Jacobian fibrations on the singular $K 3$ surface of discriminant 3

By Kazuki Utsumi

(Received July 2, 2014)
(Revised Oct. 15, 2014)

Abstract

In this paper we give the Weierstrass equations and the generators of Mordell-Weil groups for Jacobian fibrations on the singular $K 3$ surface of discriminant 3 .

1. Introduction.

A $K 3$ surface defined over the complex number field whose Picard number equals to maximum possible number 20 is called a singular K3 surface. Shioda and Inose [11] showed that the map which associates a singular $K 3$ surface X with its transcendental lattice T_{X} is a bijective correspondence from the set of singular $K 3$ surfaces onto the set of equivalence classes of positive-definite even integral lattice of rank two with respect to $S L_{2}(\mathbb{Z})$. The discriminant of a singular $K 3$ surface X is the determinant of the Gram matrix of the transcendental lattice T_{X}.

In this paper we study Jacobian fibrations, i.e., elliptic fibrations with a section, on the singular $K 3$ surface X_{3} of discriminant 3, which corresponds to the lattice defined by ($\left.\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and is uniquely determined up to isomorphism. Jacobian fibrations on X_{3} were classified by Nishiyama [8]. He classified all configurations of singular fibers of Jacobian fibrations on X_{3} into 6 classes and determined their Mordell-Weil groups. We give a Weierstrass model of a fibration in each class. More precisely, we state our main theorem.

Theorem 1. Let X_{3} be the singular $K 3$ surface of discriminant 3. For a Jacobian fibration in each class of Nishiyama's list [8, Table 1.1], an elliptic parameter u_{i}, a Weierstrass equation and the generators of the Mordell-Weil group are given by Table 1.

An elliptic parameter of a Jacobian fibration $\pi: X_{3} \rightarrow \mathbb{P}^{1}$ is the pull-back $\pi^{*}\left(u_{i}\right)$ of the affine coordinate u of \mathbb{P}^{1}. We also denote it by u, and regard u as a rational function on X_{3}. The generic fiber of π defines an elliptic curve E over the rational function field $\mathbb{C}(u)$. Therefore, it may be defined by a Weierstrass equation, which is called a Weierstrass equation for the Jacobian fibration π. It is well known that the set of sections of π forms an abelian group that is isomorphic to the Mordell-Weil group $E(\mathbb{C}(u))$. It is also called the Mordell-Weil group of the Jacobian fibration π.

We explain about Table 1. The first column shows the name of each Jacobian fibrations following Nishiyama's notation. The second column shows the configuration of singular fibers. Here, for example, by $2 \mathrm{II}^{*}+\mathrm{IV}$ means that the surface has two singular

[^0]Table 1. Classification of Jacobian fibrations on X_{3}.

No.	sing. fibs	MWG	u_{i}	equation and rational points
1	$2 \mathrm{II}^{*}+\mathrm{IV}$	0	$\frac{2\left(y_{2}+1\right)}{\left(y_{1}-1\right)^{2}}$	$Y^{2}=X^{3}+u_{1}^{5}\left(u_{1}-1\right)^{2}$
O				

fibers of type II^{*} and a singular fiber of type IV (Kodaira's notation [4]). The third column shows the Mordell-Weil group (MWG) of the fibration. The fourth column shows an elliptic parameter u_{i} of the fibration under the singular affine model (2.6) of X_{3}. The index i is the name of the fibration. The last column shows a Weierstrass equation and rational points corresponding to Mordell-Weil generator of the fibration, where O is the rational point corresponding to the zero of MWG. We will give an outline of a way to get these data in the next section after we fix the notation.

Recently, Braun, Kimura and Watari [2] showed that Nishiyama's list also gives the classification of Jacobian fibrations on X_{3} modulo isomorphism. Thus, our and their results answer completely a question of Kuwata and Shioda [7].

