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Abstract. Let K be the result of a 1-fusion (band sum) of a knot k and a
distant trivial knot in S3. From results of D. Gabai and of M. G. Scharlemann,
we know that the genus of K is at least that of k and that equality holds if and
only if the band sum is, in fact, a connected sum (in which case K is ambient
isotopic to k). In this paper, we consider a generalization of this result to an
m-fusion of a link and a distant trivial link with m-components.

1. Introduction.

All links are assumed to be ordered and oriented, and they are considered up to
ambient isotopy in the oriented 3-sphere S3.

A (m-)ribbon fusion on a link ` is an m-fusion of ` and an m-component trivial link
O which is split from ` and each of whose components is attached by a unique band to a
component of ` (see the left side of Figure 1). Note that any ribbon knot can be obtained
from the trivial knot by a ribbon fusion.

The m-ribbon fusion is called a (m-)simple ribbon fusion (or an SR-fusion) if O
bounds m mutually disjoint disks D which are split from ` such that each disk of D
intersects with one of the bands B for the ribbon fusion exactly once and each band of
B intersects with one disk of D exactly once (see the center of Figure 1).

The following is the precise definition of the simple ribbon fusion.
Let ` be a link and O = O1 ∪ · · · ∪ Om the m-component trivial link which is split

from `. Let D = D1 ∪ · · · ∪Dm be a disjoint union of non-singular disks with ∂Di = Oi

and Di ∩ ` = ∅ (i = 1, . . . , m), and let B = B1 ∪ · · · ∪ Bm be a disjoint union of disks,
called bands, for an m-fusion of ` and O satisfying the following:

( i ) Bi ∩ ` = ∂Bi ∩ ` = {a single arc},
( ii ) Bi ∩ O = ∂Bi ∩Oi = {a single arc} and
(iii) Bi ∩ int D = Bi ∩ int Dπ(i) = {a single arc of ribbon type} (see the right side of

Figure 1), where π is a certain permutation on {1, 2, . . . , m}.
Let L be a link obtained from ` and O by the m-fusion along B, i.e., L = (` ∪ O ∪ ∂B)
−int(B∩`)− int(B∩O). Then we say that L is obtained from ` by a simple ribbon fusion
or an SR-fusion (with respect to D ∪ B).
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Figure 1.

The genus of an oriented surface is the sum of genera of its connected components.
A Seifert surface E for a link ` is a compact non-singular oriented surface in S3 with no
closed components such that ∂E = `. The genus g(`) of a link ` is the minimal number
of genera of all the Seifert surfaces for `. From results of D. Gabai [1] and of M.G.
Scharlemann [5], we know that if a knot K is obtained from a knot k by a 1-ribbon
fusion, then the genus of K is at least that of k, and that equality holds if and only if
the band sum is a connected sum, i.e., K is ambient isotopic to k. However, we cannot
directly generalize the result to an m-ribbon fusion on a link, since we have shown in
[3] that there exists a 2-(simple) ribbon fusion on a link ` yielding a link L which is not
ambient isotopic to ` but satifies that g(L) = g(`) (Figure 2).

Figure 2.

Here we have the following refinement of the genus by C. Goldberg.

Definition (Goldberg [2]). The disconnectivity number of `, denoted by ν(`), is
the maximal number of connected components of all the Seifert surfaces for `. For each
integer r (1 ≤ r ≤ ν(`)), the r-th genus of `, denoted by gr(`), is the minimal number of
genera of all the Seifert surfaces for ` with r connected components.

Note that there exists a Seifert surface E for ` with ](E) = r for each integer
r (1 ≤ r ≤ ν(`)), where ](E) is the number of the connected components of E. From
the definition, we see that g1(`) is the genus of `, that 1 ≤ ν(`) ≤ ](`), and that
0 ≤ g(`) = g1(`) ≤ g2(`) ≤ · · · ≤ gν(`)(`), where ](`) is the number of components of
`. For the m-component trivial link O, we have that ν(O) = m and that gr(O) = 0 for
each integer r (1 ≤ r ≤ m).
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An SR-fusion is trivial if O bounds a mutually disjoint disks
⋃

∆i such that ∂∆i =
Oi and int∆i does not intersect with L ∪ B (note that

⋃
∆i may intersect with D and

see Figure 3 for example). Since L is ambient isotopic to ` through
⋃

∆i ∪ B, we know
that a trivial SR-fusion does not change the link type.

