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Abstract. We prove the finiteness of the number of blow-analytic equiv-
alence classes of embedded plane curve germs for any fixed number of branches
and for any fixed value of µ′ —a combinatorial invariant coming from the dual
graphs of good resolutions of embedded plane curve singularities. In order to
do so, we develop the concept of standard form of a dual graph. We show that,
fixed µ′ in N, there are only a finite number of standard forms, and to each
one of them correspond a finite number of blow-analytic equivalence classes.
In the tribranched case, we are able to give an explicit upper bound to the
number of graph standard forms. For µ′ ≤ 2, we also provide a complete list
of standard forms.

1. Introduction.

Compared to complex algebraic geometry, real algebraic geometry has a flexible
nature, thus offering many different approaches to the subject. For example, in the real
case there is no analogue of Hartogs’ extension theorem. This means, in particular, that
given an analytic function germ f : (R2, 0) → R, we can construct an analytically distinct
g : (R2, 0) → R such that f and g are isomorphic on a complement of the origin.

Thus, for a qualitative study of real singularities, we have a chance to introduce a
suitable equivalence relation taking into account this phenomenon. Blow-analytic equiv-
alence, originally introduced by Kuo [5], is one possibility.

For function germs, several classification results are known, cf. [4], [1]. In this
article, we shall study the classification of germs of embedded plane curve singularities
up to blow-analytic homeomorphism, instead.

The first result in this direction appeared in [2] in 1998 and it showed how a straight
line is blow-analytically equivalent to a cusp (in fact, it is equivalent to any unibranched
germ of plane curve, no matter how singular). The peculiar behaviour of this example
—known as the Kobayashi–Kuo example— suggests that the blow-analytic equivalence
of embedded curves has strong topological nature.

Here we aim to continue and expand the blow-analytic classification of embedded
plane curve singularities. Firstly, we recall the basic definitions and constructions —
which can be found in [2], [3]— along with previous results in the subject, mostly con-
cerning the classification of unibranched and bibranched germs of plane curves.

The study of the tribranched case occupies sections four and five, where we compute
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an upper estimate for the number of blow-analytic equivalence classes depending on a
combinatorial invariant µ′ defined in section two, and then we proceed to find represen-
tatives for each class for µ′ ≤ 2.

Our main result concerns the general n-branched case and is stated in section three.
We show the “local” finiteness of the blow-analytic classification, that is, the finiteness of
the number of blow-analytic equivalence classes for fixed values of the number of branches
and of the above mentioned discrete invariant.

We conclude this article with some topological considerations about the tools used.
We would like to thank the referee for the useful comments and suggestions made

during the revision process.

2. Blow-analytic invariants.

Definition. A function f : R2 → R is blow-analytic if there exists a composition
of blow-ups β = β1 ◦ · · · ◦ βm : X → R2 such that the composition f ◦ β is analytic.

A homeomorphism h : R2 → R2 is blow-analytic if h and its inverse h−1 both have
blow-analytic components.

In this article, we study the classification of embedded germs of real plane curves up
to blow-analytic homeomorphism. We say that two germs of curves (C, 0), (D, 0) in R2

with an isolated singularity at the origin are blow-analytically equivalent if there exist a
blow-analytic homeomorphism h : R2 → R2 that carries (C, 0) to (D, 0).

It follows from the definition that two analytically equivalent curves are also
blow-analytically equivalent. On the other hand, there are known examples of blow-
analytically equivalent curves that are not even C1-equivalent or bi-Lipschitz equivalent
([4]). In this sense, the classification of singular curves up to blow-analytic homeomor-
phism offers a more flexible approach than the analytic one.

Now, let X be a surface which is a tubular neighbourhood of the union of compact
smooth curves {Ej}m

j=1 intersecting transversally. We construct the weighted dual graph
Γ associated to X by drawing a vertex vi for each central curve Ei, and connecting two
vertices by an edge if and only if the corresponding curves intersect. To each vertex we
assign as weight the Z/2Z-valued self-intersection number of the corresponding curve.
In figures of the graphs Γ , we represent odd curves as white vertices and even curves as
black vertices.

Definition. We say that X is smoothly contractible if it is a surface obtained
from (R2, 0) by a finite sequence of blow-ups and blow-downs.

It follows easily from the definition that if X is smoothly contractible, then its dual
graph Γ is a tree.