2. Notation.

The singular $K 3$ surface X_{3} is known as a generalized Kummer surface constructed as follows. Let C_{ω} be the complex elliptic curve with the fundamental periods 1 and $\omega=e^{2 \pi \sqrt{-1} / 3}$. Let σ be an automorphism of $C_{\omega} \times C_{\omega}$ defined by $\sigma\left(z_{1}, z_{2}\right) \mapsto\left(\omega z_{1}, \omega^{2} z_{2}\right)$. Then the minimal resolution of the quotient $C_{\omega} \times C_{\omega} /\langle\sigma\rangle$ is isomorphic to the singular $K 3$ surface X_{3} (see [11, Lemma 5.1]). The automorphism σ has 9 fixed points $\left(v_{i}, v_{j}\right)(1 \leq$ $i, j \leq 3$), where $\left\{v_{i}\right\}$ are the fixed points of the automorphism σ_{1} of C_{ω} defined by $\sigma_{1}(z)=\omega z$. These 9 points $\left(v_{i}, v_{j}\right)$ correspond to the singular points $p_{i j}$ of the quotient $C_{\omega} \times C_{\omega} /\langle\sigma\rangle$. The minimal resolution X_{3} of $C_{\omega} \times C_{\omega} /\langle\sigma\rangle$ is obtained by replacing each $p_{i j}$ by 2 non-singular rational curves $E_{i, j}$ and $E_{i, j}^{\prime}$ with $E_{i, j} \cdot E_{i, j}^{\prime}=1$. Moreover, X_{3} contains 6 non-singular rational curves, i.e. the image F_{i} (or G_{j}) of $\left\{v_{i}\right\} \times C_{\omega}$ (or $C_{\omega} \times\left\{v_{j}\right\}$) in X_{3}. We have the following intersection numbers.

$$
\begin{array}{cl}
F_{i}^{2}=G_{i}^{2}=E_{i, j}^{2}=E_{i, j}^{\prime 2}=-2, & F_{i} \cdot E_{j, k}=G_{i} \cdot E_{j, k}^{\prime}=F_{i} \cdot G_{j}=0, \tag{2.1}\\
E_{i, j} \cdot E_{k, l}^{\prime}=\delta_{i, k} \cdot \delta_{j, l}, & F_{i} \cdot E_{j, k}^{\prime}=G_{i} \cdot E_{k, j}=\delta_{i, j} .
\end{array}
$$

These 24 curves on X_{3} form the configuration of Figure 1.

Figure 1. (-2)-curves.
It is well known that the elliptic curve C_{ω} has the following Weierstrass form

$$
\begin{equation*}
C_{\omega}: y^{2}=x^{3}+1 . \tag{2.2}
\end{equation*}
$$

We denote each factor of $C_{\omega} \times C_{\omega}$ by

$$
\begin{equation*}
C_{\omega}^{1}: y_{1}^{2}=x_{1}^{3}+1, \quad C_{\omega}^{2}: y_{2}^{2}=x_{2}^{3}+1 . \tag{2.3}
\end{equation*}
$$

Then the automorphism σ is written by

$$
\begin{align*}
\sigma: & C_{\omega}^{1} \times C_{\omega}^{2} \rightarrow C_{\omega}^{1} \times C_{\omega}^{2} \\
\quad\left(x_{1}, y_{1}, x_{2}, y_{2}\right) & \mapsto\left(\omega x_{1}, y_{1}, \omega^{2} x_{2}, y_{2}\right) . \tag{2.4}
\end{align*}
$$

The function field $\mathbb{C}\left(X_{3}\right)$ is equal to the invariant subfield of the function field $\mathbb{C}\left(C_{\omega}^{1} \times\right.$ $\left.C_{\omega}^{2}\right)=\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ under the automorphism σ. Then we have

$$
\begin{equation*}
\mathbb{C}\left(X_{3}\right)=\mathbb{C}\left(y_{1}, y_{2}, t\right), \quad t=x_{1} x_{2}, \tag{2.5}
\end{equation*}
$$

where y_{1}, y_{2}, and t are naturally regarded as functions on X_{3} with the relation

$$
\begin{equation*}
t^{3}=\left(y_{1}^{2}-1\right)\left(y_{2}^{2}-1\right) \tag{2.6}
\end{equation*}
$$

This gives a singular affine model of X_{3}. We start from the equation to obtain a Weierstrass form for each Jacobian fibration on X_{3}. Under the above notation, we see that the divisors of typical functions are as follows.

