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Abstract. We study the wall-crossing of the moduli spaces Mα(d, 1) of
α-stable pairs with linear Hilbert polynomial dm+1 on the projective plane P2

as we alter the parameter α. When d is 4 or 5, at each wall, the moduli spaces
are related by a smooth blow-up morphism followed by a smooth blow-down
morphism, where one can describe the blow-up centers geometrically. As a
byproduct, we obtain the Poincaré polynomials of the moduli spaces M(d, 1)
of stable sheaves. We also discuss the wall-crossing when the number of stable
components in Jordan–Hölder filtrations is three.

1. Introduction.

1.1. Motivation and Results.
In moduli theory, for a given quasi-projective moduli space M0, various compact-

ifications stem from the different view points for the moduli points of M0. After we
obtain various compactified moduli spaces of M0, it is quite natural to ask the geometric
relationship among them. Sometimes, this question is answered by birational morphisms
between them, which enables us to obtain some geometric information (for example, the
cohomology groups) of one space from that of the other [28], [5].

In this paper, we study the moduli space of semistable sheaves of dimension one on
smooth projective surfaces [27], which recently gains interests in both mathematics and
physics. This is an example of compactifications of the relative Jacobian variety, where
we regard its general point as a sheaf

F := OC

( n∑

i=1

pi

)

on a smooth curve C with pole along points pi of general position. In general, the
moduli space of semistable sheaves is hard to study due to the lack of geometry of its
boundary points. However, if n is equal to the genus of C, the sheaf F has a unique
section up to scalar. So, we may alternatively consider the general point as a sheaf with
a section, which in turn leads to another compactification, so called the moduli space of
α-semistable pairs (more generally, the coherent systems [18]). When α is large, it can
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be shown that the moduli spaces of α-stable pairs are nothing but the relative Hilbert
schemes of points on curves. The main advantage of this viewpoint is that in many
cases the relative Hilbert scheme is more controllable than the moduli space of stable
sheaves. In this paper, we are interested in comparing various compactifications and
getting geometric information of the moduli space of sheaves from the relative Hilbert
scheme.

We begin by reviewing the theory of α-stable pairs. Let X be a smooth projective
variety with fixed ample line bundle OX(1). By definition, a pair (s, F ) consists of a
sheaf F on X and one-dimensional subspace s ⊂ H0(F ). Let us fix α ∈ Q[m] with a
positive leading coefficient. A pair (s, F ) is called α-semistable if F is pure and for any
proper nonzero subsheaves F ′ ⊂ F , the inequality

χ(F ′(m)) + δ · α
r(F ′)

≤ χ(F (m)) + α

r(F )

holds for m À 0. Here r(F ) is the leading coefficient of the Hilbert polynomial χ(F (m))
and δ = 1 if the section s factors through F ′ and δ = 0 otherwise. When the strict
inequality holds, (s, F ) is called α-stable.

The moduli space of α-semistable pairs (more generally, coherent systems) on a
smooth projective variety was extensively studied by Le Potier [17], [19]. By general
results of the geometric invariant theory, Le Potier proved that there exist projective
schemes Mα

X(P (m)) which parameterize the S-equivalence classes of α-semistable pairs
with fixed Hilbert polynomial P (m) on X. Here we say that two α-semistable pairs are
S-equivalent if two pairs have equivalent Jordan–Hölder filtrations. M. He [11] studied
the geometry of moduli space of α-stable pairs on the projective plane X = P2 in order
to compute the Donaldson numbers.

From now on, we will denote

Mα(d, χ) := Mα
P2(dm + χ)

for X = P2 with linear Hilbert polynomial P (m) = dm + χ.
When α is sufficiently large (for example, deg(α) ≥ dimX), α-stable pairs are

precisely stable pairs in the sense of Pandharipande–Thomas [24]. Moreover, when X is
P2, we have the following.

Proposition 1.1 ([11, Section 4.4], [23, Proposition B.8]). If α is sufficiently
large, then Mα:=∞(d, χ) is isomorphic to the relative Hilbert scheme of points on the
universal degree d curve. Moreover, it is an irreducible normal variety.

Here, the number of points on the relative Hilbert scheme is given by

n := χ− d(3− d)
2

.

We will denote by B(d, n) the relative Hilbert scheme of n points on the universal degree
d curve.
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At the other extreme when α is sufficiently small, the moduli space has a natural
forgetful morphism into the moduli space of semistable sheaves, so called the Simpson
space [27]. We denote by M(d, χ) the moduli space of semistable sheaves on P2 with
Hilbert polynomial dm + χ. Sometimes, we identify the space M(d, χ) with the moduli
space of pairs with a zero section.

Proposition 1.2. If α is sufficiently small (denoted by α = 0+), there is a natural
morphism

ξ : M0+
(d, χ) −→ M(d, χ)

which associates to the 0+-stable pair (s, F ) the sheaf F .

When χ = 1, a general stable sheaf has a unique section up to a scalar multiplication.
So, the moduli spaces Mα(d, 1) and M(d, 1) are birational. Now we state the main
problem of this paper.

Problem. Compare the moduli spaces Mα(d, 1) and M(d, 1) by using birational
morphisms and compute the cohomology group of M(d, 1).

Note that, when d ≤ 3, all moduli spaces Mα(d, 1) and M(d, 1) are isomorphic to
each other [17]. In this paper, we answer this problem for d = 4 and 5.

Theorem 1.3 (Theorem 3.3 and Theorem 3.6). Assume d = 4 or 5.

(1) The moduli space M0+
(d, 1) is obtained from the ∞-stable pair space M∞(d, 1)

by several wall-crossings such that each wall-crossing is a composition of a smooth
blow-up morphism followed by blow-down one.

(2) The forgetful map ξ : M0+
(d, 1) → M(d, 1) is a divisorial contraction such that the

exceptional divisor can be described by stable pair spaces with various Euler charac-
teristics.

As corollaries, we obtain the Poincaré polynomials of M(d, 1) by using those of the
relative Hilbert schemes of points on the plane curves (Section 5).

To prove part (1), we first find the flipping locus at each wall by using the stability
conditions. It turns out that the blow-up centers can be described as a configuration
of points on curves. In particular, they are projective bundles over the product of the
moduli spaces of α-stable pairs of lower degrees. After blowing up the moduli space
along such loci, by performing the elementary modifications of pairs (Definition 2.5), we
construct a flat family of pairs that are stable on the other side of the wall, which in
turn gives a birational morphism. This morphism is shown to be a smooth blow-down
morphism by analyzing the exceptional divisor and applying the Fujiki–Nakano criterion
[9].

For the part (2), when d = 4, it can easily be checked that the forgetful morphism ξ

is a divisorial contraction by using the classification of stable sheaves [7]. Furthermore,
we show that ξ is a smooth blow-up morphism along the Brill–Noether locus (Proposition
4.4).
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If d = 5, by using the classification of stable sheaves we can check that the Brill–
Noether locus consists of two strata, where the smaller dimensional one is the boundary
of the bigger one. Moreover, the whole Brill–Noether locus is an irreducible variety which
can easily be obtained from the wall-crossing of Mα(5,−1) (For detail, see Section 4).

