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Abstract. In this paper we give the Weierstrass equations and the gen-
erators of Mordell–Weil groups for Jacobian fibrations on the singular K3
surface of discriminant 3.

1. Introduction.

A K3 surface defined over the complex number field whose Picard number equals
to maximum possible number 20 is called a singular K3 surface. Shioda and Inose [11]
showed that the map which associates a singular K3 surface X with its transcendental
lattice TX is a bijective correspondence from the set of singular K3 surfaces onto the set
of equivalence classes of positive-definite even integral lattice of rank two with respect to
SL2(Z). The discriminant of a singular K3 surface X is the determinant of the Gram
matrix of the transcendental lattice TX .

In this paper we study Jacobian fibrations, i.e., elliptic fibrations with a section, on
the singular K3 surface X3 of discriminant 3, which corresponds to the lattice defined
by

(
2 1
1 2

)
and is uniquely determined up to isomorphism. Jacobian fibrations on X3

were classified by Nishiyama [8]. He classified all configurations of singular fibers of
Jacobian fibrations on X3 into 6 classes and determined their Mordell–Weil groups. We
give a Weierstrass model of a fibration in each class. More precisely, we state our main
theorem.

Theorem 1. Let X3 be the singular K3 surface of discriminant 3. For a Jacobian
fibration in each class of Nishiyama’s list [8, Table 1.1], an elliptic parameter ui, a
Weierstrass equation and the generators of the Mordell–Weil group are given by Table 1.

An elliptic parameter of a Jacobian fibration π : X3 → P1 is the pull-back π∗(ui)
of the affine coordinate u of P1. We also denote it by u, and regard u as a rational
function on X3. The generic fiber of π defines an elliptic curve E over the rational
function field C(u). Therefore, it may be defined by a Weierstrass equation, which is
called a Weierstrass equation for the Jacobian fibration π. It is well known that the set
of sections of π forms an abelian group that is isomorphic to the Mordell–Weil group
E(C(u)). It is also called the Mordell–Weil group of the Jacobian fibration π.

We explain about Table 1. The first column shows the name of each Jacobian
fibrations following Nishiyama’s notation. The second column shows the configuration of
singular fibers. Here, for example, by 2 II∗+IV means that the surface has two singular
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Table 1. Classification of Jacobian fibrations on X3.

No. sing. fibs MWG ui equation and rational points

1 2 II∗+IV 0
2(y2 + 1)

(y1 − 1)2
Y 2 = X3 + u5

1(u1 − 1)2

O

2 I∗12 +I3 +3 I1 Z/2Z 2t2

(y2 + 1)(y2
1 + 2y1 + 2y2 − 1)

Y 2 = X3 − 2u2(u3
2 − 2)X2 + u8

2X

O, (0, 0)

3 III∗+I∗6 +3 I1

fi
3

2

fl
⊕ Z/2Z t

y2
1 − 1

Y 2 = X3 + 4u3
3X2 − 4u3

3X

2-tor.: O, (0, 0)

free gen. : (1,−1)

4 I18 +6 I1

fi
3

2

fl
⊕ Z/3Z t

y1 + y2

Y 2 = X3 + (X − u6
4)2

3-tor. : O, (0,±u6
4)

free gen. : (2u3
4, 2u3

4 + u6
4)

5 3 IV∗ Z/3Z y1
Y 2 = X3 + (u2

5 − 1)4

O, (0,±(u2
5 − 1)2)

6 I∗3 +I12 +3 I1 Z/4Z t
Y 2 = X3 − 2(u3

6 − 2)X2 + u6
6X

O, (0, 0), (u3
6,±2u3

6)

fibers of type II∗ and a singular fiber of type IV (Kodaira’s notation [4]). The third
column shows the Mordell–Weil group (MWG) of the fibration. The fourth column
shows an elliptic parameter ui of the fibration under the singular affine model (2.6) of
X3. The index i is the name of the fibration. The last column shows a Weierstrass
equation and rational points corresponding to Mordell–Weil generator of the fibration,
where O is the rational point corresponding to the zero of MWG. We will give an outline
of a way to get these data in the next section after we fix the notation.

