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On the topology of projective subspaces

in complex Fermat varieties

By Alex Degtyarev and Ichiro Shimada
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Abstract. Let X be the complex Fermat variety of dimension n = 2d
and degree m > 2. We investigate the submodule of the middle homology
group of X with integer coefficients generated by the classes of standard
d-dimensional subspaces contained in X, and give an algebraic (or rather com-
binatorial) criterion for the primitivity of this submodule.

1. Introduction.

Unless specified otherwise, all (co-)homology groups are with coefficients in Z.
Let X be the complex Fermat variety

zm
0 + · · ·+ zm

n+1 = 0

of dimension n and degree m > 2 in a projective space Pn+1 with homogeneous coordi-
nates (z0 : · · · : zn+1). Suppose that n = 2d is even. Let J be the set of all unordered
partitions of the index set n + 1 := {0, 1, . . . , n + 1} into unordered pairs, i.e., lists

J := [[j0, k0], . . . , [jd, kd]]

of pairs of indices such that

{j0, k0, . . . , jd, kd} = n + 1, ji < ki (i = 0, . . . , d), j0 < · · · < jd, (1.1)

and let B be the set of (d + 1)-tuples β = (β0, . . . , βd) of complex numbers βi such that
βm

i = −1. (Note that we always have j0 = 0.) For J ∈ J and β ∈ B, we define the
standard d-space LJ,β to be the projective subspace of Pn+1 defined by the equations

zki
= βizji

(i = 0, . . . , d). (1.2)

The number of these spaces equals (2d + 1)!!md+1, where (2d + 1)!! is the product of all
odd numbers from 1 to (2d+1). Each standard d-space LJ,β is contained in X, and hence
we have its class [LJ,β ] in the middle homology group Hn(X) of X. Let L(X) denote
the Z-submodule of Hn(X) generated by the classes [LJ,β ] of all standard d-spaces.
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In the case n = 2, the problem to determine whether L(X) is primitive in Hn(X)
or not was raised by Aoki and Shioda [1] in the study of the Picard groups of Fermat
surfaces. In degrees m prime to 6, the primitivity of L(X) implies that the Picard group
of X is generated by the classes of the lines contained in X. Schütt, Shioda and van Luijk
[7] studied this problem using the reduction of X at supersingular primes. Recently, the
first author of the present article solved in [3] this problem affirmatively by means of the
Galois covering X → P2 and the method of Alexander modules.

The purpose of this paper is to study the subgroup L(X) ⊂ Hn(X) for higher-
dimensional Fermat varieties. For a non-empty subset K of J , we denote by LK(X) the
Z-submodule of Hn(X) generated by the classes [LJ,β ], where J ∈ K and β ∈ B.

To state our results, we prepare several polynomials in Z[t1, . . . , tn+1], rings, and
modules. We put

φ(t) := tm−1 + · · ·+ t + 1, ρ(x, y) :=
m−2∑
µ=0

xµ

( µ∑
ν=0

yν

)
.

For J = [[j0, k0], . . . , [jd, kd]] ∈ J , we put

τJ := (tk0 − 1) · · · (tkd
− 1),

ψJ := τJ · φ(tj1tk1) · · ·φ(tjd
tkd

),

ρJ := ρ(tj1 , tk1) · · · ρ(tjd
, tkd

).

Consider the ring

Λ := Z[t±1
0 , . . . , t±1

n+1]/(t0 . . . tn+1 − 1) = Z[t±1
1 , . . . , t±1

n+1]

of Laurent polynomials and let

R := Λ/(tm0 − 1, . . . , tmn+1 − 1) = Z[t1, . . . , tn+1]/(tm1 − 1, . . . , tmn+1 − 1),

R := R/(φ(t0), . . . , φ(tn+1)) = Z[t1, . . . , tn+1]/(φ(t1), . . . , φ(tn+1)).

For J = [[j0, k0], . . . , [jd, kd]] ∈ J , we put

RJ := R/(tj1tk1 − 1, . . . , tjd
tkd

− 1),

RJ := R/(tj1tk1 − 1, . . . , tjd
tkd

− 1).

Note that we always have tj0tk0 − 1 = 0 in RJ and RJ . The multiplicative identities of
these rings, i.e., the images of 1 ∈ Λ under the quotient projection, are denoted by 1J .

Our primary concern is the structure of the abelian group Hn(X)/LK(X). For this
reason, whenever speaking about the torsion of an abelian group A, we always mean
its Z-torsion TorsA := TorsZA, even if A happens to be an R- or R-module. (Over R,
almost all our modules have torsion.) Respectively, A is said to be torsion free if its
Z-torsion TorsZA is trivial.
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Our main results are as follows.

Theorem 1.1 (see Section 4). Let K be a non-empty subset of J . Then the
torsion of the quotient module Hn(X)/LK(X) is isomorphic to the torsions of any of the
following modules:

(a) the ring R/(ψJ | J ∈ K), where (ψJ | J ∈ K) is the ideal of R generated by ψJ with
J running through K,

(b) the ring R/(ρJ | J ∈ K), where (ρJ | J ∈ K) is the ideal of R generated by ρJ with
J running through K,

(c) the R-module

CK :=
( ⊕

J∈K
RJ

)/
M,

where M is the R-submodule of
⊕

J∈KRJ generated by
∑

J∈K τJ1J ,
(d) the R-module

CK :=
( ⊕

J∈K
RJ

)/
M,

where M is the R-submodule of
⊕

J∈KRJ generated by
∑

J∈K 1J .

In particular, we assert that the torsion parts of all four modules listed in Theorem
1.1 are isomorphic, although not always canonically: sometimes, we use the abstract
isomorphism A ∼= HomZ(A,Q/Z) for a finite abelian group A, see Section 4.5 for details.
It is worth mentioning that, according to [4], in the case d = 2 of Fermat surfaces, the
a priori more complicated module dealt with in [3] (which was found by means of a
completely different approach) is isomorphic to the one that is given in Theorem 1.1 (c).

Conjecture 1.2. If K = J , the group Hn(X)/LK(X) is torsion free.

This conjecture is supported by some numerical evidence (see Section 5 for details)
and by the fact that it holds in the cases d = 0 (obvious) and d = 1 (see [3]). Theorem 1.1
reduces Conjecture 1.2 to a purely algebraic (or even combinatorial) question. However,
for the moment it remains open.