1.2. Outline of the Paper.
The stream of this paper is as follows. In Section 2, we review well-known facts

about the deformation theory of pairs [11] and the notion of the elementary modification
of pairs. In Section 3, we provide proofs of Theorem 3.3 and Theorem 3.6, that is,
we compare the moduli space of α-stable pairs by wall-crossing when d = 4 and 5. In
Section 4, we study the forgetful morphisms geometrically and the Brill–Noether loci.
As a corollary, in Section 5, we obtain the Poincaré polynomials of M(4, 1) and M(5, 1).
In Section 6, we discuss the wall-crossing for Mα(4, 3) when the number of terms in the
Jordan–Hölder filtration is more than two.

1.3. Further Works.
For the case d ≥ 6, the moduli spaces M∞(d, 1) do not have a bundle structure over

the Hilbert scheme of points and thus we can not apply the same method to calculate
the Betti numbers of M(d, 1). However, one can still compute the topological Euler
characteristics of M∞(d, 1) by means of the torus localization [25]. Moreover, under the
assumption that the Joyce-Song-type wall-crossing formula [13] holds, the first author
has computed the Euler characteristics of M(d, 1) up to degree 10 and verified that the
results agree with the prediction in physics [2].

One can go further. In [3], new definition of the refined Pandharipande–Thomas
invariant is proposed via an extension of the BiaÃlynicki-Birula decomposition to singular
moduli spaces. It is “refined” partly in the sense that it is the virtual motive of M∞

X (d, χ),
which specializes to the Pandharipande–Thomas invariant [24]. A product formula for
these refined Pandharipande–Thomas invariants is conjectured in [3], which is consistent
with B-model calculation in physics. It is expected that the lower degree correction terms
produced from the product formula are in correspondence with the wall-crossing terms
in our paper. Details can be found in [3].

Acknowledgements. We would like to thank Sheldon Katz, Young-Hoon Kiem,
Wanseok Lee, and Han-Bom Moon for valuable discussion and comments. We also thank
the anonymous reviewers for their valuable comments and suggestions to improve the
quality of the paper.

2. Preliminaries.

In this section, we collect well-known properties of pairs: deformation theory and
the elementary modification.

2.1. Deformation theory of pairs.
Let X be a smooth projective variety. Deformation theory of pairs (more generally,

coherent systems) on X was studied in [11], [19]. We summarize the results for conve-
nience of readers. Let M be the moduli space of semistable pairs on X. We note that
the set of all coherent systems forms an abelian category. Also, the category of coherent
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systems has enough injective objects, so it is possible to define the Exti(Λ,Λ′) of coherent
systems Λ, Λ′. We consider the category of pairs as its subcategory.

Proposition 2.1 ([11, Corollary 3.10, Theorem 3.12]). The first order deforma-
tion space of M at a stable pair Λ on a smooth projective variety X is given by

Ext1(Λ,Λ).

Moreover, if Ext2(Λ,Λ) = 0, then M is smooth at Λ.

We will use the following proposition repeatedly in Section 3 and Section 4.

Proposition 2.2 ([11, Corollary 1.6]). Let Λ = (s, F ) and Λ′ = (s′, F ′) be pairs
on X. Then there is a long exact sequence

0 → Hom(Λ,Λ′) → Hom(F, F ′) → Hom(s,H0(F ′)/s′)

→ Ext1(Λ,Λ′) → Ext1(F, F ′) → Hom(s,H1(F ′))

→ Ext2(Λ,Λ′) → Ext2(F, F ′) → Hom(s,H2(F ′)) → · · · .

Lemma 2.3. If χ < (4 + 5d − d2)/2, the moduli spaces M∞(d, χ) are projective
bundles over Hilbert scheme of points on P2. Specially, they are smooth.

Proof. Let n = χ − (d(3 − d))/2. Then by Proposition 1.1, M∞(d, χ) is iso-
morphic to B(d, n). A closed point (C,Z) in B(d, n) can be considered as a choice of a
section of the ideal sheaf IZ(d) [11, Section 4.4].

We have the canonical projection q : B(d, n) → Hilbn(P2). Let I be a universal
ideal sheaf on Hilbn(P2)× P2 and p be the projection to the first factor. Then, B(d, n)
is the projective bundle P(p∗I(d)∗), provided that p∗I(d) is locally free. If n ≤ d+1, we
have H1(IZ(d)) = 0 for any length n subscheme Z of P2 because the line bundle OP2(d)
is d-very ample. Hence, by semicontinuity theorem, p∗I(d) is locally free as required. ¤

Remark 2.4. (1) The bound in Lemma 2.3 is sharp. For example, it can be
easily seen that B(6, 8) ' M∞(6,−1) is not smooth. In fact, for a stable pair Λ
with Hilbert polynomial 6m− 1, the obstruction space Ext2(Λ,Λ) may not vanish.

(2) Under the assumption in Lemma 2.3, let Λ ∈ M∞(d, χ) be a stable pair. One can
easily check that

Ext2(Λ,Λ) = 0 (2.1)

by Proposition 2.2 and the constancy of the Euler form.

2.2. Elementary Modification of Pairs.
We introduce the notion of the modification of pairs on a smooth projective variety

X. This is a main tool to relate various moduli spaces of semistable pairs by birational
morphisms.
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Definition 2.5. Let F be a flat family of pairs on X × S parameterized by a
smooth variety S. Let ∆ be a smooth divisor of S such that the restricted pair F|X×∆

over ∆ has a flat family A of destabilizing quotient pairs. Then we call

elm∆(F ,A) := ker(F → F|X×∆ ³ A)

the elementary modification of pair F along ∆.

In general, elementary modification of pairs interchanges the subpair with the quo-
tient pair. For example, see the proof of [11, Lemma 4.24].

3. Wall-crossing among moduli spaces of α-stable pairs.

In this section, we will compare ∞-stable pair space M∞(d, 1) with the 0+-stable
pair space M0+

(d, 1) for d = 4 and 5 by using wall-crossing. By the variation of geometric
invariant theoretic quotients [29], [6] and the construction of semistable pair space [18],
it seems to be clear there are flipping spaces among M∞(d, 1) and M0+

(d, 1) in a broad
sense. In the following two subsections, we will show that the flipping spaces are related
by smooth blow-up and followed by smooth blow-down morphisms (Theorem 3.3 and
Theorem 3.6). By using the same technique, we also relate the α-stable pair spaces with
Hilbert polynomial 5m − 1 by smooth blow-up/down morphisms. In Theorem 3.7, we
will present the results without proof. This results will be essential to compute the Betti
numbers of the moduli space M(5, 1) (Corollary 5.3).

3.1. Wall-crossing for d = 4.
The aim of this subsection is to provide a proof of Theorem 3.3 below. We prove that

the moduli spaces of α-stable pairs with Hilbert polynomial 4m + 1 are related by single
blow-up/down morphisms. The main tool of the proof is the elementary modification of
pairs and the Fujiki–Nakano criterion [9]. We start with a geometric description of walls.

