Coefficient multipliers of \boldsymbol{H}^{1} into ℓ^{q} associated with Laguerre expansions

By Yehao Shi and Zhongkai Li

(Received June 24, 2014)

Abstract

The purpose of the paper is to study coefficient multipliers of the Hardy space $H^{1}([0, \infty))$ associated with Laguerre expansions. As a consequence, a Paley type inequality is obtained.

1. Introduction and results.

If $\alpha>-1$, the Laguerre function $\mathcal{L}_{n}^{(\alpha)}(x)$ is defined by

$$
\begin{equation*}
\mathcal{L}_{n}^{(\alpha)}(x)=\tau_{n}^{\alpha} L_{n}^{(\alpha)}(x) e^{-x / 2} x^{\alpha / 2} \tag{1}
\end{equation*}
$$

where $\tau_{n}^{\alpha}=(\Gamma(n+1) / \Gamma(n+\alpha+1))^{1 / 2}$ and $L_{n}^{(\alpha)}(x)(n \geq 0)$ are the Laguerre polynomials determined by the orthogonal relation (see $[\mathbf{1 6},(5.1 .1)]$)

$$
\int_{0}^{\infty} e^{-x} x^{\alpha} L_{n}^{(\alpha)}(x) L_{m}^{(\alpha)}(x) d x=\left(\tau_{n}^{\alpha}\right)^{-2} \delta_{m n}
$$

The system $\left\{\mathcal{L}_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ is a complete orthonormal system on the interval $[0,+\infty)$ with respect to the Lebesgue measure. For a function $f \in L^{p}([0, \infty)), 1 \leq p \leq \infty$, its Laguerre expansion is

$$
\begin{equation*}
f \sim \sum_{n=0}^{\infty} c_{n}^{(\alpha)}(f) \mathcal{L}_{n}^{(\alpha)}(x), \quad c_{n}^{(\alpha)}(f)=\int_{0}^{\infty} f(t) \mathcal{L}_{n}^{(\alpha)}(t) d t \tag{2}
\end{equation*}
$$

$H^{1}(\mathbb{R})$ is the real Hardy space of the boundary values $f(x)=\Re F(x)$ of the real parts $\Re F(z)$ of functions $F(z)$, where $F(z)$ is an element of the Hardy space $H^{1}\left(\mathbb{R}_{+}^{2}\right)$, that is, $F(z)$ is analytic on the upper half plane $\mathbb{R}_{+}^{2}=\{z=x+i y ; y>0\}$ with the norm

$$
\|f\|_{H^{1}(\mathbb{R})}=\|F\|_{H^{1}\left(\mathbb{R}_{+}^{2}\right)}=\sup _{y>0} \int_{-\infty}^{\infty}|F(x+i y)| d x .
$$

In the present paper, we shall study the coefficient multipliers associated with Laguerre

[^0]expansions on the space
$$
H^{1}([0, \infty))=\left\{f \in H^{1}(\mathbb{R}): \operatorname{supp} f \subset[0, \infty)\right\}
$$

Our main theorem is as follows:
Theorem 1.1. Let $\alpha \geq 0$ and $2 \leq q<\infty$. If a sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ satisfies the condition

$$
\begin{equation*}
\sum_{k=n}^{2 n}\left|\lambda_{k}\right|^{q}=O(1), \quad \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

then for all $f \in H^{1}([0,+\infty))$, the coefficients $c_{n}^{(\alpha)}(f)$ of its Laguerre expansion (2) satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\lambda_{n} c_{n}^{(\alpha)}(f)\right|^{q} \leq c\|f\|_{H^{1}([0, \infty))}^{q} \tag{4}
\end{equation*}
$$

where c is a constant independent of f.
An interesting application of Theorem 1.1 is the Paley type inequality for Laguerre expansions, which is stated in the following corollary.

