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Relative Hilbert scheme of points
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Abstract. Let D be a smooth divisor on a non singular surface S. We
compute the Betti numbers of the Hilbert scheme of points of S relative to
D. In the case of P2 and a line in it, we give an explicit set of generators and
relations for the corresponding cohomology groups.

1. Introduction.

1.1. Hilbert scheme.
Let X be a projective scheme over complex numbers, L be an ample line bundle on

it and P be a polynomial. Consider the contravariant functor

HilbP
X : Sch −→ Sets

from the category of schemes to sets, which is given by:

HilbP
X(T ) =
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Z is a closed subscheme of X × T

π is flat
Zt has Hilbert polynomial

equal to P , for all t ∈ T





.

Since π is flat all Zt’s have the same Hilbert polynomial and the definition makes
sense.

Theorem ([12]). The functor HilbP
X is representable by a scheme.

The proof is due to Grothendieck [12] with simplifications by Mumford [21]. The
idea is that a subscheme Z ⊆ Pn is given by its equations, which gives an injection of
sets:

{subschemes of Pn} ↪→ {linear subspaces of C[x0, . . . , xn]}.

The main technical point is to show that the infinite dimensional Grassmannian can
be replaced by a finite dimensional one, and the image of the left hand side will be an
algebraic subvariety of it. More details on the construction of Hilbert schemes and their
infinitesimal properties can be found in [18].
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For the constant polynomial n the associated Hilbert scheme parametrizes the set
of all subschemes of X with zero dimensional support and length n, which is called the
Hilbert scheme of n points on X and is denoted by X [n].

Let S be a quasi-projective non-singular surface, and D be a smooth Cartier divisor.
The Hilbert scheme of points of S \D, which is not proper, may be compactified relative
to D. This space has been constructed in [20]. We have an informal description of the
relative Hilbert scheme of points in Subsection 2.1 followed by a more precise definition
in Section 2.

The relative Hilbert scheme and more generally the moduli spaces of stable ideal
sheaves play an important role in the study of degenerations of the moduli space of ideal
sheaves in Donaldson–Thomas theory. The moduli stack of stable ideal sheaves shows
up naturally in the study of degenerations of moduli spaces.

Consider a degeneration of a smooth variety Xsm into a union of two smooth irre-
ducible varieties X0 = X1 ∪ X2 intersecting transversally along a smooth divisor. One
can consider the moduli space of stable sheaves on X0. Unfortunately the standard
tangent-obstruction theory of this problem is not perfect in general, and the existence
of virtual cycle is not known. To overcome this problem we replace X0 by the stack of
expanded degenerations X introduced by Jun Li [19], and construct the moduli stack of
stable ideal sheaves on X. It is described in more details in Section 2.

1.2. Göttsche’s formula.
For a smooth scheme Y with dimC(Y ) = n the Poincaré polynomial PY (t) and the

normalized Poincaré polynomial P̂Y (t) are defined by

PY (t) =
2n∑

i=0

bi(Y )ti and P̂Y (t) =
2n∑

i=0

bi(Y )ti−n

respectively, where bi(Y ) is the ith Betti number of Y . For singular varieties we use the
virtual Poincaré polynomial given by the Hodge filtration as follows (for more details see
Section 3).

PX =
∑

i,j

(−1)i+j dim
(
grj

W Hi
c(X)

)
tj .

The Poincaré polynomial of the Hilbert scheme of points was first studied by
Ellingsrud and Strømme in [7], where they calculated the Poincaré polynomial of (C2)[n].
They used the Bialynicki-Birula decomposition associated with the natural torus action
on (C2)[n] to obtain an algebraic cell decomposition. Extending the result of Göttsche
[13] for the projective surfaces, Göttsche and Soregel [14] proved the following theo-
rem for quasi-projective non-singular surfaces. Their method uses Borho–MacPherson’s
formula for the direct image of the intersection cohomology.

Theorem ([14]). Let X be a quasi-projective nonsingular surface. Then the gen-
erating function for the Poincaré polynomial of the Hilbert scheme of n points on X is
given by :
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∞∑
n=0

qnPX[n](t) =
∞∏

m=1

(1 + t2m−1qm)b1(X)(1 + t2m+1qm)b3(X)

(1− t2m−2qm)b0(X)(1− t2mqm)b2(X)(1− t2m+2qm)b4(X)
.

In this paper we prove:

Theorem 1. The generating function for the normalized Poincaré polynomial of
the relative Hilbert scheme of points is given by :

∑
qnP̂

S
[n]
D

(t) =
(t2 − 1)ĤS(q, t)

t2CD(q, t)− CD(q, t−1)
,

where ĤS(q, t) :=
∑

qnP̂S[n](t) is the normalized Poincaré polynomial of the Hilbert
scheme of points on S and

CD(q, t) =
∞∏

m=1

(1 + t−1qm)b1(D)

(1− t−2qm)b0(D)(1− qm)b2(D)
.

1.3. Nakajima’s basis.
Let X be a quasi-projective non-singular surface. There is a natural map from the

Hilbert scheme of n points in X to the nth-symmetric product X(n) of X given by:

ρ : X [n] → X(n), Z 7→
∑

`(OZ,p)p.

For i > 0 we define the cycles P [i] ⊂ ∐
n X [n−i] ×X [n] ×X to be:

P [i] :=
∐
n

{(I1, I2, p) ∈ X [n−i] ×X [n] ×X | I1 ⊃ I2, ρ(I2)− ρ(I1) = n[p]}.

For i < 0 we define P [i] by interchanging the role of I1 and I2 in the above two
conditions.

Let H lf
∗ (X) be the Borel–Moore homology of X. For α ∈ H lf

∗ (X) and β ∈ H∗(X)
and i > 0 we define the operators Pα[i] and Pβ [−i] by

Pα[i] : H∗(X [n]) → H∗(X [n−i])

γ 7→ p2∗((p∗1γ) ∩ (π1,2∗(π∗3α ∩ P [i])))

Pβ [−i] : H∗(X [n−i]) → H∗(X [n])

γ 7→ p1∗((p∗2γ) ∩ (π1,2∗(π∗3β ∩ P [−i])))

respectively, where πj and pj are projections of X [n−i] × X [n] × X and X [n−i] × X [n]

(respectively) to their jth product factor. In other words, these operators are given by
the correspondences defined by π1,2∗(π∗3α ∩ P [i]) and π1,2∗(π∗3β ∩ P [−i]).
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Theorem ([22], [15]).

( i ) We have the following relations:

[Pα[i], Pβ [j]] = (−1)i−1iδi+j〈α, β〉 Id if (−1)deg(α) deg(β) = 1

{Pα[i], Pβ [j]} = (−1)i−1iδi+j〈α, β〉 Id otherwise.

(ii)
⊕∞

i=0 H∗(X [n]) is an irreducible representation of the Heisenberg superalgebra as-
sociated to X, with the highest weight vector being the generator of H0(X [0]) = Q.

We give an explicit set of generators for the Hilbert scheme of points on the projective
plane relative to a line, which will be the analogue of Nakajima’s basis for the relative
case. In the relative setting we will show that there are some new relations among these
generators.

Theorem 2. The cohomology groups of P2[n]
P1 are generated by the product cycles.

The following four types of relations (which are discussed in Section 6) give a complete
set of relations:

• Point-Bubble relations.
• Point-Point relations.
• Point-Line relations.
• Line-Line relations.

We use the following theorem which connects the Chow groups and the cohomology
groups of the relative Hilbert scheme of points.

Theorem 3. The natural map from the Chow group to the Borel–Moore homology
of P2[n]

P1 is an isomorphism.

1.4. Outline.
In Section 2 we recall the definition of moduli stack of stable ideal sheaves. In the

case of ideals with zero dimensional support this moduli stack is the relative Hilbert
scheme of points.

In Section 3 we compute the Betti numbers of the Hilbert scheme of points for a
surface relative to a smooth divisor on it.

We then consider the natural torus action on the projective plane. In Section 4 we
give a combinatorial description of the fixed point loci. Using this description we prove
that the natural map from the Chow groups to the cohomology groups of these spaces are
surjective (Theorem 3). The main tool is the machinery of higher Chow groups, which
we will discuss in Section 5. In Section 6 we will give a complete geometric description
of the relations for the Hilbert scheme of points on the projective plane relative to a line.
In Section 7 we show that all the relations arise in this way (Theorem 2).
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2. Background materials.