Let A = (aij) be the Z/2Z-valued intersection matrix associated to Γ , i.e., the
matrix whose entries are the Z/2Z-valued intersection numbers aij = Ei ·Ej . It has been
proven in [2] that X is smoothly contractible if and only if the determinant of A is 1.
Since the information about the intersection matrix is captured by Γ , we also say that
Γ is smoothly contractible if and only if the determinant of A is 1.
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In the unibranched case, this invariant has been used to completely classify plane
curve singularities up to blow-analytic homeomorphism.

Theorem 1 ([2]). All unibranched germs of plane curves are blow-analytically
equivalent to a line.

Next, assume that (C, 0) has more than one branches and set C =
⋃n

i=1 Ci its
irreducible decomposition. Let X be a good resolution of R2 at the origin, i.e., an
embedded resolution which is a composition of successive blow-ups and blow-downs such
that the support of the total transform of C is simple normal crossing. We define Γ ∗

to be the extension of Γ obtained by adding a vertex for each component of the strict
transform and an edge where a non-compact component (i.e., a component of the strict
transform) intersects an exceptional curve. It follows from the goodness of the resolution
that Γ ∗ is a tree.

Blow-analytic equivalence of curve germs determines an equivalence relation for
triplets (X,

⋃n
i=1 C̃i, ∪jEj) (where C̃i is the strict transform of Ci), which induces an

equivalence relation for trees Γ and Γ ∗. In case of ambiguity, we specify which curve
germ corresponds to the dual graphs by writing Γ (C) and Γ ∗(C).

Let C =
⋃n

i=1 Ci and C ′ =
⋃n

i=1 C ′i be two blow-analytically equivalent plane curve
germs, then the blow-analytic homeomorphism h : (R2, C, 0) → (R2, C ′, 0) induces a
bijection h̄ : {1, 2, . . . , n} → {1, 2, . . . , n} such that h(Ci) = C ′̄

h(i)
.

Let (X,
⋃n

i=1 C̃i, ∪jEj) and (X ′,
⋃n

i=1 C̃ ′i, ∪j′E
′
j′) be good embedded resolutions of

(C, 0) and (C ′, 0) respectively, and let (X̃,
⋃n

i=1
˜̃Ci, ∪j̃Ẽj̃) be a common good resolution

which dominates (X,
⋃n

i=1 C̃i, ∪jEj) and (X ′,
⋃n

i=1 C̃ ′i, ∪j′E
′
j′). Consider a path γij in

the exceptional set of X connecting the strict transforms of Ci and Cj , with i 6= j. We
restrict ourselves to minimal paths, i.e., those γij which, amongst all paths connecting the
strict transforms of Ci and Cj , go through the minimum number of exceptional curves.
Each path γij has a lift in X̃, and thus an image γ ′̄

h(i)h̄(j)
in X ′.

In the dual graph, γij (resp. γ ′̄
h(i)h̄(j)

) determines a path γ∗ij (resp. (γ ′̄
h(i)h̄(j)

)∗) in
Γ ∗(C) (resp. Γ ∗(C ′)) between the vertices corresponding to the strict transforms of Ci

and Cj (resp. C ′̄
h(i)

and C ′̄
h(j)

). Since Γ ∗ is a tree, for fixed i, j there is a unique path
γ∗ij in the dual graph corresponding to all minimal paths γij in the resolution.

Lemma 1. Let Γij(C) (resp. Γ ∗ij(C)) be the graph obtained by removing all vertices
in γ∗ij and the connecting edges from Γ (C) (resp. Γ ∗(C)), and let ∆ij(C) be the set of
connected components G in Γij(C) such that µ(G) 6= 0, where µ(G) is the corank of the
Z/2Z-valued intersection matrix associated to G. Let ∆∗

ij(C) denote the natural extension
of ∆ij(C) in Γ ∗(C).

Then, a blow-analytic homeomorphism h : (R2, C, 0) → (R2, C ′, 0) induces a bijec-
tion ĥ : ∆∗

ij(C) → ∆∗̄
h(i)h̄(j)

(C ′). In particular, µ(Γij(C)) = µ(Γh̄(i)h̄(j)(C ′)).

Proof. As before, take a good resolution (X̃,
⋃n

i=1
˜̃Ci, ∪j̃Ẽj̃) dominating

(X,
⋃n

i=1 C̃i, ∪jEj) and (X ′,
⋃n

i=1 C̃ ′i, ∪j′E
′
j′), and let βk be a step in the sequence of

blow-ups from X to X̃.
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For any k, if the centre of βk is a point in γij , then the exceptional curve Ek intersects
the lift of γij , therefore it does not contribute to Γ ∗ij(C).