Corollary 1.2. Let $\alpha \geq 0$. If $\left\{n_{k}\right\}$ is a Hadamard sequence satisfying $n_{k+1} / n_{k} \geq$ $\rho>1(k=1,2, \ldots)$, then for all $f \in H^{1}([0, \infty))$, the coefficients $c_{n}^{(\alpha)}(f)$ of its Laguerre expansion (2) satisfy

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|c_{n_{k}}^{(\alpha)}(f)\right|^{2} \leq c\|f\|_{H^{1}([0, \infty))}^{2} \tag{5}
\end{equation*}
$$

where c is a constant independent of f.
A function F analytic in the unit disk \mathbb{D} is said to be in the Hardy space $H^{p}(\mathbb{D}), 0<p<\infty$, if $\|F\|_{H^{p}}:=\sup _{0 \leq r<1} M_{p}(F ; r)<\infty$, where $M_{p}(F ; r)=$ $\left\{(1 / 2 \pi) \int_{-\pi}^{\pi}\left|F\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}$. Denote by ℓ^{q} the sequence space $\ell^{q}=\left\{\left\{a_{k}\right\}:\left\|\left\{a_{k}\right\}\right\|_{q}=\right.$ $\left.\left(\sum_{k=0}^{\infty}\left|a_{k}\right|^{q}\right)^{1 / q}<\infty\right\}$ for $0<q<\infty$, and ℓ^{∞} the set of bounded sequences. A sequence $\left\{\lambda_{n}\right\}$ is said to be a multiplier of $H^{p}(\mathbb{D})$ into the sequence spaces ℓ^{q} provided $\left\{\lambda_{n} c_{n}\right\} \in \ell^{q}$ whenever $\sum_{n=0}^{\infty} c_{n} z^{n} \in H^{p}(\mathbb{D})$. Similarly, a sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ is a multiplier of $H^{1}([0, \infty))$ into ℓ^{q} associated with Laguerre expansions if (4) holds.

Coefficient multipliers of the Hardy spaces $H^{p}(\mathbb{D})$ into ℓ^{q} are characterized in Duren and Shields [4]. According to [4, pp. 72-73], the sequence $\left\{\lambda_{n}\right\}$ is a multiplier of $H^{1}(\mathbb{D})$ into ℓ^{q} for $2 \leq q<\infty$ if and only if $\sum_{n=N}^{2 N}\left|\lambda_{n}\right|^{q}=O(1)$. It is very remarkable that the sufficient condition for coefficient multipliers of H^{1} into $\ell^{q}(2 \leq q<\infty)$ associated with Laguerre expansions coincides with that of Taylor expansions. For a survey on multipliers from $H^{p}(\mathbb{D})$ to ℓ^{q} for various p and q, we may refer to [12]. The original proofs of classical theorems on coefficient multipliers depend strongly on the complex-
variable structures of analytic functions, but this does not suit for other eigenfunction expansions. Recently, by means of real-variable methods in harmonic analysis (see the book $[\mathbf{1 5}]),[\mathbf{8}],[\mathbf{9}],[\mathbf{1 7}]$ proved a series of theorems on coefficient multipliers of the Hardy spaces H^{p} associated with three orthogonal systems of functions, such as exponential Jacobi functions, generalized Hermite functions, and Laguerre functions. In particular, some Paley-type inequalities and Hardy-type inequalities in each case were described. In our previous paper [17], we studied coefficient multipliers of the Hardy spaces $H^{p}([0, \infty))$ $(0<p<1)$ associated with Laguerre expansions, which is based on the duality relation of the Hardy space $H^{p}(\mathbb{R})$ and the Lipschitz space $\Lambda_{p^{-1}-1}(\mathbb{R})$. Analogs of the Hardy inequality and Paley inequality in the context of eigenfunction expansions were studied by several authors (cf. [2], [3], [5], [6], [7], [13], [14], [18]).

