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Abstract. First, we obtain a new formula for Bremermann type up-
per envelopes, that arise frequently in convex analysis and pluripotential the-
ory, in terms of the Legendre transform of the convex- or plurisubharmonic-
envelope of the boundary data. This yields a new relation between solutions of
the Dirichlet problem for the homogeneous real and complex Monge–Ampère
equations and Kiselman’s minimum principle. More generally, it establishes
partial regularity for a Bremermann envelope whether or not it solves the
Monge–Ampère equation. Second, we prove the second order regularity of
the solution of the free-boundary problem for the Laplace equation with a
rooftop obstacle, based on a new a priori estimate on the size of balls that
lie above the non-contact set. As an application, we prove that convex- and
plurisubharmonic-envelopes of rooftop obstacles have bounded second deriva-
tives.

1. Introduction.

In this article we give a new formula for the solution of the Dirichlet problem for
the homogeneous real and complex Monge–Ampère equation (HRMA/HCMA) on the
product of either a convex domain and Euclidean space in the real case, or a tube do-
main and a Kähler manifold in the complex case. This is partly inspired by Kiselman’s
minimum principle [24] and recent work of Ross–Witt-Nyström [31]. Our formula in-
volves the convex- or plurisubharmonic-envelope of a family of functions on the Euclidean
space or the manifold, and the Legendre transform on the convex domain. Consequently,
one could hope to develop the existence and regularity theory for both weak and strong
solutions using such a formula. In this article and in its sequels we develop this approach.

The regularity properties of the Legendre transform are classical. Thus, one is natu-
rally led to study the regularity properties of the convex- or plurisubharmonic-envelope of
a family of functions. In the case of single function with bounded second derivatives, the
regularity of such envelopes was studied by Benoist–Hiriart-Urruty, Griewank–Rabier,
and Kirchheim–Kristensen, [2], [17], [22] (see also [20, Section X.1.5]) in the convex
case, and by Berman and Berman–Demailly [3], [6] in the plurisubharmonic (psh) setting.
The convex- or psh-envelope of a family of functions is, by definition, the corresponding
envelope of the (pointwise) infimum of that family. However, already when the family
consists of two functions, their minimum is only Lipschitz. Thus, our second goal here
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is to extend the aforementioned regularity results to such a setting.
The approach we take to achieve this goal is to study, more generally, the anal-

ogous subharmonic envelope. The subharmonic envelope of a ‘rooftop obstacle’ of the
form min{b0, . . . , bk} is, of course, just the solution of the free-boundary problem for
the Laplace equation associated to this obstacle. Our first regularity result concerning
envelopes is that the solution to the free-boundary problem for the Laplace equation
associated to such a rooftop obstacle, for functions bi with finite C2 norm, also has
finite C2 norm, along with an a priori estimate. Aside from basic regularity tools from
the theory of free-boundary problems associated to the Laplacian, this involves a new
a priori estimate on the size of a ball that lies between the rooftop and the envelope.
This result stands in contrast to the results of Petrosyan–To [28] that show that the
subharmonic-envelope is C1,1/2 and no better for more general rootop obstacles.

Since the subharmonic-envelope always lies above both the convex- and the psh-
envelope, this allows us to establish the regularity of the latter envelopes as well.

An important application that makes an essential use of our results is the determina-
tion of the Mabuchi metric completion of the space of Kähler potentials, that is treated
in a sequel [12].

2. Main results.

Our first result concerns a new formula for the solution of the HRMA/HCMA on
certain product spaces. While the real result resembles the complex result, it is not
implied by it directly. Thus, we split the exposition into two (Section 2.1–Section 2.2).
Our second result concerns the regularity of subharmonic-, convex-, and psh-envelopes
of a ‘rooftop’ obstacle. The regularity of the latter two (Section 2.4) is a consequence of
that of the former (Section 2.3). In passing, we also establish the Lipschitz regularity of
the psh-envelope associated to a general Lipschitz obstacle.

2.1. A formula for the solution of the HCMA.
Suppose (M, ω) is a compact, closed and connected Kähler manifold and let K ⊂ Rk

be a bounded convex open set. Denote by KC = K × Rk (considered as a subset of Ck)
the convex tube with base K. Let π2 : KC × M → M denote the natural projection,
and denote by PSH(KC ×M, π?

2ω) the set of π?
2ω-plurisubharmonic functions. We seek

bounded Rk-invariant solutions ϕ ∈ L∞ ∩ PSH(KC ×M, π?
2ω) of the problem

(
π?

2ω +
√−1∂∂̄ϕ

)n+k = 0 in KC ×M, ϕ = v on ∂KC ×M, (1)

where the boundary data v is bounded, Rk-invariant and vs := v(s, · ) ∈ PSH(M, ω), s ∈
∂K.

Some care is needed in defining the sense in which the boundary data is attained
since the functions involved are merely bounded. In (1), by “ϕ = v on ∂KC ×M” we
mean that for each z ∈ M the convex function ϕz := ϕ( · , z) is continuous up to the
boundary of K and satisfies ϕz|∂K = vz. This choice of boundary condition implies that
vz ∈ C0(∂K), and we will assume this condition on the boundary data throughout.

The study of the Dirichlet problem for the complex Monge–Ampère equation goes
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back to Bremermann and Bedford–Taylor [9], [1]. In particular, their results show that
one should look for the solution as an upper envelope:

ϕ := sup{w ∈ L∞ ∩ PSH(KC ×M, π?
2ω) : w is Rk-invariant and w|∂KC×M ≤ v}, (2)

generalizing the Perron method for the Laplace equation, where w|∂KC×M ≤ v means
that lim sups→s0

w(s, z) ≤ v(s0, z) for all z ∈ M, s0 ∈ ∂K. It is not immediate, but as
we will prove in Theorem 2.1, ϕ is upper semi-continuous on KC×M . Assuming this for
the moment, by Bedford–Taylor’s theory ϕ solves (1) (in general, further conditions are
needed on v in order to ensure that ϕ|∂KC×M = v, as discussed below in Remark 3.4).

Our first result gives a different formula for expressing ϕ, regardless of whether
ϕ assumes v on the boundary. It involves the psh-envelope operator solely in the M

variables, and the Legendre transform solely in the K variables. The psh-envelope is
the complex analogue of the convexification operator (or double Legendre transform) in
the real setting, and is different than the upper envelope in that, roughly, it involves
functions and not boundary values thereof. Given a family of upper semi-continuous
bounded functions {fa}a∈A parametrized by a set A, set

P{fa}a∈A := sup
{

h ∈ PSH(M, ω) : h(z) ≤ inf
a∈A

{fa(z)}, ∀ z ∈ M
}

.

As each fb is upper semi-continuous, it follows that the upper semi-continuous regu-
larization satisfies usc(P{fa}a∈A) ≤ fb, hence by Choquet’s lemma usc(P{fa}a∈A) is
a competitor for the supremum, which in turn implies P{fa}a∈A = usc(P{fa}a∈A) ∈
PSH(M, ω).

Given a function f = f(s, z) on K ×M (that we consider as a family of functions
on K parametrized by M), we let

f?(σ, z) = f?(σ) := inf
s∈K

[f(s, z)− 〈σ, s〉]. (3)

This is the negative of the usual Legendre transform solely in the K-variables, in par-
ticular, it maps convex functions to concave functions, and vice versa. Despite this, we
also refer to it sometimes as the partial Legendre transform, and we often omit the de-
pendence of the function on the M variables in the notation. Here 〈 · , · 〉 is the pairing
between Rk and its dual. Conversely, if g = g(σ, z) is a function on Rk×M taking values
in [−∞,∞), where Rk is considered as the dual vector space to the copy of Rk containing
K, then

g?(s, z) = g?(s) := sup
σ∈Rk

[g(σ, z) + 〈σ, s〉]. (4)

Note that f?? = f if and only if f is convex, lower semicontinuous and nowhere equal to
−∞ (we do not allow the constant function −∞), and otherwise f?? is the convexification
of f , namely, the largest convex function majorized by f [27], [16], [30].

