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Abstract. We prove that the first Chern class of a codimension two
closed contact submanifold of the odd dimensional Euclidean space is trivial.
For any closed co-oriented contact 3-manifold with trivial Chern class, we
prove that there is a contact structure on the 5-dimensional Euclidean space
which admits a contact embedding of it.

1. Introduction.

A contact structure is a maximally non-integrable hyperplane field ξ on an odd
dimensional manifold M2m+1. If the normal bundle of ξ is orientable, we say that the
contact structure ξ is co-oriented. This is equivalent to that there is a global defining
1-form α of ξ. Then, for a global contact form α, the 2-form dα induces a symplectic
vector bundle structure on ξ. The conformal class of the symplectic bundle structure
does not depend on the choice of α. A complex structure J on ξ is compatible if Jp is
(dα)p-compatible on ξp for each p ∈ M2m+1, i.e., if (u, v) 7→ (dα)p(u, Jpv) is a positive
definite symmetric bilinear form.

Definition 1.1 (The Chern classes of a contact structure). Let (M2m+1, ξ =
kerα) be a co-oriented contact structure. Since the conformal class of the symplectic
bundle structure (ξ, dα|ξ) does not depend on the choice of α and the complex bundle
structure on ξ compatible with the symplectic bundle structure is homotopically unique,
we define the Chern classes of ξ to be the Chern classes of this complex vector bundle.

Definition 1.2 (Contact submanifolds). Let (M, ξ) and (N, η) be co-oriented
contact structures. An embedding f : M → N is said to be a contact embedding if
f∗(TM) ∩ η|f(M) = f∗ξ. The embedded contact manifold (f(M), f∗ξ) or (M, ξ) itself
is called a contact submanifold of (N, η). Similarly, an immersed contact submanifold
(M, ξ) and a contact immersion M → N are defined.

In this paper, we study codimension two contact embeddings in the odd dimensional
Euclidean spaces. Especially, we are interested in closed contact 3-manifolds in R5. As
a manifold, any 3-manifold embeds in R5 by Wall’s theorem ([9]). On the other hand,
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we show in Section 2 that the first Chern class of a contact 3-manifold is an obstruction
for contact embeddings.

Theorem 1.3. If a closed contact manifold (M2n−1, ξ) is a contact submanifold
of a co-oriented contact manifold (N2n+1, η) such that H2(N2n+1;Z) = 0, then the first
Chern class c1(ξ) is trivial.

In particular, there are infinitely many contact 3-manifolds which cannot be em-
bedded in R5 as contact submanifolds for any contact structure on R5. On the other
hand, the following theorem is known for the existence of contact immersions and contact
embeddings in the standard contact structure on R2n+1. Let η0 be the standard contact
structure on R2n+1, i.e., η0 is defined by the 1-form

α0 = dz +
n∑

j=1

xjdyj ,

where (x1, y1, . . . , xn, yn, z) are the coordinates on R2n+1.

Theorem 1.4 (Mori [7], Mart́ınez-Torres [5]). Any closed co-orientable contact
(2m+1)-manifold admits a contact immersion into (R4m+1, η0), and it admits a contact
embedding into (R4m+3, η0).

Therefore, the first Chern class is the obstruction peculiar to the cases of codimension
two contact embeddings. We do not know whether every closed co-oriented contact 3-
manifold with c1(ξ) = 0 can be embedded as a contact submanifold in (R5, η0). By
Gromov’s h-principle, however, we show the following result in Section 3.

Theorem 1.5. Let (M3, ξ) be a closed co-oriented contact 3-manifold with c1(ξ) =
0. Then there is a contact structure η on R5 such that we can embed (M3, ξ) in (R5, η)
as a contact submanifold.

2. Proof of Theorem 1.3.

We need the following definition for the proof of Theorem 1.3.

Definition 2.1 (Conformal symplectic normal bundles). Let (M, ηM ) be a contact
submanifold of (N, η = kerβ). The vector bundle η splits along M into the Whitney
sum of the two subbundles

η|M = ηM ⊕ (ηM )⊥,

where ηM is the contact plane bundle on M given by ηM = TM ∩ η|M and (ηM )⊥ is the
symplectic orthogonal of ηM in η|M with respect to the form dβ. We can identify (ηM )⊥

with the normal bundle νM . Moreover, dβ induces a symplectic structure on (ηM )⊥.
The conformal class of the symplectic structure does not depend on the choice of β. We
call (ηM )⊥ the conformal symplectic normal bundle of M in N .
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Proof of Theorem 1.3. Let f : M2n−1 → N2n+1 be an embedding such that

f∗(TM) ∩ η|f(M) = f∗ξ.