Recently, Braun, Kimura and Watari [2] showed that Nishiyama’s list also gives the
classification of Jacobian fibrations on X3 modulo isomorphism. Thus, our and their
results answer completely a question of Kuwata and Shioda [7].

2. Notation.

The singular K3 surface X3 is known as a generalized Kummer surface constructed
as follows. Let Cω be the complex elliptic curve with the fundamental periods 1 and
ω = e2π

√−1/3. Let σ be an automorphism of Cω×Cω defined by σ(z1, z2) 7→ (ωz1, ω
2z2).

Then the minimal resolution of the quotient Cω×Cω/〈σ〉 is isomorphic to the singular K3
surface X3 (see [11, Lemma 5.1]). The automorphism σ has 9 fixed points (vi, vj) (1 ≤
i, j ≤ 3), where {vi} are the fixed points of the automorphism σ1 of Cω defined by
σ1(z) = ωz. These 9 points (vi, vj) correspond to the singular points pij of the quotient
Cω×Cω/〈σ〉. The minimal resolution X3 of Cω×Cω/〈σ〉 is obtained by replacing each pij

by 2 non-singular rational curves Ei,j and E′
i,j with Ei,j ·E′

i,j = 1. Moreover, X3 contains
6 non-singular rational curves, i.e. the image Fi (or Gj) of {vi} × Cω (or Cω × {vj}) in
X3. We have the following intersection numbers.
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F 2
i = G2

i = E2
i,j = E′2

i,j = −2, Fi · Ej,k = Gi · E′
j,k = Fi ·Gj = 0,

Ei,j · E′
k,l = δi,k · δj,l, Fi · E′

j,k = Gi · Ek,j = δi,j .
(2.1)

These 24 curves on X3 form the configuration of Figure 1.

Figure 1. (−2)-curves.

It is well known that the elliptic curve Cω has the following Weierstrass form

Cω : y2 = x3 + 1. (2.2)

We denote each factor of Cω × Cω by

C1
ω : y2

1 = x3
1 + 1, C2

ω : y2
2 = x3

2 + 1. (2.3)

Then the automorphism σ is written by

σ : C1
ω × C2

ω → C1
ω × C2

ω

(x1, y1, x2, y2) 7→ (ωx1, y1, ω
2x2, y2).

(2.4)

The function field C(X3) is equal to the invariant subfield of the function field C(C1
ω ×

C2
ω) = C(x1, x2, y1, y2) under the automorphism σ. Then we have

C(X3) = C(y1, y2, t), t = x1x2, (2.5)

where y1, y2, and t are naturally regarded as functions on X3 with the relation

t3 = (y2
1 − 1)(y2

2 − 1). (2.6)
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This gives a singular affine model of X3. We start from the equation to obtain a Weier-
strass form for each Jacobian fibration on X3. Under the above notation, we see that
the divisors of typical functions are as follows.

(y1 − 1) = 3F2 + 2
(
E′

2,1 + E′
2,2 + E′

2,3

)
+ E2,1 + E2,2 + E2,3

− (
3F1 + 2(E′

1,1 + E′
1,2 + E′

1,3) + E1,1 + E1,2 + E1,3

)

(y1 + 1) = 3F3 + 2
(
E′

3,1 + E′
3,2 + E′

3,3

)
+ E3,1 + E3,2 + E3,3

− (
3F1 + 2(E′

1,1 + E′
1,2 + E′

1,3) + E1,1 + E1,2 + E1,3

)

(y2 − 1) = 3G2 + 2
(
E1,2 + E2,2 + E3,2

)
+ E′

1,2 + E′
2,2 + E′

3,2

− (
3G1 + 2(E1,1 + E2,1 + E3,1) + E′

1,1 + E′
2,1 + E′

3,1

)

(y2 + 1) = 3G3 + 2
(
E1,3 + E2,3 + E3,3

)
+ E′

1,3 + E′
2,3 + E′

3,3

− (
3G1 + 2(E1,1 + E2,1 + E3,1) + E′

1,1 + E′
2,1 + E′

3,1

)

(t) = F2 + E′
2,3 + E2,3 + G3 + E3,3 + E′

3,3 + F3 + E′
3,2 + E3,2 + G2 + E2,2 + E′

2,2

− (
E2,1 + E3,1 + 2(G1 + E1,1 + E′

1,1 + F1) + E′
1,2 + E′

1,3

)
.