Theorem 2.1. Assume that v is bounded, vs = v(s, · ) ∈ PSH(M, ω) and vz =
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v(·, z) ∈ C0(∂K) for all s ∈ ∂K, z ∈ M . Then ϕ as defined in (2) is upper semi-
continuous and for h ∈ K, z ∈ M :

ϕ(h, z) = (P{vs − 〈s, σ〉}s∈∂K)?(h, z) = sup
σ∈Rk

[P{vs − 〈s, σ〉}s∈∂K(z) + 〈h, σ〉]. (5)

Equivalently, ϕ?(σ, z) = infs∈K [ϕ(s, z)− 〈σ, s〉] = P{vs − 〈s, σ〉}s∈∂K(z).

To avoid confusion, we emphasize that P{vs−〈s, σ〉}s∈∂K is not the upper envelope
of a family of linear function in σ (that would imply it is convex, which is essentially
never true). Instead, the psh-envelope of this family is a global operation done for each σ

separately, and it is in fact concave in σ, as the second statement in the theorem shows.
We pause to note an important corollary of this result for the special case K = [0, 1],

where KC is now the strip S := [0, 1]× R, and (1) becomes

(
π?

2ω +
√−1∂∂̄ϕ

)n+1 = 0, ϕ|{i}×R = vi, i = 0, 1. (6)

Corollary 2.2. Bedford–Taylor solutions of (6) with bounded endpoints v0, v1 ∈
L∞(M), are given by

ϕ(s, z) = P (v0, v1 − σ)?
s(z) = sup

σ∈R
[P (v0, v1 − σ)(z) + sσ], s ∈ [0, 1], z ∈ M. (7)

According to Mabuchi, Semmes, and Donaldson [26], [38], [14], sufficiently regular
solutions of (6) are geodesics in the Mabuchi metric on the space of Kähler potentials
with respect to ω. Thus, Corollary 2.2 implies that Mabuchi’s geometry is essentially
determined by the understanding of upper envelopes of the form P (v0, v1 − τ), for all
v0, v1 ∈ PSH(M, ω)∩L∞(M) and for all τ ∈ R. We refer to the sequel [12] for applications
of Corollary 2.2 in this direction, in particular, determining the metric completion of the
Mabuchi metric.

Lastly, we note that in connection with Nahm’s equations, Donaldson introduced a
different infinite dimensional Riemannian manifold [15]. For geodesics of this structure,
the partial Legendre transform is also linked to a certain notion of envelope. It would
be interesting to see if the results we develop here and in the sequel [12] have analogs in
this setting.

Figure 1. The barriers v0, v1 and the envelope P (v0, v1).
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2.2. A formula for the solution of the HRMA.
Theorem 2.1 has a convex analogue in the setting of the HRMA. The result does

not follow directly from the seemingly harder result for the HCMA. For concreteness, we
only state the analogue of Corollary 2.2 in this setting, that arises in the setting of the
Mabuchi metric on a toric manifold M . The reader is referred to [35, Section 2] for the
relevant background concerning the HRMA and toric geometry.

For z belonging to the open orbit of the complex torus (Cn)? (that is dense in M),
set x = Re log z ∈ Rn. On the open orbit, ω =

√−1∂∂̄ψω with ψω (S1)n-invariant, thus
consider ψω as a function on Rn. Then, the HCMA (1) reduces to the HRMA,

MAψ(s, x) = 0, on [0, 1]× Rn,

ψi(x) ≡ ψ(i, x) = ψω(x) + vi(ex), i ∈ {0, 1}.
(8)

Here, MA is the unique continuous extension of the operator f 7→ d(∂f/∂x1) ∧ · · · ∧
d(∂f/∂xn) from C2(Rn) to the cone of convex functions on Rn.

The following is a convex version of Corollary 2.2.

Proposition 2.3. The solution of (8) with convex endpoints ψ0, ψ1 is given by

ψ = (min{ψ0, ψ1 − σ}??)? = sup
σ∈R

[min{ψ0, ψ1 − σ}?? + sσ]. (9)

Here the first (innermost) two Legendre transforms are in the x variables, while the
third (outermost) negative Legendre transform is in the σ variable. Note that, strictly
speaking, this result is not a consequence of Corollary 2.2, since it involves the potentially
larger convex envelope (the supremum is taken over convex functions that might not
come from toric potentials) and not the psh-envelope; rather, Proposition 2.3 implies
Corollary 2.2 (in this symmetric setting) since it shows that the psh-envelope in this
setting is attained at a ‘toric’ convex function.

This formula also has an interpretation in terms of Hamilton–Jacobi equations, in
the spirit of [36], that we discuss elsewhere.

2.3. Regularity of rooftop subharmonic-envelopes.
The following result plays a crucial role in our proof of the regularity of convex- and

psh-envelopes of rooftop obstacles. It is of independent interest to the study of regularity
of solutions to the free-boundary problem for rooftop obstacles for the Laplacian. The
solution of the aforementioned free-boundary value problem is, in fact, the subharmonic-
envelope of rooftop obstacles. This is a purely local result, and is stated on the open
unit ball B1 in Rn (we let BR(x0) denote the ball of radius R centered at x0 ∈ Rn; when
x0 = 0 we write BR = BR(0)). Denote by SH(B1) the set of subharmonic functions on
B1.

Theorem 2.4. Let b0, b1 ∈ C1,1(B1), and let

benv := sup{f ∈ SH(B1) : f ≤ min{b0, b1}}. (10)
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Then, there exists a constant C = C(n, ‖b0‖C2(B1), ‖b1‖C2(B1)) such that

‖benv‖C2(B1/8) ≤ C.

2.4. Regularity of the convex-envelope or psh-envelope of a family of
functions.

Given an upper semi-continuous family {fa}a∈A with additional regularity proper-
ties, one would like to study how much regularity is preserved by the envelope P{fa}a∈A.
Motivated by Corollary 2.2 and Proposition 2.3, we are led to study the regularity of
upper envelopes of the type P (v0, v1). Here, we concentrate on the case when the barriers
(sometimes also called obstacles) v0 and v1 are rather regular. The sequel [12] treats the
case when v0 or v1 is rather irregular in the psh setting. Already in the case of smooth
convex functions, the convexification is not C2 in general. Thus, the following results
give conditions that guarantee essentially optimal regularity. A novelty of our approach,
perhaps, is that both the convex- and the psh-envelopes are handled simultaneously.

To state the results, we define the Banach space

C11̄(M) := {f ∈ L∞(M) : ∆ωf ∈ L∞(M)}, (11)

with associated Banach norm

‖f‖C11̄ := ‖f‖L∞(M) + ‖∆ωf‖L∞(M). (12)

If Cf ∈ PSH(M, ω) for some C > 0, then f ∈ C11̄(M) if and only if
√−1∂∂̄f is a current

with bounded coefficients. We also define, as usual, C1,1(M) to be the Banach space of
functions on M with finite C2(M) norm. One has C2(M) ⊂ C1,1(M) ⊂ C11̄(M).