Throughout the paper, $A=O(B)$ or $A \lesssim B$ means that $A \leq c B$ for some positive constant c independent of variables, functions, n, k, etc., but possibly dependent of some fixed parameters and fixed $m . \mathbb{N}_{0}=\{0,1,2, \ldots\}$ denotes the set of all nonnegative integers. If n^{a} or k^{a} appears in some estimates, then it will be understood as the constant 1 for $n=0$ or $k=0$, regardless of whether a is positive or negative.

2. Prelimineries.

In order to apply the duality of $H^{1}(\mathbb{R})$ and $\operatorname{BMO}(\mathbb{R})$, we must extend $\mathcal{L}_{n}^{(\alpha)}(x)$ from the half line \mathbb{R}_{+}to the whole line \mathbb{R} in the same way as $[\mathbf{1 7}]$. If $\alpha / 2>0$ is not an integer, then we define

$$
\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)= \begin{cases}\mathcal{L}_{n}^{(\alpha)}(x), & \text { for } x>0 \tag{6}\\ 0, & \text { for } x \leq 0\end{cases}
$$

If $\alpha / 2 \geq 0$ is an integer, we shall use the function

$$
\psi(x)= \begin{cases}1, & \text { for } x \geq 0 \\ \left(1-e^{1 / x}\right) \exp \left(-\frac{e^{1 / x}}{x+1}\right), & \text { for }-1<x<0 \\ 0, & \text { for } x \leq-1\end{cases}
$$

It is clear that $\psi(x) \in C(\mathbb{R})$. Furthermore, for $k \geq 1$, the k-th derivative $\psi^{(k)}(x)$ of $\psi(x)$ satisfies $\lim _{x \rightarrow-1+0} \psi^{(k)}(x)=\lim _{x \rightarrow 0-0} \psi^{(k)}(x)=0$ by routine evaluations, which implies that $\psi(x) \in C^{\infty}(\mathbb{R})$ and $\left|\psi^{(k)}(x)\right| \leq c$, where c is a constant independent of x.

We define, for even integer $\alpha \geq 0$,

$$
\begin{equation*}
\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)=\psi(n x) \mathcal{L}_{n}^{(\alpha)}(x) \tag{7}
\end{equation*}
$$

We see that the coefficients $c_{n}^{(\alpha)}(f)$ are independent of the choice of an extension $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)$.

The estimations of the higher order derivatives for Laguerre functions in [14, Lemma 1 and Lemma 2] are valid for $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)$ instead of $\mathcal{L}_{n}^{(\alpha)}(x)$ on the whole line \mathbb{R}.

Lemma 2.1 ([17, Corollary 2.4]). Let $\alpha \geq 0$ and $M=[\alpha / 2]$. Then for $x \in \mathbb{R}$,
(i) if $\alpha / 2$ is not an integer,

$$
\begin{equation*}
\left|\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(m)}(x)\right| \lesssim n^{m}, \quad m \leq M ; \tag{8}
\end{equation*}
$$

(ii) if $\alpha / 2$ is not an integer,

$$
\begin{equation*}
\left|\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(M)}(x+h)-\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(M)}(x)\right| \lesssim n^{\alpha / 2}|h|^{\delta}, \quad \alpha / 2=M+\delta, 0<\delta<1 \tag{9}
\end{equation*}
$$

(iii) if $\alpha / 2$ is an integer, (8) is true for all $m \in \mathbb{N}_{0}$.

For given $\alpha>-1$ and $\tau>0$, a precise estimate of the Laguerre polynomials is given by (see [1], [10], [11])

$$
\begin{equation*}
\left|L_{n}^{(\alpha)}(x)\right| \lesssim e^{x / 2} n^{\alpha / 2}\left(\nu^{-1}+x\right)^{-\alpha / 2-1 / 4}\left(\nu^{1 / 3}+|x-\nu|\right)^{-1 / 4} \Phi_{n}^{(\alpha)}(x), \tag{10}
\end{equation*}
$$

where $\nu=4 n+2 \alpha+2$, and

$$
\Phi_{n}^{(\alpha)}(x)= \begin{cases}1, & \text { for } 0 \leq x \leq \nu \\ \exp \left(\frac{-\eta|x-\nu|^{3 / 2}}{\nu^{1 / 2}}\right), & \text { for } \nu \leq x \leq(1+\tau) \nu \\ e^{-\xi x}, & \text { for }(1+\tau) \nu \leq x\end{cases}
$$

for some given positive constants $\eta=\eta(\alpha, \tau)$ and $\xi=\xi(\alpha, \tau)$. The unified and simplified form as (10) is stated in $[8]$, which prefer to use $4 n$ instead of ν for convenience in subsequent applications.