$$
\begin{align*}
\left(y_{1}-1\right)= & 3 F_{2}+2\left(E_{2,1}^{\prime}+E_{2,2}^{\prime}+E_{2,3}^{\prime}\right)+E_{2,1}+E_{2,2}+E_{2,3} \\
& -\left(3 F_{1}+2\left(E_{1,1}^{\prime}+E_{1,2}^{\prime}+E_{1,3}^{\prime}\right)+E_{1,1}+E_{1,2}+E_{1,3}\right) \\
\left(y_{1}+1\right)= & 3 F_{3}+2\left(E_{3,1}^{\prime}+E_{3,2}^{\prime}+E_{3,3}^{\prime}\right)+E_{3,1}+E_{3,2}+E_{3,3} \\
& -\left(3 F_{1}+2\left(E_{1,1}^{\prime}+E_{1,2}^{\prime}+E_{1,3}^{\prime}\right)+E_{1,1}+E_{1,2}+E_{1,3}\right) \\
\left(y_{2}-1\right)= & 3 G_{2}+2\left(E_{1,2}+E_{2,2}+E_{3,2}\right)+E_{1,2}^{\prime}+E_{2,2}^{\prime}+E_{3,2}^{\prime} \\
& -\left(3 G_{1}+2\left(E_{1,1}+E_{2,1}+E_{3,1}\right)+E_{1,1}^{\prime}+E_{2,1}^{\prime}+E_{3,1}^{\prime}\right) \tag{2.7}\\
\left(y_{2}+1\right)= & 3 G_{3}+2\left(E_{1,3}+E_{2,3}+E_{3,3}\right)+E_{1,3}^{\prime}+E_{2,3}^{\prime}+E_{3,3}^{\prime} \\
& -\left(3 G_{1}+2\left(E_{1,1}+E_{2,1}+E_{3,1}\right)+E_{1,1}^{\prime}+E_{2,1}^{\prime}+E_{3,1}^{\prime}\right) \\
(t)= & F_{2}+E_{2,3}^{\prime}+E_{2,3}+G_{3}+E_{3,3}+E_{3,3}^{\prime}+F_{3}+E_{3,2}^{\prime}+E_{3,2}+G_{2}+E_{2,2}+E_{2,2}^{\prime} \\
& -\left(E_{2,1}+E_{3,1}+2\left(G_{1}+E_{1,1}+E_{1,1}^{\prime}+F_{1}\right)+E_{1,2}^{\prime}+E_{1,3}^{\prime}\right) .
\end{align*}
$$

For a Jacobian fibration in each class of Table 1, we compute a Weierstrass equation by using the following two methods.

The first method is the elimination method. Theoretically, constructing a Jacobian fibration on a $K 3$ surface is done by finding a divisor that has the same type as a singular fiber in the Kodaira's list (see [4]). In practice, however, we need to find two divisors, one for the fiber at $u=0$, and the other for the fiber at $u=\infty$, to write down an actual elliptic parameter u. Once an elliptic parameter is found, we want to find a change of variables that converts the defining equation to a Weierstrass form. Since an elliptic parameter u is a rational function, we can write $u=f / g$ for some $f, g \in \mathbb{C}\left[t, y_{1}, y_{2}\right]$. Thus, we can eliminate one variable from the equations (2.6) and $g u-f=0$. If such an equation can be converted to the form $y^{2}=$ (quartic polynomial) by a simple change of coordinates, we can transform it to a Weierstrass form by using a standard algorithm (see for example [1] or [3]). We use this method to compute Weierstrass equations for Fibrations 1, 3, 5 and 6 in Sections 3-6.

For Fibrations 2 and 4, it is difficult to find such two divisors described as above. Thus, we use the other method for them, which is called 2-neighbor step by Noam Elkies. This is a technique to transform a Weierstrass equation for a Jacobian fibration to another for a distinct Jacobian fibration. Using this, we obtain a Weierstrass equation for Fibration 4 from Fibration 3 in Section 7. Moreover, we can transform it to a Weierstrass equation for Fibration 2 in Section 8.

Every Jacobian fibration except for Fibration 1 has nontrivial Mordell-Weil group. In each case, we can easily write down the torsion part of the Mordell-Weil group as rational points of the elliptic curve defined over $\mathbb{C}(u)$ by the Weierstrass equation. To determine the free generators of Fibrations 3 and 4, we compute the height paring by using the method in $[\mathbf{1 0}]$ from the intersection numbers (2.1) and establish some changes of variables.