Theorem 2.5. One has the following estimates:

( i ) ‖P (v)‖C1 ≤ C(M, ω, ‖v‖C1).
( ii ) ‖P (v0, v1)‖C11̄ ≤ C(M, ω, ‖v0‖C11̄ , ‖v1‖C11̄).
(iii) Suppose [ω0] ∈ H2(M,Z). Then, ‖P (v0, v1)‖C2 ≤ C(M, ω, ‖v0‖C2 , ‖v1‖C2).

Our convention here and below is that the constants C on the right hand side of
the estimates just stated may equal to ∞ only if the corresponding norms of v or vi are
infinite.

An analogous result can be stated for convex rooftop envelopes. For simplicity, we
only state a representative result in the toric setting of Proposition 2.3.

Corollary 2.6. Let ψ0, ψ1 be as in Proposition 2.3. Then,

‖min{ψ0, ψ1}??‖C2 ≤ C(M, ω, ‖ψ0‖C2 , ‖ψ1‖C2).

By repeated application of the formula P (v0, v1, . . . , vk) = P (v0, P (v1, . . . , vk)), the
results just stated hold also for envelopes of the type P (v0, . . . , vk).

In general, the convex- or subharonic-envelope of a Lipschitz function will be no
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better than Lipschitz, as shown by Kirchheim–Kristensen [22], and by Caffarelli [10,
Theorem 2], respectively. Theorem 2.5 (i) is the analogous fact for psh-envelopes. The
psh-envelope of a family of functions, e.g., P (v0, v1) is of course the psh-envelope of the
single function min{v0, v1} that is in general only Lipschitz. Thus, the point of Theorem
2.5 (ii)–(iii) is that for special Lipschitz functions of the form min{v0, . . . , vk} that we
refer to as rooftop functions (see Figure 1) the psh-envelope has a regularizing effect,
roughly gaining a derivative.

The proof of Theorem 2.5 uses basic techniques from the theory of free boundary
problems for the Laplacian, together with results of Berman [3] and Berman–Demailly
[6] on upper envelopes of psh functions. Part (i) is, in fact, a simple consequence of the
Lipschitz estimate of BÃlocki [8] in conjunction with the “zero temperature” approxima-
tion procedure of Berman [5]. The bulk of the proof is thus devoted to parts (ii)–(iii).
The key step is to show that there exists a C1,1 function b (a ‘barrier’) along with an a
priori estimate depending only on the respective norms of the vi, such that b lies below
min{v0, v1} but above P (v0, v1). The barrier we construct is actually obtained by first
constructing local subharmonic-envelopes of v0 and v1 on coordinate charts. This con-
struction is mostly based on well-known techniques from the study of the free boundary
Laplace equation, see, e.g., [10], [11], [29], but with one essential new ingredient, that
we now describe. For a general rooftop obstacle (that is, not necessarily of the form
min{v0, v1}) Petrosyan–To [28] show that the subharmonic-envelope is C1,1/2 and no
better. Yet, also in the literature on subharmonic-envelopes we were not able to find
the regularization statement for rooftop obstacles of the form min{v0, v1} although it
might very well be known to experts. Thus, the main new technical ingredient is the
estimate of Proposition 4.5 that guarantees that around each point in the set {v0 = v1}
there exists a ball of a priori estimable size that stays away from the contact set, i.e.,
the set where the local subharmonic envelope equals the barrier min{v0, v1}. Given this
estimate, the standard quadratic growth estimate carries over to our setting, and one ob-
tains a priori estimates on b. Then, since the subharmonic-envelope necessarily majorizes
the psh-envelope, we get P (b) = P (v0, v1), to which one may apply Berman–Demailly’s
results.

A regularity result of a similar nature has been recently proved by Ross–Witt-
Nyström [32] in a different setting. Namely, they study regularity of envelopes of the
type P[φ](ψ) = usc

(
supc>0 P (φ+ c, ψ)

)
, where ψ ∈ C11̄(M), φ ∈ PSH(M, ω) is exponen-

tially Hölder continuous and M is polarized. Also, upon completing this article, we were
informed by Berman that the technique of [6] can be extended to prove Theorem 2.5(iii)
[4]. Perhaps the novel point in our approach, compared to such an extension, is that it
also gives, in passing, a useful result concerning the obstacle problem for the Laplacian,
and thus proves the regularity of the subharmonic-, convex-, and psh-envelopes, all at
once.

2.5. Applications to regularity of Bremermann upper envelopes.
A combination of Theorem 2.1 and Theorem 2.5 (i) gives fiberwise Lipschitz reg-

ularity of the Bremermann upper envelope ϕ in (2) associated to fiberwise Lipschitz
boundary data. This provides an instance when one can draw conclusions about the
regularity of ϕ by studying first the regularity of its partial Legendre transform.
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Corollary 2.7. In the setting of Theorem 2.1, the envelope ϕ satisfies

‖ϕ(s, ·)‖C1 ≤ C(M, ω, sup
s∈∂K

‖v(s, ·)‖C1), for any s ∈ K.

In other words, if the boundary data is fiberwise Lipschitz, so is the envelope, and with a
uniform estimate.

The novelty of this result is that it proves regularity of the envelope ϕ, whether
or not it solves the HCMA. We are not aware of any such results in the literature.
At the same time, when ϕ does solve the HCMA then other techniques exist, notably
BÃlocki’s Lipschitz estimate [8]. However, even then our method seems to be new in that
it furnishes fiberwise Lipschitz regularity given the same on the boundary data, while
BÃlocki’s estimate alone gives full Lipschitz regularity starting from full (also in the ∂K

directions) Lipschitz regular data. Of course, it should be stressed that we ultimately
use BÃlocki’s estimate in our proof, but we do so only in the fiberwise directions.

Organization.
Theorem 2.1 and Corollary 2.2 are proved in Section 3. The convex analogue, Propo-

sition 2.3, is proved in Section 3.1. Theorem 2.5 (i) concerning Lipschitz regularity of
the psh-envelope is proved in Section 4.1, where we also prove Corollary 2.7. Theorem
2.5 (ii)–(iii) and Corollary 2.6, concerning the regularity of second derivatives of the
psh- and convex-envelopes, are proved in Section 4.2. Finally, the main regularity result
concerning the subharmonic envelope, Theorem 2.4, is proved in Section 4.3.

3. The Dirichlet problem on the product of a tube domain and a mani-
fold.

Suppose that f(s, z) is a convex function on Rk
s × Rm

z . Then infs f(s, z) is either
identically −∞, or else a convex function on Rm [30, Theorem 5.7, p. 144], [25, Theorem
1.3.1]. If we replace “convex” with “psh” and R by C, this is not true in general. A
special situation in which this is true was described by Kiselman. Let us recall a local
version of this result [24] (cf. [13, Theorem I.7.5]). As in Section 2.1, let K ⊂ Rk be a
convex set and denote by KC := K +

√−1Rk ⊂ Ck the tube domain associated to K.
Denote by s a coordinate on K ⊂ Rk and by τ := s +

√−1t a coordinate on KC ⊂ Ck.

Theorem 3.1. Let D ⊂ Cn be a domain. If v ∈ PSH(KC × D) is such that
v(s +

√−1t, z) = v(s, z) for all t ∈ Rk then

v(z) = inf
τ∈KC

v(τ, z) (13)

is either identically −∞, or else psh on D.

This immediately implies the following global version. As in Section 2.1, we denote
by (M, ω) a Kähler manifold and by π2 : KC×M → M , π1 : KC×M → KC the natural
projections.
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Corollary 3.2. Assume that f ∈ PSH(KC × M, π?
2ω) satisfies f(s, z) = f(s +√−1t, z) for all t ∈ Rk. Then f?(σ, z), as defined in (3), satisfies f?(σ, · ) ∈ PSH(M, ω)

for each σ ∈ Rk.

