p)

= −
∑

(q1,...,qm)∈I(1)

a1∑

l=0

1
na1−l

n−1∑

k=1

sgn(q1)k

kl+|q1|

(
n− 1

k

)
Hk−1(q2, . . . , qm)

− 1
na1+c1

∑

p∈J

~n(p).
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By changing the order of summations and using the identity

a1∑

l=0

(
n

k

)l

=
1

ka1
· na1+1 − ka1+1

n− k

we see easily that

H?
n(s) = −

∑

(q1,...,qm)∈I(1)

n∑

k=1

(
1− ka1+1

na1+1

)
sgn(q1)k

ka1+|q1|

(
n

k

)
Hk−1(q2, . . . , qm)

− 1
na1+c1

∑

p∈J

~n(p).

Observe that the index set

I(1) =
⋃

(p1,...,pm)∈J

{(
1 ◦ 1 ◦ · · · ◦ 1︸ ︷︷ ︸

c1−2 times

◦(p1 + 1), p2, . . . , pm

)}
. (40)

For each (p1, p2 . . . , pm) we can partition the set (40) into the following subsets:

{(
c1 + p1,v

)} ∪ {(
j + 1,y, i + p1,v

)}
, v = (p2, . . . , pm),

for i ≥ 1, j ≥ 0 and positive compositions y with i + j + |y| = c1 − 1. Thus it suffices to
prove that

∑

i+j+|y|=c1−1,
i≥1,j≥0

n∑

k=1

Hk−1(y, i + p1)
(
n
k

)

(−1)kkj
=

1
nc1−1

n∑

k=1

(−1)k
(
n
k

)

kp1
−

n∑

k=1

(−1)k
(
n
k

)

kc1−1+p1
. (41)

Equation (41) follows from (7) of Lemma 2.1 when m = 1, A
(1)
n,k as in Remark 2.2,

c = c1 − 1, a = p1, x = (y, i + p1) and v = ∅. This completes the proof of our theorem.
¤

For example, when r = 1 we recover [7, Theorem 2.2] and when r = 2 we get for all
a1, a2, t ∈ N0 and positive integers c1, c2 ≥ 2

H?
n({1}a1 , c1, {1}a2 , c2, {1}t)

= −
n∑

k=1

(−1)k
(
n
k

)

ka1+c1+a2+c2+t
−

∑

i2+j2+|x2|=c2,
i2,j2≥1

n∑

k=1

Hk−1(x2, i2 + t)
(
n
k

)

(−1)kka1+c1+a2+j2

−
∑

i1+j1+|x1|=c1,
i1,j1≥1

n∑

k=1

Hk−1(x1, i1 + a2 + c2 + t)
(
n
k

)

(−1)kka1+j1
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−
∑

iα+jα+|xα|=cα,
iα,jα≥1, α=1,2

n∑

k=1

Hk−1(x1, i1 + a2 + j2,x2, i2 + t)
(
n
k

)

(−1)kka1+j1
.

8. Concluding Remarks.

There are many recent studies on MZVs, MZSVs and even their q-analogs. Most of
the MZSV relations in [11] and [12] involving special types of arguments like ours in this
paper can be proved in a more straight-forward manner using our results. However, it
seems that the techniques contained here are hard to generalize to deal with MZVs even
though these two types of values are extremely closely related from the point of view of
their algebraic structures (see [10], [12], [18], [20]). Such a generalization should help
us resolve more conjectures such as those listed in [2, Section 7.2].

There are three more directions of research that should be of great interest. One is
a theory generalizing the MHS identities obtained in this paper to truly alternating ones.
We are aware of only one such instance. Setting x = 0 and x = 1 in [22, Lemma 5.4] we
get

H?
n({1}a, 1) =

n∑

k=1

(2k − 1)(−1)k

ka+1

(
n

k

)
, ∀a ∈ N0.

Another direction is to establish a corresponding theory for the q-analogs multiple zeta
values [4], [28]. Initial computations show it is quite a promising project, see [6], [8].

As for the third direction we notice that many MHS identities proved in this paper
can be used not only to derive MZSV identities but also to prove many congruences of
MHS. This idea has already been applied in [7] to prove one of our conjectures in [29].
In general, these congruences should shed more light on the unsolved [31, Conjecture
2.6] and the conjectures at the end of [29]. We plan to carry this out in a sequel to this
paper.
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