If the centre of βk is not in γij but on a curve belonging to γ∗ij , after the blow-up an
isolated odd vertex is added to Γ ∗ij(C), thus creating a new connected component which
is smoothly contractible and does not contribute to ∆ij(C).

Finally, if the centre of βk is not on any curve in γ∗ij , the vertex corresponding to
the exceptional curve Ek extends one of the connected components G of Γij(C). Let us
call G′ the extended component. Slightly abusing the notation, let A′ = (E′

p ·E′
q) be the

Z/2Z-valued intersection matrix associated to G′. By a change of basis, A′ ≈Z
(

1 0
0 A

)
,

where A is the Z/2Z-valued intersection matrix associated to G. Clearly, µ(G′) = µ(G),
so βk preserves the corank of the connected components of Γij(C).

Since this holds for each step βk in the blow-up sequence, there exists a bijection
between the elements of ∆∗

ij(C) and the elements of its lift in X̃. Furthermore, since
γ ′̄

h(i)h̄(j)
is the image of γij in X ′, we have a bijection ĥ : ∆∗

ij(C) → ∆∗̄
h(i)h̄(j)

(C ′). ¤

Let I = {Ik : k = 1, . . . , p} denote a partition of {1, 2, . . . , n} (i.e., I1 ∪ · · · ∪ Ip =
{1, . . . , n} and Ik ∩ Il = ∅ if 1 ≤ k < l ≤ p). By considering the union of minimal
paths γij between two components C̃i and C̃j of the strict transform with i, j ∈ Ik and
i 6= j, the proof of the above lemma can be generalised to a partition on the set of
strict transform components. Namely, we have that a blow-analytic homeomorphism
h : (R2, C, 0) → (R2, C ′, 0) induces a bijection ĥ : ∆I(C) → ∆h̄(I)(C ′) (where h̄(I) =
{h̄(Ik) : k = 1, . . . , p}) and, in particular, the corank µ(ΓI) is a blow-analytic invariant.

When I = {{1}, {2}, . . . , {n}}, µI generalises the invariant µ defined in [3], although
the author uses a different method to prove its invariance.

When I = {1, 2, . . . , n}, we write µI as µ′ for convenience. As we shall see, the value
of µ′ bounds from below the least number of components in the exceptional divisor of a
good resolution of any curve germ in that equivalence class.

In the case of bibranched singularities, µ′ provides the following classification:

Theorem 2 ([3]). Bibranched germs of plane curves have isomorphic resolution
graphs if and only if they have the same µ′.

Our aim is to study the classification of singularities with three branches. In the
following sections, firstly we present some general results for n-branched germs and then
focus on the tribranched case.

3. Finiteness.

We approach the problem of the classification of embedded plane curve singularities
by providing a classification of the dual graphs of their resolutions. Namely, given a
smoothly contractible graph Γ , we perform blow-ups and blow-downs to simplify Γ and
reduce it to a standard form, without changing the blow-analytic equivalence class of
the corresponding embedded curve germ (C, 0). This method allows us to make easy
combinatorial computations and graphic representations.

Two blow-analytically equivalent germs have by definition a pair of isomorphic dual
graphs. It should be noted that the converse is not true: in fact, we can explicitly
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construct examples of non-equivalent singularities with isomorphic dual graphs, as shown
in the last section of this paper. However, to any dual graph correspond only a finite
number of blow-analytically distinct embedded plane curve germs.

In what follows, we denote Q an even vertex with valency 1 in Γ ∗, where the valency
of a vertex is the number of edges incident to it. We call a vertex extremal if it has valency
1 in Γ , and we call special vertex a vertex with valency 3 or more in Γ ∗. We remark that
a configuration is not smoothly contractible if Γ contains two vertices of type Q attached
to the same vertex. In fact, if the graph contains such a part, then the determinant of
the Z/2Z-valued intersection matrix associated to Γ vanishes ([2]).

Let X be a good resolution and Γ ∗ its extended dual graph. The operations listed
below are a composition of blow-ups and blow-downs of X, expressed for simplicity in
the graph language.