Proof of Theorem 2.1. We argue that ϕ is upper semi-continuous parallel with
the proof of the formula

ϕ?(σ, z) = inf
s∈K

[ϕ(s, z)− 〈σ, s〉] = P{vs − 〈s, σ〉}s∈∂K(z), σ ∈ Rk, z ∈ M. (14)

To start, observe that both ϕ( · , z) and (uscϕ)( · , z) are convex and bounded func-
tions on K for each z ∈ M (note that sup uscϕ = supϕ). Indeed, the former is a
supremum of convex functions, whereas the latter is the restriction to K × {z} of an
Rk-invariant ω−psh function by Choquet’s lemma. Thus, it suffices to prove that

ϕ?(σ, z) = (usc ϕ)?(σ, z), (15)

for all σ ∈ Rk since then, by applying another partial Legendre transform it follows that
ϕ = usc ϕ. The proof of (15) will be implicit in the proof of (14) below.

Recall that by Bedford–Taylor theory [23, Theorem 1.22] the set E = {ϕ < usc ϕ} ⊂
KC×M has capacity zero, in particular its Lebesgue measure is also zero (meaning that∫

E
dVKC×M = 0 for any smooth volume form dVKC×M on KC×M). As both u and usc u

are Rk-invariant, E is also Rk-invariant with base B ⊂ K × M (note that B is not a
subset of K). Clearly, the Lebesgue measure of B is zero. For z ∈ M we introduce the
sets

Bz = π1(B ∩K × {z}) ⊂ K.

It follows that Bz has Lebesgue measure zero for all z ∈ M \ F , where F ⊂ M has
Lebesgue measure zero.

Suppose z ∈ M \F , we claim that in fact Bz is empty. This follows, as the continuous
convex functions ϕ( · , z) and (usc ϕ)( · , z) agree on the dense set K \Bz, hence they have
to agree on all of K, hence Bz is empty. This implies that

ϕ?(σ, z) = (usc ϕ)?(σ, z), for all z ∈ M \ F, σ ∈ Rk. (16)

Now, by Corollary 3.2, for each σ ∈ Rk, the function (usc ϕ)?(σ, · ) belongs to PSH(M, ω).
Moreover, by definition of ϕ we have

ϕ?
σ ≤ ϕs − 〈σ, s〉 for all s ∈ K. (17)

We can in fact extend this estimate to the boundary of ∂K:

Claim 3.3. For all s ∈ ∂K and σ ∈ Rk, ϕ?(σ, z) ≤ vs(z)− 〈σ, s〉.

Indeed, as vz ∈ C(∂K) for all z ∈ M , it follows that ϕ(p, z) ≤ P[vz](p), p ∈ K,
where P[vz] ∈ C(K) is the harmonic function on K satisfying P[vz]|∂K = vz. This implies
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that lim supp→s ϕp(z) ≤ vs(z) for all z ∈ M, s ∈ ∂K, hence we can take the lim sup of
the right hand side of (17) to conclude the claim.

Thus, by (16) we also have (uscϕ)?(σ, z) ≤ vs(z)−〈σ, s〉 for z ∈ M \F, s ∈ ∂K. As
F has Lebesgue measure zero we claim that this inequality extends to all z ∈ M . This
follows from the fact that (uscϕ)?

σ and vs − 〈σ, s〉 are ω-psh for fixed s ∈ ∂K, hence by
the sub-meanvalue property we can write:

(usc ϕ)?
σ(z) = lim

r→0

∮

B(z,r)

(usc ϕ)?
σ(ξ)dV (ξ)

≤ lim
r→0

∮

B(z,r)

(vs(ξ)− 〈σ, s〉)dV (ξ) = ϕs(z)− 〈σ, s〉,

for all z ∈ M , where B(z, r) is a coordinate ball around z and dV is the standard
Euclidean measure in local coordinates.

Thus, (usc ϕ)?(σ, ·) is a competitor in the definition of P{vs−〈s, σ〉}s∈∂K concluding
that

ϕ?(σ, · ) ≤ (usc ϕ)?(σ, · ) ≤ P{vs − 〈σ, s〉}s∈∂K . (18)

Conversely, let χ ∈ PSH(M, ω) satisfy χ ≤ va − 〈a, σ〉 for each a ∈ ∂K. We claim
that χ ≤ ϕs − 〈s, σ〉 for every s ∈ K. Indeed, by (2),

ϕs−〈s, σ〉 = sup{ws−〈s, σ〉 ∈ L∞ ∩PSH(KC×M, π?
2ω) : (w−〈s, σ〉)|∂KC ≤ v−〈s, σ〉},

so χ is a competitor in this last supremum, proving the claim. Now, taking the infimum
over all s ∈ K it follows that

ϕ?(σ, ·) ≥ P{vs − 〈s, σ〉}s∈∂K . (19)

Putting together (18) and (19) the identities (14) and (15) follow, proving that u is upper
semi-continuous. ¤

Remark 3.4. To guarantee that ϕ defined by (2) is an actual solution of (1), one
can, e.g., assume that there exists a subsolution, by which we mean an Rk-invariant
w ∈ L∞ ∩PSH(KC×M, π?

2ω) satisfying w|∂KC = v. In fact, if such a subsolution exists,
then wz ≤ ϕz, implying that ϕz|∂K lies above the boundary data. On the other hand,
ϕz ≤ P[vz], where P[vz] ∈ C(K) is the harmonic function on K satisfying P[vz]|∂K = vz.

Thus, ϕz|∂K also lies below the boundary data. In sum, ϕ|∂KC = v.

Providing a subsolution is often possible given special properties of K or the bound-
ary data v. An instance of this is the situation described in Corollary 2.2:

Proof of Corollary 2.2. By Theorem 2.1, all one needs to verify is that ϕ, as
defined in (2), satisfies ϕ|{i}×R = vi, i = 0, 1. Formula (7) follows then from (5). However,
by an observation of Berndtsson [7] we have that the function w(s, z) = max{v0(z) −
As, v1(z) + A(1 − s)} ∈ PSH(KC × M, π∗2ω) satisfies ψ|{i}×R = vi, i = 0, 1, where
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A = max{‖v0‖L∞ , ‖v1‖L∞}. Hence, w is a subsolution in the sense of Remark 3.4. ¤

We remark in passing that the general argument to prove upper semicontinuity given
in Theorem 2.1 can be avoided in the special setting of Corollary 2.2 (i.e., when K =
[0, 1]). Indeed, by convexity in s, ϕ(s, z) ≤ sv0(z)+(1−s)v1(z) for all (s, z) ∈ [0, 1]×M ,
thus also usc ϕ satisfies the same inequality. This last estimate in turn implies that uscϕ

is a candidate in the supremum defining ϕ, thus usc ϕ = ϕ (cf. [7]).

3.1. A convex version for the HRMA.
In this subsection we prove the a version of Corollary 2.2 for the homogeneous

real Monge–Ampère (HRMA) equation. While a proof of Proposition 2.3 and even its
generalization to higher dimensional K can be given along very similar lines to the proof
of Theorem 2.1, we give below a somewhat different argument.

Proof of Proposition 2.3. As observed by Semmes [37], [38], the HRMA is
linearized by the partial Legendre transform in the Rn variables. Thus, the solution to
the HRMA is given by

ψ(s, x) = ((1− s)ψ?
0 + sψ?