Figure 3. A trivial link and bands giving a trivial SR-fusion on a link ` = `1 ∪ `2.

Theorem 1.1. Let L be a link obtained from a link ` by an SR-fusion. Then
we have that ν(L) ≤ ν(`) and that gr(L) ≥ gr(`) for each integer r (1 ≤ r ≤ ν(L)).
Moreover, the following three conditions are equivalent :

(1) the SR-fusion is trivial,
(2) L is ambient isotopic to ` and
(3) ν(L) = ν(`) and gν(L)(L) = gν(`)(`).

As for the disconnectivity number, there is an SR-fusion which realizes arbitrarily
high degeneration.

Theorem 1.2. For any pair of positive integers v and w, there exist two links `

and L such that ν(`) = v + w, ν(L) = v, and L can be obtained from ` by an SR-fusion.

Proofs are done by standard cut-and-paste arguments. To prove Theorem 1.1, we
rename the indices of the components of O, D, and B. From the definition of an SR-
fusion, there is a permutation π such that a disk Di of D intersects with a band Bπ(i)

of B exactly once and a band Bi of B intersects with a disk Dπ−1(i) of D exactly once.
Since every permutation is a product of cyclic permutations, we can rename the indices
of the components of O, D, and B as

O =
n⋃

k=1

Ok =
n⋃

k=1

( mk⋃

i=1

Ok
i

)
, D =

n⋃

k=1

Dk =
n⋃

k=1

( mk⋃

i=1

Dk
i

)
and

B =
n⋃

k=1

Bk =
n⋃

k=1

( mk⋃

i=1

Bk
i

)
, where

(1) ∂Dk
i = Ok

i ,
(2) Bk

i ∩ O = ∂Bk
i ∩Ok

i and
(3) Bk

i ∩ intD = Bk
i ∩ int Dk

i+1.

We consider the lower index modulo mk. We call each Dk∪Bk the (k-th) elementary
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component of the SR-fusion. Let Ḋk
i and Ḃk

i be disks and f : ∪i,k(Ḋk
i ∪ Ḃk

i ) → S3 an
immersion such that f(Ḋk

i ) = Dk
i and f(Ḃk

i ) = Bk
i . In the following of this paper, we

omit the upper index k of anything if it also has a lower index and it is clear in which
elementary component we are discussing.

Take an elementary component Dk ∪ Bk. Denote the arc of intDi ∩ Bi−1 by αi,
and the pre-image of αi on Ḋi (resp. Ḃi−1) by α̇i (resp. α̈i). Let Bi,1 and Bi,2 be the
subdisks of Bi such that Bi,1 ∪ Bi,2 = Bi, Bi,1 ∩ Bi,2 = αi+1, and Bi,1 ∩ ∂Di 6= ∅ as
illustrated in Figure 4 (i = 1, . . . , mk).

Figure 4.

2. Standard position for a Seifert surface of a link obtained by an
SR-fusion.

Let L be a link obtained from a link ` by an SR-fusion with respect to D∪B and E

a Seifert surface for L. We may assume that intE and int(D∪B) intersects transversely.
Then the set Si of the pre-images on Ḋi∪Ḃi of the intersections of E and Di∪Bi consists
of arcs and loops which are mutually disjoint and simple. Let S = ∪k Sk = ∪k (∪iSi).
Define the complexity of E as the lexicographically ordered set (s1, s2, s3), where s1

(resp. s2) is the number of arcs (resp. loops) of S and s3 is the number of triple points
of E ∪ (D ∪ B).

We say that E is in standard position (with respect to D∪B) if Si consists of a single
arc γ̇i on int Ḋi and (may be no) loops on int Ḋi for any pair of i and k such that:

(St1) γ̇i ∩ α̇i = ∂γ̇i = ∂α̇i and
(St2) each loop bounds a disk on Ḋi containing γ̇i ∪ α̇i.