Lemma 2.2 ([8, Lemma 2.1]). For given $\alpha>-1$ and $\tau>0$, there exist positive constants η and ξ such that

$$
\begin{equation*}
\left|L_{n}^{(\alpha)}(x)\right| \lesssim e^{x / 2} n^{\alpha / 2} x^{-\alpha / 2} \mathscr{M}_{n}^{(\alpha)}(x) \tag{11}
\end{equation*}
$$

holds for all $x>0$ and $n \geq 0$, where

$$
\begin{equation*}
\mathscr{M}_{n}^{(\alpha)}(x)=x^{\alpha / 2}\left(n^{-1}+x\right)^{-\alpha / 2-1 / 4}\left(n^{1 / 3}+|x-4 n|\right)^{-1 / 4} \Phi_{n}(x), \tag{12}
\end{equation*}
$$

and

$$
\Phi_{n}(x)= \begin{cases}1, & \text { for } 0 \leq x \leq 4 n \\ \exp \left(\frac{-\eta|x-4 n|^{3 / 2}}{n^{1 / 2}}\right), & \text { for } 4 n \leq x \leq(1+\tau) 4 n \\ e^{-\xi x}, & \text { for }(1+\tau) 4 n \leq x\end{cases}
$$

A direct consequence of (12) is

$$
\left|x^{1 / 4} \mathscr{M}_{n}^{(\alpha)}(x)\right| \lesssim n^{-1 / 12}
$$

and $\left|x^{1 / 4} \mathscr{M}_{n}^{(\alpha)}(x)\right|$ attains this bound near the point $x=4 n$. But in the most part of x it has a much smaller bound as a multiple of $n^{-1 / 4}$.

To establish the main result of the paper, the next lemma is fundamental.
Lemma 2.3. Let $\alpha \geq 0$. For any interval $I \subset \mathbb{R}$ and for all $j \leq k, j, k \in \mathbb{N}_{0}$, one has

$$
\begin{equation*}
\left|\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x\right| \lesssim\left(\frac{j}{k}\right)^{1 / 4}|I|+\frac{1}{k^{1 / 4} j^{3 / 4}} \tag{13}
\end{equation*}
$$

Proof. If $k / 2 \leq j \leq k$, then by Lemma 2.1, $\left|\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x\right| \lesssim|I|$ for all $\alpha \geq 0$. In what follows, we assume that $j \leq k / 2$.

If $\alpha / 2>0$ is not an integer, for any interval $I \subseteq \mathbb{R}$, by (6) we have

$$
\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x=\int_{I \cap[0, \infty)} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x
$$

If $\alpha / 2 \in \mathbb{N}_{0}$, for any interval $I \subseteq \mathbb{R}$, since $\tilde{\mathcal{L}}_{k}^{(\alpha)}(x)=0$ for $x \leq-k^{-1}$ by (7), therefore

$$
\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x=\int_{I \cap\left[-k^{-1}, 0\right)} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x+\int_{I \cap[0, \infty)} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x .
$$