1)?(x), (20)

where ψ?
i (y) = supy∈Rn [〈x, y〉 − ψi(y)]. As is well-known, this is equal to the infimal

convolution of ψ0 and ψ1 [30, Theorem 38.2],

inf
{x0,x1∈Rn:(1−s)x0+sx1=x}

[(1− s)ψ0(x0) + sψ1(x1)]. (21)

This also follows directly from the fact that ψ solves the HRMA, since by [36] a solution
of the HRMA solves a Hamilton–Jacobi equation, and (21) is just the Hopf–Lax formula
in that setting. Now, we take the negative Legendre transform of (20) in s to obtain,

ψ?
x(σ) = min

s∈[0,1]

[
inf

{x0,x1∈Rn:(1−s)x0+sx1=x}
[(1− s)ψ0(x0) + sψ1(x1)]− sσ

]

= min
s∈[0,1]

[
inf

{x0,x1∈Rn:(1−s)x0+sx1=x}
[(1− s)ψ0(x0) + s(ψ1(x1)− σ)]

]
.

Now we will show that this last expression is equal to

sup{v : v is convex on Rn and v ≤ min{ψ0, ψ1 − σ}} = min{ψ0, ψ1 − σ}??. (22)

Fix x ∈ Rn, and let s ∈ [0, 1] and x0, x1 ∈ Rn be such that (1 − s)x0 + sx1 = x. Let v

be a convex function satisfying v ≤ min{ψ0, ψ1 − σ}. Then,

(1− s)ψ0(x0) + s(ψ1(x1)− σ) ≥ (1− s)v(x0) + sv(x1) ≥ v(x),

by convexity of v. Thus, ψ?
x(σ) ≥ min{ψ0, ψ1 − σ}??.

Conversely, the expression (21) is a convex function jointly in s and x (since it is
evidently convex in x by (20) and it solves the HRMA in all variables). By the minimum
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principle for convex functions then ψ?
x(σ) is convex in x. By the definition of the negative

Legendre transform in s, ψ?
x(σ) ≤ mins∈{0,1}[ψs(x) − sσ] = min{ψ0(x), ψ1 − σ}. Thus,

ψ?
x(σ) is a competitor in the left hand side of (22). Hence, ψ?

x(σ) ≤ min{ψ0, ψ1 − σ}??.
¤

4. Regularity of upper envelopes of families.

The bulk of this section is devoted to the proof of Theorem 2.5 (ii)–(iii) and Corollary
2.6 that establish the regularity of psh- and convex-envelopes associated to obstacles of
the form min{b0, b1}, that we refer to as ‘rooftop’ envelopes (see Figure 1). However, we
begin by first proving the Lipschitz regularity of psh-envelopes (Theorem 2.5 (i)).

4.1. Lipschitz regularity of psh-envelopes.
Let v ∈ C∞(M). Berman developed the following approach for constructing P (v),

generalizing a related construction for obtaining “short-time” solutions to the Ricci con-
tinuity method, introduced in [33], in turn based on a result of Wu [39] (a new approach
to which has been given in [21, Section 9], see [34, Section 6.3] for an exposition of these
matters). For β positive and sufficiently large one considers the equations

(
ω +

√−1∂∂̄uβ

)n = eβ(uβ−v)ωn. (23)

By the classical work of Aubin and Yau, (23) admits a smooth solution uβ . Berman
proves that, as β tends to infinity, uβ converges to P (v) uniformly, and that, moreover,
there is an a priori Laplacian estimate in this setting [5]. In this section we observe
that, as expected, also an a priori Lipschitz estimate holds, by directly applying BÃlocki’s
estimate. In other words, we prove Theorem 2.5 (i). The proof will show that the
constant in Theorem 2.5 (i) depends on a lower bound of the bisectional curvature of
(M, ω) and on ‖v‖C1(M). We claim no originality in the proof below.

Proof of Theorem 2.5 (i). It suffices, by a standard approximation procedure,
to assume that v is smooth. For simplicity of notation, we will often denote uβ by just
u. The argument follows [8, Theorem 1] very closely. Let B′ be some sufficiently large
positive constant to be fixed later. Let C0 := supβ>2 ‖uβ‖C0 + 1. Let φ : M → R be the
following function:

φ := log |∂u|2ω − γ(u),

where γ : [−C0, C0] → R is a smooth non-decreasing function to be fixed later. Since
‖u‖C0 ≤ C(M, ‖v‖C0), independently of β [5], γ is thus defined on some fixed finite
interval.

Suppose φ attains its maximum at p ∈ M . Let z = (z1, . . . , zn) denote holomorphic
normal coordinates around this point. Let g denote a local potential for ω in this chart,
i.e.,

√−1∂∂̄g = ω. Set h := g + u. We can additionally suppose that
√−1∂∂̄u(p) is

diagonal in our coordinates. Since all our local calculations will be carried out at the
point p we omit the dependence on this point from the subsequent computations. Let
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α := |∂u|2ω.

Thus,

0 =
∂

∂zj
φ = φj =

αj

α
− γ′(u)uj , j = 1, . . . , n, (24)

and so (omitting from now and on symbols for summation that can be understood from
the context),

0 ≥ ∆ωu
φ =

φkk̄

hkk̄

=
1

hkk̄

(
αkk̄

α
− |αk|2

α2
− γ′ukk̄ − γ′′α

)

=
1

hkk̄

(
αkk̄

α
− γ′ukk̄ − (γ′′ + γ′2)α

)
. (25)

The next formula holds for each fixed k = 1, . . . , n (no summation)

αkk̄ = 2 Re ujkk̄uj̄ + |ujk|2 + |ujk̄|2 − ujgjl̄kk̄ul̄

≥ 2Re ujkk̄uj̄ + |ujk|2 −Bα, (26)

whenever −B is a lower bound for the bisectional curvature of ω. Using this, the identity
1 + ukk̄ = hkk̄, and fact that gjkk̄ = 0, and summing over k we have,

0 ≥ 1
hkk̄

(
2Re hjkk̄uj̄ + |ujk|2 −Bα

α
+ γ′ − γ′hkk̄ − (γ′′ + γ′2)α

)
.

Multiplying across with α,

0 ≥ 1
hkk̄

(
2Re hjkk̄uj̄ + |ujk|2 + α

[
γ′ −B − γ′hkk̄ − (γ′′ + γ′2)α

])
. (27)

By BÃlocki’s trick [8, (1.15)], we also have the following estimate:

|ujk|2
hkk̄

≥ α

(
γ′2
|uk|2
hkk̄

− 2γ′
)
− 2. (28)

The computations so far are general and taken from [8]. We now bring the equation
we are interested in, log(det[hjl̄]/det[gjl̄]) = β(u − v), into the picture. Differentiating
this equation at p yields hjkk̄/hkk̄ = β(uj − vj). Thus,

2Re
hjkk̄

hkk̄

uj̄ = 2 Re β(uj − vj)uj̄ = 2β|uj |2 − 2β Re vjuj̄ ≥ 2β|uj |2 − 2β|vj |2. (29)

Putting (29) and (28) into (27) we obtain:
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0 ≥ 2βα− 2β|vj |2 + α

(
γ′2
|uk|2
hkk̄

− 2γ′
)
− 2 +

α

hkk̄

[
γ′ −B − γ′hkk̄ − (γ′′ + γ′2)α

]

= 2(β − γ′)α− 2β|vj |2 − 2− nγ′ +
α

hkk̄

(γ′ −B − γ′′α). (30)

Our wish is to get rid of the last term in the right. For this reason, we choose γ :
[−C0, C0] → R to be γ(t) = −t2/2 + (C0 + B)t. Then 2C0 + B > γ′ > B, γ′′ < 0. With
this choice, in our last estimate the rightmost term becomes positive, so we can write:

0 ≥ (2β − 2C0 −B)α− 2β|vj |2 − 2− n(2C0 + B). (31)

This gives

α ≤ 2β|vj |2 − 2− n(2C0 + B)
2β − 2C0 −B

, (32)

concluding the proof of Theorem 2.5 (i), since the constant on the right hand side can
be majorized independently of β. ¤

We turn to prove a corollary of this estimate and the formula for the Bremermann
upper envelope ϕ introduced in (2) (Theorem 2.1), namely, the Lipschitz regularity of ϕ.