2.1. Informal description.
Let S be a quasi-projective non-singular surface, and D be a smooth Cartier divisor.

We consider the Hilbert scheme of points in S relative to D. This space is constructed
in [20]. Since some of the ideas will be used later in our paper we will briefly describe
the construction of this space. A more technical overview of the subject is given in the
next subsection.

Consider the Hilbert scheme of points of S \D, which is not a proper scheme. We
construct a compactification relative to D. Consider the expanded degenerations of S

relative to D. More precisely take B to be the P1-bundle over D corresponding to
ND/S ⊕OD, i.e. B = PD(ND/S ⊕OD). Since B is the projectivization of a direct sum it
comes equipped with two natural sections which we call the zero section and the infinity
section. Take N copies of B and glue the zero section of the (i+1)th copy to the infinity
section of the ith copy, for 1 ≤ i ≤ N − 1. Also glue the zero section of the first bubble
to the divisor D in S. We denote the resulting scheme by S/D[N ] and call it the length
N expanded degeneration of S relative to D. Note that the normal bundle to the zero
section in each copy of B is N∨

D/S , and the normal bundle to the infinity section is ND/S .
From this picture it is not hard to see that for any N there is an action of (C∗)N

on the space S/D[N ]. The ith copy of C∗ acts on the ith copy of B by fiber-wise
multiplication. This action can be lifted to an action on the Hilbert scheme of points of
S/D[N ] (with finite stabilizers).

We give a moduli description for points that we add in order to compactify (S\D)[n].
As a point in S \ D moves toward D, we obtain a family of subschemes of S \ D over
A1 \ 0. We call the total space of this family F . The support of a given point on the
fiber above t is moving toward D as t goes to zero.

Take B to be the blow up of S ×A1 along D× 0. Note that the fiber of B over zero
is the length 1 expanded degeneration of S relative to D. If we take the closure of F

in B then we arrive at a flat (over A1) subscheme of B and the fiber above zero is the
candidate for the limit of the family F .

There is a point that one should consider. The embedding of F in B is not canonical.
Take any automorphism of A1 \ 0 i.e. multiplication by an element of C∗. This automor-
phism induces an automorphism of F . We fix an embedding A1\0 ⊂ A1 (for example the
canonical embedding). Hence any automorphism gives a possibly different subscheme of
B. Note that all these families over A1 \ 0 are isomorphic, so their limit as a point in the
moduli space should be the same. The limiting points of different embeddings of F in B

differ by the natural action of C∗ on the bubble. Hence, in order to get a well-defined
limit we have to identify the points in the orbit of the C∗ action.

Therefor we should take the quotient of the Hilbert scheme of points in the bubble
by the C∗ action and glue it to the Hilbert scheme of points on S \D. If a point in the
bubble moves toward the infinity section we may repeat the above procedure and add
another bubble. Note that if all the points in a bubble go to the next bubble then that
bubble would be empty. In this case the stability condition (i.e. having finite order of
automorphism) forces that we have to delete the empty bubble. Fix n to be the length of
the subschemes. Hence any point in the relative Hilbert scheme of n points on S relative
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to D can have at most n bubbles glued to (S \D).

2.2. The stack of expanded degenerations.
Let C be a nonsingular affine curve with a distinguished point 0 ∈ C. Let π : X → C

be a flat projective family of schemes of relative dimension d > 0, which is smooth away
from the fiber over 0, and X0 is a union of two smooth schemes intersecting transversally
along a smooth divisor D.

There is a (C∗)n action on An+1 given by:

(t1, . . . , tn).(a1, . . . , an+1) = (t1a1, t
−1
1 a2t2, . . . , tn−1antn, t−1

n an+1)

where (t1, . . . , tn) ∈ (C∗)n and (a1, . . . , an+1) ∈ An+1. Let p : An+1 → A1 be the product
morphism:

p(a1, . . . , an+1) = a1a2 · · · an+1.

By replacing C with an open neighborhood of 0C ∈ C we may assume that there is an
étale morphism C → A1 so that 0C ∈ C is mapped to 0A1 ∈ A1 and 0C is the only point
that lies over 0A1 . We fix such a map C → A1 once and for all. Let C[n] = C ×A1 An+1.
For the family π : X → C, X[n] is defined as a desingularization of X ×A1 An+1, and is
constructed in [19, Section 1.1]. There is an induced (C∗)n action on X[n] which comes
from the action of (C∗)n on C[n]. The fiber X[n]0 of this family over 0C[n] is a semistable
model of X0 with n + 2 components.

Definition 4. Let S be a C-scheme. An effective degeneration over S is a C-
morphism from S to C[n]. A pair (X , p) consisting of a family X of schemes over S, and a
surjective S-morphism p : X → X×C S is called an expanded degeneration over S, if there
is an open covering {Sα} of S, such that over each Sα the restriction of X is isomorphic to
an effective degeneration. Let (X , p), (X ′, p′) be two expanded degenerations over S, S′

respectively. An arrow X → X ′ consists of a C-morphism S → S′ and an S-isomorphism
X → X ′×S′ S compatible with their projections to X×C S. Let X be the category whose
objects are expanded degenerations (X , p) and its morphisms are such arrows.

There is a functor F : X → Sch/C that sends an expanded degeneration (X , p) to
the base scheme S of the family X. Then X together with the functor F is a groupoid
over C.

Proposition 5 ([19, Proposition 1.10]). The groupoid X is a stack over C.

2.3. Admissible ideal sheaves.
Definition 6. Let W be a scheme and D ⊂ W a divisor. An ideal sheaf I ⊂ OW

is called normal to D if the canonical homomorphism I ⊗ OD → OD is injective.

Normality is a local property. We say that I is normal to D at a closed point p ∈ D

if the canonical homomorphism of stalks Ip⊗OD,p → OD,p is injective. Then I is normal
to D if and only if it is normal at every closed point p ∈ D.

Since completion is an exact functor on the category of finitely generated modules
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over a Noetherian ring, we have:

Lemma 7. Let I be an ideal sheaf on Y . I is normal at p ∈ D if and only if the
canonical homomorphism Îp ⊗ ÔD,p → ÔD,p is injective.

Corollary 8. Let Y be a smooth variety, D a smooth divisor in Y and IZ ⊂ OY

the ideal sheaf of a closed zero dimensional subscheme. I is normal to D if and only if
Z ∩D = ∅.

Proof. Let I be normal to D and p ∈ Z∩D. Since Z is zero dimensional, we can
pick an analytic open neighborhood U of p such that Z ∩ U = p. Take f to be a regular
function on U such that D = (f = 0). Then f ⊗1 is a nonzero element of Îp⊗ÔD,p that
is sent to zero by Îp ⊗ ÔD,p → ÔD,p, which contradicts the result of Lemma 7. Hence
Z ∩D = ∅.

For the converse, we assume that Z ∩ D = ∅. Then for any p ∈ D there is an
open analytic neighborhood that does not intersect Z. Hence we have Îp = Ôp and the
converse follows. ¤

Lemma 9 ([20, Proposition 3.7]). Let W = W1 ∪W2 be the union of two smooth
subschemes that intersect transversely along D. I is normal to D if and only if for
i = 1, 2, I|Wi is normal to D.

Let X[n]0 = B0 ∪B1 ∪ · · · ∪Bn+1 be a semistable model of X0. The singular locus
of X[n]0 is the disjoint union of n+1 copies of D which we denote by Di for i = 0, . . . , n.

Definition 10. An ideal sheaf I on X[n]0 is admissible if it is normal to Di for
i = 0, . . . , n.

Lemma 11. Let I be an ideal sheaf on X[n]0.

1. If I is admissible then I ⊗OBk
is an ideal sheaf on Bk, and it is normal to the special

divisors Dk−1 and Dk of Bk for all k.
2. Conversely, for every k let Ik be an ideal sheaf on Bk which is normal to Dk−1, Dk

and Ik⊗ODk
= Ik+1⊗ODk

. Then there is an admissible ideal sheaf I on X[n]0 such
that I ⊗ ODk

= Ik.

Proof. The result follows from Lemma 9 by induction on n. ¤

Since we study the case where the dimension of the support is zero, by Corollary 8
we know that the support of these ideals have no intersection with the special divisors
in the bubbles. So the data of an ideal sheaf normal to all the Di’s over a semistable
model X[n]0 would consist of ideal sheaves on each bubble and the base, such that their
supports are disjoint from the special divisors.