Definition 1.3. Let µm be the subgroup {z ∈ C | zm = 1} of C×. Denote by ΓK
the subset of µn+1

m = Spec(R⊗C) consisting of the elements (a1, . . . , an+1) ∈ µn+1
m such

that ai 6= 1 for i = 1, . . . , n + 1 and that there exists J = [[j0, k0], . . . , [jd, kd]] ∈ K such
that ajiaki = 1 hold for i = 1, . . . , d.

Theorem 1.4 (see Section 4.3). For any non-empty subset K of J , the rank of
the group LK(X) is equal to |ΓK|+ 1.

As a corollary, we obtain the following statement, which is a higher-dimensional
generalization of Corollary 4.4 of [7]:
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Corollary 1.5 (see Section 4.3). For any non-empty subset K of J , the order of
the torsion of Hn(X)/LK(X) may be divisible only by those primes that divide m.

Applying Theorem 1.1 to a subset K consisting of a single element and using a
deformation from X, we also prove the following generalization of Theorem 1.4 of [3].
Let fi(x, y) be a homogeneous binary form of degree m for i = 0, . . . , d. Suppose that
the hypersurface W in Pn+1 defined by

f0(z0, z1) + f1(z2, z3) + · · ·+ fd(zn, zn+1) = 0 (1.3)

is smooth. Then each fi(x, y) = 0 has m distinct zeros (α(i)
1 : β

(i)
1 ), . . . , (α(i)

m : β
(i)
m ) on

P1. Consider the points

P (i)
ν := (0 : · · · : α(i)

ν
(2i)

: β(i)
ν

(2i+1)

: · · · : 0)

of Pn+1. Then, for each (d + 1)-tuple (ν0, . . . , νd) of integers νi with 1 ≤ νi ≤ m, the
d-space L′(ν0,...,νd) spanned by P

(0)
ν0 , . . . , P

(d)
νd is contained in W .

Corollary 1.6 (see Section 4.6). The submodule of Hn(W ) generated by the
classes [L′(ν0,...,νd)] of the md+1 subspaces L′(ν0,...,νd) contained in W is of rank (m−1)d+1

+1 and is primitive in Hn(W ).

The last statement can further be extended to what we call a partial Fermat variety,
i.e., a hypersurface Ws ⊂ Pn+1 given by equation (1.3) with

f0(x, y) = · · · = fs(x, y) = xm + ym

and the remaining polynomials distinct (pairwise and from xm + ym) and generic. Such
a variety contains (2s + 1)!! md+1 projective linear subspaces L′∗ of dimension d: each
subspace can be obtained as the projective span of one of the s-spaces in the Fermat
variety

X(2s) := Ws ∩ {z2s+2 = · · · = zn+1 = 0} ⊂ P2s+1

and one of the (d − s)-tuples of points P
(s+1)
νs+1 , . . . , P

(d)
νd as above. Then, we have the

following conditional statement.

Corollary 1.7 (see Section 4.6). Assume that the statement of Conjecture 1.2
holds for Fermat varieties of dimension 2s ≥ 0. Then, for any d ≥ s, the submodule of
Hn(Ws) generated by the classes [L′∗] of the subspaces L′∗ contained in Ws is primitive
in Hn(Ws). In particular, this submodule is primitive for s = 0 or 1.

We conclude this introductory section with a very brief outline of the other devel-
opments related to the subject.

In [10] and [12], the Q-Hodge structure on the rational cohomology Hn(X,Q) was
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intensively investigated. Letting ζ := e2π
√−1/m, the tensor product Hn(X) ⊗ Q(ζ)

decomposes into simple representations of a certain abelian group G (see Section 2 below),
which are all of dimension 1 and pairwise distinct. This decomposition is compatible with
the Hodge filtration, and the Hodge indices of the summands are computed explicitly. As
a by-product of this computation, one concludes that, at least if the degree m is a prime,
the space of rational Hodge classes Hd,d(X)∩Hn(X,Q) is generated by the classes of the
standard d-spaces. (See also Ran [6].) (In the special case d = 1 of surfaces, this rational
generation property holds for all degrees prime to 6.) It is this fact that motivates our
work and makes the study of the torsion of the quotient Hn(X)/LJ (X) particularly
important: if this torsion is trivial, the classes of the standard d-spaces generate the
Z-module of integral Hodge classes Hd,d(X) ∩Hn(X,Z).

In [8], we investigated the Fermat variety Xq+1 of even dimension and degree q + 1
in characteristic p > 0, where q is a power of p. By considering the middle-dimensional
subspaces contained in Xq+1, we showed that the discriminant of the lattice of numerical
equivalence classes of middle-dimensional algebraic cycles of Xq+1 is a power of p. Note
that the rank of this lattice is equal to the middle Betti number of Xq+1, that is, Xq+1

is supersingular.
In [9], we suggested a general method to calculate the primitive closure in H2(Y ) of

the lattice generated by the classes of given curves on a complex algebraic surface Y . As
an example, we applied this method to certain branched covers of the complex projective
plane.

In [4], the method of [3] was generalized to the calculation of the Picard groups of the
so-called Delsarte surfaces Y . More precisely, the computation of the Picard rank was
suggested in [11], and [4] deals with the (im-)primitivity of the subgroup L(Y ) ⊂ H2(Y )
generated by the classes of certain “obvious” divisors. In a few cases, this subgroup is
primitive, but as a rule the quotient H2(Y )/L(Y ) does have a certain controlled torsion.

Acknowledgements. The authors heartily thank Professor Tetsuji Shioda for
many discussions. This work was partially completed during the first author’s visit to
Hiroshima University; we extend our gratitude to this institution for its great hospitality.

Notation. By (a, . . . , b
(i)

, . . . a), we denote a vector whose ith coordinate is b and

other coordinates are a. The hat ˆ means omission of an element; for example, by
(a1, . . . , âi, . . . , aN ), we denote the vector (a1, . . . , ai−1, ai+1 . . . , aN ).

2. An outline of the proof.

To avoid confusion, let us denote by Pn+1 another copy of the projective space, the
one with homogeneous coordinates (w0 : · · · : wn+1). (Below, we will also use Cn+1 for
an affine chart of Pn+1.) In Pn+1, consider the hyperplane Π defined by

w0 + · · ·+ wn+1 = 0.

Then we have the Galois covering π : X → Π defined by
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(z0 : · · · : zn+1) 7→ (zm
0 : · · · : zm

n+1).