By Lemma 2.1, the first term on the right hand side above is dominated by $c k^{-1}$. Since $j \leq k / 2$, it is easy to see $k^{-1} \lesssim j^{-3 / 4} k^{-1 / 4}$, which yields the required estimate. It remains to estimate $\int_{I \cap[0, \infty)} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x$ for all $\alpha \geq 0$. In proving (13), we may assume $I \subseteq[0, \infty)$. Otherwise we can divide I by 0 into two parts if it contains 0 as an interior point. By (6) and (7), $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)=\mathcal{L}_{n}^{(\alpha)}(x)$ for all $x>0$. In view of (1) and Lemma 2.2, since $\tau_{n}^{\alpha}=O\left(n^{-\alpha / 2}\right)$, it follows that $\left|\mathcal{L}_{n}^{(\alpha)}(x)\right| \lesssim \mathscr{M}_{n}^{(\alpha)}(x)$ with $x>0$. We have

$$
\begin{equation*}
\left|\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x\right| \lesssim\left|\int_{I} \mathscr{M}_{k}^{(\alpha)}(x) \mathscr{M}_{j}^{(\alpha)}(x) d x\right| \tag{14}
\end{equation*}
$$

Dividing the last integral above into five parts, we write

$$
\begin{equation*}
\int_{I} \mathscr{M}_{k}^{(\alpha)}(x) \mathscr{M}_{j}^{(\alpha)}(x) d x=\sum_{j=1}^{5} \int_{I_{j}} \mathscr{M}_{k}^{(\alpha)}(x) \mathscr{M}_{j}^{(\alpha)}(x) d x:=\sum_{j=1}^{5} Q_{j}, \tag{15}
\end{equation*}
$$

where

$$
\begin{array}{ll}
I_{1}=I \bigcap\left\{x: x \leq k^{-1}\right\} ; & I_{2}=I \bigcap\left\{x: k^{-1} \leq x \leq j^{-1}\right\} ; \\
I_{3}=I \bigcap\left\{x: j^{-1} \leq x \leq 2 j\right\} ; & I_{4}=I \bigcap\{x: 2 j \leq x \leq 2 k\} ; \\
I_{5}=I \bigcap\{x: x \geq 2 k\} . &
\end{array}
$$

Using Lemma 2.2, we deal with each Q_{j} as follows:

$$
\begin{aligned}
& \left|Q_{1}\right| \lesssim \int_{I_{1}} x^{1 / 4} \mathscr{M}_{k}^{(\alpha)}(x) x^{1 / 4} \mathscr{M}_{j}^{(\alpha)}(x) x^{-1 / 2} d x \lesssim k^{-1 / 4} j^{-1 / 4} \int_{I_{1}} x^{-1 / 2} d x \lesssim k^{-3 / 4} j^{-1 / 4} ; \\
& \left|Q_{2}\right| \lesssim k^{-1 / 4} \int_{I_{2}} x^{-1 / 4} d x \lesssim j^{-3 / 4} k^{-1 / 4} ; \\
& \left|Q_{3}\right| \lesssim k^{-1 / 4} j^{-1 / 4} \int_{I_{3}} x^{-1 / 2} d x \lesssim k^{-1 / 4} j^{1 / 4}|I| ; \\
& \left|Q_{4}\right| \lesssim k^{-1 / 4} j^{-1 / 12} \int_{I_{4}} x^{-1 / 2} d x \lesssim k^{-1 / 4} j^{-7 / 12}|I| ; \\
& \left|Q_{5}\right| \lesssim k^{-1 / 12} j^{-1 / 12} \int_{I_{5}} x^{-1 / 2} d x \lesssim k^{-7 / 12} j^{-1 / 12}|I| .
\end{aligned}
$$

Substituting these estimates into (15) proves that $\left|\int_{I} \mathscr{M}_{k}^{(\alpha)}(x) \mathscr{M}_{j}^{(\alpha)}(x) d x\right| \lesssim$ $j^{-3 / 4} k^{-1 / 4}+k^{-1 / 4} j^{1 / 4}|I|$ with $j \leq k / 2$. Furthermore, inserting this into (14), we get the desired inequality (13).

3. Proof of Theorem 1.1.

Now we prove Theorem 1.1. Our approach is based on the duality of $H^{1}(\mathbb{R})$ and $B M O(\mathbb{R})$.