(2.7)

For a Jacobian fibration in each class of Table 1, we compute a Weierstrass equation
by using the following two methods.

The first method is the elimination method. Theoretically, constructing a Jacobian
fibration on a K3 surface is done by finding a divisor that has the same type as a singular
fiber in the Kodaira’s list (see [4]). In practice, however, we need to find two divisors,
one for the fiber at u = 0, and the other for the fiber at u = ∞, to write down an actual
elliptic parameter u. Once an elliptic parameter is found, we want to find a change of
variables that converts the defining equation to a Weierstrass form. Since an elliptic
parameter u is a rational function, we can write u = f/g for some f, g ∈ C[t, y1, y2].
Thus, we can eliminate one variable from the equations (2.6) and gu − f = 0. If such
an equation can be converted to the form y2 = (quartic polynomial) by a simple change
of coordinates, we can transform it to a Weierstrass form by using a standard algorithm
(see for example [1] or [3]). We use this method to compute Weierstrass equations for
Fibrations 1, 3, 5 and 6 in Sections 3–6.

For Fibrations 2 and 4, it is difficult to find such two divisors described as above.
Thus, we use the other method for them, which is called 2-neighbor step by Noam Elkies.
This is a technique to transform a Weierstrass equation for a Jacobian fibration to an-
other for a distinct Jacobian fibration. Using this, we obtain a Weierstrass equation for
Fibration 4 from Fibration 3 in Section 7. Moreover, we can transform it to a Weierstrass
equation for Fibration 2 in Section 8.

Every Jacobian fibration except for Fibration 1 has nontrivial Mordell–Weil group.
In each case, we can easily write down the torsion part of the Mordell–Weil group as
rational points of the elliptic curve defined over C(u) by the Weierstrass equation. To
determine the free generators of Fibrations 3 and 4, we compute the height paring by
using the method in [10] from the intersection numbers (2.1) and establish some changes
of variables.
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3. Fibration 1.

An elliptic parameter for Fibration 1 is given by

u1 =
2(y1 + 1)
(y1 − 1)2

. (3.1)

The divisor of u1 is given by

(u1) = E′
3,3 + 2E3,3 + 3G3 + 4E1,3 + 5E′

1,3 + 6F1 + 3E′
1,1 + 4E′

1,2 + 2E1,2

− (
E′

3,1 + 2E3,1 + 3G1 + 4E2,1 + 5E′
2,1 + 6F2 + 3E′

2,3 + 4E′
2,2 + 2E2,2

)
. (3.2)

The zero divisor (u1)0 (the bold lines in Figure 2) and the polar divisor (u1)∞ (the thin
lines in Figure 2) are the singular fibers both of type II∗.

Eliminating the variable y2 from (2.6) and (3.1), we obtain the following equation

4t3 = u1(y1 + 1)(y1 − 1)3(u1y
2
1 − 2u1y1 + u1 − 4), (3.3)

which defines a plane curve over C(u1) with a singularity at (t, y1) = (0, 1). Blowing up
by t = v(y1 − 1), we have the following equation

4v3 = u1(y1 + 1)(u1y
2
1 − 2u1y1 + u1 − 4), (3.4)

which defines a nonsingular plane cubic curve over C(u1) with a rational point (v, y1) =
(0,−1). Then we can convert it into a Weierstrass form (see [1] or [3]). Since the
rational point (v, y1) = (0,−1) corresponds to the divisor F3 (the dotted line in Figure
2), choosing it as the zero section of the group structure, we obtain the Weierstrass
equation for Fibration 1