We put ζ := e2π
√−1/m. Then the Galois group G of π is generated by

γi : (z0 : · · · : zi : · · · : zn+1) 7→ (z0 : · · · : ζzi : · · · : zn+1)

for i = 0, . . . , n + 1. Since γ0 · · · γn+1 = 1, this group G is isomorphic to (Z/mZ)n+1.
Throughout this paper, we regard R as the group ring Z[G] by corresponding γi ∈ G

to the variable ti for i = 1, . . . , n + 1, and γ0 ∈ G to t0 = t−1
1 · · · t−1

n+1. Then we can
regard Hn(X) as an R-module. Note that, for any subset K of J , the subgroup LK(X)
of Hn(X) is in fact an R-submodule, because, for any J ∈ J , g ∈ G, and β ∈ B, there
exists β′ ∈ B such that g(LJ,β) = LJ,β′ .

Let Y0 be the hyperplane section of X defined by {z0 = 0}, which is G-invariant.
Since the fundamental classes [X] ∈ H2n(X) and [Y0] ∈ H2n−2(Y0) are also fixed by G,
the Poincaré–Lefschetz duality isomorphisms

Hn(X \ Y0) = Hn(X, Y0), H2n−i(X) = Hi(X), H2n−2−i(Y0) = Hi(Y0)

are R-linear; hence, they convert the cohomology exact sequence of the pair (X, Y ) into
a long exact sequence of R-modules

· · · → Hn−1(Y0)
∂−→ Hn(X \ Y0)

ι∗−→ Hn(X) → Hn−2(Y0) → · · ·, (2.1)

where ι : X \ Y0 ↪→ X is the inclusion. We then put

Vn(X) := Im(ι∗ : Hn(X \ Y0) → Hn(X)).

Since the group Hn−2(Y0) is torsion free, the R-submodule Vn(X) of Hn(X) is primitive
in Hn(X) as a Z-submodule.

The structure of the R-module Vn(X) is given by the theory of Pham polyhedron
developed in [5]. Let z0 = 1 and regard (z1, . . . , zn+1) as affine coordinates on the affine
space Cn+1 := Pn+1 \ {z0 = 0}, in which X \ Y0 is defined by

1 + zm
1 + · · ·+ zm

n+1 = 0.

Fix the m-th root η := eπ
√−1/m of −1, and consider the (topological) n-simplex

D := {(s1η, . . . , sn+1η) | si ∈ R, sm
1 + · · ·+ sm

n+1 = 1, 0 ≤ si ≤ 1}

in X \ Y0, oriented so that that, if we consider (s1, . . . , sn) as local real coordinates of D

at an interior point of D, then

(−∂/∂s1, . . . ,−∂/∂sn)

is a positively-oriented basis of the real tangent space of D at this point. Then it is easy
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to see that the chain

S := (1− γ−1
1 ) · · · (1− γ−1

n+1)D

is a cycle; moreover, it is homeomorphic to the join of (n + 1) copies of the two-point
space {η, ζη}, i.e., to the n-sphere. (Here and below, we do not distinguish between
“simple” singular chains in X and the corresponding geometric objects, viz. unions of
simplices with the orientation taken into account and the common parts of the boundary
identified. For this reason, we freely apply the module notation to simplices.) Hence, we
have the class [S] ∈ Hn(X \ Y0) and its image [S] ∈ Vn(X) by ι∗. Pham [5] proved the
following:

Theorem 2.1 (see [5]). The homomorphism 1 7→ [S] from R to Hn(X\Y0) induces
an isomorphism R ∼= Hn(X \ Y0) of R-modules, and hence a surjective homomorphism
R ³ Vn(X) of R-modules.

The Poincaré duality gives rise to symmetric bilinear pairings 〈 , 〉 on the groups
Hn(X \ Y0), Vn(X), and Hn(X), which is interpreted geometrically as the signed inter-
section of n-cycles brought to a general position. We emphasize that these pairings are
Z-bilinear and G-invariant (as so is the fundamental class [X]). The homomorphisms
Hn(X \ Y0) ³ Vn(X) ↪→ Hn(X) preserve 〈 , 〉. Note that 〈 , 〉 is non-degenerate on
Hn(X), but not on Hn(X \ Y0). Later, we will see that 〈 , 〉 is also nondegenerate on
Vn(X).

The main ingredient of the proof of Theorems 1.1 and 1.4 is the following:

Theorem 2.2 (see Section 3). For βi ∈ C× with βm
i = −1, we put

s(βi) :=





1 if βi = η,

−1 if βi = η−1,

0 otherwise.

(Recall that we fixed η := eπ
√−1/m.) For J = [[j0, k0], . . . , [jd, kd]] ∈ J ordered as in

(1.1), let σJ be the permutation

(
0 1 · · · n n + 1
j0 k0 · · · jd kd

)
.

Then we have

〈LJ,β , S〉 = sgn(σJ)s(β0) · · · s(βd),

where β = (β0, . . . , βd) ∈ B.

We use Theorem 2.2 and the fact that the pairing on Hn(X) is nondegenerate to
compute the subgroup LK(X) ⊂ Hn(X). Various stages of this computation result in
most principal statements of the paper.



982 A. Degtyarev and I. Shimada

3. Intersection of S and the standard d-spaces.

In this section, we prove Theorem 2.2. The affine part X \ Y0 of X is defined by
1+ zm

1 + · · ·+ zm
n+1 = 0 in the affine space Cn+1 with coordinates (z1, . . . , zn+1). We put

Cn+1 := Pn+1 \ {w0 = 0},

and setting w0 = 1, we regard (w1, . . . , wn+1) as affine coordinates of Cn+1. We put

zi = xi +
√−1yi, wi = ui +

√−1vi,

where xi, yi, ui, vi are real coordinates. Consider the affine hyperplane

Π◦ := Π ∩Cn+1 = {1 + w1 + · · ·+ wn+1 = 0}

of Cn+1. In the real part

Π◦ ∩ {v1 = · · · = vn+1 = 0} = {(u1, . . . , un+1) ∈ Rn+1 | 1 + u1 + · · ·+ un+1 = 0}

of Π◦, we have an n-simplex ∆ defined by

1 + u1 + · · ·+ un+1 = 0 and −1 ≤ ui ≤ 0 for i = 1, . . . , n + 1.

Then π : X → Π induces a homeomorphism π|D : D
∼→ ∆. We put

pi := (0, . . . , η
(i)

, . . . 0) ∈ D,

and put p̄i := π(pi) = (0, . . . ,−1
(i)

, . . . , 0). Then p̄1, . . . , p̄n+1 are the vertices of ∆.