2.4. Stack of stable ideal sheaves.
Definition 12 ([20, Definition 4.2]). An automorphism of an ideal sheaf I over

X[n]0 is an isomorphism of X[n]0 that fixes I. I is called stable if it is admissible and
has finitely many automorphisms.
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Definition 13 ([20, Definitions 3.9, 4.2]). Let X/S be an expanded degeneration,
and P be a fixed polynomial. Let φ : I → OX be an ideal sheaf on X such that cokerφ

is S flat. I is called admissible if Is = I|Xs is admissible for every closed point s ∈ S. It
is called stable if Is is stable for every closed point s ∈ S. It is called a family of stable
ideal sheaves of type P on X/S if it is stable and the Hilbert polynomial of each fiber is
P .

We are now ready to define the stack of stable ideal sheaves of type P . The objects of
XP

X/C are the pairs (X/S, I) of a family of stable ideal sheaves of type P on X/S. A map
between two objects (X1/S1, I1) and (X2/S2, I2), is given by a map between expanded
degeneration (X1/S1) and (X2/S2) such that the induced map on the ideal sheaves is an
isomorphism.

Theorem 14 ([20, Proposition 4.14]). XP
X/C is a proper Deligne–Mumford stack

of finite type over C.

3. Betti numbers of the relative Hilbert scheme of points.

In order to compute the analogue of Göttsche’s formula for the relative case we need
the following theorem (see for example [5]):

Theorem 15. To any complex algebraic variety X one can assign a virtual
Poincaré polynomial PX(t) with the following properties:

1. PX(t) =
∑

rank(Hi(X))ti if X is non-singular and projective.
2. PX(t) = PY (t) + PU (t) if Y is a closed algebraic subset of X and U = X \ Y .
3. If X is a disjoint union of a finite number of locally closed subvarieties Xi, then

PX(t) =
∑

PXi
(t).

4. If X → Y is a bundle with fiber F , which is locally trivial in the Zarisky topology,
then PX(t) = PY (t) · PF (t).

Example 16. For P1 the virtual Poincaré polynomial and the Poincaré polynomial
coincide. Hence we have PP1(t) = t2 +1, and C∗ can be obtained by removing two points
from P1. Thus by the second property we have PC∗(t) = t2 − 1.

If D is a curve with Betti numbers a0, a1 and a2, then the Betti numbers of D×C∗
can be computed to give: PD×C∗(t) = (a2t

2 + a1t + a0)(t2 − 1).

Remark 17. The virtual Poincaré polynomial can be defined for singular varieties
as well. Deligne in [4] and Gillet and Soulé in [10] show that for any complex algebraic
variety one can define virtual Betti numbers that satisfy property 1–4 of Theorem 15.
They show that

PX =
∑

i,j

(−1)i+j dim
(
grj

W Hi
c(X)

)
tj

satisfies these properties. In [17, Section 4] Joyce proved that this machinery can be
extended to work in the category of Artin stacks.
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Theorem 18. Let S be a smooth quasi-projective surface, and D be a smooth
Cartier divisor. The generating function for the normalized Poincaré polynomial of the
relative Hilbert scheme of points is given by :

∑
qnP̂

S
[n]
D

(t) =
(t2 − 1)ĤS(q, t)

t2CD(q, t)− CD(q, t−1)
,

where ĤS(q, t) is the normalized Poincaré polynomial of the Hilbert scheme of points on
S and

CD(q, t) =
∞∏

m=1

(1 + t−1qm)b1(D)

(1− t−2qm)b0(D)(1− qm)b2(D)
.

Proof. A point p of the relative Hilbert scheme corresponds to a subscheme of
an expanded degeneration. Such a subscheme is the disjoint union of:

• Point with support in S \D.
• Point with support in the ith bubble for some 1 ≤ i ≤ n (which is isomorphic to

the total space of the normal bundle of D in S minus the zero section).

We call these the components of p.
The stability condition translates as follows. If the jth bubble of the corresponding

expanded degeneration is empty (i.e. has no point supported on it), then all the bubbles
with index greater than j are also empty.

Therefore for such p the components of p can be considered as:

• A point in the Hilbert scheme of points of S \D.
• A point in the Hilbert scheme of points of the ith copy of the total space of the

normal bundle of D in S minus the zero section (for some 1 ≤ i ≤ n).

The discussion in the beginning of Section 2 imposes a condition. The point in the
Hilbert scheme of points on the ith copy of the total space of the normal bundle is defined
up to the C∗ action i.e. if two such point can be obtained from each other by acting C∗,
then as components of p they are the same.

Hence we obtain a stratification of the relative Hilbert scheme of points. Each strata
is the product of the Hilbert scheme of points on S \ D and a number of copies of the
quotient of the Hilbert scheme of points of the total space of the normal bundle of D in
S minus the zero section by the action of C∗.

For a given surface Y we use HY (q, t) to denote
∑

qnPY [n](t). The virtual Poincaré
polynomial of the Hilbert scheme of the projectivized normal bundle without zero
and infinity section is HNo

D/S
(q, t). Since we consider the non-empty bubbles we get

HNo
D/S

(q, t)− 1. Each bubble is obtained by taking quotient with the C∗. By Theorem
5.4 from [9] the virtual Poincaré polynomial of the quotient space is the quotient of
HNo

D/S
(q, t) − 1 by t2 − 1 (the virtual Poincaré polynomial of C∗). Hence the virtual

Poincaré polynomial of a given bubble is
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HNo
D/S

(q, t)− 1

t2 − 1
.

We have a stratification of the relative Hilbert scheme according to the number of bubbles.
The virtual Poincaré polynomial of the part with i bubbles is

HS\D(q, t)
(HNo

D/S
(q, t)− 1

t2 − 1

)i

.

By the above discussion the relative Hilbert scheme is stratified by such parts, therefor:

∑
qnP

S
[n]
D

(t) = HS\D(q, t)
∞∑

i=0

(HNo
D/S

(q, t)− 1

t2 − 1

)i

.

Note that for the Hilbert scheme of n points (the coefficient of qn) there is no
contribution from terms with exponent larger than n in the sum, which reflects the fact
that we can not have more than n bubbles for a subscheme of length n.

If we define CD(q, t) :=
∏∞

m=1 (1 + t−1qm)b1(D)/((1− t−2qm)b0(D)(1− qm)b2(D)),
then by Göttsche’s formula and Example 16 we find:





HS\D(q, t) =
∞∏

m=1

(1 + t2m−1qm)b1(S)−b1(D)(1 + t2m+1qm)b3(S)

(1− t2m−2qm)b0(S)−b0(D)(1− t2mqm)b2(S)−b2(D)(1− t2m+2qm)b4(S)

=
HS(q, t)

CD(qt2, t)
,

HD×C∗(q, t) =
∞∏

m=1

(1 + t2m−1qm)−b1(D)(1 + t2m+1qm)b1(D)

(1− t2m−2qm)−b0(D)(1− t2mqm)b0(D)−b2(D)(1− t2m+2qm)b2(D)

=
1

CD(qt2, t)
CD(qt2, t−1).

Note that the change of variable from q to qt2 corresponds to writing the Poincaré
polynomial in the normalized form. Hence HY (q, t) = ĤY (qt2, t) and we can summarize
all this computation as follows:

∑
qnP̂

S
[n]
D

(t) = ĤS\D(q, t)
( ∞∑

i=0

(ĤNo
D/S

(q, t)− 1

t2 − 1

)i)

=
ĤS(q, t)
CD(q, t)

( ∞∑

i=0

(
ĤD×C∗(q, t)− 1

t2 − 1

)i)

=
ĤS(q, t)
CD(q, t)

(
1

1− CD(q,t−1)/CD(q,t)−1
t2−1

)
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=
(t2 − 1)ĤS(q, t)

t2CD(q, t)− CD(q, t−1)
. (3.1)

¤

Example 19. For S = P2 and D a line by Equation (3.1) we have:

ĤP2[n]
P1

(q, t) =

(t2 − 1)
∞∏

m=1

1
(1− t−2qm)(1− qm)(1− t2qm)

t2
∞∏

m=1

1
(1− t−2qm)(1− qm)

−
∞∏

m=1

1
(1− qm)(1− t2qm)

=
t2 − 1

t2
∏∞

m=1(1− t2qm)−∏∞
m=1(1− t−2qm)

.