3. Fibration 1.

An elliptic parameter for Fibration 1 is given by

$$
\begin{equation*}
u_{1}=\frac{2\left(y_{1}+1\right)}{\left(y_{1}-1\right)^{2}} \tag{3.1}
\end{equation*}
$$

The divisor of u_{1} is given by

$$
\begin{align*}
\left(u_{1}\right)= & E_{3,3}^{\prime}+2 E_{3,3}+3 G_{3}+4 E_{1,3}+5 E_{1,3}^{\prime}+6 F_{1}+3 E_{1,1}^{\prime}+4 E_{1,2}^{\prime}+2 E_{1,2} \\
& -\left(E_{3,1}^{\prime}+2 E_{3,1}+3 G_{1}+4 E_{2,1}+5 E_{2,1}^{\prime}+6 F_{2}+3 E_{2,3}^{\prime}+4 E_{2,2}^{\prime}+2 E_{2,2}\right) \tag{3.2}
\end{align*}
$$

The zero divisor $\left(u_{1}\right)_{0}$ (the bold lines in Figure 2) and the polar divisor $\left(u_{1}\right)_{\infty}$ (the thin lines in Figure 2) are the singular fibers both of type II^{*}.

Eliminating the variable y_{2} from (2.6) and (3.1), we obtain the following equation

$$
\begin{equation*}
4 t^{3}=u_{1}\left(y_{1}+1\right)\left(y_{1}-1\right)^{3}\left(u_{1} y_{1}^{2}-2 u_{1} y_{1}+u_{1}-4\right) \tag{3.3}
\end{equation*}
$$

which defines a plane curve over $\mathbb{C}\left(u_{1}\right)$ with a singularity at $\left(t, y_{1}\right)=(0,1)$. Blowing up by $t=v\left(y_{1}-1\right)$, we have the following equation

$$
\begin{equation*}
4 v^{3}=u_{1}\left(y_{1}+1\right)\left(u_{1} y_{1}^{2}-2 u_{1} y_{1}+u_{1}-4\right) \tag{3.4}
\end{equation*}
$$

which defines a nonsingular plane cubic curve over $\mathbb{C}\left(u_{1}\right)$ with a rational point $\left(v, y_{1}\right)=$ $(0,-1)$. Then we can convert it into a Weierstrass form (see [1] or [3]). Since the rational point $\left(v, y_{1}\right)=(0,-1)$ corresponds to the divisor F_{3} (the dotted line in Figure $2)$, choosing it as the zero section of the group structure, we obtain the Weierstrass equation for Fibration 1

$$
\begin{equation*}
Y^{2}=X^{3}+u_{1}^{5}\left(u_{1}-1\right)^{2} \tag{3.5}
\end{equation*}
$$

where the change of variables is given by

$$
\begin{equation*}
X=\frac{\sqrt[3]{4}\left(u_{1}-1\right) u_{1} t}{\left(y_{1}^{2}-1\right)}, \quad Y=-\frac{u_{1}^{2}\left(u_{1}-1\right)\left(u_{1} y_{1}-u_{1}+2\right)}{y_{1}+1} \tag{3.6}
\end{equation*}
$$

Besides the two singular fibers of type $I I^{*}$ at $u_{1}=0$ and ∞, there is one singular fiber of type IV at $u_{1}=1$. It is the divisor $E_{3,2}+E_{3,2}^{\prime}+Q_{1}$ (the long dashed dotted lines in Figure 2), where Q_{1} is a (-2)-curve on X_{3} arising from a curve on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ below.

Let $p_{j}: C_{\omega}^{j} \rightarrow \mathbb{P}^{1}(j=1,2)$ be the projection given by

$$
\begin{align*}
p_{j}: \quad C_{\omega}^{j} & \rightarrow \quad \mathbb{P}^{1} \\
\left(x_{j}: y_{j}: z_{j}\right) & \mapsto \begin{cases}\left(y_{j}: z_{j}\right) & \text { if } z_{j} \neq 0 \\
(1: 0) & \text { if } z_{j}=0\end{cases} \tag{3.7}
\end{align*}
$$

Then the map $p_{1} \times p_{2}: C_{\omega}^{1} \times C_{\omega}^{2} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ factors through $\bar{\pi}: C_{\omega}^{1} \times C_{\omega}^{2} / \sigma \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. Let π be the morphism of degree three from X_{3} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ that makes the following diagram commutative:

It is easy to verify that the equation $u_{1}=1$ means

$$
\begin{equation*}
y_{1}^{2}-2 y_{1}-2 y_{2}-1=0 \tag{3.8}
\end{equation*}
$$

from (3.1). This equation defines a curve on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then it lifts to the (-2)-curve Q_{1} on X_{3} via the map π.

Figure 2. Fibration 1.