Remark 3.1. Note that S ⊂ π−1(∆), and that

S ∩ π−1({p̄1, . . . , p̄n+1}) = {p1, γ
−1
1 (p1), . . . , pn+1, γ

−1
n+1(pn+1)}.

Remark 3.2. By the definition of the orientation of D given in Section 2, we see
that, locally at pi, the n-chain D is identified with the product

(−1)i+1 −−→pip1 × · · · × −−−−→pipi−1 ×−−−−→pipi+1 × · · · × −−−−→pipn+1

of 1-chains, where −−→pipk is the 1-dimensional edge of D connecting pi and pk and oriented
from pi to pk.

By the condition (1.1) on J , we always have j0 = 0. Let b0 be an element of Z/mZ
such that

β0 = η1+2b0 = ζb0η.
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In the affine coordinates (z1, . . . , zn+1) of Cn+1, the equations (1.2) of LJ,β are written
as

zk0 = β0, zki
= βizji

(i = 1, . . . , d). (3.1)

If (3.1) holds, then we have zm
ki

= −zm
ji

for i = 1, . . . , d, and hence LJ,β ∩π−1(∆) consists
of a single point

(0, . . . , β0
(k0)

, . . . 0) = γb0
k0

(pk0)

by Remark 3.1. Therefore, we have

LJ,β ∩ S =





∅ if β0 6= η and β0 6= η−1,

{pk0} if β0 = η,

{γ−1
k0

(pk0)} if β0 = η−1.

In particular, we have

〈LJ,β , S〉 = 0 if β0 6= η and β0 6= η−1. (3.2)

In order to calculate 〈LJ,β , S〉 in the cases where β0 = η±1, we need the following
lemma. For an angle θ, we consider the oriented real semi-line

H(θ) := R≥0 e
√−1θ with the orientation from 0 to e

√−1θ

on the complex plane C, and define the chain (with closed support)

W (θ) := H(θ)−H(θ − 2π/m) = (1− γ−1)H(θ),

where γ : C→ C is the multiplication by ζ = e2π
√−1/m. Note that W (π/m) = H(π/m)−

H(−π/m). Let C2 be equipped with coordinates (z, z′). For βi ∈ C with βm
i = −1, we

denote by Λβi
the linear subspace of C2 defined by z′ = βiz.

Lemma 3.3. The local intersection number `(βi) at the origin in C2 of the chains
W (π/m)×W (π/m) and Λβi is equal to s(βi).

Proof. The linear subspace Λβi
is the graph of the function f : z 7→ z′ = βiz,

and hence f(W (π/m)) is obtained by rotating W (π/m) by βi ∈ C×. Let ε and ε′ be
sufficiently small positive real numbers. We perturb Λβi

locally at the origin to the graph
Λ̃βi of the function

f̃ : z 7→ z′ = βiz + εe
√−1τρ(|z|),

where ρ : R≥0 → R≥0 is the function
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ρ(x) =





1 if x ≤ ε′,

2− x/ε′ if ε′ ≤ x ≤ 2ε′,

0 if 2ε′ ≤ x.

The direction τ of the perturbation is given as in Figure 3.1, where W (π/m) are drawn
by thick arrows, f(W (π/m)) are drawn by thin arrows and f̃(W (π/m)) are drawn by
broken arrows.

Figure 3.1. W (π/m), f(W (π/m)) and f̃(W (π/m)).

Suppose that βi 6= η and βi 6= η−1. As Figure 3.1 illustrates in the case βi = η3, we
see that f̃(W (π/m)) and W (π/m) are disjoint, and hence

Λ̃βi
∩ (W (π/m)×W (π/m)) = ∅.

Therefore `(βi) = 0.
Suppose that βi = η. Then the intersection of Λ̃η and W (π/m)×W (π/m) consists

of a single point (Q, f̃(Q)), where Q ∈ H(−π/m) and f̃(Q) ∈ H(π/m). We choose a
positively-oriented basis of the real tangent space of C2 at this point as

(∂/∂x, ∂/∂y, ∂/∂x′, ∂/∂y′), where z = x +
√−1y, z′ = x′ +

√−1y′.

The positively-oriented basis of the tangent space of Λ̃η at (Q, f̃(Q)) is

(1, 0, cos(π/m), sin(π/m)), (0, 1,− sin(π/m), cos(π/m)),

while the positively-oriented basis of the tangent space of W (π/m) × W (π/m) at
(Q, f̃(Q)) ∈ H(−π/m)×H(π/m) is

(− cos(−π/m),− sin(−π/m), 0, 0), (0, 0, cos(π/m), sin(π/m)).

(Note that W (π/m) is oriented toward the origin on H(−π/m).) Calculating the sign
of the determinant of the 4× 4 matrix with row vectors being the four vectors above in
this order, we see that `(η) = 1.
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Suppose that βi = η−1. Then Λ̃η−1 ∩W (π/m)×W (π/m) consists of a single point
(Q, f̃(Q)), where Q ∈ H(π/m) and f̃(Q) ∈ H(−π/m). The positively-oriented basis of
the tangent space of Λ̃η−1 at (Q, f̃(Q)) is

(1, 0, cos(−π/m), sin(−π/m)), (0, 1,− sin(−π/m), cos(−π/m)),

while that of W (π/m)×W (π/m) at (Q, f̃(Q)) ∈ H(π/m)×H(−π/m) is

(cos(π/m), sin(π/m), 0, 0), (0, 0,− cos(−π/m),− sin(−π/m)).

Calculating the determinant, we see that `(η−1) = −1. ¤

Let p be pi or γ−1
i (pi). In a small neighborhood Up of p in X \ Y0, we have local

coordinates (z1, . . . , ẑi, . . . , zn+1) of X \ Y0. Let

ιp : Up ↪→ C× · · · × C (n factors)

be the open immersion defined by (z1, . . . , ẑi, . . . , zn+1). We consider an element

g := γν1
1 · · · γνn+1

n+1 ∈ G,

and give a local description of g(D) at p = pi and p = γ−1
i (pi) via ιp.