4. Torus action on the relative Hilbert scheme of points and the fixed
point loci.

From now on we consider the case of projective plane and a line on it. We start
by taking the natural (C∗)3 action on the relative Hilbert scheme of points, and give a
description of the fixed point loci. If the relative divisor is given by {x0 = 0}, we consider
the following action on the projective plane:

(t0, t1, t2).[x0;x1;x2] 7→ [t0x0; t1x1; t2x2].

This action fixes the relative divisor, and induces an action on the normal bundle
of this divisor. Hence it induces an action on each bubble, which gives us an induced
action on the whole relative Hilbert scheme.

Pick a fixed point p ∈ P2[n]
P1 . Then p has a part supported on the projective plane,

and a part that is supported on the bubbles. The part with support on the plane is
supported on [1; 0; 0] since this is the only fixed point on the plane. Since p is fixed under
the action, its support is also fixed. Locally this part is a subscheme of C2 that is fixed
under the natural (C∗)2 action, i.e. a homogenous ideal supported at the origin. If we
fix k to be the length of this part, any such homogenous ideal can be parameterized by
a Young tableau of length k.

With the same argument the part supported on the bubbles can have its support
(on each bubble) only on the fibers above the zero and infinity. So if we look at one of
the bubbles and restrict our attention to the fiber above zero then the local picture is C2

with only one C∗ action on one of the coordinates, i.e. t.(x, y) 7→ (tx, y). If I is a fixed
ideal we can pick a set of generators which is fixed under the action (up to scalar). This
means that each generator is homogenous with respect to x.

If {xifi(y)} is such a set then fi | fj for each j < i. This means if we fix a root
of f0, and denote by ai the multiplicity of this root in fi, then we have · · · < a2 <

a1 < a0. To each root of f0 we can associate a Young tableau with a0 boxes in the
first column and a1 boxes in the second column and so on. For example if we consider
I = 〈xy5(y − 1)4, x2y2(y − 1), x3y1〉 the corresponding diagrams for the roots 0 and 1
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are:

The Young tableau associated with a deformation of this ideal, where two of these
roots come together will be the sum of the Young tableaux associated with these roots.

For a given fixed point in each bubble we get two such ideals, one above zero and
one above infinity. Fix the combinatorial data of the Young tableaux of all the roots of
both of these ideals. If they have k and l distinct roots (respectively), then the closure
of the locus of such ideals in the relative Hilbert scheme is isomorphic to the quotient of
the moduli space of k unordered red and l unordered blue points in C∗ by the C∗ action
(the C∗ acts by dilation). Note that these points can come together. The moduli space
of k unordered points in C∗ is C∗ × (C)k−1 since these points can be thought of as the
roots of a monic polynomial of degree k with non zero constant term. So the closure of
this locus is isomorphic to (C∗)2 × (C)k+l−2 modulo C∗ (if k and l are both nonzero),
and if one of them, say l, is zero it is isomorphic to (C∗)× (C)k−1 modulo C∗. Using the
C∗ action we can set the constant term of one of these polynomials equal to 1, say the
one with k roots, and since C∗ acts on the constant term by t.b0 7→ tkb0 the ambiguity
is a kth root of unity.

In sum, for any fixed point we can consider the combinatorial data associated to it,
and this gives us a stratification of the fixed point loci into parts which are isomorphic
to the product of quotients of (C∗)a × (C)b by a finite group action.

Remark 20. Note that the above description of the fixed locus shows that it is a
smooth DM-stack which allows us to use the localization theorem in the next section.

5. Chow-cohomology correspondence.

The main theorem of this section is the following:

Theorem 21. The natural map between the Chow group and the Borel–Moore
homology of P2[n]

P1 is an isomorphism.

The strategy of the proof is to relate the cohomology (Chow) groups of the relative
Hilbert scheme to the cohomology (Chow) groups of the fixed point locus. This is done
by the localization formula of Atiyah and Bott. The localization formula for cohomology
ring of compact spaces is proven in [1], [3]. The case of Chow groups is done in [6]. The
case of Deligne–Mumford stacks is covered in [11].
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Let X be a space with a G = (C∗)n action. We have H∗
G(pt) = Q[t1, . . . , tn].

Let U be set of homogeneous elements in the ideal 〈t1, . . . , tn〉 ⊂ Q[t1, . . . , tn]. The
localization theorem for the equivariant cohomology says that the equivariant inclusion
map i∗ : H∗(XG)⊗ U−1 → H∗

G(X)⊗ U−1 is an isomorphism.
We show that for the fixed point locus the natural map between Chow and co-

homology is an isomorphism. This theorem with the localization theorem show that
the natural map between the equivariant Chow group and the equivariant Borel–Moore
homology of the relative Hilbert scheme of points of the projective plane and a line on
it is an isomorphism. Hence by taking the non-equivariant elements of both sides we
obtain the proof of Theorem 21.

So far we reduced the proof of Theorem 21 to the proof of the following theorem.

Theorem 22. The natural map between the Chow group and the Borel–Moore
homology of the C∗ fixed point locus of P2[n]

P1 is an isomorphism.

In order to prove this theorem we prove that this map is an isomorphism for a class
of stacks containing the fixed point locus as an element. More precisely:

Definition 23. The class of linear stacks is the smallest class of stacks that
contains quotient stacks of affine spaces of any dimension by the action of a finite group,
with the property that:

• The complement of any linear stack embedded in the quotient stack of affine space
(by a finite group) is a linear stack.

• Any space that can be stratified as a finite disjoint union of linear stacks is a linear
stack.

For the definition and basic properties of the morphism between Chow group and
the Borel–Moore homology for DM-stacks see [23].

Theorem 24. For any linear stack X over the complex numbers, the natural map:

CHiX ⊗Q→ W−2iH
BM
2i (X,Q)

from the Chow groups into he smallest space of Borel–Moore homology with respect to
the weight filtration, is an isomorphism.

We will follow the argument of Totaro in [24] in which he proved the same theorem
holds for linear varieties. The argument uses the machinery of higher Chow groups. For
definitions and basic properties of higher Chow groups of schemes see [2]. For example
the CH(X, 0) is the Chow groups of X as defined by Fulton [8]. In [16] Joshua proved
that the similar machinery works for the stacks.

Definition 25. A stack X satisfies:

• The weak property if CHdim X−i(X, 0)⊗Q→ W−2iH
BM
2i (X,Q) is an isomorphism.

• The strong property if it satisfies the weak property and also the map
CHdim X−i(X, 1)⊗Q→ grW

−2iH
BM
2i (X,Q) is surjective.
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Since we only work with Chow groups with coefficients in Q, by abuse of notation
we denote the Chow groups of X with coefficients in Q by CHi(X, j).

Lemma 26. Let X be a given stack and S be substack of X that satisfies the weak
property, and let U = X − S.

a) If X satisfies the strong property then U also satisfies the strong property.
b) If U satisfies the strong property then X satisfies the weak property.

Proof. a) We have the following exact sequences:

CHdim X−i(X, 1) //

²²

CHdim U−i(U, 1) //

²²

CHdim S−i(S, 0) //

²²
grW
−2iH

BM
2i+1(X,Q) // grW

−2iH
BM
2i+1(U,Q) // W−2iH

BM
2i (S,Q) //

CHdim X−i(X, 0) //

²²

CHdim U−i(U, 0) //

²²

0

²²
W−2iH

BM
2i (X,Q) // W−2iH

BM
2i (U,Q) // 0

In this diagram the first column is surjective, and the third and forth column are
isomorphisms, so by diagram chasing we see that the second column is surjective and the
fifth column is an isomorphism. Hence U satisfies the strong property.

b) By the same argument in this case by assumption the second column is surjective,
and the third and fifth are isomorphism so the fourth column is surjective. Thus X

satisfies the weak property. ¤

Proof of Theorem 24. Consider the quotient map from the affine space to the
quotient stack. By the functoriality of the morphism between Chow group and the
Borel–Moore homology (see [23]) we obtain a commutative diagram which shows that
the stack quotient of the affine space satisfies the weak and strong properties. Hence by
the previous lemma we see that every linear stack satisfies the weak property. Thus the
natural map CHdim X−i(X, 0)⊗Q→ W−2iH