4. Fibration 3.

An elliptic parameter for Fibration 3 is given by

$$
\begin{equation*}
u_{3}=\frac{t}{y_{1}^{2}-1} . \tag{4.1}
\end{equation*}
$$

The divisor of u_{3} is given by

$$
\begin{align*}
\left(u_{3}\right)= & G_{2}+2 E_{1,2}+3 E_{1,2}^{\prime}+4 F_{1}+3 E_{1,1}^{\prime}+2 E_{1,3}+G_{3}+3 E_{1,2}^{\prime} \\
& -\left(E_{2,2}^{\prime}+E_{2,3}^{\prime}+2\left(F_{2}+E_{2,1}^{\prime}+E_{2,1}+G_{1}+E_{3,1}+E_{3,1}^{\prime}+F_{3}\right)+E_{3,2}^{\prime}+E_{3,3}^{\prime}\right), \tag{4.2}
\end{align*}
$$

which is indicated in Figure 3. The zero divisor $\left(u_{3}\right)_{0}$ is the singular fiber of type III* (the bold lines) and the polar divisor $\left(u_{3}\right)_{\infty}$ is the singular fiber of type I_{6}^{*} (the thin lines). The curves $E_{2,2}, E_{2,3}, E_{3,2}$ and $E_{3,3}$ (the dotted lines) are all the sections.

Eliminating the variable t from (2.6) and (4.1), we have the following equation

$$
\begin{equation*}
y_{2}^{2}=u_{3}^{3}\left(y_{1}^{2}-1\right)^{2}+1, \tag{4.3}
\end{equation*}
$$

which has a rational point $\left(y_{1}, y_{2}\right)=(1,1)$ corresponding to the curve $E_{2,2}$. Thus, choosing $E_{2,2}$ as the zero section of the group structure, we obtain the Weierstrass equation for Fibration 3

$$
\begin{equation*}
Y^{2}=X^{3}+4 u_{3}^{3} X^{2}-4 u_{3}^{3} X \tag{4.4}
\end{equation*}
$$

where the change of variables is given by

$$
\begin{equation*}
X=\frac{2\left(y_{2}+1\right)}{\left(y_{1}-1\right)^{2}}, \quad Y=\frac{4\left(u_{3}^{3}\left(y_{1}+1\right)\left(y_{1}-1\right)^{2}+y_{2}+1\right)}{\left(y_{1}-1\right)^{3}} . \tag{4.5}
\end{equation*}
$$

Besides the above two singular fibers of types III^{*} and I_{6}^{*}, the fibration has three I_{1} fibers at $u_{3}=-1,-\omega$ and $-\omega^{2}$.

The 2-torsion rational point $(X, Y)=(0,0)$ corresponds to the curve $E_{3,3}$. The rational point $(X, Y)=(1,-1)$ corresponds to the curve $E_{3,2}$ of height $\left\langle E_{3,2}, E_{3,2}\right\rangle=3 / 2$, which is a generator of the Mordell-Weil lattice of the fibration. The curve $E_{2,3}$ is another free section corresponding to the rational point $(1,1)$ with the relation $E_{2,3}=-E_{3,2}$ in the Mordell-Weil group.

Figure 3. Fibration 3.

5. Fibration 5.

An elliptic parameter for Fibration 5 is given by

$$
\begin{equation*}
u_{5}=y_{1} . \tag{5.1}
\end{equation*}
$$

It is clear that this elliptic parameter defines a fibration having three singular fibers all of types IV* * at $u_{5}=1,-1$ and ∞ (the bold lines in Figure 4) from (2.7). Furthermore the fibration is induced by the composition of the first projection $C_{\omega}^{1} \times C_{\omega}^{2} \rightarrow C_{\omega}^{1}$ and the covering map of degree three $p_{1}: C_{\omega}^{1} \rightarrow \mathbb{P}^{1}$ in (3.7).

The following simple coordinate change

$$
\begin{equation*}
X=\left(u_{5}^{2}-1\right) t, \quad Y=\left(u_{5}^{2}-1\right)^{2} y_{2} \tag{5.2}
\end{equation*}
$$

converts the equation (2.6) into the Weierstrass equation for Fibration 5

$$
\begin{equation*}
Y^{2}=X^{3}+\left(u_{5}^{2}-1\right)^{4} . \tag{5.3}
\end{equation*}
$$

The curve G_{1}, G_{2} and G_{3} correspond to the zero section, 3-torsion rational points $\left(0,\left(u_{5}^{2}-1\right)^{2}\right)$ and $\left(0,-\left(u_{5}^{2}-1\right)^{2}\right)$, respectively (the dotted lines in Figure 4).