Y 2 = X3 + u5
1(u1 − 1)2, (3.5)

where the change of variables is given by

X =
3
√

4(u1 − 1)u1t

(y2
1 − 1)

, Y = −u2
1(u1 − 1)(u1y1 − u1 + 2)

y1 + 1
. (3.6)

Besides the two singular fibers of type II∗ at u1 = 0 and ∞, there is one singular fiber
of type IV at u1 = 1. It is the divisor E3,2 + E′

3,2 + Q1 (the long dashed dotted lines in
Figure 2), where Q1 is a (−2)-curve on X3 arising from a curve on P1 × P1 below.

Let pj : Cj
ω → P1 (j = 1, 2) be the projection given by

pj : Cj
ω → P1

(xj : yj : zj) 7→
{

(yj : zj) if zj 6= 0

(1 : 0) if zj = 0.

(3.7)
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Then the map p1 × p2 : C1
ω × C2

ω → P1 × P1 factors through π̄ : C1
ω × C2

ω/σ → P1 × P1.
Let π be the morphism of degree three from X3 to P1 × P1 that makes the following
diagram commutative:

X3

²²

π

&&NNNNNNNNNNNN

C1
ω × C2

ω
// C1

ω × C2
ω/σ

π̄
// P1 × P1.

It is easy to verify that the equation u1 = 1 means

y2
1 − 2y1 − 2y2 − 1 = 0 (3.8)

from (3.1). This equation defines a curve on P1 × P1. Then it lifts to the (−2)-curve Q1

on X3 via the map π.

Figure 2. Fibration 1.

4. Fibration 3.

An elliptic parameter for Fibration 3 is given by

u3 =
t

y2
1 − 1

. (4.1)

The divisor of u3 is given by

(u3) = G2 + 2E1,2 + 3E′
1,2 + 4F1 + 3E′

1,1 + 2E1,3 + G3 + 3E′
1,2

− (
E′

2,2 + E′
2,3 + 2(F2 + E′

2,1 + E2,1 + G1 + E3,1 + E′
3,1 + F3) + E′

3,2 + E′
3,3

)
,

(4.2)



Jacobian fibrations on X3 1139

which is indicated in Figure 3. The zero divisor (u3)0 is the singular fiber of type III∗

(the bold lines) and the polar divisor (u3)∞ is the singular fiber of type I∗6 (the thin
lines). The curves E2,2, E2,3, E3,2 and E3,3 (the dotted lines) are all the sections.

Eliminating the variable t from (2.6) and (4.1), we have the following equation

y2
2 = u3

3(y
2
1 − 1)2 + 1, (4.3)

which has a rational point (y1, y2) = (1, 1) corresponding to the curve E2,2. Thus, choos-
ing E2,2 as the zero section of the group structure, we obtain the Weierstrass equation
for Fibration 3

Y 2 = X3 + 4u3
3X

2 − 4u3
3X, (4.4)

where the change of variables is given by

X =
2(y2 + 1)
(y1 − 1)2

, Y =
4(u3

3(y1 + 1)(y1 − 1)2 + y2 + 1)
(y1 − 1)3

. (4.5)

Besides the above two singular fibers of types III∗ and I∗6, the fibration has three I1 fibers
at u3 = −1,−ω and −ω2.

The 2-torsion rational point (X, Y ) = (0, 0) corresponds to the curve E3,3. The
rational point (X, Y ) = (1,−1) corresponds to the curve E3,2 of height 〈E3,2, E3,2〉 = 3/2,
which is a generator of the Mordell–Weil lattice of the fibration. The curve E2,3 is another
free section corresponding to the rational point (1, 1) with the relation E2,3 = −E3,2 in
the Mordell–Weil group.

Figure 3. Fibration 3.
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5. Fibration 5.