BM
2i (X,Q) is an isomorphism. ¤

6. Projective plane and one line.

6.1. Generators and relations.
In this section we work with P2 and a line as the special divisor. We extend Naka-

jima’s notation for the cohomology classes to the relative Hilbert scheme of points. The
homology group of the P2 has three generators and we denote them by αi for i = 0, 1, 2,
where αi is the cycle with dimension i. We denote the classes with support in the kth

bubble by βk
i for i = 0, 1. More precisely, consider the locus in the Hilbert scheme of

points of No
D/S . The Nakajima cycle associated to βi for i = 0, 1 gives a subscheme Bi

of the Hilb(No
D/S). Take βk

i to be the closure of the image of Bi in the Hilbert scheme
of the kth bubble.
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We represent a cohomology class as a product of α’s and β’s, in order to show the
support of the points in that cohomology class. If a point with support in a given cycle
has multiplicity, we show that by putting that number in the bracket. It means that

∏

i∈A,j∈B

αai
[pi]β

nj

bj
[mj ]

represents the Chow class such that for i ∈ A there is a point supported on a represen-
tative of αai with multiplicity pi. Similarly for each j ∈ B there is a point supported on
a representative of βbj in the nth

j -bubble, with multiplicity mj . We call these classes the
product classes.

In the construction of the relative Hilbert scheme we started by gluing certain Hilbert
schemes and we took the quotient by the C∗ actions. For those Hilbert schemes by the
Nakajima theorem we have a set of generators for the cohomology and by the construction
they were all Chow classes as well. One can see that the product classes give us a set of
generators for the invariant part of the Chow group, i.e. the Chow group of the quotient.
By the result of Theorem 3, we know that these cycles will also give us a set of generators
for the cohomology of the relative Hilbert scheme of points in the projective plane.

Example 27. If n = 1 then the relative Hilbert scheme is just the Hilbert scheme
of P2, and we have: β1

i = αi for i = 0, 1.
If n = 2 the situation is not as simple as in the previous case. For example we have

α0[2] = β1
0 [2]. Fix a line in the P2 and move the fat point of multiplicity 2 along this

line. We get a family over P1 with α0[2] and β1
0 [2] as the fibers above 0 and ∞. But

there are more complicated relations among these generators. Consider α0α1, the locus
of points in the Hilbert scheme of 2-points, where one point is supported in a given line
and the other is supported in a given point. If we move the point defining α0 along a
line towards the special divisor, then we will get a family over P1 with fiber over zero
equal to the class that we started with, and the fiber over infinity will be α1β

1
0 + β1

0β1
0 .

Since when the fixed point goes to the special divisor, the point with support in the line
either is still in the P2 \D, or is supported at the intersection point of the line and the
special divisor.

6.1.1. Point-Bubble relations.
The first type of relations is obtained by moving the points with support in P2 \D

to the first bubble. Given a cohomology class with a point supported on a zero-cycle p

or a line ` 6= D. In the first case we pick a line in P2 that passes through p and move this
point along it. This family has a natural projection to P1 which is given by the locus of
support of this point. This gives us a family over P1 with fiber over zero being the class
that we started with, and as we go toward infinity the point moves toward the special
divisor.

More precisely if we start with a cycle of the form

α =
∏

i∈A2
j∈A1,k∈A0

α2[i]α1[j]α0[k].β
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where β =
∏

i∈B βni
ai

[mi] is the part with support in the bubbles, and A0, A1, A2 are
multisets, and B is an index set. We move one of the points with support at a zero-cycle,
which is represented by α0[a], to the special divisor.

In other words consider a cycle C in the class

∏

k∈A0\{a}
j∈A1,i∈A2

α2[i]α1[j]α0[k]α1[a].β.

Let γ be the representative of α1 that the point with multiplicity a is supported over it.
By considering the location of the point with multiplicity a along γ one gets a map from
C to P1. The fiber over zero of the family is the cycle α that we started with. The fiber
over infinity C∞ is obtained as the point with multiplicity a goes to D. By the moduli
description of the points of the relative Hilbert scheme the limit of the family is given as
follows:

Let T be the expanded degeneration of P2 which contains C. We blow up T × P1

along the subscheme D × {∞}. The exceptional divisor is the projectivization of the
normal bundle of D ⊂ P2. Hence we get a configuration with an extra bubble. The new
bubble is attached to the base P2. Hence the index of all the bubbles in β is shifted by
one. For the points supported on the first bubble of C∞ we have:

• The point with multiplicity a is moved to the special divisor. Hence we have a
point supported over the intersection of D and γ in the first bubble.

• Each point in P2 \D which was supported on a line or on the whole plane might
go to the intersection of that cycle and D. If this point is supported on a line, it
will be supported over the intersection of that line and the special divisor. If the
point is supported on the whole plane (i.e. α2[i]) it will be supported on the whole
special divisor.

By looking at fibers over zero and infinity, in this case we get the following relation:

∏

k∈A0\{a}
j∈A1,i∈A2

α2[i]α1[j]α0[k]α0[a].β =
∏

k∈A0\{a}
j∈A1,i∈A2

(
α2[i] + β1

1 [i]
)(

α1[j] + β1
0 [j]

)
α0[k]β1

0 [a].β+1

where

β+q =
∏

i∈B

βni+q
ai

[mi] for q ∈ N.

In the second case the point is supported on a line. We denote this line by ` and the
intersection of this line with the special divisor by p. The projectivized tangent space at
p is P1 and so we can rotate ` around p in this P1.

In this case we move a point supported on a one-cycle to the special divisor. In
other words we consider the cycle C ′ in the class
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∏

k∈A0\{a}
j∈A1,i∈A2

α2[i]α1[j]α0[k]α2[a].β.

We swipe P2 by rotating the line `. By projection to the location of the point with
multiplicity a we land on a rotated copy of `. This way we get a family over P1. The
fiber over zero is the cohomology class that we started with. The fiber over infinity is
computed as in the previous case. It consists of cycles with these properties:

• The point that we moved to the special divisor will go to a point on the first bubble
supported on the whole line.

• Each point with support in the bubbles, say the ith-bubble, will go to the next
bubble ((i + 1)th-bubble).

• A point in P2 \D which was supported on a line or on the whole plane might go
to the first bubble, and the new point will be supported on a point or the whole
divisor (respectively).

we have the following relation:

∏

j∈A1

k∈A0,i∈A2

α2[i]α1[j]α0[k].α1[a]β =
∏

j∈A1\{a}
k∈A0,i∈A2

(α2[i] + β1[i])(α1[j] + β0[j])α0[k].β1[a]β+1.

6.1.2. Point-Point relations.
If we have two points supported on zero-cycles in one of the bubbles, we can move

one of them towards the infinity.
We call these two points P1 and P2 and also assume that they are supported in the

ith bubble. Hence we start with a cycle that can be represented as

αpp =
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i)

where α is the part supported on the base, and β(<i) and β(>i) are the parts supported
in bubbles with index smaller (larger) that i (respectively).

Using the C∗ action on the ith bubble we can fix the support of the second point.
More precisely, we know that P2 is supported on the fiber above a point of the special
divisor. We call it P3 ∈ D. We consider the points of the relative Hilbert scheme only
modulo the C∗ action and the smooth part of the fiber is a copy of C∗. Hence, modulo
this action, we can assume that P2 is supported on a fixed point on the fiber above P3.
We call this fixed point P5. This way we get a unique representative for any point of
this cycle. Now the locus of P1 is the fiber above another point which is a copy of P1.
Therefor by projection we get a family over P1. By looking at the fiber above zero and
infinity of this family we get the Point-Point relation.

We fix a parametrization of the fiber above P4. The fiber of αpp over t ∈ P1 is the
locus of points in αpp where P1 is supported over t and P2 is supported over P5. Once
again we use the fact that points of the relative Hilbert scheme are defined up to the C∗
action. The fiber of αpp over t ∈ P1 is also the locus of points where P1 is supported
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over 1 ∈ P1, P2 is supported over P5/t and the locus of all the other points is multiplied
by 1/t. Hence in the fiber over zero P2 goes to the infinity section i.e. the next bubble.
Note that any point beside P1 and P2 is supported on the fiber over a point of D or
supported on the whole bubble. So when we multiply with 1/t it is supported on the
same set. Hence in the fiber over zero this point might be supported on either of the ith

bubble or the i + 1th bubble.
The fiber above zero consists of cycles that we get by applying the following changes

to cycle that we start with:

• P1 will remain in the ith bubble.
• P2 will go to the i + 1th bubble.
• The remaining points of the ith bubble might remain in that bubble or go to the

next bubble.
• Each point with support in the bubbles with index greater than i will go to the

next bubble.
• Other points in P2 \D or the bubbles with index less than i will be in the same

place.