Figure 4. Fibration 5.

6. Fibration 6.

An elliptic parameter for Fibration 6 is given by

$$
\begin{equation*}
u_{6}=t . \tag{6.1}
\end{equation*}
$$

Since we gave the divisor of t in (2.7), we know that the zero divisor $\left(u_{6}\right)_{0}$ is the singular fiber of type I_{12} (the bold lines in Figure 5) and the polar divisor $\left(u_{6}\right)_{\infty}$ is the singular fiber of type I_{3}^{*} (the thin lines in Figure 5). The curves $E_{1,2}, E_{1,3}, E_{2,1}^{\prime}$ and $E_{3,1}^{\prime}$ (the dotted lines in Figure 5) are all the sections. Choosing $E_{1,2}$ as the zero section of the group structure, we obtain the Weierstrass equation for Fibration 6

$$
\begin{equation*}
Y^{2}=X^{3}-2\left(u_{6}^{3}-2\right) X^{2}-u_{6}^{6} X, \tag{6.2}
\end{equation*}
$$

where the change of variables is given by

$$
\begin{equation*}
X=\frac{t^{3}\left(y_{2}+1\right)}{y_{2}-1}, \quad Y=\frac{2 t^{3} y_{1}\left(y_{2}+1\right)}{y_{2}-1} . \tag{6.3}
\end{equation*}
$$

Besides the two singular fibers of type I_{12} at $u_{6}=0$ and of type I_{3}^{*} at $u_{6}=\infty$, there are three I_{1} fibers at $u_{6}=1, \omega$ and ω^{2}. The Mordell-Weil group of the fibration is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$. The curve $E_{1,3}$ corresponds to the rational point $(0,0)$ of order two, and remaining curves $E_{2,1}^{\prime}$ and $E_{3,1}^{\prime}$ correspond to the rational points $\left(u_{6}^{3}, 2 u_{6}^{3}\right)$, $\left(u_{6}^{3},-2 u_{6}^{3}\right)$ of order four, respectively.

Figure 5. Fibration 6.

7. Fibration 4.

To obtain the Weierstrass equation for Fibration 4, we use a 2 -neighbor step from Fibration 3. For more detail about 2-neighbor step, we refer to [5], [9], [12].

Figure 6. 2-neighbor from Fibration 3 to Fibration 4.
We compute explicitly the elements of $\mathcal{O}_{X_{3}}(F)$ where

$$
\begin{align*}
F= & E_{2,2}+G_{2}+E_{1,2}+E_{1,2}^{\prime}+F_{1}+E_{1,3}^{\prime}+E_{1,3}+G_{3}+E_{3,3}+E_{3,3}^{\prime}+F_{3} \\
& +E_{3,1}^{\prime}+E_{3,1}+G_{1}+E_{2,1}+E_{2,1}^{\prime}+F_{2}+E_{2,2}^{\prime} \tag{7.1}
\end{align*}
$$

is the class of the fiber of type I_{18} we are considering. The linear space $\mathcal{O}_{X_{3}}(F)$ is 2dimensional, and the ratio of two linearly independent elements is an elliptic parameter for X_{3}. Since 1 is an element of $\mathcal{O}_{X_{3}}$, we may find a non-constant element of $\mathcal{O}_{X_{3}}(F)$. Then it will be an elliptic parameter of Fibration 4. Let us $u_{4}^{\prime} \in \mathcal{O}_{X_{3}}(F)$ be a nonconstant. The function u_{4}^{\prime} has a simple pole along $E_{2,2}$ and $E_{3,3}$, which are the zero section and 2 -torsion of Fibration 3. Also, it has a simple pole along G_{2}, the identity component of the fiber at $u_{3}=0$, a simple pole along $E_{3,3}^{\prime}$, the identity component of the fiber at $u_{3}=\infty$. Therefore we can put

$$
\begin{equation*}
u_{4}^{\prime}=\frac{\frac{Y}{X}+A_{0}+A_{1} u_{3}+A_{2} u_{3}^{2}}{u_{3}}, \tag{7.2}
\end{equation*}
$$