Figure 5. γ̇i (resp. loops) on Ḋi satisfying condition (St1) (resp. (St2)).

In this section, we show that if E is incompressible in the exterior of L and has
minimal complexity, then E is in standard position (Proposition 2.1). Before proving the
proposition, we introduce the following two kinds of operations.
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Assume that there is a simple loop ρ on E which bounds a disk δ in S3 such that
δ ∩ E = ∂δ = ρ. Then we may surger E along δ by replacing a neighborhood of ρ in
E with two parallel copies of δ (the result surface may have a closed component). If ρ

is an essential simple loop, i.e., does not bound a disk on E, then this operation is a
compression for E.

Figure 6. Surgery of E along a disk.

Extend f : Ḋ ∪ Ḃ → S3 to f : Ė ∪ (Ḋ ∪ Ḃ) → S3 such that f(Ė) = E. We call an
end ṗ of an arc γ̇ of S on ∂(Ḋi ∪ Ḃi) ∩ ∂Ė a branch point. Define the orientation of a
branch point ṗ as the orientation of γ̇ around ṗ induced by the orientation of E. We say
that the orientations of two branch points which are adjacent on ∂(Ḋi ∪ Ḃi)∩ ∂Ė match
if the same (positive or negative) sides face each other. If the orientations match, then
we can deform E to eliminate the branch points by isotopy with reducing the complexity
as illustrated in Figure 7, where ◦ indicates a branch point.

Figure 7. Elimination of branch points.

Proposition 2.1. Let L be a link obtained from a link ` by an SR-fusion with
respect to D ∪ B and E a Seifert surface for L. If E is incompressible in the exterior of
L and has minimal complexity, then E is in standard position with respect to D ∪ B.

Proof. To prove the proposition, we take an arbitrary elementary component
Dk ∪ Bk and show that Sk satisfies the conditions for E to be in standard position with
respect to D ∪ B. First consider the loops of Si.

Claim 2.2. Si does not have a loop which bounds a disk on Ḋi ∪ Ḃi intersecting
with neither α̇i nor α̈i+1.
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Proof. Assume otherwise. Take an innermost one ρ̇ from such loops on Ḋi ∪ Ḃi

and let δ be the disk bounded by ρ = f(ρ̇) on Di ∪Bi. Since E is incompressible in the
exterior of L, ρ also bounds a disk on E. Therefore by surgering E along δ, we obtain
a sphere and another incompressible Seifert surface for L whose complexity is less than
that of E, which contradicts that E has minimal complexity. ¤

Claim 2.3. Si does not have a loop which bounds a disk on Ḋi ∪ Ḃi,1 containing
exactly one boundary point of α̇i.

Proof. Assume that there is such a loop ρ̇ in Si. Then ρ = f(ρ̇) is a simple
closed curve and bounds a disk on Di ∪ Bi,1 which intersects with L in one point, and
thus lk(ρ, L) = ±1. On the other hand, since ρ is also on int E, ρ+ does not intersect
with E, where ρ+ is ρ pushed into the positive normal direction of E. Thus lk(ρ, L) =
lk(ρ+, L) = 0, since E is a Seifert surface for L. This is a contradiction. ¤

Claim 2.4. None of the elements of Si has a subarc which bounds a disk on Ḋi∪Ḃi

with a proper subarc of α̇i or α̈i+1 whose interior intersects with neither α̇i nor α̈i+1.

Proof. Assume otherwise. Then take an innermost one from such subarcs, that
is, it bounds a disk δ̇ on Ḋi ∪ Ḃi with a proper subarc of α̇i (resp. α̈i+1) whose interior
does not contain any other such subarcs. Since δ̇ does not contain any loops from Claim
2.2, we can deform E along δ by isotopy so to reduce the one or two triple points (see
Figure 8 for example), which contradicts that E has minimal complexity. ¤

Figure 8.