Then, the Euler class of the normal bundle of f is zero. The reason is as follows.
The Thom class of the normal bundle is a relative cohomology class of the tubular
neighborhood of f(M). We obtain the Euler class of the normal bundle by pulling it
back into the absolute cohomology group H2(M2n−1;Z) through the composition of the
two restriction homomorphisms

H2(N2n+1, N2n+1\M2n−1;Z) → H2(N2n+1;Z) → H2(M2n−1;Z).

Hence, by the condition H2(N2n+1;Z) = 0, the Euler class of the normal bundle is
zero (cf. Theorem 11.3 in [6]). The normal bundle of f is 2-dimensional, hence it is
topologically trivial. Since the conformal symplectic structure on 2-dimensional trivial
vector bundle is unique, the normal bundle of the contact submanifold f(M) is also
trivial as a conformal symplectic vector bundle. Hence, the vector bundle η splits along
f(M) as

η|f(M) = ηf(M) ⊕ (ηf(M))⊥,

where ηf(M) = f∗ξ and (ηf(M))⊥ is a trivial symplectic bundle. By the naturality of the
first Chern class and the condition that H2(N2n+1;Z) = 0, it follows that c1(η|f(M)) =
f∗c1(η) = 0. On the other hand, taking the Whitney sum with a trivial symplectic bundle
does not change the first Chern class. Thus, it follows that c1(ξ) = c1(η|f(M)) = 0. ¤

Remark 2.2. If the manifold N2n+1 satisfies the condition H2j(N2n+1;Z) = 0 in
addition in Theorem 1.3, then the j-th Chern class cj(ξ) is also trivial.

3. Proof of Theorem 1.5.

In Section 3.1, we review Gromov’s h-principle and prove Propositon 3.4 which we
use in the proof of Theorem 1.5. In Section 3.2, we review the Wu invariant of an
embedding of a closed orientable 3-manifold in R5. In Section 3.3, we prove Theorem
1.5.

3.1. The h-principle.
Definition 3.1 (Almost contact structures). Let N2n+1 be an odd dimensional

oriented manifold. An almost contact structure on N2n+1 is a pair (β1, β2) consisting of
a global 1-form β1 and a global 2-form β2 satisfying the condition β1 ∧ βn

2 6= 0.

Remark 3.2. We can define an almost contact structure on N2n+1 as a reduction
of the structure group of TN2n+1 from SO(2n + 1) to U(n). The two definitions are
equivalent.

Gromov proved that an almost contact structure on an odd dimensional open man-
ifold is homotopic to a contact structure on it.
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Theorem 3.3 (Gromov [3], see also [1]). Let N2n+1 be an odd dimensional open
manifold. If there is an almost contact structure on N2n+1, then there is a contact
structure on N2n+1 in the same homotopy class of almost contact structures. Moreover
if the almost contact structure is already a contact structure on a neighborhood of a
compact submanifold Mm of N2n+1 with m < 2n, then we can choose a contact structure
on N2n+1 which coincides with the original one on a small neighborhood of Mm.

Let (M2n−1, ξ = kerα) be a closed co-oriented contact manifold and M2n−1 be
embedded in R2n+1. Since the normal bundle is trivial as is explained in the proof of
Theorem 1.3, there exists an embedding

F : M2n−1 ×D2 → R2n+1.

The form α + r2dθ induces a contact form β on U = F (M2n−1×D2), where (r, θ) is the
polar coordinate in the 2-disk D2. By Theorem 3.3, in order to extend the given contact
structure, it is enough to extend it as an almost contact structure. Almost contact
structures on N2n+1 correspond to sections of the SO(2n + 1)/U(n) bundle associated
with the tangent bundle TN2n+1. Since the tangent bundle of the manifold U in R2n+1

is trivialized, we can identify the almost contact structure on U with a map

g̃ : M2n−1 ×D2 → SO(2n + 1)/U(n).

Since the extendability of the map g̃ over R2n+1 is equivalent to the homotopical triviality
of g̃, we obtain the following proposition.

Proposition 3.4. We can embed (M2n−1, ξ) in R2n+1 as a contact submanifold
for some contact structure, if and only if there exists an embedding

F : M2n−1 ×D2 → R2n+1

such that the map g : M2n−1 → SO(2n + 1)/U(n) induced by the underlying almost
contact structure of (M2n−1 ×D2, α + r2dθ) and the standard trivialization of R2n+1 is
null-homotopic.

3.2. Wu invariant.
Let M3 be a closed oriented 3-manifold and Imm[M3,R5] be the set of regular

homotopy classes of immersions of M3 into R5.