Proof of Corollary 2.7. It follows from the definition of ϕ that ‖ϕ‖C0 ≤
‖v‖C0 . To finish the proof we need to prove that

|ϕ(s, ·)|C0,1 ≤ C
(
M, ω, sup

s∈∂K
‖v(s, ·)‖C1

)
, s ∈ ∂K. (33)

Fix h ∈ K. By (5) we have

ϕ(h, z) = (P{vs − 〈s, σ〉}s∈∂K)?(h, z) = sup
σ∈Rk

[P{vs − 〈s− h, σ〉}s∈∂K(z)], z ∈ M. (34)

Fix σ ∈ Rk. As K is bounded, by Lemma 4.1 below, φσ := infs∈∂K(vs − 〈s − h, σ〉) ∈
C0,1(X), with |φσ|C0,1 ≤ C(sups∈∂K |v(s, ·)|C0,1). By Theorem 2.5 (i) it follows that

|P (φσ)|C0,1 ≤ C(|φσ|C0,1) ≤ C
(

sup
s∈∂K

|v(s, ·)|C0,1

)
.

As ϕ(h, ·) = supσ∈Rk P (φσ), (33) follows from another application of Lemma 4.1. ¤

The next lemma is a consequence of the Arzelà–Ascoli compactness theorem.

Lemma 4.1. Suppose {fα}α∈A ⊂ C0,1(M) with supα∈A |fα|C0,1 < ∞. Then:

( i ) Either φ := infα∈A fα ≡ −∞, or φ ∈ C0,1(M) with |φ|C0,1 ≤ supα∈A |fα|C0,1 .
( ii ) Either ψ := supα∈A fα ≡ ∞, or ψ ∈ C0,1(M) with |ψ|C0,1 ≤ supα∈A |fα|C0,1 .
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4.2. Regularity of rooftop convex- and psh-envelopes.
In this subsection we prove Theorem 2.5 by using Theorem 2.4. The proof of the

latter is postponed to Section 4.3. First, we recall the second order estimates of Berman
[3, Theorem 1.1, Remark 1.8] and Berman–Demailly [6, Theorem 1.4]:

Theorem 4.2. Let b ∈ C1,1(M). Then, (i) ‖P (b)‖C11̄ ≤ C(‖b‖C11̄), and (ii) If
[ω0] ∈ H2(M,Z), then ‖P (b)‖C2 ≤ C(‖b‖C2).

Proof of Theorem 2.5. For both parts (i) and (ii) we first assume v0, v1 ∈
C1,1(M). Indeed, by an approximation argument, this suffices also for treating part (i).

Take a covering of M by charts, that we assume without loss of generality are
unit balls of the form {B1(xj)}k

j=1 (possible as M is compact), such that the balls
{B1/8(xj)}k

j=1 still cover M . Let {ρj}k
j=1 be a partition of unity subordinate to the

latter covering. Without loss of generality, we also assume that in a neighborhood of
each B1(xj) the metric ω has a Kähler potential wj ∈ C∞.

Let hj ∈ SH(B1(xj)) be the upper envelope

hj := sup{v ∈ SH(B1(xj)) : v ≤ min{v0|B1(xj) + wj , v1|B1(xj) + wj}}.

If ϕ is an ω-psh function then wj +ϕ ∈ PSH(B1(xj)) and therefore wj +ϕ ∈ SH(B1(xj)).
Thus, P (v0, v1)|B1(xj) ≤ hj − wj ≤ min{v0, v1}|B1(xj), and by Theorem 2.4,

‖hj‖C2 ≤ C(‖wj‖C2 , ‖v0‖C2 , ‖v1‖C2). (35)

Set b :=
∑k

j=1 ρj(hj − wj). Then

‖b‖C2 ≤ C({‖wj‖C2}k
j=1, {‖ρj‖C2}k

j=1, ‖v0‖C2 , ‖v1‖C2)

≤ C(M, ω, ‖v0‖C2 , ‖v1‖C2). (36)

It follows that P (v0, v1) ≤ b ≤ min{v0, v1} as we noticed above that P (v0, v1)|B1(xj) ≤
hj − wj ≤ min{v0, v1}|B1(xj). Thus, P (b) = P (v0, v1) and so part (i) of the theorem
follows from (36) and Theorem 4.2. Part (ii) follows as well if we can show that

‖b‖C11̄ ≤ C({‖wj‖C11̄}k
j=1, {‖ρj‖C11̄}k

j=1, ‖v0‖C11̄ , ‖v1‖C11̄) ≤ C(M, ω, ‖v0‖C11̄ , ‖v1‖C11̄).

This estimate indeed holds since on the incidence set hj − wj = min{v0|B1(xj),

v1|B1(xj)} the function ∆hj equals either ∆v0|B1(xj) or ∆v1|B1(xj) a.e. with respect to
the Lebesgue measure, while hj is harmonic on the complement of the incidence set. ¤

Corollary 2.6 follows from the previous theorem because by Proposition 2.3 the
convex rooftop envelope solves the HRMA, and hence also the HCMA on the associated
toric manifold.

Remark 4.3. One can give a different proof of part (ii) of Theorem 2.5 using
results on regularity of Mabuchi geodesics together with Theorem 2.1 and Proposition
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4.4. Indeed, let [0, 1] 3 t → at ∈ PSH(M, ω) ∩ L∞(M) be the weak geodesic joining
a0 := P (v0) with a1 := P (v1). By Theorem 4.2 both P (v0) and P (v1) have bounded
Laplacian. By Berman–Demailly [6, Corollary 4.7] (see He [19] for a different proof) so
does each at for each t ∈ [0, 1]. Since P (v0, v1) = P (P (v0), P (v1)), by Theorem 2.1 we
have

P (v0, v1) = a∗0.

Finally, |∆ω0a
∗
0| is bounded by Proposition 4.4 below.

The following estimate is very likely well-known, although we were not able to find
a precise reference.

Proposition 4.4. Let {va}a∈A be a uniformly locally bounded family of functions
on a domain D ⊂ Cn. Suppose that |∆va| ≤ B for all a ∈ A, and that vmin = infa∈A va

is psh on D. Then, |∆vmin| ≤ B.

One can also assume instead of uniform local boundedness that vmin itself is locally
bounded.

Proof. By our assumption ∆vmin ≥ 0, hence we only have to prove that ∆vmin ≤
B. Our assumptions also imply that the functions B|z|2/2n− ua are subharmonic on D

for any a ∈ A. By the Zygmund–Calderon estimate we also have that the C0,1 norm of
the functions B|z|2/2n−ua is uniformly bounded on any relatively compact open subset
of D. This implies that B|z|2/2n − vmin = supa∈A(B|z|2/2n − va) is locally Lipschitz
continuous, hence by Choquet’s lemma also subharmonic. This in turn implies that
∆vmin ≤ B. ¤

4.3. Regularity of rooftop subharmonic-envelopes.
We now prove Theorem 2.4. Let us fix some notation. Let b0, b1 ∈ C1,1(B1) with

B1 ⊂ Cn = R2n. The envelope benv in (10) is upper semi-continuous hence it is sub-
harmonic by Choquet’s lemma. We call benv the subharmonic-envelope of the rooftop
obstacle min{b0, b1}.