The fiber above infinity is similar to the fiber above zero, with the role of P1 and P2

interchanged. Putting these together we arrive at the following relation:

∏

j∈A1,k∈A0\{a,b}

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
βi+1

0 [a]βi
0[b].αβ(<i)β(>i)+1

=
∏

j∈A1,k∈A0\{a,b}

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
βi

0[a]βi+1
0 [b].αβ(<i)β(>i)+1.

We will call this relation, the Point-Point relation associated to

αpp =
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i)
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(the cycle that we start with).

6.1.3. Point-Line relations.
For each bubble the infinity section is a copy of P1. The bubble is the projectivization

of the O(1) over this P1. This bundle has non-trivial sections, which we will fix one such
section s. Consider the locus of points in the relative Hilbert scheme such that in the ith

bubble there is a point P1 supported on s, and another point P2 supported on a fixed
fiber of this bubble (and possibly other points in this bubble). We assume that this cycle
is represented by:

βi
1[a]βi

0[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

By looking at the locus of P2 we get a family over P1.
When P2 approaches the zero section of this bubble, by the C∗-action we can find a

representative such that all the other points are being pushed to the infinity section. This
shows that the fiber over zero is a sum of cycles that we get by applying the following
changes to the cycle that we start with:

• P1 will go to the i + 1th bubble.
• P2 will remain in the ith bubble.
• The remaining points of the ith bubble might remain in that bubble or go to the

next bubble.
• Each point with support in the bubbles with index greater than i will go to the

next bubble.
• Other points in P2 \D or the bubbles with index less than i remain in the same

place.

But the fiber over infinity is more complicated and in fact has two components. As
P2 goes to the infinity section either P1 stays in the ith-bubble which gives us the first
component. The other possibility is for P1 to go to the intersection of the infinity section
and the section of O(1) that we fixed. In this case we get a point in the i + 1th bubble



1344 I. Setayesh

supported on the fiber above the intersection of the fixed section and special divisor. But
in this case all the remaining points should also go to the i + 1th bubble, otherwise the
resulting class will be of codimension two. So the ith bubble would be empty and we
have to stabilize it by removing it. By this procedure we get the following relation:

βi+1
1 [a]βi

0[b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

= βi
1[a]βi+1

0 [b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

+ βi
0[a]βi

0[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

We will call this relation, the Point-Line relation associated to

βi
1[a]βi

0[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

6.1.4. Line-line relations.
Take a class with two points supported on one-cycles in the ith-bubble. We represent

this cycle by

βi
1[a]βi

1[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

Fix two sections s1 and s2 of the ith-bubble . Given a section of a line bundle, we can get
other sections by multiplying this section by a complex number. In this way to each pair
(λ1, λ2) of non zero complex number we can associate the locus of points in the relative
Hilbert scheme with two points P1 and P2 supported on λ1s1 and λ2s2 (resp.), and the
arrangement of the rest of the points are as in the cycle that we start with. Since we
have the C∗ action on each bubble, the associated locus only depends on the ratio of λ1

and λ2. So in this way we get a family over C∗. Since the relative Hilbert scheme is
proper we can extend this family to a family over P1.

We are interested in the fiber above zero and infinity. The fiber above zero consist
of points satisfying the following properties:

• P1 will go to the i + 1th bubble, and is supported on the whole bubble.
• P2 will remain in the ith bubble, and is supported on the whole bubble.
• The remaining points of the ith bubble might remain in that bubble or go to the

next bubble.
• Each point with support in the bubbles with index greater than i will go to the

next bubble.
• Other points in P2 \ D or the bubbles with index less than i will remain in the

same place.

and similarly the fiber above infinity consists of points with the same properties with the
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role of P1 and P2 interchanged. Considering this family we get the following relation:

βi+1
1 [a]βi

1[b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

+ βi
1[a]βi

0[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i)

= βi
1[a]βi+1

1 [b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

+ βi
0[a]βi

1[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

We will call this relation the Line-Line relation associated to

βi
1[a]βi

1[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i).

So far we introduced the set of generators for the cohomology of the relative Hilbert
scheme of points in the projective plane and also described four kind of relations in this
group. In the following theorem we show that they are all the relations.

Theorem 28. The cohomology groups of P2[n]
P1 , are generated by the product cycles,

and the four types of relations introduced in this section will give us a complete set of
relations.

The first part of the theorem is a consequence of Theorem 3, and the construction
of the product classes. In fact we have a stratification of the relative Hilbert scheme
with pieces each isomorphic to a quotient of a product of Hilbert scheme of points on a
surface. By Nakajima’s theorem we know that the cohomology of these Hilbert schemes
is generated by the product classes. Hence by Theorem 21 the Chow group of them is
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also generated by the product classes. This shows that the Chow group of the relative
Hilbert scheme of points is generated by product classes. Finally by Theorem 3 the
cohomology group of the relative Hilbert scheme is generated by these classes.

In the next section we give a proof of the second part.

7. Proof of Theorem 2.

In this section we compute the dimension of space generated by the cohomology
classes that we introduced in previous section modulo the relations. We deal with each
type of relation separately.

7.1. Point-Bubble relations.
Pick a cohomology class α of the relative Hilbert scheme of points. Push all the

points supported on cycles with dimension 0 and 1 in the P2 \ D to the bubbles. We
get a representation of α in terms of cohomology classes with no α0 and α1 in their
representation. There is one point that we want to clarify before going any further. If
we start with a class that has more than one point supported on a zero cycle or a line
in the P2 \D , then we have more than one ways of writing this class in term of classes
with no such points. More precisely, pick two such zero cycles Z1 and Z2. Pushing Z1

to the bubble gives an expression (by the Point-Bubble relation), also pushing Z2 to the
bubble gives another expression.

Lemma 29. The above two expressions can be obtained from each other using other
types of relations.

Proof. There are three cases that we have to consider:
1. There are two points supported on a zero-cycle in the P2 \ D with different

multiplicities. If we first push one of them to the bubble and then the other we get a
presentation of the original cycle in terms of cycles with fewer points supported in the
P2 \D. If we push them to the bubble with a different order we get another presentation.
Let

α =
∏

i∈A2
j∈A1,k∈A0

α2[i]α1[j]α0[k].α0[a]α0[b]β

be such a cycle, then we get the following relations:





α =
∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i] + β2
1 [i]

)(
α1[j] + β1

0 [j] + β2
0 [j]

)
α0[k].β1

0 [a]β2
0 [b]β+2,

α =
∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i] + β2
1 [i]

)(
α1[j] + β1

0 [j] + β2
0 [j]

)
α0[k].β2

0 [a]β1
0 [b]β+2.

Take the following class:
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∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i]
)(

α1[j] + β1
0 [j]

)
α0[k].β1

0 [a]β1
0 [b]β+1

it has two points in the first bubble supported on zero-cycles. The above two expressions
are obtained from each other using the Point-Point relation associated to this cycle.

2. There is a point supported on a zero-cycle and another point supported on a
one-cycle. We get two different presentation of the cycle by pushing these points to the
bubble with different orders. Let

α =
∏

i∈A2
j∈A1,k∈A0

α2[i]α1[j]α0[k].α1[a]α0[b]β

be the cycle that we start with. As in the previous case we get the following relations:





α =
∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i] + β2
1 [i]

)(
α1[j] + β1

0 [j] + β2
0 [j]

)
α0[k].β1

1 [a]β2
0 [b]β+2

+
∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i]
)(

α1[j] + β1
0 [j]

)
α0[k].β1

0 [a]β1
0 [b]β+1,

α =
∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i] + β2
1 [i]

)(
α1[j] + β1

0 [j] + β2
0 [j]

)
α0[k].β2

1 [a]β1
0 [b]β+2.

In this case if we take this class:

∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i]
)(

α1[j] + β1
0 [j]

)
α0[k].β1

1 [a]β1
0 [b]β+1

the Point-Line relation associated to this cycle shows that the above two cohomology
classes are equal.