Lemma 3.1. We have a unique wall at α = 3 where the strictly semistable points
are of type

(1, (3, 0))⊕ (0, (1, 1)), (3.1)

where (1, (d, χ)) (resp. (0, (d, χ))) denotes the pair (s, F ) with a nonzero (resp. zero)
section s and Hilbert polynomial χ(F (m)) = dm + χ.

Proof. By [11, Theorem 4.2], the wall occurs at the values of α for which there
exist strictly α-semistable pairs. This lemma is a consequence of an elementary calcula-
tion. ¤

Let Ω be the flipping locus in M∞(4, 1), that is, the inverse image of the locus of
strictly semistable pairs along the natural map M∞(4, 1) → M3(4, 1). The locus Ω
can be described as a projective bundle as follows. Let M(1, 1) (resp. M0+

(3, 0)) be
the moduli space of stable pairs having a unique (resp. non) zero section with Hilbert
polynomial m + 1 (resp. 3m). Then they have a universal family of pairs F ′ (resp. F ′′)
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on M(1, 1)× P2 (resp. M0+
(3, 0)× P2) [11, Theorem 4.3]. In fact, M(1, 1) ∼= Gr(2, 3)

and M0+
(3, 0) ∼= P9. The latter is because if F ∈ M(3, 0) has a nonzero section, this

nonzero section defines a nonzero morphism OC → F for some cubic curve C. Then by
stability one can check this morphism is an isomorphism. See the proof of [17, Theorem
4.4].

Then one can easily construct the universal families F ′ and F ′′. Let

q1 : M(1, 1)×M0+
(3, 0)× P2 → M(1, 1)× P2,

q2 : M(1, 1)×M0+
(3, 0)× P2 → M0+

(3, 0)× P2, and

p : M(1, 1)×M0+
(3, 0)× P2 → M(1, 1)×M0+

(3, 0)

be the projection maps. Then one can easily check that the relative Ext sheaf
Ext1p(q

∗
2F ′′, q∗1F ′) on M(1, 1)×M0+

(3, 0) is a locally free sheaf of rank 4. Let

P := P
(Ext1p(q

∗
2F ′′, q∗1F ′)

)

be the projective bundle on M(1, 1) × M0+
(3, 0). Then there exists a universal sheaf

E on P × P2 parameterizing the non-split extension sheaves in Ext1P2(F ′′|s,F ′|t) for
s ∈ M0+

(3, 0) and t ∈ M(1, 1) ([16], [30]). Thus the map

P ↪→ M∞(4, 1)

given by the universal sheaf E over P is a closed embedding, whose image is precisely Ω.

Remark 3.2. Under the identification of the moduli space M∞(4, 1) with the
relative Hilbert scheme B(4, 3) of three points on quartic curves (Proposition 1.1), each
closed point of the fiber P3 corresponds to the length three subscheme Z of a pair (Z,L·C)
such that Z lies on a line L and C is a cubic curve. Let (1, F ) ∈ P be a non split
extension class 0 → (0,OL) → (1, F ) → (1,OC) → 0 where (0,OL) ∈ M(1, 1) (resp.
(1,OC) ∈ M0+

(3, 0)) for fixed L and C. Since (1, F ) is ∞-stable pair, there is a short
exact sequence 0 → (1,OL·C) → (1, F ) → (0, Q) → 0 for some torsion sheaf Q of the
length three on the quartic curve L ·C. Combining these two short exact sequences and
some diagram chasing, it can be seen that the torsion sheaf Q is supported on L and
thus Q ∼= OZ for some Z of length three subscheme of L.

Now we will state one of the main theorems.

Theorem 3.3. Let Mα(4, 1) be the moduli space of α-semistable pairs on P2 with
Hilbert polynomial 4m + 1. Then there is a flip diagram at α = 3
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˜M∞(4, 1)
p

&&LLLLLLLLLL
q

xxrrrrrrrrrr

M∞(4, 1)

&&MMMMMMMMMMM M0+
(4, 1)

xxqqqqqqqqqq

M3(4, 1)

such that ˜M∞(4, 1) is the smooth blow-up of M∞(4, 1) along Ω with the exceptional

divisor Ω̃ and the morphism p : ˜M∞(4, 1) → M0+
(4, 1) is a smooth blow-down one

contracting Ω̃ along the other direction.

As we saw above, the flipping locus Ω is a P3-bundle over M(1, 1)×M0+
(3, 0). We

first describe the normal space of Ω.

Lemma 3.4. Let Λ1 := (1,OC) and Λ2 := (0,OL). Then the normal bundle of Ω in
M∞(4, 1) restricted to the fiber P3 = P(Ext1(Λ1,Λ2)) over a point [Λ1 ⊕Λ2] ∈ M3(4, 1)
is given by

NΩ/M∞(4,1)|P3 ' Ext1(Λ2,Λ1)⊗OP3(−1).

Proof. A pair (1, F ) ∈ Ω fits into a non split extension

0 → Λ2 → (1, F ) → Λ1 → 0. (3.2)

By Proposition 2.1, we know that the first order deformation space of the pair (1, F )
in (3.2) is Ext1((1, F ), (1, F )), which fits into the exact diagram:

Ext1(Λ1,Λ2)

²²

Ext1(Λ1,Λ1)

²²
0 // Ext1((1, F ),Λ2) //

²²

Ext1((1, F ), (1, F ))
φ1 // Ext1((1, F ),Λ1)

φ2

²²
Ext1(Λ2,Λ2) Ext1(Λ2,Λ1).

(3.3)

In (3.3), the 0 term comes from

Ext0((1, F ),Λ2) = 0 and Ext0((1, F ), (1, F )) = Ext0((1, F ),Λ1) = C. (3.4)

Since (1, F ), Λ1, and Λ2 are stable, the first two are obvious. To prove the last one,
consider the long exact sequence
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0 → Ext0(Λ1,Λ1) = C→ Ext0((1, F ),Λ1) → Ext0(Λ2,Λ1) → · · · ,

which is given by taking Hom(−,Λ1) to (3.2). Here the term Ext0(Λ2,Λ1) = 0 from the
slop condition applied to the stable pairs Λi.

Recall that Ω is a P3-bundle over M(1, 1) ×M0+
(3, 0). So the tangent space of Ω

at (1, F ) is isomorphic to the direct sum of the three extensions:

Ext1(Λ1,Λ2)/C ' C3, Ext1(Λ2,Λ2) ' C2, and Ext1(Λ1,Λ1) ' C9, (3.5)

where each extension is the first order deformation space of P3, M(1, 1), and M0+
(3, 0)

respectively. Thus the kernel of the composite map φ = φ2 ◦ φ1 contains the tangent
space T(1,F )Ω. To prove the lemma, it is enough to check that the obstruction spaces
vanish. Once this holds, since this consideration is canonical, this holds for every point
in P3. Thus if we relativize the above diagram (3.3) over the projective bundle Ω one
can easily see that the restricted normal bundle of Ω on each fiber P3 is isomorphic to
Ext1(Λ2 ⊗OP3(1),Λ1) ∼= Ext1(Λ2,Λ1)⊗OP3(−1). ([30])

One can check that

Ext2(Λi,Λj) = 0 (3.6)

for all i, j = 1, 2. If i = j, this directly comes from Remark 2.4 and Serre duality. If
i 6= j, by using Proposition 2.2, we know that it is enough to check

Ext2(OL,OC) = Ext2(OC ,OL) = 0.