Proof. We first note that the conclusion for $2<q<\infty$ follows from that for $q=2$. Indeed, let $\nu_{n}=\left|\lambda_{n}\right|^{q / 2}$, then (3) implies

$$
\sum_{k=n}^{2 n}\left|\nu_{k}\right|^{2}=\sum_{k=n}^{2 n}\left|\lambda_{k}\right|^{q}=O(1)
$$

and, since $\left|c_{n}^{(\alpha)}(f)\right| \lesssim\|f\|_{H^{1}([0, \infty))}$ by Lemma 2.1 with $m=0$, we obtain

$$
\sum_{n=0}^{\infty}\left|\lambda_{n} c_{n}^{(\alpha)}(f)\right|^{q} \lesssim\|f\|_{H^{1}([0, \infty))}^{q-2} \sum_{n=0}^{\infty}\left|\nu_{n} c_{n}^{(\alpha)}(f)\right|^{2} \lesssim\|f\|_{H^{1}([0, \infty))}^{q}
$$

Now we turn to the proof of the theorem for $q=2$. We fix a sequence $\left\{b_{n}\right\}_{n=0}^{\infty} \in \ell^{2}$ and for $n=0,1,2, \ldots$, put

$$
\begin{equation*}
g_{n}(x)=\sum_{k=0}^{n} \lambda_{k} b_{k} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tag{16}
\end{equation*}
$$

By the duality between H^{1} and BMO , we have $\left|\int_{-\infty}^{\infty} f(x) g_{n}(x) d x\right| \lesssim$ $\left\|g_{n}\right\|_{\text {BMO }}\|f\|_{H^{1}([0, \infty))}$, that is,

$$
\begin{equation*}
\left|\sum_{k=0}^{n} \lambda_{k} b_{k} c_{k}^{(\alpha)}(f)\right| \lesssim\left\|g_{n}\right\|_{\mathrm{BMO}}\|f\|_{H^{1}([0, \infty))} \tag{17}
\end{equation*}
$$

where $\|g\|_{\mathrm{BMO}}=\sup _{I}(1 /|I|) \int_{I}\left|g(t)-g_{I}\right| d t$ with supremum taken over all intervals I of the real line \mathbb{R}, and $g_{I}=(1 /|I|) \int_{I} g(t) d t$ with $|I|$ being the length of I. We shall show that $g_{n}(x)$ is a BMO function and

$$
\begin{equation*}
\left\|g_{n}\right\|_{\mathrm{BMO}} \lesssim\left(\sum_{k=0}^{n}\left|b_{k}\right|^{2}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

for all $\left\{b_{k}\right\}_{k=0}^{\infty} \in \ell^{2}$. Once (18) is established, then from (17) we deduce that $\left(\sum_{k=0}^{n}\left|\lambda_{k} c_{k}^{(\alpha)}(f)\right|^{2}\right)^{1 / 2} \lesssim\|f\|_{H^{1}([0, \infty))}$, which proves the theorem by letting $n \rightarrow \infty$.

To prove (18), we have only to find a constant η_{I}, for any interval I, such that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}\left|g_{n}(x)-\eta_{I}\right| d x \lesssim\left(\sum_{k=0}^{n}\left|b_{k}\right|^{2}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

For an interval I, let $m=\left[|I|^{-1}\right]$, the integer part of the number $|I|^{-1}$, and choose x_{I} to be one of the end points of I. If $n \leq m$, then applying Lemma 2.1,

$$
\begin{aligned}
\left|g_{n}(x)-g_{n}\left(x_{I}\right)\right|^{2} & \leq\left(\sum_{k=0}^{n}\left|b_{k}\right|^{2}\right)\left(\sum_{k=0}^{n}\left|\lambda_{k}\right|^{2}\left|\tilde{\mathcal{L}}_{k}^{(\alpha)}(x)-\tilde{\mathcal{L}}_{k}^{(\alpha)}\left(x_{I}\right)\right|^{2}\right) \\
& \lesssim\left(\sum_{k=0}^{n}\left|b_{k}\right|^{2}\right)\left(\sum_{k=0}^{n}\left|\lambda_{k}\right|^{2} k^{2 \sigma}\left|x-x_{I}\right|^{2 \sigma}\right)
\end{aligned}
$$