Let γ̇i,1 and γ̇i,2 be the arcs on Ḋi ∪ Ḃi which have a boundary point on ∂α̇i (we
may have that γ̇i,1 = γ̇i,2). We need to show that γ̇i,1 = γ̇i,2 and it is the only arc of
Si. Let S̃i ⊂ Si be the set of arcs which have their boundary points on ∂(Ḋi ∪ Ḃi), i.e.,
S̃i is the set obtained from Si by removing γ̇i,1, γ̇i,2 and loops. Thus we will show that
S̃k = ∪iS̃i = ∅. Let α̂i = γ̇i,1 ∪ α̇i ∪ γ̇i,2, which is an arc or a loop. We know that α̂i is
simple from Claim 2.4 (therefore if γ̇i,1 = γ̇i,2, then it satisfies condition (St1)).

Consider α̂i and the arcs of S̃i. Transfering branch points on ∂Ḃi,1 (resp. ∂Ḃi,2) to
∂Ḋi− ∂Ḃi (resp. Ḃi ∩ ˙̀), we may assume that there are no branch points on ∂Bi, where
Ḃi ∩ ˙̀ is the subarc of ∂Ḃi such that f(Ḃi ∩ ˙̀) = Bi ∩ `. Note that ∂(Ḋi ∪ Ḃi) ∩ ∂Ė

= ∂(Ḋi ∪ Ḃi)− (Ḃi ∩ ˙̀), and thus a boundary point of an arc on Ḃi ∩ ˙̀ is not a branch
point. Now each of α̂i and the arcs of S̃i has its boundary points on (∂Ḋi−∂Ḃi)∪(Ḃi∩ ˙̀).

Claim 2.5. None of α̂i and the arcs of S̃i has its boundary points on ∂Ḋi − ∂Ḃi.
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Proof. Assume otherwise and take an innermost one γ̇ on Ḋi ∪ Ḃi among such
arcs, i.e., γ̇ bounds with a subarc of ∂Ḋi−∂Ḃi a disk δ̇ on Ḋi∪Ḃi whose interior contains
none of α̂i and arcs of S̃i.

If γ̇ = α̂i, then of course α̂i is not a loop but an arc, and each arc which has a
boundary point on int(∂δ̇ ∩ ∂Ḋi) intersects with α̇i, since int δ̇ contains no arcs of S̃i. If
there are no such arcs, then the two boundary points of α̂i are adjacent on ∂Ḋi − ∂Ḃi

and their orientations match (the left side of Figure 9). Hence we can eliminate the
pair of branch points as illustrated in Figure 7 to reduce the complexity of E, which
contradicts that E has minimal complexity. If there exist such arcs, then there is at least
one adjacent pair of branch points on ∂δ̇ ∩ ∂Ḋi whose orientations match (the second
to the left of Figure 9). Hence we can eliminate the pair of branch points to reduce the
complexity of E, which again contradicts that E has minimal complexity.

If γ̇ is an arc of S̃i, then γ̇ intersects with α̇i or not. If γ̇ intersects with α̇i, then the
boundary point ṗ of α̂i on ∂δ̇∩∂Ḋi is adjacent to two boundary points of γ̇ on ∂Ḋi−∂Ḃi,
since int δ̇ does not contain arcs of S̃i (the second to the right of Figure 9). Moreover,
the orientation of ṗ matches the orientation of one boundary point of γ̇. Hence we can
eliminate the pair of branch points whose orientations match to reduce the complexity
of E, which contradicts that E has minimal complexity. If γ̇ does not intersect with α̇i,
then the two boundary points of γ̇ are adjacent on ∂Ḋi − ∂Ḃi and the orientations of
the two branch points match, since int δ̇ does not contain arcs of S̃i (the right side of
Figure 9). Hence we can eliminate the pair of branch points to reduce the complexity of
E, which again contradicts that E has minimal complexity. ¤

Figure 9.

Now consider the number of intersections of Si and α̇i (resp. α̈i+1). Note that only
arcs among Si can intersect with α̇i or α̈i+1, since each loop of Si intersect with neither
α̇i nor α̈i+1 from Claims 2.3 and 2.4. Let γ̇i = γ̇i,1 ∪ γ̇i,2 and ](ẋ ∩ ẏ) the number of
intersections of int ẋ and int ẏ, where ẋ (resp. ẏ) is an arc or a loop on Ḋi ∪ Ḃi. Then
we have the following.