where the variables u_{3}, X, Y are given by (4.1) and (4.5). Assume $A_{1}=0$, since 1 is an element of $\mathcal{O}_{X_{3}}(F)$. To obtain the coefficients A_{0} and A_{2}, we look at the order of vanishing along the non-identity components of fibers at $u_{3}=\infty$. The function u_{4}^{\prime} does not have any pole along $E_{3,2}^{\prime}$, which intersects with the section $E_{3,2}$ of the fibration 3 at $u_{3}=\infty$. Hence u_{4}^{\prime} has no pole at $\left(X, Y, u_{3}\right)=(1,-1, \infty)$, and that gives us $A_{2}=0$. Similarly, the component $E_{2,3}^{\prime}$, which intersects with the section $E_{2,3}$, gives us $A_{0}=0$. Consequently, we have a new elliptic parameter

$$
\begin{equation*}
u_{4}^{\prime}=\frac{Y}{u_{3} X}, \tag{7.3}
\end{equation*}
$$

where the variables u_{3}, X, Y are given by (4.1) and (4.5). Solving for Y and substituting into the Weierstrass equation (4.4), after suitable coordinate changes we have the following

$$
\begin{equation*}
y^{2}=x^{3}+\frac{1}{4}\left(u_{4}^{\prime 2} x-16\right)^{2} . \tag{7.4}
\end{equation*}
$$

Although this is a Weierstrass equation for Fibration 4, for latter calculations, we put

$$
\begin{equation*}
u_{4}^{\prime}=\frac{2}{u_{4}}, x=\frac{2^{2} X}{u_{4}^{4}}, y=\frac{2^{3} Y}{u_{4}^{6}} \tag{7.5}
\end{equation*}
$$

and obtain another Weierstrass equation for Fibration 4

$$
\begin{equation*}
Y^{2}=X^{3}+\left(X-u_{4}^{6}\right)^{2} \tag{7.6}
\end{equation*}
$$

The change of variables is given by

$$
\begin{equation*}
u_{4}=\frac{t}{y_{1}+y_{2}}, \quad X=\frac{\left(y_{1}^{2}-1\right) t^{3}}{\left(y_{1}+y_{2}\right)^{4}}, \quad Y=\frac{\left(y_{1}^{2} y_{2}+2 y_{1}+y_{2}\right) t^{6}}{\left(y_{2}^{2}-1\right)\left(y_{1}+y_{2}\right)^{6}} . \tag{7.7}
\end{equation*}
$$

The fibration has singular fibers of type I_{18} at $u_{4}=0$ and of type I_{1} at the zeros of $27 u_{4}^{6}+4=0$. The zero section corresponds to the divisor $E_{1,1}^{\prime}$. The 3 -torsion rational points $\left(0, u_{4}^{6}\right)$ and $\left(0,-u_{4}^{6}\right)$ correspond to the divisors $E_{3,2}^{\prime}$ and $E_{2,3}^{\prime}$, respectively. The free rational points $\left(2 u_{4}^{3}, u_{4}^{4}+2 u_{4}^{3}\right)$ and $\left(-2 u_{4}^{6}, u_{4}^{3}-2 u_{4}^{3}\right)$ correspond to the divisors $E_{3,2}$

Figure 7. Fibration 4.
and $E_{2,3}$, respectively with the relation $E_{2,3}+E_{3,2}=E_{2,3}^{\prime}$ in the Mordell-Weil group. Since the height of $E_{2,3}$ is equal to $3 / 2, E_{2,3}$ generates the Mordell-Weil lattice of the fibration.

8. Fibration 2.

We obtain the following elliptic parameter u_{2}^{\prime} for Fibration 2 by a 2-neighbor step from Fibration 4 (see Figure 8).

Figure 8. 2-neighbor from Fibration 4 to Fibration 2.

$$
\begin{equation*}
u_{2}^{\prime}=\frac{u_{4}^{6}+X+Y}{u_{4}^{2} X} \tag{8.1}
\end{equation*}
$$

The variables u_{4}, X, Y are given by (7.7). Then we get the following Weierstrass equation for Fibration 2.

$$
\begin{equation*}
y^{2}=x^{3}+2\left(u_{2}^{\prime 3}-4\right) x^{2}+16 x . \tag{8.2}
\end{equation*}
$$

We put

$$
\begin{equation*}
u_{2}^{\prime}=\frac{2}{u_{2}}, x=\frac{2^{2} X}{u_{2}^{4}}, y=\frac{2^{3} Y}{u_{2}^{6}} \tag{8.3}
\end{equation*}
$$

and obtain another Weierstrass equation for Fibration 4.