C1 (Contraction 1): contract an odd vertex with valency 1 in Γ ∗;
C2 (Contraction 2): contract an odd vertex with valency 2 in Γ ∗;
C3 (Contraction 3): remove two adjacent even vertices, each having valency at most 2

in Γ ∗, by first blowing up at the intersection of the two exceptional curves and then
performing C2 three times (contracting the newly created exceptional curve last);

M1 (Modification 1): if a vertex of type Q is attached to an odd vertex, change the parity
of the latter as shown in [3]; namely, perform a blow-up at the point where the even
curve in Q intersects the odd curve and then contract the extremal odd vertex.

Given a graph Γ ∗ as above, perform contractions C1, C2 and C3 repeatedly, until no
more contractions can be made. Since the size of the graph is finite and each contraction
decreases the number of vertices in Γ , after a finite number of steps Γ will be minimal
under C1, C2 and C3. Next, apply M1 wherever it is possible. If n = 0 (i.e., the embedded
curve germ is an isolated point), the minimal graph under the above operations is an
odd vertex with valency 0, which we further contract, obtaining the empty graph.

The resulting surface X is blow-analytically equivalent to the original one, and its
dual graph is reduced to a standard form of Γ .

Proposition 1. A standard form of Γ satisfies the following properties:

P1 All non-special vertices are even;
P2 All special vertices adjacent a vertex of type Q are even;
P3 The segment between two special vertices is at most one even vertex ;
P4 There are exactly µ′ vertices of type Q.

Proof. P1 follows from the fact that any odd non-special vertex has been con-
tracted by C1 or C2. P2 is a consequence of M1. P3 follows from P1 and by C3. To prove
P4, set I = {1, 2, . . . , n} and consider the extremal vertices of each connected component
in ΓI . By P1, they are all even. Moreover, by C3 they can only be part of a path of
length 1 and two of them cannot be connected to the same vertex, since Γ is smoothly
contractible. Thus ΓI contains only even vertices, all disconnected, and exactly µ′ of
them, since each contributes to the corank by 1. ¤

An arbitrary Γ can always be reduced as shown above. Therefore, we shall restrict
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our attention to the easier task of classifying standard configurations.

Proposition 2. For an n-branched embedded plane curve germ, a standard form
of Γ has at most µ′ + n extremal vertices.

Proof. Since we assume Γ to be a standard form, its extremal vertices must be
either even vertices (corresponding to vertices of type Q) or vertices adjacent to at least
a non-compact component. There are exactly µ′ vertices of the first kind and at most n

of the second kind, thus there are at most µ′ + n extremal vertices. ¤

Remark. The number of extremities could be strictly less than µ′ + n. In fact,
more than one non-compact components could be adjacent to the same extremal vertex,
or it could also happen that some non-compact components are attached to non-extremal
vertices.

We can gain additional information about standard forms by looking at the weights
of extremal vertices and at the vertices to which they are connected.

Consider the case where an extremal vertex is adjacent to a non-compact component.
If the extremal vertex is odd, then it must be adjacent to at least two non-compact
components (otherwise it has valency 2 in Γ ∗ and can be smoothly contracted).

Now, assume that the extremal vertex is even and adjacent to exactly one non-
compact component. Then the preceding vertex v must be a special vertex (if it were
a even vertex with valency 2, Γ could be further reduced by C3 without losing normal
crossingness) and, to avoid configurations which are not smoothly contractible, there
cannot be a vertex of type Q attached to v. Thus v must be either adjacent to a non-
compact component or have valency at least 3 in Γ .

The above considerations prove the following lemma.

Lemma 2. There are only four kinds of extremal vertices in a standard form:

• vertices of type Q;
• vertices adjacent to at least two non-compact components;
• even vertices adjacent to exactly one non-compact component and preceded by an-

other vertex adjacent to a non-compact component ;
• even vertices adjacent to exactly one non-compact component and preceded by a

vertex with valency at least 3 in Γ .

We now prove our main result.

Main Theorem. The number of blow-analytic equivalence classes of n-branched
germs of plane curves with µ′ = k is finite for any k in N.