Claim 2.6. We have that ](ẋ ∩ α̈i+1) ≥ ](ẋ ∩ α̇i), where ẋ is γ̇i or an element γ̇

of S̃i.

Proof. First we know that α̂i is one of the following three types from Claim
2.5; it has no boundary points, i.e., γ̇i,1 = γ̇i,2, or either it has one boundary point on
∂Ḋi− ∂Ḃi and one on Ḃi ∩ ˙̀ or it has both boundary points on Ḃi ∩ ˙̀ (see the left three
figures of Figure 10). Then ](γ̇i ∩ α̈i+1) = 0, 1, and 2 for the first, second, and third
types, respectively from Claim 2.4. Since ](γ̇i ∩ α̇i) = 0 for any of the three types also
from Claim 2.4, we have that ](γ̇i ∩ α̈i+1) ≥ ](γ̇i ∩ α̇i).
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Second γ̇ is one of the following two types also from Claim 2.5; it has one boundary
point on ∂Ḋi − ∂Ḃi and one on Ḃi ∩ ˙̀ or it has both boundary points on Ḃi ∩ ˙̀ (see the
right four figures of Figure 10). For the former type, ](γ̇∩α̇i) = 0 or 1, and ](γ̇∩α̈i+1) = 1
and for the latter type, ](γ̇ ∩ α̇i) = 0 or 1 and ](γ̇ ∩ α̈i+1) = 2 from Claim 2.4. In either
case, we have that ](γ̇ ∩ α̈i+1) ≥ ](γ̇ ∩ α̇i). ¤

Figure 10.

Continuation of the proof of Proposition 2.1. Take a look at the number ](Sk ∩ α̇i) of
intersections of Sk and α̇i (1 ≤ i ≤ mk). From Claim 2.6 and that f(α̈i) = f(α̇i), we
have that

](Sk ∩ α̇i+1) = ](Sk ∩ α̈i+1) ≥ ](Sk ∩ α̇i).

Hence we have that

](Sk ∩ α̇mk+1) ≥ ](Sk ∩ α̇mk
) ≥ · · · ≥ ](Sk ∩ α̇1).

Since we consider the lower index modulo mk, we also have that ](Sk ∩ α̇mk+1) =
](Sk ∩ α̇1). Therefore we have that

](Sk ∩ α̇mk
) = ](Sk ∩ α̇mk−1) = · · · = ](Sk ∩ α̇1),

and thus that ](Si ∩ α̈i+1) = ](Si ∩ α̇i) (1 ≤ i ≤ mk). Then we have that ](ẋ ∩ α̈i+1) =
](ẋ ∩ α̇i) from Claim 2.6, where ẋ is γ̇i or an element γ̇ of Si. Thus especially for γ̇i, we
have that ](γ̇i ∩ α̈i+1) = ](γ̇i ∩ α̇i) = 0 (the first figure of Figure 10). On the other hand,
also for γ̇, we have that ](γ̇∩ α̈i+1) = ](γ̇∩ α̇i) = 1 (the fifth figure of Figure 10). Then γ̇

cannot coexist with γ̇i,1 = γ̇i,2, and thus we can conclude that S̃k = ∪iS̃i = ∅. Moreover
if Si has a loop, then the loop bounds a disk on Ḋi containing γ̇i ∪ α̇i from Claims 2.2,
2.3, and 2.4 and deforming E by isotopy if necessary. Hence Sk satisfies the conditions
for E to be in standard position with respect to D ∪ B for any k, and thus we complete
the proof. ¤