Theorem 3.5 (Wu [10], see also [4], [8]). The normal Euler class χf for an
immersion f : M3 → R5 is of the form 2C for some C ∈ H2(M3;Z), and for any
C ∈ H2(M3;Z), there is an immersion f such that χf = 2C. Furthermore, there is a
bijection

Imm[M3,R5]χ ≈
∐

C∈H2(M3;Z) with 2C=χ

H3(M3;Z)/(4C ^ H1(M3;Z)),
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where Imm[M3,R5]χ is the set of regular homotopy classes of immersions with normal
Euler class χ ∈ H2(M3;Z) and ^ denotes the cup product.

Saeki, Szűcs and Takase in [8] examined the set Emb[M3,R5] of the regular homo-
topy classes of immersions which contain embeddings. Since the normal bundle of an
embedding of M3 in R5 is trivial as is explained in the proof of Theorem 1.3,

Emb[M3,R5] ⊂ Imm[M3,R5]0.

Let Γ2(M3) be the finite set {C ∈ H2(M3;Z) | 2C = 0}. By Theorem 3.5, the set
Imm[M3,R5]0 can be identified with Γ2(M3)× Z.

Definition 3.6 (Wu invariant). The projection c : Imm[M3,R5]0 → Γ2(M3) is
called the Wu invariant of the immersion of the parallelized 3-manifold with trivial normal
bundle.

The following explanation due to [8] gives a geometrical description of the Wu in-
variant. A normal trivialization ν of an element f ∈ Imm[M3,R5]0 and the trivialization
of TM3 define a map M3 → SO(5) and it induces a homomorphism

π1(M3) → π1(SO(5)),

namely, an element c̃ν in H1(M3;Z/2). If we change ν by an element

z ∈ [M3,SO(2)] = H1(M3;Z),

then the class c̃ν changes by ρ(z), where ρ is the mod 2 reduction map in the Bockstein
exact sequence:

H1(M3;Z)
ρ−→ H1(M3;Z/2) −→ H2(M3;Z) ×2−→ H2(M3;Z).

Hence the coset of c̃ν in

H1(M3;Z/2)/ρ(H1(M3;Z)) ∼= Γ2(M3) = ker {×2 : H2(M3;Z) → H2(M3;Z)}

does not depend on ν, and it corresponds to the Wu invariant c(f) ∈ Γ2(M3).

Theorem 3.7 (Theorem 4 in [8]). For every element C ∈ Γ2(M3), there exists an
embedding f : M3 → R5 with the Wu invariant c(f) = C.

3.3. Proof of Theorem 1.5.
Proof of Theorem 1.5. By Proposition 3.4, it is enough to show the existence

of an embedding F : M3 ×D2 → R5 such that the map g : M3 → SO(5)/U(2) induced
by F is null-homotopic.

The condition c1(ξ) = 0 is equivalent to that ξ is a trivial plane bundle over M3. A
trivialization τ of ξ and the Reeb vector field R of α give a trivialization of TM3. Let
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us fix this trivialization. By Theorem 3.7, there exists an embedding f : M3 → R5 such
that c(f) = 0, i.e., for a normal trivialization ν of f ,

c̃ν ∈ ρ(H1(M3;Z)) ⊂ H1(M3;Z/2).

By changing ν by an element in ρ−1(c̃ν), we obtain a normal trivialization ν such that
c̃ν = 0 ∈ H1(M3;Z/2). This means the trivialization ν and the trivialization τ of TM3

define a map h : M3 → SO(5) which induces the trivial map in π1. Now, let us take a
triangulation of M3 and M (l) be its l dimensional skeleton, i.e.,

M (0) ⊂ M (1) ⊂ M (2) ⊂ M (3) = M3.

Then, h|M(1) is null-homotopic. Since π2(SO(5)) = 0, h|M(2) is null-homotopic. Then for
the projection π : SO(5) → SO(5)/U(2), π ◦ h|M(2) is null-homotopic. Since π3(SO(5)/
U(2)) = 0 by the diffeomorphism SO(5)/U(2) ∼= CP 3 (cf. [2]), π◦h is null-homotopic. As
a tubular neighborhood of f(M3) in R5, we can take an embedding F : M3 ×D2 → R5

satisfying the desired condition. ¤

Remark 3.8. The normal Euler class for a contact immersion of (M3, ξ) into
(R5, η0) is equal to −c1(ξ). Furthermore, there is a bijection

CI[(M3, ξ), (R5, η0)] ≈ H3(M3;Z)/(−2c1(ξ) ^ H1(M3;Z)),

where CI[(M3, ξ), (R5, η0)] is the set of regular homotopy classes of immersions which
contain contact immersions of (M3, ξ) into (R5, η0). Note that the right-hand side of the
bijection is written in the terminology of Theorem 3.5.
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