Proof. Given a germ of plane curve (C, 0), take a good resolution of the embedded
singularity and consider its dual graph Γ . By the process described above, the tree Γ can
be reduced to its standard form, which, by Proposition 2, has at most k + n branches.
Furthermore, the length of each branch is limited by the properties of standard forms.
Since the number of trees of a finite size is finite, it follows that there are only a finite
number of standard forms, given n and k.
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Observe that the number of smooth surfaces X corresponding to a given standard
form, as well as the number of choices for the positions of the n non-compact components
on X, is finite up to diffeomorphism. Thus, only finitely many blow-analytic equivalence
classes of embedded plane curve singularities exist for fixed n and k in N. ¤

Remark. The theorem states the “local” finiteness of the blow-analytic classifica-
tion, that is, for fixed values of n and µ′. Globally, the classification is infinite. In fact,
it is easy to find standard configurations (and thus blow-analytic equivalence classes) for
any number of branches and any µ′ in N.

4. An upper bound.

While it is difficult to recover a generating formula for the exact number of blow-
analytic equivalence classes given the number of branches n and the value of µ′, an upper
bound to the number of standard forms can be estimated using combinatorial methods
and some observations about the shape of Γ .

Proposition 3. In the tribranched case, the number of standard forms of Γ with
µ′ = k is less than or equal to

(k3 − 2k2 − k + 11)2k−2.

Proof. Consider the topological structure of the minimal subtree connecting all
non-compact components in Γ . We call this the trunk of Γ .

In the tribranched case, there are only four possible shapes for the trunk of a standard
form:

where × represents a non-compact component, the grey vertices can be either even or
odd exceptional curves, and waved edges between two vertices represent finite chains of
even curves connecting them.

For µ′ = k, standard forms of Γ can be obtained by adding k vertices of type Q to
the trunks above.

Observe that, in order to avoid not smoothly contractible configurations, two vertices
of type Q cannot be attached to the same vertex. This implies that graphs of type A
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exist only for k = 0 and k = 1.
In what follows assume k > 2 for simplicity. The formula still holds for k = 0, 1, 2,

as shown by the computations in the next section.

Type B: By Lemma 2, the vertex a cannot be extremal, so there must be a vertex
of type Q attached to it.

If another vertex of type Q is attached to b, the remaining k − 2 vertices of type Q

must be placed in the middle. The segment between each pair of special vertices (if it
exists) is at most one even vertex, so 2k−1 different configurations are obtained this way.

Similarly, if b is extremal, then k − 1 vertices of type Q are attached to the edge of
the trunk, which gives 2k configurations.

Furthermore, b can be either odd or even, so there are

2(2k−1 + 2k) = 3 · 2k

configurations of type B.

Type C: If vertices of type Q are attached to both a and b, there are

∑

α+β=k−2

(2α+12β+1) +
∑

α+β=k−3

(2α+12β+1)

= (k − 2)(k − 1)2k−1 + (k − 2)(k − 3)2k−2 = (3k2 − 11k + 10)2k−2

configurations, where the two terms in the sum count separately whether there is a vertex
of type Q attached to c or not.

On the other hand, if b is an extremal vertex, then, by Lemma 2, the right edge is
empty. Since k > 2, there must be one vertex of type Q attached to a and the other
k − 1 to the left edge. This gives

2k−1 + 2k−2 = 3 · 2k−2

new configurations.
Since c can be either odd or even, the total number of configurations of type C is

2[(3k2 − 11k + 10)2k−2 + 3 · 2k−2] = (3k2 − 11k + 13)2k−1.

Type D: First consider the case in which a, b and c each have a vertex of type Q

attached to them. This gives

∑

α+β+γ=k−3

(2α+12β+12γ+1) +
∑

α+β+γ=k−4

(2α+12β+12γ+1)

=
1
3
(k − 3)(k − 2)(k − 1)2k−1 +

1
3
(k − 4)(k − 3)(k − 2)2k−2

configurations.
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Next, assume that c is extremal. By Lemma 2, this means that the downward
edge is empty and there cannot be vertices of type Q attached to d, else not smoothly
contractible configurations arise. So we have

∑

α+β=k−2

(2α+12β+1) = (k − 2)(k − 1)2k−1

configurations.
Observe that if two of the vertices in the trunk are extremal, Lemma 2 implies that

the corresponding edges are empty, which leads to configurations that are not smoothly
contractible. So the previous two cases cover all possible configurations.

Since there are two colour choices for the vertex d, in total there are

(k − 2)(k2 − 3k + 4)2k−1

configurations of type D.