3. Simple ribbon fusions and genera of links.

Let L be a link obtained from a link ` by an SR-fusion with respect to D ∪ B, and
E a Seifert surface for L. In this section, we prove Theorem 1.1. To do this, we actually
construct a Seifert surface for ` from E.
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Assume that E is incompressible in the exterior of L and has minimal complexity
with respect to D ∪ B. Let F0 = E ∪ (D ∪ B). Then F0 is a singular, oriented surface
such that ∂F0 = ` and, by Proposition 2.1, the set of its singularities consists of p =∑

k mk loops ∪i,kf(α̂i) = ∪i,k(γi ∪αi) each of which bounds a disk δi on Di and q loops
∪jρp+j each of which bounds a disk δp+j on a disk of D. Extend f : Ḋ ∪ Ḃ → S3 to
f : Ė ∪ (Ḋ ∪ Ḃ) → S3 such that f(Ė) = E and let Ḟ0 = Ė ∪ (Ḋ ∪ Ḃ). We have that
f(Ḟ0) = F0.

Surger1 F0 along all the disks bounded by the loops from an innermost one in turn.
Namely, we construct a sequence F0, F1, . . . , Fp+q of (singular) surfaces such that Ft+1

is obtained by surgering Ft along δt = δi or δp+j and give up the closed component if we
obtain it by the surgery (t = 0, . . . , p+q−1). Thus each Ḟt+1 has no closed components
and Fp+q is a Seifert surface for `. Let F (E) be Fp+q.

To prove Theorem 1.1, we calculate the difference of the number of components and
of genera between Ḟt+1 and Ḟt. Note that the genus g(Ḟt) is given by:

g(Ḟt) = ](Ḟt)− χ(Ḟt) + ](∂Ḟt)
2

= ](Ḟt)− χ(Ḟt) + ](`)
2

.

Thus we have that dg(t) = d](t) − dχ(t)/2, where dg(t) = g(Ḟt+1) − g(Ḟt), d](t) =
](Ḟt+1)− ](Ḟt), and dχ(t) = χ(Ḟt+1)− χ(Ḟt), respectively.

Lemma 3.1. We have that ](F (E)) ≥ ](E) and that g(F (E)) ≤ g(E).

Proof. Since Ḟ0 is homeomorphic to E, we have that ](Ḟ0) = ](E) and that
g(Ḟ0) = g(E). Thus it is sufficient to show the following claim, since then we have that
d](t) ≥ 0 and that dg(t) ≤ 0 for any t, which induces the conclusion. ¤

Claim 3.2. Let ρ = ∂δt. Then we have one of the following :

(1) ρ̇ is a non-separating loop on Ḟt, d](t) = 0, and dg(t) = −1,
(2) ρ̇ is a separating loop on Ḟt such that by the surgery along δt we obtain

(2-1) a sphere component, d](t) = 0, and dg(t) = 0,
(2-2) a closed surface component with genus n(> 0), d](t) = 0, and dg(t) = −n and
(2-3) no closed components, d](t) = 1, and dg(t) = 0.

Proof. First note that the Euler characteristic increases by 2 by the surgery along
δt. If ρ̇ is a non-separating loop on Ḟt, then d](t) = 0, and thus dg(t) = 0 − 2/2 = −1.
If ρ̇ is a separating loop on Ḟt, then we either obtain a closed component or not by
the surgery along δt. In the former case, we give up the closed component, and thus
d](t) = 0. If the closed component is a sphere, then dg(t) = 0 − (2 − 2)/2 = 0. If the
closed component is a closed surface with genus n(> 0), then its Euler characteristic χ

is equal to 2 − 2n, and thus dg(t) = 0 − (2 − (2 − 2n))/2 = −n. In the latter case, the
number of components increase by 1, i.e., d](t) = 1, and thus dg(t) = 1− 2/2 = 0. ¤

1We surger Ft along δt by replacing a neighborhood of ∂δt on E ∪B ⊂ Ft with two parallel copies of

δt.
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Lemma 3.3. A Seifert surface E for a link L with ](E) = ν(L) and g(E) = gν(L)(L)
is incompressible in the exterior of L.