But this clearly holds by Serre duality again. ¤

We remark that, by Lemma 3.4, the exceptional divisor Ω̃ of the blow-up morphism

q : ˜M∞(4, 1) → M∞(4, 1)

along Ω is a P3×P2-bundle over M(1, 1)×M0+
(3, 0) and the normal bundle Ω̃ restricted

to the fiber P3 × P2 is

NeΩ/ ˜M∞(4,1)

∣∣
P3×P2' O(−1,−1). (3.7)

Proof of Theorem 3.3. Let the universal families F ′ and F ′′ be as before. Let
F be a universal pair on M∞(4, 1) × P2 [11, Theorem 4.3]. Then the restricted family
F|Ω×P2 fits into the short exact sequence

0 → F ′ → F|Ω×P2 → F ′′ → 0.

Let F ′′1 := (q|eΩ × 1P2)∗F ′′. For each z ∈ Ω̃ such that q(z) = [(1, F )] in (3.2), we have
F ′′1 |{z}×P2 = (1,OC) for a cubic curve C. Hence the pair F ′′1 is a family of destabilizing
quotients of the pull-back of the universal family F .
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Let

F̃ := elmeΩ((q × 1P2)∗F ,F ′′1 )

be the elementary modification of the pull-back of F along Ω̃.
We claim that F̃ induces a birational morphism to M0+

(4, 1). The effect of elemen-
tary modification of pairs is the interchange of the sub/quotient of pairs [11, Lemma
4.24]. In our case, this can be proved by analyzing the deformation space of pairs as
follows (cf. [5]). Choosing a vector v in the tangent space

Tq(z)M
∞(4, 1) = HomC(SpecC[ε]/(ε2),M∞(4, 1))

is the same as having a family F|fP2 restricted on P̃2 := SpecC[ε]/(ε2)× P2 such that the
central fiber is F|{0}×P2 = (1, F ) in (3.2). If v /∈ Tq(z)Ω, then the modified pair F̃ |fP2 is
given by the pulling-back

0 // ε · F|fP2 // F̃ |fP2

²²Â
Â
Â

// (0,OL)

²²

// 0

0 // ε · F|fP2 // F|fP2 // (1, F ) // 0,

where the right vertical arrow comes from (3.2). Moreover, the central fiber

F̃ |fP2/ε · F̃ |fP2

is given by the push-out diagram.

0 // ε · (1,OC) // F̃ |fP2/ε · F̃ |fP2 // (0,OL) // 0

0 // ε · F|fP2 //

OO

F̃ |fP2 //

OOÂ
Â
Â

(0,OL) // 0,

where the left vertical arrow comes from (3.2). These operations are explained as the
following C-linear map

KS : Tq(z)M
∞(4, 1) ' Ext1((1, F ), (1, F ))

→ Ext1((0,OL), (1, F )) → Ext1((0,OL), (1,OC)),

which associates v ∈ Tq(z)M
∞(4, 1) to F̃ |{z}×P2 for v 6= 0 of z ∈ Ω̃. Note that the first

isomorphism is the Kodaira–Spencer map and the others are from (3.2).
On the other hand, by the proof of Lemma 3.4, the kernel of the map KS is iso-

morphic to the tangent space Tq(z)Ω at q(z). Thus the modified sheaf along the normal
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direction of Ω is exactly a non split extension class in Ext1((0,OL), (1,OC)), which turns
out to be a 0+-stable pair by direct calculation. Hence there is a birational morphism

p : ˜M∞(4, 1) → M0+
(4, 1) (3.8)

associated to F̃ by the universal property of the moduli space M0+
(4, 1).

Now, we show that the morphism p in (3.8) is a smooth blow-down contracting the
P3-direction of the Ω̃. Clearly, the image of Ω̃ along the map p is exactly the flipping
locus in M0+

(4, 1) and p contracts the fibers P3. So, to apply Fujiki–Nakano criterion
[9], it is enough to check that

(1) the restricted normal bundle of Ω̃ to a fiber P3 is O(−1) and
(2) the space M0+

(4, 1) is smooth.

Part (1) directly comes from (3.7). For part (2), let (1, G) be a 0+-stable pair in the
flipping locus. Then the pair (1, G) fits into an exact sequence

0 → Λ1 = (1,OC) → (1, G) → Λ2 = (0,OL) → 0.

By (3.6), the obstruction Ext2((1, G), (1, G)) = 0 as required. ¤

3.2. Wall-crossing for d = 5.
The walls and the possible type of strictly semistable pairs are given as the following

table.

(d, χ) = (5, 1)

α Λ1 := (1, P (F1))⊕ Λ2 := (0, P (F2))

14 (1, (4,−2))⊕ (0, (1, 3))

9 (1, (4,−1))⊕ (0, (1, 2))

4 (1, (4, 0))⊕ (0, (1, 1))

3/2 (1, (3, 0))⊕ (0, (2, 1))

Here, the Hilbert polynomial P (Fi) = χ(Fi(m)) = dm + χ is denoted by (d, χ).

Remark 3.5. As in Remark 3.2, each wall-crossing locus can be described as a
configuration of points on reducible quintic curves. That is, regarding M∞(5, 1) as the
relative Hilbert scheme B(5, 6) of six points on quintic curves, the wall-crossing loci are
(the strict transformations of) the locus of pairs of six points, five points, four points on
a line with a quartic curve at the wall α = 14, 9, 4, respectively, and lastly six points on
a conic curve with a cubic curve at α = 3/2. These are very similar to the wall-crossing
in [1, Section 10.5].

Theorem 3.6. Let Mα(5, 1) be the moduli space of α-semistable pairs on P2 with
Hilbert polynomial 5m + 1. Then, we have the wall-crossing diagrams



696 J. Choi and K. Chung

˜M∞(5, 1)

&&MMMMMMMMMM

xxqqqqqqqqqq
˜M c0(5, 1)

&&LLLLLLLLLL

xxrrrrrrrrrr

M∞(5, 1)

&&MMMMMMMMMMM
oo //__________ M c0(5, 1)

&&MMMMMMMMMM

xxqqqqqqqqqq
oo //__________ M c1(5, 1)

xxqqqqqqqqqq

M14(5, 1) M9(5, 1),

˜M c1(5, 1)

%%LLLLLLLLLL

yyrrrrrrrrrr
˜M c2(5, 1)

&&MMMMMMMMMM

xxrrrrrrrrrrr

M c1(5, 1)

&&MMMMMMMMMMM
oo //__________ M c2(5, 1)

&&MMMMMMMMMMM

xxqqqqqqqqqqq
oo //___________ M0+

(5, 1)

xxqqqqqqqqqqq

M4(5, 1) M3/2(5, 1)

where the rational numbers α’s are ∞ > 14, c0 ∈ (9, 14), c1 ∈ (4, 9), c2 ∈ (3/2, 4) and
0+ ∈ (0, 3/2). All of upper arrows are smooth blow-up morphisms.

Proof. Let us denote the first (resp. second) stable component in table by Λ1

(resp. Λ2). Note that in any cases, Λ1 and Λ2 are α-stable for any α, because there is
no wall for those types.