3. There are two points supported on one-cycles and with different multiplicities. In
the same way by pushing them to the bubble with different orders we get the following
relations:

If

α =
Y

i∈A2
j∈A1,k∈A0

α2[i]α1[j]α0[k].α1[a]α1[b]β

8
>>>>><
>>>>>:

α =
Y

i∈A2
j∈A1,k∈A0

`
α2[i] + β1

1 [i] + β2
1 [i]
´`

α1[j] + β1
0 [j] + β2

0 [j]
´
α0[k].

`
β1

1 [a]β2
1 [b] + β1

0 [a]β1
1 [b]
´
β+2,

α =
Y

i∈A2
j∈A1,k∈A0

`
α2[i] + β1

1 [i] + β2
1 [i]
´`

α1[j] + β1
0 [j] + β2

0 [j]
´
α0[k].

`
β2

1 [a]β1
1 [b] + β1

1 [a]β1
0 [b]
´
β+2.
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In this case we take:

∏

i∈A2
j∈A1,k∈A0

(
α2[i] + β1

1 [i]
)(

α1[j] + β1
0 [j]

)
α0[k].β1

1 [a]β1
1 [b]β+1.

The Line-Line relation associated to this cycle shows that the above two cohomology
classes are equal. ¤

7.2. Canonical and normal forms.
As we discussed in the previous section given a cycle with more than one point

supported on a bubble we can write down a relation in the Chow group associated to
this cycle. Here we show that using these relations we can represent any cycle in terms
of cycles with the canonical form.

Lemma 30. Each cohomology class can be represented in terms of classes satisfying
the following conditions, only by using Point-Line and Line-Line relations:

• There is at most one point supported on a zero-cycle in each bubble.
• That point (if exists) has the minimum multiplicity among the points in that bubble.

A representation of a class that satisfies these properties is called the canonical form.

Proof. We start with a class C that does not satisfy the above properties. Take i

to be the index of the first bubble that is not of that form. We recall that the Point-Line
relation can be written as:

βi
0[a]βi

0[b]
∏

j∈A1,k∈A0

βi
0[k]βi

1[j].αβ(<i)β(>i)

= βi+1
1 [a]βi

0[b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

− βi
1[a]βi+1

0 [b]
∏

j∈A1,k∈A0

(
βi

0[k] + βi+1
0 [k]

)(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

all the terms in the right hand side have the same point arrangement in the first i − 1
bubbles. Using the Point-Line relation we can write C in terms of classes with fewer
number of points supported on zero cycles in the ith bubble. So by this procedure we can
fix bubbles one by one, and since the number of bubbles is finite (at most the number of
points) this procedure will end at some point. Hence we can write any class in terms of
classes satisfying the first condition.

In the next step we use the Line-Line relations to write them in terms of classes that
satisfy both conditions of the claim. More precisely we can write the Line-Line relation
as:

βi
1[a]βi

0[b]
∏

j∈A1

βi
1[j].αβ(<i)β(>i)
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= βi
0[a]βi

1[b]
∏

j∈A1

βi
1[j].αβ(<i)β(>i)

+ βi
1[a]βi+1

1 [b]
∏

j∈A1

(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1

− βi+1
1 [a]βi

1[b]
∏

j∈A1

(
βi

1[j] + βi+1
1 [j]

)
.αβ(<i)β(>i)+1.

It is clear from the form of these relations that the cohomology classes that we get
satisfy both conditions in the first i bubbles. ¤

Lemma 31. Given a class in the canonical form, we can write it as the sum of
cycles with the following properties:

• Each cycle is in the canonical form.
• If there is a bubble with exactly one point supported on a zero-cycle (and no point

supported on a one-cycle), then the multiplicity of that point is less than or equal
to the multiplicity of any point on the next bubble.

A representation of a class that satisfies these properties is called the normal form.

Proof. If there is such a point in the kth-bubble, then there are two possibilities:

1. There is a point supported on a zero-cycle in the (k + 1)th-bubble.
2. All the points in the (k + 1)th-bubble are supported on one-cycles.

In the first case, if this class is given by:

βk
0 [a]βk+1

0 [b]
∏

j∈A1

βk+1
1 [j].αβ(<k)β(>k+1)

with a > b then we can use the following Point-Point relation:

(
βk+1

0 [a]βk
0 [b]− βk

0 [a]βk+1
0 [b]

) ∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1 = 0.

Which could be written as:

βk
0 [a]βk+1

0 [b]
∏

j∈A1

βk+1
1 [j].αβ(<k)β(>k)+1

= βk+1
0 [a]βk

0 [b]
∏

j∈A1

βk+1
1 [j].αβ(<k)β(>k)+1

+
(
βk+1

0 [a]βk
0 [b]− βk

0 [a]βk+1
0 [b]

) ∼∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1

and
∼∏

means that we take every term in the expansion of the product except the one
which is the multiplication of all the β -classes in the (k + 1)th-bubble.
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In the second case, if the class is given by:

βk
0 [a]βk+1

1 [b]
∏

j∈A1

βk+1
1 [j].αβ(<k)β(>k+1)

with a > b then we can use the following two Point-Line relations:

• βk
0 [a]βk

0 [b]
∏

j∈A1

βk
1 [j].αβ(<k)β(>k)

=
(
βk+1

1 [a]βk
0 [b]− βk

1 [a]βk+1
0 [b]

) ∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1.

• βk
0 [a]βk

0 [b]
∏

j∈A1

βk
1 [j].αβ(<k)β(>k)

=
(
βk

0 [a]βk+1
1 [b]− βk+1

0 [a]βk
1 [b]

) ∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1.

If we subtract them we can write the resulting relation as:

βk
0 [a]βk+1

1 [b]
∏

j∈A1

βk+1
1 [j].αβ(<k)β(>k+1)

=
(
βk

0 [a]βk+1
1 [b]

) ∼∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1

+
(
βk+1

1 [a]βk
0 [b]− βk

1 [a]βk+1
0 [b] + βk+1

0 [a]βk
1 [b]

)

×
∏

j∈A1

(
βk

1 [j] + βk+1
1 [j]

)
.αβ(<k)β(>k)+1.

So in both case we can represent the original class as the sum of classes that satisfy
the required properties of the statement of the lemma for the kth-bubble. To each cycle
α we associate the following number:

A(α) = ]





p is a point supported on a zero cycle with

(p, i)
no other point in that bubble

i is the index of a bubble above point p with a
point in it with multiplicity less than mult(p)





.

Then for both cases the representation that we get consist of classes with smaller A.
Since the number of all these classes is finite this procedure ends at some point. Hence
any cycle in the resulting presentation satisfies the properties of the lemma. ¤

7.3. Computation of Betti numbers.
In order to compute the dimension of the cohomology groups of the relative Hilbert

scheme of points, we start by counting the number of cycles of a given dimension in the
canonical form.
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Let au,v be the number of cycles of the form
∏

j∈A1
βi

1[j] with v points and dimension
u i.e.

∑
j∈A1 6=∅ 2j + 2 = u + 2. Each βi

1[j] adds j to the number of points of this cycle
and adds 2j + 2 to the dimension of the cycle. We claim that

∑
u,v

au,vtuq′v = 1 +
1
t2

(
− 1 +

∞∏
m=1

1
1− t2(t2q′)m

)
.

To see this, note that any term in the expansion of

∞∏
m=1

1
1− t2(t2q′)m

is obtained as follows. Pick a set of integers n1, . . . , nk and correspondingly consider the
contribution of

k∏

l=1

1
1− t2(t2q′)nl

.

Then for each l in {1, . . . , k} choose ml which ought to be the multiplicity of nl. Cor-
respondingly we get the term

∏k
l=1 (t2(t2q′)nl)ml in the expansion. To this term we

associate the cycle
∏k

l=1(β
i
1[nl])ml . This is a bijection, so the generating function for

au,v is

1 +
1
t2

(
− 1 +

∞∏
m=1

1
1− t2(t2q′)m

)
.

Note that the term 1/t2 reflects the fact that we take the quotient with C∗ which subtracts
2 from the dimension.

Since we are interested in the normalized Poincaré polynomial, we make the change
of variable q = t2q′. Therefore the generating function becomes:

1 +
1
t2

(
− 1 +

∞∏
m=1

1
1− t2qm

)
.