Proof. Assume otherwise and take a compressing disk δ for E. Let E′ be the
surface obtained from E by surgering along δ. Then ∂δ is either a non-separating loop
on E, a separating loop on E and E′ has a closed component with non-zero genus, or
a separating loop on E and E′ has no closed components. The first and second cases
contradict that g(E) = gν(L)(L) and the third case contradicts that ](E) = ν(L). ¤

Lemma 3.4. Let E be a Seifert surface for a link L with g(E) = g](E)(L) which is
compressible in the exterior of L, and E′ the surface obtained from E by a compression.
Then we have that ](E′) = ](E) + 1 and g(E′) = g(E).

Proof. Assume that we obtain E′ by compressing E along a disk δ. If ∂δ is a non-
separating loop on E or a separating loop on E such that E′ has a closed component, then
we have that g](E)(L) < g(E), which contradicts that g(E) = g](E)(L). Therefore ∂δ is a
separating loop on E such that E′ has no closed components, and thus ](E′) = ](E) + 1
and g(E′) = g(E). ¤

Proof of Theorem 1.1. First we show that ν(`) ≥ ν(L). Take a Seifert surface
E for L with ](E) = ν(L), g(E) = gν(L)(L), and minimal complexity with respect to
D ∪B. Since E is incompressible in the exterior of L from Lemma 3.3, we can construct
F (E) from E. Then we obtain that ](F (E)) ≥ ](E) from Lemma 3.1, and thus we obtain
the conclusion, since ν(`) ≥ ](F (E)) and ](E) = ν(L).

Second we show that gr(`) ≤ gr(L) for any integer r (1 ≤ r ≤ ν(L)). Take a Seifert
surface Ẽ for L with ](Ẽ) = r, g(Ẽ) = gr(L), and minimal complexity with respect to
D∪B. We can obtain the conclusion by showing that we can construct an incompressible
Seifert surface E for L from Ẽ with ](E) ≥ r and g(E) = gr(L), since then, we have
that gr(`) ≤ g](E)(`) ≤ g](F (E))(`) ≤ g(F (E)) ≤ g(E) = gr(L) from Lemma 3.1. If Ẽ is
incompressible in the exterior of L, then it is sufficient to let E be Ẽ. If Ẽ is compressible
in the exterior of L, then we can obtain an incompressible Seifert surface E for L from
Ẽ by a finitely many times of compressions, which satisfies that ](E) > ](Ẽ) = r and
g(E) = g(Ẽ) = gr(L) from Lemma 3.4.

Third we show that the three conditions (1), (2), and (3) in the statement are
equivalent. Since it is clear that (1) (resp. (2)) induces (2) (resp. (3)), it is sufficient to
show that (3) induces (1), i.e., assuming that ν(L) = ν(`) and gν(L)(L) = gν(`)(`), we
show that O bounds a mutually disjoint disks

⋃
i,k ∆i such that ∂∆i = Oi and int∆i

does not intersect with L ∪ B.
Take a Seifert surface E for L with ](E) = ν(L), g(E) = gν(L)(L), and minimal

complexity with respect to D ∪ B. Since E is incompressible in the exterior of L from
Lemma 3.3, E is in standard position from Proposition 2.1, and we can construct F (E)
from E. Since ν(L) = ν(`) and gν(L)(L) = gν(`)(`), we have that ](F (E)) = ](E) and
g(F (E)) = g(E), and thus each ρ̇t is a separating loop on Ḟt and we obtain a sphere
component by surgering Ft along δt for any t by Lemma 3.1.

Let Si be the sphere which is to be given up after the surgery along δi+1 bounded
by f(α̂i+1) (see the left side of Figure 11 for a case with mk ≥ 2). Then consider ∪i,kSi.
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Note that ∪i,kSi consists of mutually disjoint spheres, and that each Si contains Di.
Now let ∆i be the disk obtained from Si − intDi by pushing so that ∂∆i = ∂Di and
∆i ∩ Bi,1 = ∂Bi,1 ∩ ∂Di (see the right side of Figure 11). Then we know that ∆i is a
disk bounded by ∂Di whose interior does not intersect with L ∪ B and that ∪i,k∆i are
mutually disjoint disks from the construction. Therefore the SR-fusion is trivial. ¤

Figure 11.