The proof is parallel to that of Theorem 3.3. It suffices to check the equations (3.4),
(3.5), and (3.6) at each wall.

The same argument as before checks (3.4).
For the vanishing of obstructions (equation (3.6)), recall that Ext2(Λi,Λi) = 0 for

all i by Lemma 2.3. To check

Ext2(Λi,Λj) = 0 for i 6= j, (3.9)

it suffices to check

Ext2(Fi, Fj) = 0 for i 6= j

by Proposition 2.2. If i < j or α < 14, then this holds obviously by Serre duality and
stability. The remaining case is at α = 14. That is, we prove Ext2(OL(2),OC) = 0 for a
quartic curve C and line L. By Serre duality again,

Ext2(OL(2),OC) ' Ext0(OC ,OL(−1))∗.

But the latter group is zero since

Ext0(OC ,OL(−1)) ⊂ Ext0(O,OL(−1)) = H0(OL(−1)) = 0.
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Next we show that the first order deformation spaces have the expected dimensions
(equation (3.5)). That is,

Ext1((1, F4m−2), (0,OL(2))) = C7, Ext1((1, F4m−1), (0,OL(1))) = C6,

Ext1((1, F4m), (0,OL)) = C5, Ext1((1, F3m), (0,OQ)) = C7,
(3.10)

where L (resp. Q) is a line (resp. conic) and Fp(m) is a semistable sheaf with Hilbert
polynomial p(m).

Let (1, F ) be one of (1, F4m−2), (1, F4m−1), or (1, F4m). Then, (1, F ) fits into an
exact sequence

0 → (1,OC) → (1, F ) → (0, Q) → 0,

for a quartic curve C and a zero dimensional sheaf Q. By applying Hom(−,OL(k)) for
appropriate k (k = 0, 1, or 2), we get an exact sequence

0 → Ext1((0, Q), (0,OL(k))) → Ext1((1, F ), (0,OL(k))) → Ext1((1,OC), (0,OL(k)))

→ Ext2((0, Q), (0,OL(k))) → 0,

because Hom((1,OC), (0,OL(k))) is clearly zero and Ext1((1, F ), (0,OL(k))) is also zero
by (3.9). By the Riemann–Roch theorem, as Q is a zero dimensional sheaf, we have

dimExt1((0, Q), (0,OL(k)))− dimExt2((0, Q), (0,OL(k))) = 0.

Hence it is enough to compute dimExt1((1,OC), (0,OL(k))).
From the short exact sequence

0 → (0,O(−4)) → (1,O) → (1,OC) → 0,

we have

0 → Ext0((0,O(−4)), (0,OL(k))) ∼→ Ext1((1, F4m−2), (0,OL(k))) → 0.

Recall that k can be 0, 1, or 2. The first zero term is Hom((1,O), (0,OL(k))) = 0 and
the last term is from Ext1((1,O), (0,OL(k))) = 0, which can be seen by Proposition 2.2
because Ext0(O,OL(k)) = Hom(C · (1),H0(OL(k))) and H1(OL(k)) = 0. Thus

Ext1((1, F ), (0,OL(k))) = H0(OL(k + 4)).

This proves the first three of (3.10).
For the last one, since F3m = OC for some cubic curve C we have an exact sequence

0 → (0,O(−3)) → (1,O) → (1, F3m) → 0,
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we have

0 → Ext0((0,O(−3)), (0,OQ)) ∼→ Ext1((1, F3m), (0,OQ)) → Ext1((1,O), (0,OQ)) = 0.

The first zero term is clear as before. The last term comes from Ext0(O,OQ) = Hom(C ·
(1),H0(OQ)) and H1(OQ) = 0. Thus

Ext1((1, F3m), (0,OQ)) = H0(OQ(3)) = C7.

Lastly we should check that the normal spaces of the flipping loci in each wall-
crossing have the expected dimensions. That is, under the same notation as above, we
should check

Ext1(0,OL(2), (1, F4m−2)) = C4, Ext1(0,OL(1), (1, F4m−1)) = C4,

Ext1((0,OL), (1, F4m)) = C4, Ext1((0,OQ), (1, F3m)) = C6.
(3.11)

But these are easily checked by using a diagram of the form (3.3) since the extension
groups of the second order are all vanished. ¤

We state a similar theorem for Mα(5,−1) for later use. We omit the proof since it
is parallel with that of Theorem 3.6.

Theorem 3.7. There exist wall-crossing diagrams among Mα(5,−1)

˜M∞(5,−1)

&&NNNNNNNNNNN

xxppppppppppp
˜M c0(5,−1)

&&NNNNNNNNNNN

xxppppppppppp

M∞(5,−1)

''OOOOOOOOOOOO
oo //___________ M c0(5,−1)

''OOOOOOOOOOO

wwooooooooooo
oo //___________ M0+

(5,−1)

wwooooooooooo

M6(5,−1) M1(5,−1)

such that the above arrows are all smooth blow-up morphisms and the walls occur at
α = 6 and 1. Moreover, the blow-up centers are P4-bundle over M0+

(4,−2) ×M(1, 1)
and P3-bundle over M0+

(4,−1)×M(1, 1), respectively.

Similarly as in Remark 3.5, the wall-crossing loci in Theorem 3.7 can be explained
in a geometric way. Again, each wall-crossing is very similar to that of [1, Section 10.3].

4. Forgetful morphisms and the Brill–Noether Loci.

Recall Proposition 1.2. If α = 0+, there is a forgetful morphism

ξ : M0+
(d, χ) −→ M(d, χ)
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which forgets the section of the 0+-stable pair. When χ = 1, this map is a birational
morphism and its exceptional locus is the Brill–Noether locus of the space M(d, 1). Let

M(d, χ)k := {F |h0(F ) = k}

be the subscheme of M(d, χ), so called Brill–Noether stratum and M0+
(d, χ)k :=

ξ−1(M(d, χ)k) be the inverse image of M(d, χ)k along ξ. We always give the reduced
induced scheme structure. Then, it is immediate that {M0+

(d, χ)k} is a locally closed
stratification of M0+

(d, χ).

Definition 4.1. Let F be a coherent sheaf of codimension c on a smooth projective
variety X. Then the dual sheaf is defined as FD = ExtcX(F, ωX).

In [20, Theorem 13], it is shown that the association F 7→ FD gives an isomorphism
between the moduli spaces M(d, χ) and M(d,−χ). Moreover, we have the following.

Proposition 4.2. (1) When d and χ are coprime, the restriction map
M0+

(d, χ)k → M(d, χ)k is a Zariski locally trivial fibration with fiber Pk−1.
(2) There is a natural isomorphism M(d, χ)k ' M(d,−χ)k−χ which sends F to FD.

Proof. We sketch the proof for the convenience of reader. For the detail, see
Section 4.2 in [2]. Let F be a universal family of stable sheaves on M(d, χ) × P2 and
p be the projection to the first factor. Since the dimension of the zero cohomology
group of stable sheaves in M(d, χ)k is constantly k, the direct image sheaf p∗F is locally
free sheaf of rank k on M(d, χ)k ([10, Corollary 12.9, III]). Thus the projective bundle
P(p∗F∗|M(d,χ)k

) with fiber Pk is isomorphic to M0+
(d, χ)k. This prove (1).