In order to count the number of possible configurations in the ith bubble we have
to allow the cycle to have one point supported on a zero-cycle i.e. a βi

0 term. In the
canonical form this point has the least multiplicity among the points in the same bubble.
So the number of cycles of the form β0[k]

∏
j∈A βi

1[j] with dimension u and v points
is equal to the number of cycles of the form

∏
j∈B βi

1[j] with dimension u − 2 and v

points. The correspondence is given by sending β0[k]
∏

j∈A βi
1[j] to β1[k]

∏
j∈A βi

1[j].
The inverse map on C =

∏
j∈B βi

1[j] is given as follows. Choose j0 to be the minimum of
j ∈ B. Send C to β0[j0]

∏
j∈B\{j0} βi

1[j]. Hence the generating function for the number
of possible configurations of a bubble in the canonical form is given by:
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1 +
1 + t−2

t2

(
− 1 +

∞∏
m=1

1
1− t2qm

)
.

Since in P2 \ D we have only points supported on two-cycles (i.e. α2 terms), the
generating function for the number of cycles in the canonical form is given by:

∞∏
m=1

1
1− t2qm

∞∑

i=0

(
1 + t−2

t2

(
− 1 +

∞∏
m=1

1
1− t2qm

))i

.

Each cycle in the canonical form which does not satisfy the properties of Lemma
31 (i.e. is not in the normal form) has at least one point supported on a zero-cycle in a
bubble with multiplicity greater than the minimum multiplicity in the next bubble. We
call such a point a bad point and such a cycle a bad cycle.

Definition 32. Let C be a cycle in the canonical form. We assume that

C = αβ<iβ>iβi
0 or 1[n1]

k∏

l=1

(βi
1[nl])ml

with n1 < · · · < nk. A marking on C in the ith bubble is a subset S = {s1, . . . , st} of
{2, . . . , k} and we denote it by (C, S). We assume that s1 > · · · > st.

To a marked cycle (C,S) we associate the following cycle:

CS := (−1)tαβ<iβ(>i)+t

[
βi+t

0 or 1[n1]
k∏

l=1

(βi+t
1 [nl])cml

] t∏

j=1

βi+1−j
0 [nj ]

in which

m̂l =

{
ml if l /∈ S,

ml − 1 if l ∈ S.

Note that dim(CS) = dim(C)− 4t. A marking for C is a choice of marking for each
bubble (we also consider the empty set as a marking).

For example if

C =

β3
1 [n5]

β2
1 [n1](β2

1 [n2])2β2
1 [n3]β2

1 [n4]

β1
1 [n0]

,

(i.e. C is the product of expressions in all rows and each row denotes the term in one
bubble) with marking S = {2, 4} we have:
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CS =

β5
1 [n5]

β4
1 [n1]β4

1 [n2]β4
1 [n3]

β3
0 [n2]

β2
0 [n4]

β1
1 [n0]

.

For a cycle D in the canonical form, let MD be the set of all marked cycles (C, S)
so that CS = ±D.

Lemma 33. ∑

(C,S)∈MD

CS =

{
D if D is in normal form,

0 otherwise.

Proof. First note that if S is non empty then by construction CS is a bad cycle.
Hence if D is in normal form then the only element ofMD is (D, ∅) and the result follows.

Let D be a bad cycle. Thus D has a bad point with multiplicity n1 and we assume
that D is given by:

D = αβ<iβ>i+dβi+d
0 or 1[nmin]

∏

j∈A

βi+d
1 [j]

d∏

k=1

βi+k−1
0 [nk]

in which n1 < n2 < · · · < nd and d is chosen to be the largest number with such a sequence
of bad points starting from n1. We call the set {n1, n2, . . . , nd} a bad component of D.

Given a subset T = {t1, . . . , tc} of {1, . . . , d} with t1 > · · · > tc, we take t0 := d + 1
and define DT to be the following cycle with every element of T c as marked.

DT := αβ<iβ(>i+d)−d+c

(
βi+c

0 or 1[nmin]
∏

j∈A

βi+c
1 [j]

∏

tc<k≤d

βi+c
1 [nk]

)

·
[ c∏

a=1

βi+a−1
0 [nta

]
( ∏

ta−1<k<ta

βi+a−1
1 [nk]

)]
.

For example

let D =

β5
1 [1]β5

1 [6]

β4
0 [3]

β3
0 [5]

β2
0 [7]

β1
0 [9]

so n1 = 3, d = 4. Let T = {2, 4}, then DT =

β3
1 [1]β3

1 [6]β3
1 [3]

β2
0 [5]β2

1 [7]

β1
0 [9]

.

If T = {1, . . . , d}, D = DT .
We consider the case in which D has only one bad component. In this case MD is

the set (DT , T c). Hence
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∑

(C,S)∈MD

CS =
∑

T⊂{1,...,d}
(DT )T =

( d∑

b=0

(−1)d

(
d

b

))
.D = 0.

If D has multiple bad components then the sum breaks as the product of the asso-
ciated sums for each component, hence it is zero. ¤

By our argument in the beginning of this subsection we have a correspondence
between the terms in

1 +
1 + t−2

t2

(
− 1 +

∞∏
m=1

1
1− t2qm

)

and the canonical cycles. Since dim(CS) = dim(S) − 4|S|, if we change the generating
function by replacing each term

∏k
l=1 (t2(t2q′)nl)ml with

k∏

l=1

(t2(t2q′)nl)
ml(1− t−4)k−1 =

k∏

l=1

(t2(t2q′)nl)
ml

∑

T⊂{1,...,k}
(−1)|S|t−4|S|,

then we obtain the generating function for
∑

(C,S)∈MD
CS . By the above lemma the

aforementioned generating function is the same as the generating function for cycles in
normal form.

Hence, if we consider

1 + t−2

t2

(
− 1 +

∞∏
m=1

((
1

1− t2qm
− 1

)
(1− t−4) + 1

))
,

which corresponds to taking terms of the form
∏k

l=1 (t2(t2q′)nl)ml(1 − t−4)k it differs
from the contribution of one bubble to the generating function for normal forms by a
factor of 1/(1− t−4). Thus this contribution is given by:

1 + t−2

t2(1− t−4)

(
− 1 +

∞∏
m=1

((
1

1− t2qm
− 1)(1− t−4) + 1

))
+ 1.

Since (1 + t−2)/(t2(1 − t−4)) = 1/(t2 − 1) the above generating function takes the
form:

1 +
1

t2 − 1

(
− 1 +

∞∏
m=1

[(
1

1− t2qm
− 1

)
(1− t−4) + 1

])

= 1 +
1

t2 − 1

(
− 1 +

∞∏
m=1

1− t−2qm

1− t2qm

)
.

Hence the generating function for the cycles in the normal form is given by:
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∞∏
m=1

1
1− t2qm

∞∑

i=0

(−1 +
∏∞

m=1((1− t−2qm)/(1− t2qm))
t2 − 1

)i

=
∞∏

m=1

1
1− t2qm

1

1− −1+
Q∞

m=1((1−t−2qm)/(1−t2qm))

t2−1

=
t2 − 1

t2
∏∞

m=1(1− t2qm)−∏∞
m=1(1− t−2qm)

.

This generating function agrees with the result of Example 19. Hence the space of
cycles in normal form has the same dimension as the cohomology group of the relative
Hilbert space. Therefore the cohomology group is isomorphic to the space of normal
forms. In particular the relations in Theorem 2 are all the relations. This completes the
proof of Theorem 2.
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[ 4 ] P. Deligne, Thèorie de Hodge I, II, III, Proc. ICM 1970, Vol. 1, 425–430; Publ. Math. IHES, 40

(1972), 5–57; 44 (1974), 5–77.

[ 5 ] A. H. Durfee, Algebraic varieties which are a disjoint union of subvarieties, Lecture Notes in Pure

and Appl. Math., 105 (1987), 99–102.

[ 6 ] D. Edidin and W. Graham, Localization in the equivariant intersection theory and the Bott

residue formula, Amer. J. Math., 120 (1998), 619–636.

[ 7 ] G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of points in the plane,

Invent. Math., 87 (1987), 343–352.

[ 8 ] W. Fulton, Intersection theory, Springer-Verlag, 1984.

[ 9 ] E. Getzler and R. Pandharipande, The Betti numbers of M0,n(r, d), Lecture Notes in Pure and

Appl. Math., 105 (1987), 99–102.
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