(1) Locally around p = pi. If νi 6= 0, then pi /∈ g(D) and hence Up ∩ g(D) = ∅.
Suppose that νi = 0. Using Remark 3.2 and the fact that g preserves the orientation, we
see that g(D) is identified with

(−1)i+1 H((2ν1 + 1)π/m)× · · · ×H((2νi−1 + 1)π/m)

×H((2νi+1 + 1)π)/m)× · · · ×H((2νn+1 + 1)π)/m). (3.3)

(2) Locally around p = γ−1(pi). If νi 6= −1, then γ−1(pi) /∈ g(D) and hence Up∩g(D)
is empty. Suppose that νi = −1. Then g(D) is identified with (3.3) because the action
of γi maps the local descriptions of g(D) at γ−1

i (pi) to that of γig(D) at pi.
We put

Si := (1− γ−1
1 ) · · · (1− γ−1

i−1)(1− γ−1
i+1) · · · (1− γ−1

n+1)D

(note that γi is missing), which is a hemisphere of the n-sphere S containing pi. The other
hemisphere is γ−1

i (Si), and we have S = Si − γ−1
i (Si). Since pi ∈ Si and pi /∈ γ−1

i (Si),
S is identified with

(−1)i+1 W (π/m)× · · · ×W (π/m)

locally at pi by ιpi
; while since γ−1

i (pi) /∈ Si and γ−1
i (pi) ∈ γ−1

i (Si), S is identified with
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−(−1)i+1 W (π/m)× · · · ×W (π/m)

locally at γ−1
i (pi) by ιγ−1

i (pi)
.

Suppose that β0 = η. We calculate the local intersection number of LJ,β and S at
p := pk0 . As was shown above, the topological n-cycle S is identified locally at p with

(−1)k0+1W (π/m)× · · · ×W (π/m)

by the local coordinates (z1, . . . , ˆzk0 , . . . , zn+1) of X \ Y0 with the origin p. Note that
{1, . . . , k̂0, . . . , n + 1} is equal to {j1, k1, . . . , jd, kd}. We permute the coordinate system
(z1, . . . , ˆzk0 , . . . , zn+1) to

(zj1 , zk1 , . . . , zjd
, zkd

),

and define a new open immersion

ι′p : Up ↪→
n times︷ ︸︸ ︷

C × · · · × C =

d times︷ ︸︸ ︷
C2 × · · · × C2

by this new coordinate system. By ι′p, the topological n-cycle S is identified locally at p

with

(−1)k0+1 sgn(σ′J)W (π/m)× · · · ×W (π/m),

where σ′J is the permutation

(
1 · · · k̂0 · · · n n + 1
j1 k1 · · · · · · jd kd

)
.

On the other hand, LJ,β is identified by ι′p with

Λβ1 × · · · × Λβd

locally at p. By Lemma 3.3, we have

〈LJ,β , S〉 = (−1)k0+1 sgn(σ′J)s(β1) · · · s(βd) if β0 = η. (3.4)

Suppose that β0 = η−1. We calculate the local intersection number of LJ,β and S

at p := γ−1
k0

(pk0). As was shown above, the new open immersion ι′p identifies S with

−(−1)k0+1 sgn(σ′J)W (π/m)× · · · ×W (π/m),

locally at p. Calculating as above, we have
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〈LJ,β , S〉 = −(−1)k0+1 sgn(σ′J)s(β1) · · · s(βd) if β0 = η−1. (3.5)

The dependence on β0 in the right-hand sides of (3.2), (3.4), (3.5) can be expressed
by the extra factor s(β0). Observing that (−1)k0+1 sgn(σ′J) = sgn(σJ), we complete the
proof of Theorem 2.2. ¤

4. The R-submodule LK(X).

4.1. Preliminaries.
For an R-module M , we put M∨ := HomZ(M,Z), which is regarded as an R-module

via the contragredient action of G on M∨.
Let M be a finitely generated Z-module. We put dM := rankM = dimQM ⊗ Q.

Note that M is torsion free if and only if it can be generated by dM elements.

Lemma 4.1. Let x1, . . . , xN be variables. We put

A := Z[x1, . . . , xN ]/(xm
1 − 1, . . . , xm

N − 1),

and θ := (x1 − 1) · · · (xN − 1). Then A/(θ) is torsion free as a Z-module. Moreover the
annihilator ideal of θ in A is generated by φ(x1), . . . , φ(xN ).

Proof. We fix the monomial order grevlex on Z[x1, . . . , xN ] (see [2, Chapter 2]).
Since the leading coefficients of xm

1 − 1, . . . , xm
N − 1 and θ are 1, the division algorithm

by the set of these polynomials can be carried out over Z. Then we see that A/(θ) is
generated as a Z-module by

xν1
1 · · ·xνN

N with 0 ≤ νi < m for all i and νi = 0 for at least one i. (4.1)

On the other hand, the reduced 0-dimensional scheme Spec(A/(θ) ⊗ C) consists of the
closed points

(a1, . . . , aN ) ∈ µN
m with ai = 1 for at least one i. (4.2)

The number of monomials in (4.1) is equal to the number of points in (4.2), and the latter
is equal to dA/(θ). Hence, by the observation above, we see that A/(θ) is torsion free.
The second part also follows from the division algorithm over Z by {φ(x1), . . . , φ(xN )}
of monic polynomials of degree m− 1. ¤

4.2. Proof of Part (a) of Theorem 1.1.
We define a non-degenerate symmetric bilinear form [ , ] : R×R → Z by

[
tν1
1 · · · tνn+1

n+1 , t
ν′1
1 · · · tν

′
n+1

n+1

]
:= δν1ν′1 . . . δνn+1ν′n+1

,

where δij is the Kronecker delta on Z/mZ. Since [ , ] obviously is unimodular and
satisfies [gf, gf ′] = [f, f ′] for f, f ′ ∈ R and g ∈ G, it induces an isomorphism R ∼= R∨ of
R-modules. Note that the image of the dual homomorphism f∨ : M∨ → R of an R-linear
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homomorphism f : R → M is an ideal of R, and the cokernel of f∨ is always torsion free,
because

Im f∨ = {x ∈ R | [x, y] = 0 for any y ∈ Ker f}.

In particular, the surjective homomorphism R ³ Vn(X) in Theorem 2.1 defines an
ideal Vn(X)∨ ↪→ R of R such that R/Vn(X)∨ is torsion free as a Z-module. On the
other hand, the G-invariant intersection pairing 〈 , 〉 defines an isomorphism Hn(X) ∼=
Hn(X)∨ of R-modules. Hence we obtain the dual homomorphism Hn(X) → Vn(X)∨ of
Vn(X) ↪→ Hn(X), which is surjective because Vn(X) is primitive in Hn(X) (see (2.1)). By
construction, the composite Hn(X) → R of the two homomorphisms Hn(X) ³ Vn(X)∨

and Vn(X)∨ ↪→ R maps τ ∈ Hn(X) to

∑

ν1,...,νn+1∈Z/mZ
〈 τ, γν1

1 · · · γνn+1
n+1 (S)〉 · tν1

1 · · · tνn+1
n+1 ∈ R.