For (2), by using the local-to-global spectral sequence, one can check that if F is a
pure sheaf with Hilbert polynomial dm + χ, then h0(FD) = h0(F )−χ [20, Corollary 6],
[2, Proposition 4.2.8]. ¤

We will see later in Lemma 5.1 that by using the description of the stratification
in the above proposition, one can obtain the Betti numbers of M(d, 1) from those of
M0+

(d, 1) and M0+
(d,−1).

When d = 4 or 5, through the wall-crossing analysis in previous section and the
results of [2], [21], the Brill–Noether strata have the following geometric descriptions.

Proposition 4.3. (1) For d = 4 or 5, M(d, 1)k = ∅ for k ≥ d− 1.
(2) M(4, 1)2 ' M0+

(4,−1).
(3) The Brill–Noether locus of M(5, 1) consists of two components

M(5, 1)2 ∪M(5, 1)3

such that M(5, 1)3 ' B(5, 1) and M(5, 1)2 ' ξ(M0+
(5,−1)). Moreover, M(5, 1)3

⊂ M(5, 1)2.

Proof. Part (1): This is [7, Section 3] for d = 4 and [21, Section 3.1] for d = 5.
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A simpler proof for d = 4 can be found in [2, Lemma 4.6.3].
Part (2): By Proposition 4.2,

M(4, 1)2 ' M(4,−1)1 ' M0+
(4,−1)1.

The last space M0+
(4,−1)1 = M0+

(4,−1) because of Proposition 4.2.(2) and part (1).
Part (3): By [21, Proposition 3.1.5 and Proposition 3.3.3], the general points in

M(5, 1)2 (resp. M(5, 1)3) consist of stable sheaves of the form OC(2)(−p1−p2−p3−p4)
(resp. OC(1)(p)) for four points pi (resp. a point p) in general position on smooth quintic
curves. Then, obviously, M(5, 1)3 ' B(5, 1) ' M0+

(5,−4). Also, as we have seen in
Theorem 3.7, M0+

(5,−1) is obtained from the moduli space B(5, 4) by two times wall-
crossings where the pairs in the flipping locus are supported on reducible quintic curves.
Hence the general sheaves are of the form

OC(p1 + p2 + p3 + p4) (4.1)

under the above condition. Through the composition of the forgetful and the dual map

ξ : M0+
(5,−1) → M(5,−1) = M(5, 1),

these sheaves in (4.1) exactly correspond to the general points in M(5, 1)2 [21,
Proposition 3.3.3]. Since M(5, 1)2 and ξ(M0+

(5,−1)) are both irreducible, we get
ξ(M0+

(5,−1)) = M(5, 1)2. The last inclusion is easily proved by deforming four general
points pi into colinear ones [21, Proposition 3.3.4]. ¤

Proposition 4.4. The forgetful morphism ξ : M0+
(4, 1) −→ M(4, 1) is a smooth

blow-up along the moduli space B(4, 1) = M(4, 1)2.

Proof. Let F be a universal family of stable sheaves on B(4, 1)×P2 and p be the
projection into the first factor B(4, 1). By (2) in Proposition 4.3, there is a morphism

B(4, 1) ' M(4, 1)2 ⊂ M(4, 1),

where the stable pair (1, F ) corresponds to its dual FD. The tangent map of this mor-
phism is presented by

0 → Ext1((1, F ), (1, F )) = T(1,F )B(4, 1) → Ext1(F, F )

' Ext1(FD, FD) = TF M(4, 1) → H1(F ) → 0,

where the last term is zero by (2) of Remark 2.4. Therefore

NB(4,1)/M(4,1),F ' H1(F ) ' H0(FD)∗,

where the last isomorphism is given by [2, Proposition 4.2.8]. Since this isomorphism is
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canonical, we can say that the normal bundle of B(4, 1) in M(4, 1) is isomorphic with
the dual of the direct image sheaf of the projection p

NB(4,1)/M(4,1) ' (p∗FD)∗.

Since H1(F ) is constant fiberwisely, the direct image sheaf p∗FD is a locally free sheaf
of rank two on B(4, 1). So the projective bundle

P := P((p∗FD)∗)

is a P1-bundle over B(4, 1). As we have seen in Proposition 4.2, there is a closed embed-
ding

i : P ↪→ M0+
(4, 1)

such that there is a commutative diagram

P
� � //

²²

M0+
(4, 1)

ξ

²²
B(4, 1) ' M(4, 1)2

� � // M(4, 1).

Obviously, the image of the P by i is the exceptional divisor of ξ and thus the morphism
ξ is a smooth blow-up morphism. ¤

Remark 4.5. By using part (3) in Proposition 4.3, one can easily check that the
forgetful map

ξ : M0+
(5, 1) → M(5, 1)

is also a divisiorial contraction but not a smooth one. We remark that the contracted
divisor M0+

(5, 1)k≥2 is an irreducible variety, which can be geometrically proved by
considering the wall-crossings of the moduli spaces Mα(5,−1) with Hilbert polynomial
5m− 1 (Theorem 3.7).

5. Betti numbers.

In this section, we present two corollaries of Theorem 3.3 and Theorem 3.6. By
using the wall-crossing formula, one can easily obtain all Betti numbers of Simpson
spaces M(4, 1) and M(5, 1). For a variety X, let us define the Poincaré polynomial of
X by

P (X) =
∑

i≥0

dimQHi(X,Q)qi/2.
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Since odd cohomology groups of moduli spaces of our interests always vanish, P (X) is a
polynomial.

Lemma 5.1. For any degree d ≥ 1, we have

P (M(d, 1)) = P (M0+
(d, 1))− qP (M0+

(d,−1)).

Proof. This is the Poincaré polynomial version of [2, Proposition 4.2.9]. By
Proposition 4.2, we have

P (M0+
(d, 1))− qP (M0+

(d,−1))

=
∑

k≥1

P (Pk−1) · P (M(d, 1)k)− q
∑

k≥1

P (Pk−1) · P (M(d,−1)k)

=
∑

k≥1

P (Pk−1) · P (M(d, 1)k)− q
∑

k≥1

P (Pk−1) · P (M(d, 1)k+1)

=
∑

k≥1

(P (Pk−1)− qP (Pk−2)) · P (M(d, 1)k)

=
∑

k≥1

P (M(d, 1)k)

= P (M(d, 1)),

where P (P−1) := 0. ¤

Corollary 5.2. The Poincaré polynomial of the Simpson space M(4, 1) is given
by

1 + 2q + 6q2 + 10q3 + 14q4 + 15q5 + 16q6 + 16q7 + 16q8

+ 16q9 + 16q10 + 16q11 + 15q12 + 14q13 + 10q14 + 6q15 + 2q16 + q17.

Proof. We know M∞(4, 1) ' B(4, 3) is a P11-bundle over Hilb3(P2). In [8], the
Poincaré polynomial of Hilb3(P2) is given by

P (Hilb3(P2)) = 1 + 2q + 5q2 + 6q3 + 5q4 + 2q5 + q6.