An elliptic parameter for Fibration 5 is given by

u5 = y1. (5.1)

It is clear that this elliptic parameter defines a fibration having three singular fibers all
of types IV∗ at u5 = 1,−1 and ∞ (the bold lines in Figure 4) from (2.7). Furthermore
the fibration is induced by the composition of the first projection C1

ω × C2
ω → C1

ω and
the covering map of degree three p1 : C1

ω → P1 in (3.7).
The following simple coordinate change

X = (u2
5 − 1)t, Y = (u2

5 − 1)2y2 (5.2)

converts the equation (2.6) into the Weierstrass equation for Fibration 5

Y 2 = X3 + (u2
5 − 1)4. (5.3)

The curve G1, G2 and G3 correspond to the zero section, 3-torsion rational points
(0, (u2

5 − 1)2) and (0,−(u2
5 − 1)2), respectively (the dotted lines in Figure 4).

Figure 4. Fibration 5.
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6. Fibration 6.

An elliptic parameter for Fibration 6 is given by

u6 = t. (6.1)

Since we gave the divisor of t in (2.7), we know that the zero divisor (u6)0 is the singular
fiber of type I12 (the bold lines in Figure 5) and the polar divisor (u6)∞ is the singular
fiber of type I∗3 (the thin lines in Figure 5). The curves E1,2, E1,3, E

′
2,1 and E′

3,1 (the
dotted lines in Figure 5) are all the sections. Choosing E1,2 as the zero section of the
group structure, we obtain the Weierstrass equation for Fibration 6

Y 2 = X3 − 2(u3
6 − 2)X2 − u6

6X, (6.2)

where the change of variables is given by

X =
t3(y2 + 1)

y2 − 1
, Y =

2t3y1(y2 + 1)
y2 − 1

. (6.3)

Besides the two singular fibers of type I12 at u6 = 0 and of type I∗3 at u6 = ∞, there
are three I1 fibers at u6 = 1, ω and ω2. The Mordell–Weil group of the fibration is
isomorphic to Z/4Z. The curve E1,3 corresponds to the rational point (0, 0) of order
two, and remaining curves E′

2,1 and E′
3,1 correspond to the rational points (u3

6, 2u3
6),

(u3
6,−2u3

6) of order four, respectively.

Figure 5. Fibration 6.
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7. Fibration 4.

To obtain the Weierstrass equation for Fibration 4, we use a 2-neighbor step from
Fibration 3. For more detail about 2-neighbor step, we refer to [5], [9], [12].

Figure 6. 2-neighbor from Fibration 3 to Fibration 4.

We compute explicitly the elements of OX3(F ) where

F = E2,2 + G2 + E1,2 + E′
1,2 + F1 + E′

1,3 + E1,3 + G3 + E3,3 + E′
3,3 + F3

+ E′
3,1 + E3,1 + G1 + E2,1 + E′

2,1 + F2 + E′
2,2 (7.1)

is the class of the fiber of type I18 we are considering. The linear space OX3(F ) is 2-
dimensional, and the ratio of two linearly independent elements is an elliptic parameter
for X3. Since 1 is an element of OX3 , we may find a non-constant element of OX3(F ).
Then it will be an elliptic parameter of Fibration 4. Let us u′4 ∈ OX3(F ) be a non-
constant. The function u′4 has a simple pole along E2,2 and E3,3, which are the zero
section and 2-torsion of Fibration 3. Also, it has a simple pole along G2, the identity
component of the fiber at u3 = 0, a simple pole along E′

3,3, the identity component of
the fiber at u3 = ∞. Therefore we can put

u′4 =
Y
X + A0 + A1u3 + A2u

2
3

u3
, (7.2)

where the variables u3, X, Y are given by (4.1) and (4.5). Assume A1 = 0, since 1 is
an element of OX3(F ). To obtain the coefficients A0 and A2, we look at the order of
vanishing along the non-identity components of fibers at u3 = ∞. The function u′4 does
not have any pole along E′

3,2, which intersects with the section E3,2 of the fibration 3
at u3 = ∞. Hence u′4 has no pole at (X, Y, u3) = (1,−1,∞), and that gives us A2 = 0.
Similarly, the component E′