Consider the composite

LK(X) ↪→ Hn(X) ³ Vn(X)∨,

where the second homomorphism is the dual of Vn(X) ↪→ Hn(X). Let L′K(X) be the
image of this composite. We have the following:

Claim 4.2. One has rankLK(X) = rankL′K(X) + 1, and

Hn(X)/LK(X) ∼= Vn(X)∨/L′K(X).

Proof. Let PX ∈ Hn(X) denote the class of the intersection of X and a (d + 1)-
dimensional subspace of Pn+1. By the Lefschetz hyperplane section theorem, the kernel
of Hn(X) ³ Vn(X)∨ is ZPX . Therefore it is enough to show that LK(X) contains
PX . Since K is non-empty, we can assume by a permutation of coordinates that J0 :=
[[0, 1], [2, 3], . . . , [n, n + 1]] is an element of K. Consider the (d + 1)-dimensional subspace
of Pn+1 defined by

z2 − ηz3 = z4 − ηz5 = · · · = z2d − ηz2d+1 = 0.

Then its intersection with X is defined in Pn+1 by

zm
0 + zm

1 = z2 − ηz3 = z4 − ηz5 = · · · = zn − ηzn+1 = 0,

which is the union of m standard d-spaces L[J0,(ηζν ,η,...,η)] for ν = 0, . . . , m − 1 in X.
Thus we have PX ∈ LK(X) and Claim 4.2 is proved. ¤

Since L′K(X) is an R-submodule of the ideal Vn(X)∨ of R and R/Vn(X)∨ is torsion
free, the torsion of Hn(X)/LK(X) ∼= Vn(X)∨/L′K(X) is isomorphic to the torsion of
R/L′K(X). Therefore, in order to prove Part (a) of Theorem 1.1, it is enough to show
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that the ideal L′K(X) of R is generated by the polynomials ψJ , where J runs through K.
For each J = [[j0, k0], . . . , [jd, kd]] ∈ J , we let G acts on the set B by

[g, J ](β) := (ζ−νk0 β0, ζνj1−νk1 β1, . . . , ζ
νjd

−νkd βd). (4.3)

Then we have

g−1(LJ,β) = LJ,[g,J](β).

Moreover, for any β, β′ ∈ B and J ∈ J , there exists g ∈ G such that β′ = [g, J ](β).
Hence, for a fixed J ∈ J , the Z-submodule L{J}(X) of Hn(X) generated by the classes
[LJ,β ] of LJ,β (β ∈ B) is the R-submodule generated by a single element [LJ,(η,...,η)].
It is therefore enough to show that the image ψ′J of [LJ,(η,...,η)] by the homomorphism
LK(X) ↪→ Hn(X) ³ Vn(X)∨ ↪→ R is equal to ψJ up to sign.

Suppose that

ψ′J =
∑

aν1...νn+1t
ν1
1 · · · tνn+1

n+1 ,

where the summation is taken over all (n + 1)-tuples (ν1, . . . , νn+1) ∈ (Z/mZ)n+1, and
aν1...νn+1 ∈ Z. For simplicity, we put

e(ν) := s(ζ−νη) =





1 if ν = 0,

−1 if ν = 1,

0 otherwise.

Then, writing γν1
1 · · · γνn+1

n+1 by g, we have

aν1...νn+1 = 〈LJ,(η,...,η), g(S)〉
= 〈g−1(LJ,(η,...,η)), S〉
= 〈LJ,[g,J](η,...,η), S〉
= sgn(σJ)e(νk0)e(νk1 − νj1) · · · e(νkd

− νjd
),

where the last equality follows from Theorem 2.2. It remains to notice that

∑

ν∈Z/mZ
e(ν)tν = 1− t and

∑

ν,ν′∈Z/mZ
e(ν − ν′)tν1tν

′
2 = (1− t1)φ(t1t2).

Therefore we do have ψ′J = ±ψJ . ¤

4.3. Proof of Theorem 1.4 and Corollary 1.5.
We put

AK := R/(ψJ | J ∈ K).
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Let Kp be an algebraically closed field of characteristic p ≥ 0. Since

dimKp
(R⊗Kp) = mn+1

does not depend on p, the Z-module AK has a torsion element of order p if and only if

dimKp(AK ⊗Kp) > dimC(AK ⊗ C).

On the other hand, by Claim 4.2 and L′K(X) = (ψJ | J ∈ K) in R, we have

rankLK(X) = mn+1 − dimC(AK ⊗ C) + 1.

Therefore it is enough to prove the following:

Claim 4.3. If p = 0 or (p,m) = 1, then

dimKp(AK ⊗Kp) = mn+1 − |ΓK|.

Thus, from now on we assume that p = 0 or (p,m) = 1. Then R⊗Kp is a semisimple
ring, and all its simple modules have dimension one over Kp: they correspond to the
multi-eigenvalues of (t1, . . . , tn+1), which are all m-th roots of unity (cf. Definition 1.3
in the case Kp = C). In other words,

M := Spec(R⊗Kp)

is a reduced scheme of dimension zero consisting of mn+1 closed points. Then the scheme
Spec(AK ⊗ Kp) is a closed subscheme MK of M , and dimKp

(AK ⊗ Kp) is the number
of closed points of MK. Let ΓK be the subset of M defined by Definition 1.3 with C
replaced by Kp. Note that, for a ∈ K×

p with am = 1, we have

φ(a) = 0 ⇐⇒ a 6= 1.

Therefore, for P = (a1, . . . , an+1) ∈ M , we have

P /∈ MK ⇐⇒ ψJ(a1, . . . , an+1) 6= 0 for some J ∈ K
⇐⇒ ak0 6= 1, . . . , akd

6= 1 and aj1ak1 = · · · = ajd
akd

= 1
for some J = [[j0, k0], . . . , [jd, kd]] ∈ K

⇐⇒ ai 6= 1 for i = 1, . . . , n + 1 and aj1ak1 = · · · = ajd
akd

= 1
for some J = [[j0, k0], . . . , [jd, kd]] ∈ K

⇐⇒ P ∈ ΓK.