Now, by the wall-crossing of Theorem 3.3, we obtain the Poincaré polynomial of
M0+

(4, 1).

P (M0+
(4, 1)) = P (P11) · P (Hilb3(P2))− (P (P3)− P (P2)) · P (P9 × P2)

=
1− q12

1− q
· (1 + 2q + 5q2 + 6q3 + 5q4 + 2q5 + q6)− q3 · 1− q10

1− q
· 1− q3

1− q
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On the other hand, M0+
(4,−1) ' M∞(4,−1) ' B(4, 1) is a P13-bundle over P2.

P (M0+
(4,−1)) = P (P13) · P (P2) =

1− q14

1− q
· 1− q3

1− q

Therefore, we obtain the Poincaré polynomial by Lemma 5.1. ¤

Corollary 5.3. The Poincaré polynomial of the Simpson space M(5, 1) is given
by

1 + 2q + 6q2 + 13q3 + 26q4 + 45q5 + 68q6 + 87q7 + 100q8 + 107q9

+ 111q10 + 112q11 + 113q12 + 113q13 + 113q14 + 112q15 + 111q16 + 107q17

+ 100q18 + 87q19 + 68q20 + 45q21 + 26q22 + 13q23 + 6q24 + 2q25 + q26.

Proof. From Theorem 3.6, we have

P (M0+
(5, 1)) = P (B(5, 6)) + (P (P3)− P (P6)) · P (B(4, 0)) · P (P2)

+ (P (P3)− P (P5)) · P (B(4, 1)) · P (P2)

+ (P (P3)− P (P4)) · P (B(4, 2)) · P (P2)

+ (P (P5)− P (P6)) · P (B(3, 0)) · P (P5).

By Theorem 3.7, we have

P (M0+
(5,−1)) = P (B(5, 4)) + (P (P3)− P (P4)) · P (B(4, 0)) · P (P2)

+ (P (P3)− P (P3)) · P (B(4, 1)) · P (P2).

Thus we obtain the result by Lemma 5.1. ¤

Remark 5.4. (1) The results in Corollaries 5.2 and 5.3 coincide with predictions
in physics [12] by B-model calculation. Also, these are consistent with the results in
[26], [2], [31], [4], [22].

(2) It has been conjectured that the topological Euler characteristics of M(d, 1) are equal
to the genus zero Gopakumar–Vafa invariants up to sign [14]. By specializing the
Poincaré polynomials to q = 1, we can see that the topological Euler characteristics
of moduli spaces M(4, 1) and M(5, 1) are 192 and 1675 respectively, which matches
with the prediction in physics [15]. Moreover, our approach provides another expla-
nation to the correction terms in the computation of Gopakumar–Vafa invariants in
[15]. See [3] for more details.
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6. Euler characteristic of the space M0+

(4,3).

In this section, we calculate the Euler characteristic χ(M0+
(4, 3)) of the moduli

space M0+
(4, 3) via the wall-crossing technique we have been using. We will encounter

a new type of wall where strictly semistable pairs can have a Jordan–Hölder filtration of
length 3.

The possible types of strictly semistable pairs are as follows.

(d, χ) = (4, 3)

α (1, P (F ))⊕ (0, P (F ′))

9 (1, (3, 0))⊕ (0, (1, 3))

5 (1, (3, 1))⊕ (0, (1, 2))

1 (1, (3, 2))⊕ (0, (1, 1))

1 (1, (2, 1))⊕ (0, (2, 2))

1 (1, (2, 1))⊕ (0, (1, 1))⊕ (0, (1, 1))

At the walls α = 9 and α = 5, semistable pairs can only have a length two Jordan–
Hölder filtration. Similarly as before, it can be shown that there are flip diagrams at
these walls. We may compute how the Euler characteristic changes as we cross these
wall:

χ(M∞(4, 3)) = χ(B(4, 5)) = 1080.

χ(M5<α<9(4, 3)) = χ(M∞(4, 3)) + (χ(P2)− χ(P5)) · χ(B(3, 0)) · χ(P2)

= 1080− 3 · 10 · 3 = 990.

χ(M1<α<5(4, 3)) = χ(M5<α<9(4, 3)) + (χ(P2)− χ(P4)) · χ(B(3, 1)) · χ(P2)

= 990− 2 · 27 · 3 = 828.

At the wall α = 1, strictly semistable pairs can split into either (1, (3, 2))⊕ (0, (1, 1))
or (1, (2, 1)) ⊕ (0, (2, 2)). Moreover it is possible that the component (1, (3, 2)) in the
first decomposition and (0, (2, 2)) in the second decomposition are strictly semistable, so
they may split further into stable pieces, which gives the last case (1, (2, 1))⊕ (0, (1, 1))⊕
(0, (1, 1)).

The following lemmas are elementary.

Lemma 6.1. Suppose α > 1. A pair (1, F ) given by an extension

0 → Λ′ := (0,OL) → (1, F ) → Λ := (1, F3m+2) → 0 (6.1)

is α-stable if and only if the short exact sequence is nonsplit and Λ is α-stable.

The analogous statement for α < 1 also holds.
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Lemma 6.2. Suppose α < 1. A pair (1, F ) given by an extension

0 → Λ := (1, F3m+2) → (1, F ) → Λ′ := (0,OL) → 0 (6.2)

is α-stable if and only if the short exact sequence is nonsplit and Λ is α-stable.

Meanwhile, for the other type of splitting (1, (2, 1)) ⊕ (0, (2, 2)), we only have one
direction.

Lemma 6.3. Suppose α > 1 and a pair (1, F ) is given by an extension

0 → Λ′2 := (0, F2m+2) → (1, F ) → Λ2 := (1, F2m+1) → 0. (6.3)

If Λ2 and Λ′2 are α-stable and (6.3) is nonsplit, then (1, F ) is α-stable.

Lemma 6.4. Suppose α < 1 and a pair (1, F ) is given by an extension

0 → Λ2 := (1, F2m+1) → (1, F ) → Λ′2 := (0, F2m+2) → 0. (6.4)

If Λ2 and Λ′2 are α-stable and (6.4) is nonsplit, then (1, F ) is α-stable.

On crossing the wall, pairs in (6.1) are replaced by pairs in (6.2) and pairs in (6.3)
are by pairs in (6.4).

For α > 1 (resp. α < 1), we denote by A+ (resp. A−) the space of α-stable pairs
which fit into (6.1) (resp. (6.2)), and by B+ (resp. B−) the space of α-stable pairs which
fit into (6.3) (resp. (6.4)). By the following lemma, a special consideration is needed for
pairs in the intersection A+∩B+ or A−∩B− such that F2m+2 in (6.3) or (6.4) is a direct
sum OL1 ⊕OL2 . We denote the space of such pairs by C+ or C− respectively. In what
follows, the wall-crossing on A means the difference in Euler characteristic χ(A−)−χ(A+),
etc.

Lemma 6.5. The α-stable pairs (1, F ) in A+−C+, A−−C−, B+−C+, or B−−C−

are in one-to-one correspondence with the isomorphism classes of the corresponding exact
sequences.