Let

b10 := b1 − b0 ∈ C1,1(B1), (37)

and denote the contact set (or coincidence set) by

Λ := {x ∈ B1 : benv(x) = min{b0, b1}(x)}. (38)

We call the complement of Λ in B1 the non-coincidence set.
Our first result assures that whenever x0 is a regular point of the level set b−1

10 (0),
then x0 is contained in the non-coincidence set, along with a small open ball of radius
uniformly proportional to |∇b10(x0)|.

Proposition 4.5. For b0, b1 ∈ C1,1(B1), using the notation we introduced, there
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exists C = C(n)/(1 + ‖b0‖C2 + ‖b1‖C2) such that for any x0 ∈ b−1
10 (0) ∩B1/2 (recall (37)

and (38)),

Λ ∩BC|∇b10(x0)|(x0) = ∅.

Proof. We fix x0 ∈ b−1
10 (0) ∩ B1/2. We will prove that benv < min{b0, b1} on

BC|∇b10(x0)|(x0) by finding a linear function sandwiched between these two functions.
More precisely, the proposition follows from the estimate

benv(x) < b0(x0)− 2C|∇b10(x0)|2 + 〈∇b0(x0), x− x0〉
< min{b0, b1}(x), x ∈ BC|∇b10(x0)|(x0), (39)

for C as in the statement.
For the second inequality in (39), observe that for any x ∈ Br(x0), r ≤ 1/2,

min{b0, b1}(x)− b0(x0)

≥ min
i∈{0,1}

〈∇bi(x0), x− x0〉 − (‖b0‖C2 + ‖b1‖C2)|x− x0|2

≥ 〈∇b0(x0), x− x0〉+ min{0, 〈∇b10(x0), x− x0〉} − (‖b0‖C2 + ‖b1‖C2)|x− x0|2

> 〈∇b0(x0), x− x0〉 − |∇b10(x0)|r − (‖b0‖C2 + ‖b1‖C2)r2.

Set r = r′|∇b10(x0)|. Then, whenever r′ ≤ 1/(1 + ‖b0‖C2 + ‖b1‖C2),

(‖b0‖C2 + ‖b1‖C2)r2 = (‖b0‖C2 + ‖b1‖C2)r′|∇b10(x0)|r ≤ r′|∇b10(x0)|2.

Thus, as desired,

min{b0, b1}(x) > b0(x0)−2r′|∇b10(x0)|2 + 〈∇b0(x0), x−x0〉, x ∈ Br′|∇b10(x0)|(x0). (40)

Now we turn to the first inequality in (39). Fix r ≤ 1/2. As before, by Taylor’s
formula, for x ∈ Br(x0),

min{b0, b1}(x) ≤ b0(x0) + 〈∇b0(x0), x− x0〉
+ min{0, 〈∇b10(x0), x− x0〉}+ (‖b0‖C2 + ‖b1‖C2)r2. (41)

Note that benv is subharmonic, while Br(x0) 3 x 7→ 〈∇b0(x0), x−x0〉+(‖b0‖C2+‖b1‖C2)r2

is harmonic. Combining this with (41) and the fact that benv ≤ min{b0, b1}, it follows
that

benv(x) ≤ b0(x0) + 〈∇b0(x0), x− x0〉+
∫

∂Br(x0)

Pr(x− x0, ξ)min{0, 〈∇b10(x0), ξ〉}dσ(ξ)

+ (‖b0‖C2 + ‖b1‖C2)r2,
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where Pr(x, ξ) = (r2 − |x|2)/(2nω2nr|x − ξ|2n) is the Poisson kernel of the ball Br(x)
which is positive. For any x ∈ Br/2(x0) and ξ ∈ ∂Br(x0), there is a uniform estimate
|Pr(x − x0, ξ)| ≤ C(n)r1−2n. Also, 〈∇b10(x0), ξ〉 = |∇b10(x0)||ξ| cos α, where α is the
angle betwen ξ and ∇b10(x0) in the plane they generate. Now, since the integrand is
negative, one can estimate it by considering only the quarter sphere ∂B++

r (x0) where
the angle between ξ and x− x0 is in the range (−π/4, π/4). Then,

∫

∂Br(x0)

Pr(x− x0, ξ)min{0,∇b10(x0)ξ}dσ(ξ)

<
−1√

2

∫

∂B++
r (x0)

Pr(x− x0, ξ)|∇b10(x0)|rdσ(ξ),

which, in turn, is bounded from above by −C|∇b10(x0)|r for x ∈ B(x0, r/2). Thus, there
exists C ′ = C ′(n) < 1 such that

benv(x) ≤ b0(x0) + 〈∇b0(x0), x− x0〉 − C ′|∇b10(x0)|r + (‖b0‖C2 + ‖b1‖C2)r2,

x ∈ B(x0, r/2). By taking any r̃ ≤ C ′/2(1 + ‖b0‖C2 + ‖b1‖C2) one has that r̃|∇b10(x0)| <
1. Thus,

benv(x) ≤ b0(x0) + 〈∇b0(x0), x− x0〉 − C ′

2
|∇b10(x0)|2r̃, for any x ∈ Br̃|∇b10(x0)|/2(x0).

Therefore, for any choice r′′ < C ′r̃/4,

benv(x) < b0(x0)+〈∇b0(x0), x−x0〉−2|∇b10(x0)|2r′′, for any x ∈ Br′′|∇v(x0)|(x0). (42)

The estimate (39) with C = min{r′, r′′} follows from (40) and (42). ¤

Before we consider the interior regularity of benv, we prove an adaptation to our
setting of the standard quadratic growth lemma (cf. [10, Lemma 3]). It shows, roughly,
that the envelope benv approximates the obstacle min{b0, b1} at least to second order.
This is quite intuitive in the classical case of an obstacle of class C1,1. In our setting
where the obstacle is only Lipschitz, the proof relies on Proposition 4.5.

Proposition 4.6. Let b0, b1 ∈ C1,1(B1(x0)). Suppose x0 ∈ Λ ∩ B1/4(x0), with
min{b0, b1}(x0) = bi(x0) for i ∈ {0, 1}. Then, there exists C = C(‖b0‖C2(B1), ‖b1‖C2(B1))
such that (recall (38) and (10)),

|benv(x)− bi(x0)− 〈∇bi(x0), x− x0〉| ≤ C|x− x0|2, for all x ∈ B1/8(x0). (43)

Of course, benv equals bi up to infinite order on the interior of Λ, so one could phrase
(43) as

|benv(x)− benv(x0)− 〈∇benv(x0), x− x0〉| ≤ C|x− x0|2,
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whenever x0 lies in the interior of Λ. However, the key is, of course, that the estimate
(43) also holds on ∂Λ (the free boundary), and it precisely shows that benv is therefore
differentiable at points on ∂Λ, and in fact that its C1,1 norm there is uniformly bounded.
These are the problematic points, since benv is harmonic (and thus, well-behaved) on the
complement of Λ.

Proof. Let x ∈ Λ ∩ B1/4(x0), and suppose that min{b0, b1}(x0) = b0(x0) (the
case i = 1 is treated in the same manner). Set

M := ‖b0‖C2 . (44)

Then,

benv(x)− b0(x0)− 〈∇b0(x0), x− x0〉 ≤ benv(x)− b0(x) + M |x− x0|2

≤ M |x− x0|2. (45)

Hence, it remains to prove that

−C|x− x0|2 ≤ benv(x)− b0(x0)− 〈∇b0(x0), x− x0〉, for all x ∈ B1/8(x0). (46)

Fix now r ≤ 1/4. On Br(x0) decompose

s(x) := benv(x)− b0(x0)− 〈∇b0(x0), x− x0〉 −Mr2 (47)

into the sum s|Br(x0) = s1 + s2, with s1 harmonic on Br(x0) having boundary data
s1|∂Br(x0) = s|∂Br(x0).