Therefore we have dimKp
(AK ⊗Kp) = |MK| = |M | − |ΓK|. This concludes the proof of

Claim 4.3 and, hence, that of Theorem 1.4 and Corollary 1.5. ¤
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Remark 4.4. The rank of L(X) = LJ (X) = 1 + |ΓJ | is equal to the constant
term of the expansion of

{
1 +

(
x1 + · · ·+ xh−1 + 1 + x−1

h−1 + · · ·+ x−1
1

)n+2 if m = 2h is even,

1 +
(
x1 + · · ·+ xh + x−1

h + · · ·+ x−1
1

)n+2 if m = 2h + 1 is odd.

For small dimensions n, we have

rankL(X) =





3m2 − 9m + 6 + δm for n = 2,

15m3 − 90m2 + 175m− 100 + (15m− 39)δm for n = 4,

105m4 − 1050m3 + 3955m2 − 6335m + 3325
+(210m2 − 1302m + 2010)δm for n = 6,

where δm ∈ {0, 1} satisfies δm ≡ m− 1 mod 2.

4.4. Proof of Part (b) of Theorem 1.1.
The following lemma is immediate:

Lemma 4.5. In Z[x, y]/(xm − 1, ym − 1), we have

(y − 1)φ(xy) = −(x− 1)(y − 1)ρ(x, y).

We put

λ := (t1 − 1) · · · (tn+1 − 1).

By Lemma 4.5, we have

ψJ := ±λρJ .

Hence R/(ψJ | J ∈ K) in Part (a) of Theorem 1.1 is equal to R/(λρJ | J ∈ K). Consider
the natural exact sequence

0 → (λ)/(λρJ | J ∈ K) → R/(λρJ | J ∈ K) → R/(λ) → 0.

Since R/(λ) is a free Z-module by Lemma 4.1, the torsion of R/(ψJ | J ∈ K) is isomorphic
to the torsion of (λ)/(λρJ | J ∈ K). The homomorphism R ³ (λ) given by f 7→
fλ identifies (λ) with R by Lemma 4.1, and under this identification, the submodule
(λρJ | J ∈ K) of (λ) coincides with the ideal (ρJ | J ∈ K) of R. Therefore we have
(λ)/(λρJ | J ∈ K) ∼= R/(ρJ | J ∈ K). ¤

4.5. Proof of Parts (c) and (d) of Theorem 1.1.
Part (c) and Part (d) are dual to Part (a) and Part (b), respectively. We use the

following simple observation. Let ϕ : M1 → M2 be a homomorphism of free Z-modules,
and let ϕ∨ : M∨

2 → M∨
1 be the dual of ϕ. Then there exist canonical isomorphisms
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TorsCoker(ϕ) = ExtZ(TorsCoker(ϕ∨),Z) = HomZ(TorsCoker(ϕ∨),Q/Z),

where Tors M denotes the torsion of a Z-module M . Hence, there also exists a non-
canonical isomorphism TorsCoker(ϕ) ∼= TorsCoker(ϕ∨).

We put

LK :=
⋃

J∈K, β∈B
LJ,β ,

and consider the groups

Hn(LK) =
⊕

J∈K, β∈B
Z[LJ,β ], Hn(LK) =

⊕

J∈K, β∈B
Z[LJ,β ]∨,

each of which has a natural structure of the R-modules (see (4.3)). The inclusion LK ↪→ X

induces an R-linear homomorphism

ϕ : Hn(LK) → Hn(X).

Then Hn(X)/LK(X) = Coker(ϕ). Note that 〈 , 〉 defines an isomorphism Hn(X) ∼=
Hn(X)∨ (the Poincaré duality), and hence we obtain the dual homomorphism

ϕ∨ : Hn(X) → Hn(LK).

By the observation above, the torsion in question is the dual of the torsion of Coker(ϕ∨),
and hence these torsions are isomorphic. Consider the composite

ϕ∨V : R ³ Vn(X) ↪→ Hn(X) → Hn(LK),

where the first surjection is given by Theorem 2.1. Since Vn(X) is primitive in Hn(X) (see
(2.1)), the torsion of Hn(X)/LK(X) is isomorphic to the torsion of Coker(ϕ∨V ). Recall
that we regard Hn(LK) as an R-module via

g([LJ,β ]∨) = [LJ,[g−1,J]β ]∨.

For J = [[j0, k0], . . . , [jd, kd]] ∈ K, the natural homomorphism

R ³ R[LJ,(η,...,η)]∨ =
⊕

β∈B
Z[LJ,β ]∨ (4.4)

given by 1 7→ [LJ,(η,...,η)]∨ identifies R[LJ,(η,...,η)]∨ with

RJ = R/(tj1tk1 − 1, . . . , tjd
tkd

− 1) = Z[tk0 , . . . , tkd
]/(tmk0

− 1, . . . , tmkd
− 1), (4.5)

where the second equality follows from the relations tjν
= tm−1

kν
(ν = 1, . . . , d) in RJ .
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Indeed, each tji
tki

− 1 is contained in the kernel of (4.4) by the definition (4.3) of the
action of G, and both Z-modules RJ and R[LJ,(η,...,η)]∨ are free of rank md+1 = |B|.
Hence we have

Hn(LK) =
⊕

J∈K
RJ .

The homomorphism ϕ∨V is given by

1 7→
∑

J∈K

∑

β∈B
〈S,LJ,β〉[LJ,β ]∨.

For J = [[j0, k0], . . . , [jd, kd]] ∈ K, we have

[(γ−α0
k0

· · · γ−αd

kd
)−1, J ](η, . . . , η) = (ζ−α0η, . . . , ζ−αdη),

and hence, by Theorem 2.2, we obtain

∑

β∈B
〈S,LJ,β〉[LJ,β ]∨

= sgn(σJ)
∑

α0∈Z/mZ
· · ·

∑

αd∈Z/mZ
e(α0) · · · e(αd)[LJ,(ζ−α0η,...,ζ−αdη)]

∨

= sgn(σJ)
1∑

α0=0

· · ·
1∑

αd=0

e(α0) · · · e(αd)γ−α0
k0

· · · γ−αd

kd
[LJ,(η,...,η)]∨

= sgn(σJ)(1− t−1
k0

) · · · (1− t−1
kd

)[LJ,(η,...,η)]∨

= sgn(σJ)(tk0 − 1) · · · (tkd
− 1)t−1

k0
· · · t−1

kd
[LJ,(η,...,η)]∨

= τJcJ ,

where cJ := sgn(σJ)t−1
k0
· · · t−1

kd
[LJ,(η,...,η)]∨. Note that sgn(σJ)t−1

k0
· · · t−1

kd
is a unit in RJ .