Proof. We shall sketch a proof for α-stable pair in A+ − C+. Other cases are
similar. We need to show that if an α-stable pair (1, F ) in A+ − C+ fits into two exact
sequences

0 → (0,OL) → (1, F ) → (1, F3m+2) → 0

and

0 → (0,OL′) → (1, F ) → (1, F ′3m+2) → 0,

then they are isomorphic.
Since OL and OL′ are subsheaves of F , either OL ⊕ OL′ is a subsheaf of F or



706 J. Choi and K. Chung

L = L′, where the former case is when (1, F ) is in C+. Hence, L = L′ and the above
exact sequences are clearly isomorphic. ¤

A careful consideration is needed for the case F2m+2 is a direct sum OL1 ⊕ OL2

which has a bigger automorphism group.

(1) When L1 and L2 are distinct. In this case, the automorphism group of OL1 ⊕ OL2

is C∗ × C∗. When α > 1, α-stable pairs as in (6.3) form the space

Ext1((1, F2m+1), (0,OL1 ⊕OL2))
st

C∗ × C∗ . (6.5)

The superscript “st” means taking extensions corresponding to stable pairs. It is
easy to see that stable extensions are those which do not factor through extensions
Ext1((1, F2m+1), (0,OLi

)) for i = 1 or 2. Therefore, (6.5) becomes

P(Ext1((1, F2m+1), (0,OL1)))× P(Ext1((1, F2m+1), (0,OL2))) ' P2 × P2.

Similarly, when α < 1, we can see that α-stable pairs as in (6.4) form the space

P((0,OL1),Ext1((1, F2m+1)))× P((0,OL2),Ext1((1, F2m+1))) ' P1 × P1. (6.6)

(2) When L1 = L2 = L. The automorphism group of OL ⊕ OL is GL(2,C). When
α > 1, α-stable pairs as in (6.3) form the space

Ext1((1, F2m+1), (0,OL ⊕OL))st

GL(2,C)
. (6.7)

We write Ext1((1, F2m+1), (0,OL ⊕ OL)) as Hom(C2,Ext1((1, F2m+1), (0,OL))).
Then stable pairs correspond to rank 2 maps in the latter space. Hence, (6.7) be-
comes the Grassmannian

Gr(2,Ext1((1, F2m+1), (0,OL))) ' P2.

Similarly, when α < 1, we can see that α-stable pairs as in (6.4) form the space

Gr(2,Ext1((0,OL), (1, F2m+1))) = pt.

We compute the wall-crossing by the decomposition A∪B = (B−A)t (A−C)tC.
It is clear that each set is locally closed.

The wall-crossing on B −A is given by

(χ(P3)− χ(P5)) · χ(B(2, 0)) · χ(M s(2, 2)),

where M s(2, 2) denotes the space of stable sheaves, that is, we exclude strictly semistable
sheaves where a further splitting can occur. It is easy to see that M s(2, 2) ' P5 − V ,
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where P5 is the space of conics and V is the space of degenerate conics. Since the Euler
characteristic χ(M s(2, 2)) is zero, the wall-crossing on B −A is zero.

Let D ⊂ V be the diagonal. As discussed above, the wall-crossing on C is given by

(χ(P1×P1)−χ(P2×P2))·χ(B(2, 0))·χ(V −D)+(χ(pt)−χ(P2))·χ(B(2, 0))·χ(D). (6.8)

It remains to compute the wall-crossing on A−C. Suppose α > 1 and let (1, F ) be
an α-stable pair in C. Then (1, F ) is given by an exact sequence

0 → (0,OL) → (1, F ) → (1, F3m+2) → 0.

Since (1, F ) is also in B, (1, F3m+2) in the above sequence fits into an exact sequence

0 → (0,OL′) → (1, F3m+2) → (1, F2m+1) → 0. (6.9)

From (6.9), we have

Ext1((1, F3m+2), (0,OL)) ε→ Ext1((0,OL′), (0,OL)) → 0.

One can see that (1, F ) is in C if and only if its image by ε in Ext1((0,OL′), (0,OL)) is
zero. We have

Ext1((1, F3m+2), (0,OL)) ' C4,

and

Ext1((0,OL′), (0,OL)) '
{
C if L 6= L′,

C2 if L = L′.

So, the Euler characteristic of the set A+ − C+ is

χ(P3) · χ(M(1, 1)) · χ(B(3, 2))

− χ(P2) · χ(M(1, 1)) · (χ(P2) · (χ(B(2, 0))χ(M(1, 1)− pt)))

− χ(P1) · χ(M(1, 1)) · (χ(P2) · (χ(B(2, 0))χ(pt))).

The computation for α < 1 is similar: the only difference is

Ext1((0,OL), (1, F3m+2)) ' C3.

Then, the Euler characteristic of the set A− − C− is

χ(P2) · χ(M(1, 1)) · χ(M0+
(3, 2))

− χ(P1) · χ(M(1, 1)) · (χ(P1) · (χ(B(2, 0))χ(M(1, 1)− pt)))

− χ(pt) · χ(M(1, 1)) · (χ(P1) · (χ(B(2, 0))χ(pt))).
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In conclusion, we have

χ(M0+
(4, 3)) = χ(M1<α<5(4, 3)) + wall-crossing = 828− 252 = 576.

This coincides with our previous calculation. For all F ∈ M(4, 3), we have
H0(F ) = 3 and H1(F ) = 0 [2, Lemma 4.2.4]. Hence by Proposition 4.2, we conclude that
M0+

(4, 3) is a P2-bundle over M(4, 3). We also have M(4, 3) ' M(4, 1), whose Euler
characteristic is 192 by Corollary 5.2. Therefore, the Euler characteristic of M0+

(4, 3)
is 3× 192 = 576.

Remark 6.6. The Poincaré polynomial of M0+
(4, 3) cannot be computed through

our stratifications since the wall-crossing terms from (6.5) and (6.6) are not Zariski locally
trivial fiberations over V −D, nevertheless the computation for Euler characteristic still
holds because V −D is path-connected.
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(Durham, 1993), London Math. Soc. Lecture Note Ser., 208, Cambridge Univ. Press, Cambridge,

http://dx.doi.org/10.1016/j.aim.2012.11.018
http://dx.doi.org/10.1007/s00220-014-1978-0
http://dx.doi.org/10.1007/s00220-014-1978-0
http://dx.doi.org/10.1016/j.geomphys.2014.05.005
http://dx.doi.org/10.2969/jmsj/06441211
http://dx.doi.org/10.1007/BF02698859
http://dx.doi.org/10.1007/BF02698859
http://dx.doi.org/10.1007/s10711-010-9544-1
http://dx.doi.org/10.1007/BFb0082910
http://dx.doi.org/10.2977/prims/1195193401
http://dx.doi.org/10.2977/prims/1195193401
http://dx.doi.org/10.1142/S0129167X98000257
http://dx.doi.org/10.1007/s00023-012-0192-x
http://dx.doi.org/10.4310/ATMP.1999.v3.n5.a6
http://dx.doi.org/10.4310/ATMP.1999.v3.n5.a6
http://dx.doi.org/10.1016/0021-8693(83)90139-4


Wall-crossings of stable pairs 709

1995, 179–239.
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