where $\sigma=\alpha / 2$ for $0<\alpha / 2<1$, and $\sigma=1$ otherwise. By the condition (3) with $q=2$, summing by parts gives $\sum_{k=0}^{n}\left|\lambda_{k}\right|^{2} k^{2 \sigma} \lesssim n^{2 \sigma}$, then

$$
\left|g_{n}(x)-g_{n}\left(x_{I}\right)\right|^{2} \lesssim \sum_{k=0}^{n}\left|b_{k}\right|^{2}\left(n\left|x-x_{I}\right|\right)^{\sigma} \lesssim \sum_{k=0}^{n}\left|b_{k}\right|^{2}
$$

Hence (19) holds with $\eta_{I}=g_{n}\left(x_{I}\right)$.
If $n>m$, we again choose x_{I} to be one of the end points of I to obtain

$$
\left|g_{n}(x)-g_{m}\left(x_{I}\right)\right| \leq\left|g_{m}(x)-g_{m}\left(x_{I}\right)\right|+\left|\sum_{m<k \leq n} \lambda_{k} b_{k} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x)\right|
$$

Hence by what has been verified,

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}\left|g_{n}(x)-g_{m}\left(x_{I}\right)\right| d x \lesssim\left(\sum_{k=0}^{m}\left|b_{k}\right|^{2}\right)^{1 / 2}+F_{m, n} \tag{20}
\end{equation*}
$$

where $F_{m, n}=|I|^{-1} \int_{I}\left|\sum_{m<k \leq n} \lambda_{k} b_{k} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x)\right| d x$. But for $F_{m, n}$, we have

$$
\begin{aligned}
F_{m, n}^{2} & \leq \frac{1}{|I|} \int_{I}\left|\sum_{m<k \leq n} \lambda_{k} b_{k} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x)\right|^{2} d x \\
& \leq \sum_{m<k \leq n} \sum_{m<j \leq n}\left|\lambda_{k} b_{k} \overline{\lambda_{j} b_{j}}\right| \frac{1}{|I|}\left|\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x\right|
\end{aligned}
$$

By symmetry, it suffices to treat the part $\sum_{m<k \leq n} \sum_{m<j \leq k}$. For these $j, k,|I|^{-1} \leq$ $m+1 \leq j$, and by Lemma 2.3,

$$
\frac{1}{|I|}\left|\int_{I} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) \tilde{\mathcal{L}}_{j}^{(\alpha)}(x) d x\right| \lesssim \frac{j^{1 / 4}}{k^{1 / 4}}+\frac{|I|^{-1}}{k^{1 / 4} j^{3 / 4}} \lesssim \frac{j^{1 / 4}}{k^{1 / 4}}
$$

Thus the evaluation of $F_{m, n}^{2}$ is reduced to showing the following inequality

$$
S_{m, n}:=\sum_{m<k \leq n} \sum_{m<j \leq k}\left|\lambda_{k} b_{k} \overline{\lambda_{j} b_{j}}\right| \frac{j^{1 / 4}}{k^{1 / 4}} \lesssim \sum_{m<k \leq n}\left|b_{k}\right|^{2}
$$

For the purpose we rewrite $S_{m, n}$ as

$$
\begin{align*}
S_{m, n} & \leq \frac{1}{2} \sum_{m<k \leq n} \sum_{m<j \leq k}\left(\left|\lambda_{j} b_{k}\right|^{2}+\left|\lambda_{k} b_{j}\right|^{2}\right) \frac{j^{1 / 4}}{k^{1 / 4}} \\
& =\frac{1}{2} \sum_{m<k \leq n} \frac{\left|b_{k}\right|^{2}}{k^{1 / 4}} \sum_{m<j \leq k}\left|\lambda_{j}\right|^{2} j^{1 / 4}+\frac{1}{2} \sum_{m<j \leq n}\left|b_{j}\right|^{2} j^{1 / 4} \sum_{j \leq k \leq n} \frac{\left|\lambda_{k}\right|^{2}}{k^{1 / 4}} . \tag{21}
\end{align*}
$$