Replacing the generator [LJ,(η,...,η)]∨ of each factor of Hn(LK) =
⊕

J∈KRJ by cJ , the
image of ϕ∨V is the R-submodule M generated by

s :=
∑

J∈K
τJ1J .

Thus Part (c) is proved.
For J = [[j0, k0], . . . , [jd, kd]] ∈ K, let (τJ) be the ideal of RJ generated by τJ . Then

s ∈ L∨K =
⊕

J∈KRJ is contained in
⊕

J∈K(τJ). We consider the exact sequence

0 →
( ⊕

J∈K
(τJ)

)/
Rs →

( ⊕

J∈K
RJ

)/
Rs →

⊕

J∈K
(RJ/(τJ)) → 0.
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Since

RJ/(τJ) = Z[tk0 , . . . , tkd
]/(tmk0

− 1, . . . , tmkd
− 1, τJ)

is a free Z-module by the second equality of (4.5) and Lemma 4.1, the torsion of⊕
J∈KRJ/Rs is isomorphic to the torsion of

⊕
J∈K(τJ)/Rs. On the other hand, the

homomorphism RJ ³ (τJ) given by f 7→ fτJ identifies (τJ) with

RJ = Z[tk0 , . . . , tkd
]/(φ(tk0), . . . , φ(tkd

))

by Lemma 4.1, and under this identification, the element τJ ∈ (τJ) corresponds to the
multiplicative unit 1J of RJ . Therefore, by

⊕
J∈K(τJ) ∼= ⊕

J∈KRJ , the element s ∈⊕
J∈KRJ corresponds to

∑
J∈K 1J ∈

⊕
J∈KRJ . Hence (

⊕
J∈K(τJ))/Rs is isomorphic

to (
⊕

J∈KRJ)/M. ¤

4.6. Proof of Corollaries 1.6 and 1.7.
To prove Corollary 1.6, we merely put J0 := [[0, 1], [2, 3], . . . , [n, n + 1]], and apply

Part (d) of Theorem 1.1 to the case K = {J0}. We immediately see that L{J0}(X) is
primitive in Hn(X). Let W = {Wt}t∈U be the family of smooth hypersurfaces defined
by the equations of the form (1.3). The parameter space U of this family is connected,
and hence there exists a path γ : [0, 1] → U from the Fermat variety X = Wγ(0) to an
arbitrary member W = Wγ(1) of W. Along the family Wγ(t), the subspaces LJ0,β (β ∈ B)
in X deform to subspaces of Wγ(t) defined by equations of the form

β(i)
ν (t)z2i = α(i)

ν (t)z2i+1 (i = 0, . . . , d, ν = 1, . . . , m).

Thus, along the constant (with respect to the Gauss–Manin connection) family Hn(Wγ(t))
of Z-modules over γ, the submodule L{J0}(X) of Hn(X) is transported to the submodule
of Hn(W ) generated by the classes [L′(ν0,...,νd)] of subspaces L′(ν0,...,νd) in W . The rank
and the primitivity are preserved during the transport.

For Corollary 1.7, we use the same continuity argument, deforming Ws to the Fermat
variety and representing the submodule in question as LJs

(X), where Js is the set of all
partitions “identical beyond s”, i.e., those of the form

[[j0, k0], . . . , [js, ks], [2s + 2, 2s + 3], . . . , [n, n + 1]], 0 ≤ ji, ki ≤ 2s + 1.

The restriction of Js to the index set 2s + 1 is well-defined and coincides with the full set
J (2s) of partitions of 2s + 1. Then, denoting by ( · ) the dependence on the dimension
(or the number of variables in the polynomial rings), it is easy to see that the module
CJs

(2d) given by Part (d) of Theorem 1.1 can be represented in the form

CJs(2d) = CJ (2s)(2s)⊗Z S(s, d),

where

S(s, d) := Z[t2s+2, t2s+4, . . . , t2d]/(φ(t2s+2), φ(t2s+4), . . . , φ(t2d)).



Projective subspaces in complex Fermat varieties 995

(Since the tail of each partition is fixed, we have the “constant” relations

t2s+2t2s+3 = · · · = t2dt2d+1 = 1;

hence, we can retain the even index variables only and take these variables out.) Thus,
this module is free (as an abelian group) if and only if so is CJ (2s)(2s), i.e., if and only
if Conjecture 1.2 holds for Fermat varieties of dimension 2s in P2s+1.

For the last assertion of Corollary 1.7, we observe that Conjecture 1.2 does hold for
the Fermat varieties of dimension 0 (obvious) and 2 (see [3]). ¤

5. Computational criterion.

In this section, we focus on the description of the torsion of Hn(X)/LK(X) given
by Part (b) of Theorem 1.1. We put

BK := R/(ρJ | J ∈ K).

By Lemma 4.5, the ideal (ρJ | J ∈ K) defines the closed subscheme ΓK in the reduced
0-dimensional scheme Spec(R ⊗ C) = (µm \ {1})n+1, and hence we can calculate d0 :=
dimC(BK⊗C) = |ΓK|. On the other hand, for each prime divisor p of m, we can calculate
dp := dimFp

(BK ⊗ Fp) by calculating a Gröbner basis of the ideal

(φ(t1), . . . , φ(tn+1)) + (ρJ | J ∈ K) (5.1)

in the polynomial ring Fp[t1, . . . , tn+1]. By Corollary 1.5, we see that LK(X) is primitive
in Hn(X) if and only if d0 = dp holds for any prime divisor p of m.

Using this method, we have confirmed the primitivity of L(X) = LJ (X) in Hn(X)
by the computer-aided calculation in the following cases:

(n,m) = (4,m) where 3 ≤ m ≤ 12, (6, 3), (6, 4), (6, 5), (8, 3).
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[ 2 ] D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Math-

ematics, Springer-Verlag, New York, second edition, 1997, An introduction to computational

algebraic geometry and commutative algebra.

[ 3 ] A. Degtyarev, Lines generate the Picard group of a Fermat surface, J. Number Theory, 147

(2015), 454–477.

[ 4 ] A. Degtyarev, On the Picard group of a Delsarte surface, to appear in Kyoto J. Math.
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