4. Disconnectivity numbers of links which are related by SR-fusions.

In this section, we prove Theorem 1.2. Denote the link `1 ∪ `2 by `1 ◦ `2 if `1 is split
from `2.

Lemma 4.1. We have that ν(`1 ◦ `2) = ν(`1) + ν(`2) for two links `1 and `2.

Proof. Since `1 is split from `2, there is a Seifert surface F(= F1 ∪F2) for `1 ◦ `2
such that ∂Fi = `i and ](Fi) = ν(`i) for i = 1, 2. Hence ν(`1◦`2) ≥ ](F) = ](F1)+](F2) =
ν(`1) + ν(`2).

Conversely suppose that F is a Seifert surface for L = `1 ◦ `2 with ](F ) = ν(`1 ◦ `2).
Let Σ be a 2-sphere which separates `1 from `2. If Σ∩F 6= ∅, then it consists of mutually
disjoint simple loops. Here we may assume that g(F ) = gν(L)(L) and ](Σ∩F ) is minimal
among such Seifert surfaces. Take an innermost one ρ on Σ among the loops of Σ ∩ F .
Since ρ bounds a disk δ on Σ which does not contain any other loops, we can surger F

along δ to obtain F ′. Since F is incompressible in the exterior of L from Lemma 3.3,
ρ is a separating loop on F and F ′ has a sphere component. However this contradicts
the minimality of ](Σ ∩ F ). Therefore Σ ∩ F = ∅. Then let X be a 3-ball in S3 with
∂X = Σ and F1 = F ∩ X and F2 = F ∩ (S3 − X). Then ∂Fi = `i for i = 1, 2 and
ν(`1 ◦ `2) = ](F ) = ](F1) + ](F2) ≤ ν(`1) + ν(`2). Therefore we complete the proof. ¤

Proof of Theorem 1.2. It is sufficient to show the case where v = 1, since
then the links ` ◦ Ov−1 and L ◦ Ov−1 are the required pair by Lemma 4.1, where Ov−1

is the (v − 1)-component trivial link. Now let ` be the (w + 1)-component trivial link
o0 ∪ o1 ∪ · · · ∪ ow and L = Lw the (w + 1)-component link obtained from ` by an SR-
fusion as illustrated in Figure 12.

We show that ν(Lw) = 1 by induction on w. Let l be the link as illustrated in the
right side of Figure 13. Since l is not a boundary link ([4, p. 140 Example]), we have that
ν(l) = 1. Thus we have that ν(Lw) = 1 in the case where w = 1, since L1 is l.
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Figure 12.

Now consider the case where w = k +1 under the assumption that ν(Lw) = 1 in the
cases where w ≤ k. Note that Lk+1 is obtained by a 1-fusion of Lk and l along a band
Y as illustrated in the left side of Figure 13. It is sufficient to show that ν(Lk+1) ≤ 1.
Let Σ be a 2-sphere which intersects with Lk+1 only in two points on Lk+1 ∩ Y and
separates Lk from l. Let F be a Seifert surface for Lk+1 with ](F ) = ν(Lk+1) and
g(F ) = gν(Lk+1)(Lk+1). Assume that ](Σ∩F ) is minimal among all such Seifert surfaces.
If Σ ∩ F 6= ∅, then it consists of an arc, say α, and loops which are mutually disjoint
and simple. Take an innermost one ρ on Σ − α among all the loops of Σ ∩ F . Since
ρ bounds a disk δ on Σ which contains neither α nor the other loops, we can surger F

along δ to obtain F ′. Since F is incompressible in the exterior of L from Lemma 3.3, ρ

is a separating loop on F and F ′ has a sphere component. However this contradicts the
minimality of ](Σ∩F ). Therefore Σ∩F = {α}. Thus F0(= cl(F −N(α : F )) is a Seifert
surface for Lk ◦ l and F0 ∩ Σ = ∅. Hence we obtain that ν(Lk+1) = ](F ) = ](F0)− 1 ≤
ν(Lk ◦ l)− 1 = ν(Lk) + ν(l)− 1 = 1 + 1− 1 = 1 by Lemma 4.1. Therefore we complete
the proof. ¤

Figure 13.
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