$$
\begin{equation*}
Y^{2}=X^{3}-2\left(u_{2}^{3}-2\right) X^{2}-u_{2}^{8} X \tag{8.4}
\end{equation*}
$$

The change of variables is given by

$$
\begin{align*}
u_{2} & =\frac{2 t^{2}}{\left(y_{2}+1\right)\left(y_{1}^{2}+2 y_{1}+2 y_{2}-1\right)} \\
X & =-\frac{32\left(y_{1}-1\right)^{2}\left(y_{2}-1\right)^{3} t^{2}}{\left(y_{2}+1\right)^{2}\left(y_{1}^{2}+2 y_{1}+2 y_{2}-1\right)^{4}}, \tag{8.5}\\
Y & =-\frac{128\left(y_{1}-1\right)^{3}\left(y_{2}-1\right)^{4}\left(y_{1}+1\right)\left(y_{1}+y_{2}\right)}{\left(y_{2}+1\right)^{2}\left(y_{1}^{2}+2 y_{1}+2 y_{2}-1\right)^{5}} .
\end{align*}
$$

The zero divisor $\left(u_{4}\right)_{0}$ is the singular fiber of type I_{12}^{*} (the bold lines in Figure 9). The polar divisor $\left(u_{4}\right)_{\infty}=G_{3}+E_{2,3}+Q_{2}$ is the singular fiber of type I_{3} (the thin lines in Figure 9), where the divisor Q_{2} is the lifting of the curve $y_{1}^{2}+2 y_{1}+2 y_{2}-1=0$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ by the map π in Section 3. Besides these two singular fibers, there are three I_{1} fibers at $u_{2}=1, \omega$ and ω^{2}. The zero section corresponds to the divisor $E_{1,3}$. The 2-torsion rational point $(0,0)$ corresponds to the divisor $E_{3,3}$.

Figure 9. Fibration 2.

Remark 2. We give a Weierstrass equation for Fibration 6 in Section 6. Comparing the equations (8.4) and (6.2), we know easily that Fibration 2 is a quadratic twist of Fibration 6. This is the reason why we adopt the equation (8.4) as the Weierstrass equation for Fibration 2 rather than the equation (8.2).

Acknowledgements. The author would like to thank the referee for his/her profitable comments and corrections. The computer algebra system Maple and Maple Library "Elliptic Surface Calculator" written by Professor Masato Kuwata [6] were used in the calculation for this paper. The author would also like to thank the developers of these programs.

References

[1] S. Y. An, S. Y. Kim, D. C. Marshall, S. H. Marshall, W. G. McCallum and A. R. Perlis, Jacobians of genus one curves, J. Number Theory, 90 (2001), 304-315.
[2] A. P. Braun, Y. Kimura and T. Watari, On the classification of elliptic fibrations modulo isomorphism on $K 3$ surfaces with large Picard number, arXiv:1312.4421.
[3] I. Connell, Addendum to a paper of K. Harada and M.-L. Lang, Some elliptic curves arising from the Leech lattice [J. Algebra, 125 (1989), 298-310], J. Algebra, 145 (1992), 463-467.
[4] K. Kodaira, On compact analytic surfaces II, Ann. of Math., 77 (1963), 563-626.
[5] A. Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, J. Algebraic Geom., 23 (2014), 599-667.
[6] M. Kuwata, Maple Library "Elliptic Surface Calculator", http://c-faculty.chuo-u.ac.jp/ ${ }^{\text {kuwata/ }}$ 2009-10/ESC.html.
[7] M. Kuwata and T. Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface, Algebraic geometry in East Asia-Hanoi, 2005, 177-215, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008.
[8] K. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups, Japan. J. Math. (N.S.), 22 (1996), 293-347.
[9] T. Sengupta, Elliptic fibrations on supersingular K3 surface with Artin invariant 1 in characteristic 3, arXiv:1204.6478.
[10] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[11] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, 119-136. Iwanami Shoten, Tokyo, 1977.
[12] K. Utsumi, Weierstrass equations for Jacobian fibrations on a certain K3 surface, Hiroshima Math. J., 42 (2012), 355-383.

Kazuki Utsumi
College of Science and Engineering Ritsumeikan University
1-1-1 Noji-higashi, Kusatsu
Shiga 525-8577, Japan
E-mail: kutsumi@fc.ritsumei.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 14J28; Secondary 14J27, 14H52.
 Key Words and Phrases. K3 surface, elliptic surface, elliptic curve.