Adding the numbers obtained for each type, we get the upper bound

(k3 − 2k2 − k + 11)2k−2. ¤

Remark. The above formula is merely an upper estimate of the number of stan-
dard forms for µ′ = k. In fact, the number includes some not smoothly contractible
configurations as well as pairs of configurations which are blow-analytically equivalent
(in the pair, one configuration is a standard form, to which the other can be reduced).

5. Explicit classification of tribranched germs.

In this section, we restrict our attention to tribranched germs of plane curves and
determine explicitly a standard form for each blow-analytic equivalence class, for low
values of the invariant µ′.

Proposition 4 ([3]). A germ of a tribranched plane curve with µ′ = 0 is blow-
analytically equivalent to one of the following :

({xy(x− y) = 0}, 0) ({xy(x− y2) = 0}, 0)

The following results provide a classification of the dual graphs of good resolutions
with µ′ = 1, 2.

Up to this point, we are not able to prove in general the uniqueness of standard forms
in a given blow-analytic equivalence class. In Propositions 5 and 6, we use the invariants
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µI to show that the standard forms listed in the statements are in fact blow-analytically
distinct.

It may happen that two blow-analytically non-equivalent germs share the same graph
standard form. However, to each standard form correspond at most a finite number of
blow-analytic equivalence classes of plane curve germs, so we feel that a classification of
the dual graphs is still a strong one from the blow-analytic point of view.

Proposition 5. The dual graph of any good resolution of a tribranched plane
curve germ with µ′ = 1 is blow-analytically equivalent to exactly one of the following
standard forms:

A2 : ({y(y − x2)(y + x2) = 0}, 0) B1 : ({x(y − x)(y2 − x3) = 0}, 0)

B4 : ({y(y − x2)(y − x4) = 0}, 0) C2 : ({y(y − x2)(y2 − x5) = 0}, 0)

Proof. Consider a tribranched germ of plane curve (C, 0) and assume µ′ = 1.
Take a good resolution of (C, 0), construct its dual graph Γ and reduce it to a standard
from as described in section two.

Since (C, 0) is tribranched, the trunk of the reduced Γ must be of type A, B, C or
D. Furthermore, the assumption µ′ = 1 implies that Γ contains exactly one vertex of
type Q.

Draw all configurations with µ′ = 1 for each type, remembering that a segment
between two special vertices is at most one even vertex and using Lemma 2 for the
extremal vertices. Then, Γ must be blow-analytically equivalent to one of the following
configurations:

A1 A2
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B1 B3 B5 (µ 6= 0)

B2 (µ 6= 0) B4 B6 (µ 6= 0)

C1 C3 (µ 6= 0)

C2 C4 (µ 6= 0)

Observe that all configurations of type D with µ′ = 1 are not smoothly contractible,
thus cannot be the dual graph of a resolution. For the same reason, we also cross out of
the list all configurations with µ 6= 0.

For the remaining configurations, A1, B3 and C1 are blow-analytically equivalent to
A2, B4 and C2 respectively. Only 4 graphs are left and they are those of the statement.

Finally, the equation of a representative for each configuration can be found by
contracting all exceptional curves (possibly performing blow-ups if no odd curves are
present).

To show that the four configurations are blow-analytically distinct, label {1, 2, 3} the
vertices corresponding to the three non-compact components and consider the triplets
{µ(Γ12), µ(Γ13), µ(Γ23)}, which are blow-analytic invariants by Lemma 1. We have:

A2, B4 : {1, 1, 1} B1 : {0, 1, 1} C2 : {0, 1, 2}.

Since the coranks are not sufficient to distinguish between A2 and B4, we look explicitly
at the sets ∆∗

ij for 1 ≤ i < j ≤ 3:

∆∗
12(A2) = ∆∗

13(A2) = ∆∗
23(A2) = {•,×};

∆∗
12(B4) = ∆∗

13(B4) = {•,×}, ∆∗
23(B4) = { }.

There is no bijection between ∆∗
ij(A2) and ∆∗

23(B4) for any choice of ij, so we
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conclude that no blow-analytic homeomorphism exists between plane curve germs having
good resolutions equivalent to A2 and B4 respectively. ¤

Proposition 6. The dual graph of any good resolution of a tribranched plane
curve germ with µ′ = 2 is blow-analytically equivalent to exactly one of the following
standard forms:

B2 B5 B12

C1 C4

C8 D2

Proof. The proof is similar to that of the previous proposition. For each type,
draw all reduced configurations in which exactly two vertices of type Q appear. The
dual graph of any resolution of a tribranched singularity with µ′ = 2 is blow-analytically
equivalent to one of the graphs in the list below. Again, notice that there are no smoothly
contractible configurations of type A.