2,3, which intersects with the section E2,3, gives us A0 = 0.
Consequently, we have a new elliptic parameter
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u′4 =
Y

u3X
, (7.3)

where the variables u3, X, Y are given by (4.1) and (4.5). Solving for Y and substitut-
ing into the Weierstrass equation (4.4), after suitable coordinate changes we have the
following

y2 = x3 +
1
4
(
u′4

2
x− 16

)2
. (7.4)

Although this is a Weierstrass equation for Fibration 4, for latter calculations, we put

u4
′ =

2
u4

, x =
22X

u4
4

, y =
23Y

u6
4

(7.5)

and obtain another Weierstrass equation for Fibration 4

Y 2 = X3 + (X − u6
4)

2. (7.6)

The change of variables is given by

u4 =
t

y1 + y2
, X =

(y2
1 − 1)t3

(y1 + y2)4
, Y =

(y2
1y2 + 2y1 + y2)t6

(y2
2 − 1)(y1 + y2)6

. (7.7)

The fibration has singular fibers of type I18 at u4 = 0 and of type I1 at the zeros of
27u6

4 + 4 = 0. The zero section corresponds to the divisor E′
1,1. The 3-torsion rational

points (0, u6
4) and (0,−u6

4) correspond to the divisors E′
3,2 and E′

2,3, respectively. The
free rational points (2u3

4, u
4
4 + 2u3

4) and (−2u6
4, u

3
4 − 2u3

4) correspond to the divisors E3,2

Figure 7. Fibration 4.
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and E2,3, respectively with the relation E2,3 + E3,2 = E′
2,3 in the Mordell–Weil group.

Since the height of E2,3 is equal to 3/2, E2,3 generates the Mordell–Weil lattice of the
fibration.

8. Fibration 2.

We obtain the following elliptic parameter u′2 for Fibration 2 by a 2-neighbor step
from Fibration 4 (see Figure 8).

Figure 8. 2-neighbor from Fibration 4 to Fibration 2.

u′2 =
u6

4 + X + Y

u2
4X

(8.1)

The variables u4, X, Y are given by (7.7). Then we get the following Weierstrass equation
for Fibration 2.

y2 = x3 + 2
(
u′2

3 − 4
)
x2 + 16x. (8.2)

We put

u′2 =
2
u2

, x =
22X

u4
2

, y =
23Y

u6
2

(8.3)

and obtain another Weierstrass equation for Fibration 4.

Y 2 = X3 − 2(u3
2 − 2)X2 − u8

2X. (8.4)

The change of variables is given by
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u2 =
2t2

(y2 + 1)(y2
1 + 2y1 + 2y2 − 1)

,

X = − 32(y1 − 1)2(y2 − 1)3t2

(y2 + 1)2(y2
1 + 2y1 + 2y2 − 1)4

, (8.5)

Y = −128(y1 − 1)3(y2 − 1)4(y1 + 1)(y1 + y2)
(y2 + 1)2(y2

1 + 2y1 + 2y2 − 1)5
.

The zero divisor (u4)0 is the singular fiber of type I∗12 (the bold lines in Figure 9). The
polar divisor (u4)∞ = G3 + E2,3 + Q2 is the singular fiber of type I3 (the thin lines in
Figure 9), where the divisor Q2 is the lifting of the curve y2

1 +2y1 +2y2−1 = 0 on P1×P1

by the map π in Section 3. Besides these two singular fibers, there are three I1 fibers
at u2 = 1, ω and ω2. The zero section corresponds to the divisor E1,3. The 2-torsion
rational point (0, 0) corresponds to the divisor E3,3.

Figure 9. Fibration 2.

Remark 2. We give a Weierstrass equation for Fibration 6 in Section 6. Compar-
ing the equations (8.4) and (6.2), we know easily that Fibration 2 is a quadratic twist
of Fibration 6. This is the reason why we adopt the equation (8.4) as the Weierstrass
equation for Fibration 2 rather than the equation (8.2).
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