Under the condition (3) with $q=2$, summing by parts again implies

$$
\sum_{j \leq k}\left|\lambda_{j}\right|^{2} j^{1 / 4} \lesssim k^{1 / 4}, \quad \sum_{k \geq j} \frac{\left|\lambda_{k}\right|^{2}}{k^{1 / 4}} \lesssim j^{-1 / 4}
$$

incorporating these into (21) proves that $S_{m, n} \lesssim \sum_{m<k \leq n}\left|b_{k}\right|^{2}$, moreover, $F_{m, n} \lesssim$ $\left(\sum_{m<k \leq n}\left|b_{k}\right|^{2}\right)^{1 / 2}$. Inserting this into (20) proves (19) with $\eta_{I}=g_{m}\left(x_{I}\right)$.

The proof of Theorem 1.1 is completed.
Acknowledgments. The authors would like to thank the anonymous referees for thier helpful comments and suggestions which have improved the original manuscript.

References

[1] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695-708.
[2] R. Balasubramanian and R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. in Pure and Appl. Math., 6 (2005), 1-4.
[3] L. Colzani and G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305-316.
[4] P. L. Duren and A. L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math., 32 (1970), 69-78.
[5] Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331-337.
[6] Y. Kanjin and K. Sato, Paley's inequality for the Jacobi expansions, Bull. London Math. Soc., 33 (2001), 483-491.
[7] Y. Kanjin and K. Sato, Hardy's inequality for Jacobi expansions, Math. Inequal. Appl., 7 (2004), 551-555.
[8] Zh.-K. Li and Y.-H. Shi, Multipliers of Hardy spaces associated with generalized Hermite expansions, Constr. Approx., 39 (2014), 517-540.
[9] Zh.-K. Li, Y.-H. Shi and X.-L. Zhang, Coefficient multipliers on Hardy spaces for Jacobi expansions of exponential type, to appear in J. Approx. Theory.
[10] B. Muckenhoupt, Asymptotic forms for Laguerre polynomials, Proc. Amer. Math. Soc., 24 (1970), 288-292.
[11] B. Muckenhoupt and D. W. Webb, Two-weight norm inequalities for Cesàro means of Laguerre expansions, Trans. Amer. Math. Soc., 353 (2000), 1119-1149.
[12] B. Osikiewicz, Multipliers of Hardy spaces, Quaestiones Math., 27 (2004), 57-73.
[13] R. Radha and S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, Proc. Amer. Math. Soc., 132 (2004), 3525-3536.
[14] M. Satake, Hardy's inequalities for Laguerre expansions, J. Math. Soc. Japan, 52 (2000), 17-24.
[15] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[16] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., 23, Providence, RI, 1975.
[17] Y.-H. Shi and Zh.-K. Li, Multipliers of Hardy spaces associated with Laguerre expansions, J. Math. Soc. Japan, 68 (2016), 91-99.
[18] S. Thangavelu, On regularity of twisted spherical means and special Hermite expansion, Proc. Indian Acad. Sci. Math. Sci., 103 (1993), 303-320.

Yehao SHI

Elementary Education College Capital Normal University Beijing 100048, China
E-mail: cnusyh@163.com

Zhongkai Li

Department of Mathematics Shanghai Normal University Shanghai 200234, China
E-mail: lizk@shnu.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 42B30; Secondary 42C10, 42A45.
 Key Words and Phrases. Hardy space, multipliers, Laguerre expansion, Paley inequality.
 This research was supported by the National Natural Science Foundation of China (No. 11371258, 11571261).