Since s1 is harmonic, s ≤ s1 ≤ 0. Also, by the Harnack inequality for non-positive
harmonic functions it follows that

−Mr2 = s(x0) ≤ s1(x0) ≤ C inf
Br/2(x0)

s1, (48)

with C independent of r.

Claim 4.7. Let µs2 denote the measure associated to ∆s2. Then either s2 ≡ 0 or
infx∈Br(x0) s2 is attained inside Br(x0) on the support of µs2 .

Proof. First, since the obstacle min{b0, b1} is Lipschitz, it follows from [10,
Lemma 3(a)] that benv is Lipschitz. In particular, benv is continuous and so inf

x∈Br(x0)
s2

is attained.
Now, suppose that the infimum is attained at a point p on the complement of the

support of µs2 . By definition of support, there is an open ball containing q on which s2 is
harmonic. But, a harmonic function cannot obtain an interior minimum, which implies
that p must be on the boundary of Br(x0). But we have s2|∂Br(x0) = 0 and s ≤ s1 ≤ 0
implies s2 ≤ 0. Hence, if the infimum of s2 is obtained on the boundary then s2 ≡ 0. ¤

If s2 ≡ 0 then (46) follows from (48). Hence we can suppose that infx∈Br(x0) s2 is
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Figure 2. The barriers b0, b1 and the envelope P (b0, b1).

attained at x1 ∈ Br(x0). By Claim 4.7, x1 ∈ Λ since the support of µs2 in Br(x0) is
equal to the support µbenv (the measure associated to ∆benv) in Br(x0) that is, in turn,
contained in Λ∩Br(x0). Suppose first that min{b0, b1}(x1) = b0(x1). Thus, since x1 ∈ Λ,
benv(x1) = b0(x1). Thus, using (44) and (47),

inf
Br(x0)

s2 = s2(x1) ≥ s(x1) = b0(x1)−b0(x0)−〈∇b0(x0), x1−x0〉−Mr2 ≥ −2Mr2. (49)

Combining (45), (48), and (49) and the definition of s (47), proves (46) in this case.
Suppose now that min{b0, b1}(x1) = b1(x1) (see Figure 2). This case is new com-

pared with the classical setting of Caffarelli [10] and will rely crucially on Proposition
4.5. Since min{b0, b1}(x0) = b0(x0), it follows by continuity of b0 and b1 that there exists
a point x̃ on the straight line segment {(1− t)x0 + tx1 : t ∈ [0, 1]} connecting x0 and x1

such that b1(x̃) = b0(x̃), i.e. x̃ ∈ b−1
10 (0) ∩Br(x0). Hence,

inf
Br(x0)

s2 = s2(x1) ≥ s(x1) = b1(x1)− b0(x0)− 〈∇b0(x0), x1 − x0〉 −Mr2

= (b1(x1)− b1(x̃)− 〈∇b1(x̃), x1 − x̃〉)
+ (〈∇b1(x̃), x1 − x̃〉 − 〈∇b0(x̃), x1 − x̃〉)
+ (〈∇b0(x̃), x1 − x̃〉 − 〈∇b0(x0), x1 − x̃〉)
+ (b0(x̃)− b0(x0)− 〈∇b0(x0), x̃− x0〉)−Mr2.

We now estimate from below the last four lines. The first line is minorized by
−2‖b1‖C2 |x1 − x̃|2 ≥ −cr2, while the third and fourth lines are minorized by
−2‖b0‖C2(|x1 − x̃|2 + |x0 − x̃|2 + r2) ≥ −cr2 (recall (44) and that |x1 − x0| ≤ r, thus
|xi − x̃| ≤ r), for some c = c(‖b0‖C2 , ‖b1‖C2). In sum,

inf
x∈Br(x0)

s2 ≥ (〈∇b1(x̃), x1 − x̃〉 − 〈∇b0(x̃), x1 − x̃〉)− Cr2

≥ −|∇b10(x̃)||x1 − x0| − Cr2. (50)
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Now, by Proposition 4.5, for some C = C(n)/(1 + ‖b0‖C2 + ‖b1‖C2), there is a ball of
radius C|∇b10(x̃)| around x̃ that does not intersect Λ. But x0, x1 are both in Λ. Thus,

C|∇b10(x̃)| ≤ |xi − x̃|, for i = 0, 1,

hence,

2C|∇b10(x̃)| ≤ |x1 − x0|.

Plugging this back into (50) yields

inf
Br/2(x0)

s2 ≥ inf
Br(x0)

s2 ≥ −C ′r2, (51)

for C ′ = C ′(‖b0‖C2 , ‖b1‖C2). Thus, (46) holds also in this case. This concludes the proof
of the Proposition. ¤

Finally, we are in a position to prove the interior C1,1 regularity of benv in (10).

Proposition 4.8. Let b0, b1 ∈ C1,1(B1). There exists C = C(‖b0‖C2 , ‖b1‖C2) such
that

‖benv‖C2(B1/8) ≤ C.

Proof. First, benv is differentiable on B1/4. This is immediate on Λc ∩B1/4 since
benv is harmonic there, while on Λ ∩B1/4 this follows from Proposition 4.6. Now, ∇benv

is Lipschitz continuous on B1/8 with Lipschitz constant C if

|benv(x)− benv(x0)− 〈∇benv(x0), x− x0〉| ≤ C|x− x0|2, ∀x0, x ∈ B1/8.

This is shown in Proposition 4.6 for x0 ∈ Λ ∩ B1/8, so suppose that x0 ∈ Λc ∩
B1/8. Denote by ρ the distance of x0 to Λ. If ρ > 1/16, then we are done
since benv is harmonic on B1/8(x0) and so ‖benv‖C2(B1/8(x0)) ≤ C‖benv‖L∞(B1/4(x0)) ≤
C(‖b0‖L∞(B1/4(x0)), ‖b1‖L∞(B1/4(x0))) (here we used the fact that (i) benv ≤ min{b0, b1} ≤
min{max b0,max b1}}, (ii) since b0, b1 are bounded from below, the constant func-
tion min{min b0,min b1} is a candidate in the supremum for benv; thus, benv ≥
min{min b0,min b1}, (iii) the Ck norm of a harmonic function on a half-ball is estimated
by its C0 norm on the ball, divided by the radius of the ball to the k-th power—this
follows from the Poisson representation formula). If ρ ≤ 1/16 a different argument is
needed since the radius of the ball on which benv is harmonic can be arbitrarily small.
Thus, let x1 ∈ ∂Λ ∩ B(0, 1/4) be a point at distance exactly ρ from x0. Since benv is
harmonic on Bρ(x0) so is benv(x)−benv(x1)−〈∇benv(x1), x−x1〉. Thus, one may express
the latter in terms of its boundary values and the Poisson kernel. Since,

∇2benv = ∇2(benv(x)− benv(x1)− 〈∇benv(x1), x− x1〉)
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then differentiating the aforementioned integral representation twice under the integral
sign yields that

‖∇2benv(x0)‖ ≤ C
supx∈Bρ(x0) |benv(x)− benv(x1)− 〈∇benv(x1), x− x1〉|

ρ2
.

Finally, since Bρ(x0) ⊂ B2ρ(x1) it follows from Proposition 4.6 that the right hand side
is majorized by

C
supx∈B(x1,2ρ) |benv(x)− benv(x1)− 〈∇benv(x1), x− x1〉|

ρ2
≤ C,

as desired. ¤
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