B1 B3 (µ 6= 0) B5

B2 B4 (µ 6= 0) B6 (µ 6= 0)
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B7 (µ 6= 0) B9 (µ 6= 0) B11

B8 (µ 6= 0) B10 (µ 6= 0) B12

C1 C3 C5 (µ 6= 0)

C2 (µ 6= 0) C4 C6 (µ 6= 0)

C7 C9 (µ 6= 0) C11 (µ 6= 0)

C8 C10 (µ 6= 0) C12 (µ 6= 0)

D1 D3 (µ 6= 0) D5 (µ 6= 0)

D2 D4 (µ 6= 0) D6 (µ 6= 0)
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Next, remove all configurations having µ 6= 0, as they are not smoothly contractible.
Finally, observe that some of the remaining configurations are pairwise blow-

analytically equivalent (namely, B1, B11, C3, C7 and D1 are equivalent to B2, B12, C4, C8

and D2 respectively).
Again, we label {1, 2, 3} the vertices corresponding to the three non-compact com-

ponents and consider the values of the invariants {µ(Γ12), µ(Γ13), µ(Γ23)} to show that
several of the configurations are non-equivalent. In fact, we have the following:

B2, B12, C4 : {1, 2, 2} B5 : {0, 2, 2} C1 : {1, 1, 2}
C8 : {0, 2, 3} D2 : {1, 1, 3}.

To further distinguish between B2, B12 and C4, we look explicitly at the sets ∆∗
ij for

1 ≤ i < j ≤ 3:

∆∗
12(B2) = ∆∗

13(B2) = {•, •,×}, ∆∗
23(B2) = {•,×};

∆∗
12(B12) = ∆∗

13(B12) = {•, •,×}, ∆∗
23(B12) = { };

∆∗
12(C4) = {•,×}, ∆∗

12(C4) = {•, }, ∆∗
23(C4) = {•, •,×}.

Since we do not have the bijections implied by Lemma 1, we can say that B2, B12, C4

define different blow-analytic equivalence classes. ¤

6. From graphs to germs.

Blow-ups and blow-downs are local transformations, so, in particular, they do not
change the order in which the semi-branches intersect the boundary of a small of circle
around the origin. We represent this piece of information in a chord diagram by drawing
vertices on S1 where the semi-branches intersect such boundary, and joining two vertices
if they belong to the same local analytic component.

For example, in the tribranched case, there are five possible chord diagrams:

.

Since chord diagrams are blow-analytic invariants, we can prove that two configura-
tions are non-equivalent by showing that they have different chord diagrams.

This invariant does not add new information to the classification of standard forms
in Proposition 5. In fact, to each configuration corresponds exactly one chord diagram
in the following way:

A2, B4 : B1, C2 : .
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As we consider configurations with a larger value of µ′, however, a new phenomenon
appears. For example, the standard form B2 in Proposition 6

has two possible chords diagrams: and . Resolutions corresponding to this
dual graph are smooth surfaces diffeomorphic to a chain of four cylinders intersecting
transversally, and different choices for the respective positions of the strict transform
components give different chord diagrams.

This means that we can have two blow-analytically distinct embedded plane curve
germs with the same dual graph, as shown below:

({(y3 − x4)(y2 + x3)(y2 − x3) = 0}, 0) ({(y3 − x4)(2y2 − x3)(y2 − x3) = 0}, 0)

The complete list of chord diagrams for the standard forms in Proposition 6 is as
follows:

B2, C1, C4, D2 : , B5, C8 : B12 : .

Thus, to each of the configurations B2, C1, C4, D2 correspond pairs of plane curve
germs which are blow-analytically non-equivalent.

We remark that the induced equivalence of dual graphs is weaker than the blow-
analytic equivalence of embedded plane curve germs. This follows from the fact that
some topological information is lost in the passage from a resolution to its dual graph,
namely, we lose track of the respective position of the strict transform components. One
should pay attention to this kind of phenomena when passing from the equivalence of
dual graphs Γ to the blow-analytic classification of germs.

However, for each standard form, there is only a finite possibility of equivalence
classes of germs. In some cases, as above, we can distinguish the classes by using chord
diagrams, which are determined solely by the order of the branches near the origin.
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