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Abstract. There are exactly nine reduced discriminants D of indefinite
quaternion algebras over Q for which the Shimura curve XD attached to D
has genus 3. We present equations for these nine curves and, moreover, for
each D we determine a subgroup c(D) of cuspidal divisors of degree zero
of Jac(X0(D))new such that the abelian variety Jac(X0(D))new/c(D) is the
jacobian of the curve XD.

1. Introduction.

Let D be the reduced discriminant of an indefinite quaternion algebra over Q. Let
us denote by XD/Q the Shimura curve attached to D. In [16], K. Ribet established
the existence of an isogeny defined over Q between Jac(X0(D))new and Jac(XD) by
proving that both abelian varieties have the same L-series, but it is not known an explicit
description of such an isogeny. A. P. Ogg studied the problem of determining the kernel
of an isogeny of minimal degree and conjectured that it may be a subgroup of the group
of cuspidal divisors of degree zero of the curve X0(D). Moreover, for some particular
cases that D is the product of two primes, he predicted which subgroup should be this
kernel (cf. [15]).

When the genus g of XD is 1, there are exactly five discriminants D = 14, 15, 21, 33
and 34. In all these cases, two elliptic curves defined overQ of conductor D are isomorphic
over Q if and only if both have the same type of reduction at every prime dividing D .
Therefore, the elliptic curve Jac(XD) can be determined among the isomorphism classes
of elliptic curves over Q of conductor D in Cremona’s tables by using the theory of
Cěrednik–Drinfeld. For the subgroup c(D) of cuspidal divisors of degree zero displayed
in the next table

D 14 15 21 33 34
c(D) 〈3(0)− 3(∞)〉 {0} 〈2(0)− 2(∞)〉 {0} 〈(0)− (∞)〉
|c(D)| 2 1 2 1 3

one has that Jac(X0(D))new/c(D) ' Jac(XD). This result can be obtained by checking
that Jac(X0(D))new/c(D) and Jac(XD) have the same type of reduction at every prime
dividing D or checking that the lattice of Jac(X0(D))new/c(D) corresponds to the elliptic

2010 Mathematics Subject Classification. Primary 11G18, 14G35.

Key Words and Phrases. Shimura curves, genus three hyperelliptic curves.

All authors are supported in part by DGICYT Grant MTM2012-34611. The second author is also

supported by the German Research Council (DFG), via CRC 701.

http://dx.doi.org/10.2969/jmsj/06820609
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curve Jac(XD).
For g = 2, there are exactly three curves XD and a kernel c(D) for these three cases

is presented in Theorem 3.1 of [5]:

D 26 38 58
c(D) 〈3(0)− 3(∞)〉 〈3(0)− 3(∞)〉 〈(0)− (∞)〉
|c(D)| 7 5 5

In this case, once an equation for XD is determined, the proof is based on the fact that
XD is bielliptic and the lattices of Jac(X0(D))new and Jac(XD) can be handled through
their elliptic quotients.

The aim of this paper is double. The first goal is determining equations for all
curves XD of genus three; although these nine curves have a hyperelliptic involution
defined over Q, uniquely seven of them are hyperelliptic over Q. The second goal is
checking the existence of a subgroup of Jac(X0(D))new(Q) formed by cuspidal divisors
of X0(D) to be the kernel of an isogeny between Jac(X0(D))new and Jac(XD) for each
of these values of D.

In [12], it is given a method to compute equations for Atkin–Lehner quotients of
Shimura curves attached to an odd discriminant D which are hyperelliptic over Q and
some equations are computed. This method has a computational limitation since it ex-
ploits the MAGMA instruction IndexFormEquation that only applies for general number
fields of degree at most four. For this reason, we show in Section 3 how to obtain equa-
tions for all Shimura curves of genus three from certain particular equations of their
Atkin–Lehner quotients, where the number fields involved are of degree smaller or equal
than four. In the beginning of Section 4 we determine equations of the Atkin–Lehner
quotients when D is even, which is more laborious than the odd case; next, in Theorem
4.5 we present a list of all genus three equations, together with the projections onto their
Atkin–Lehner quotients presented in Proposition 4.4. Finally, for each of the the nine
curves of genus 3, we present in Theorem 5.1 of Section 5 a subgroup of cuspidal divisors
of degree zero of X0(D) which provides in Jac(X0(D))new(Q) the kernel of a Ribet’s
isogeny.

2. Genus three Shimura curves and their Atkin–Lehner quotients.

We recall that a curve X defined over a field K of genus g > 1 is said to be hyperlliptic
over K if there exists an involution w defined over K such that the quotient curve X/w

has genus zero and K-rational points. If the characteristic of K is greater than 2, then
this definition amounts to saying that X admits an affine equation of the form y2 = P (x)
for some polynomial P (x) ∈ K[x].

Let XD/Q be the Shimura curve and, for a divisor m|D, let us denote by ωm the
corresponding Atkin–Lehner involution of XD.

Proposition 2.1. The curve XD has genus 3 exactly for the following values of
D:
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2 · 31, 2 · 41, 2 · 47, 3 · 13, 3 · 17, 3 · 19, 3 · 23, 5 · 7, 5 · 11.

In all these cases, XD is hyperelliptic over Q and the hyperelliptic involution w is the
Atkin–Lehner involution ωD except for the values D = 57 and 82, for which w is ω19 and
ω41 respectively. Moreover, XD is hyperelliptic over Q if and only if w = ωD.

Proof. Let g be the genus of XD. From the genus formula for XD, we can deduce
that, if the number of primes dividing D is greater than 2, then g > 3 . Moreover, if
g = 3 and D is the product of two primes, we obtain that ϕ(D) ≤ 52, where ϕ is the
Euler function. Checking the genus for these possible values of D, we obtain the first
part of the statement. The other claims can be found in Theorem 7 of [14]. ¤

From now on, D is one of these nine values of the above proposition. By [8], we
know that the group of the automorphisms of the Shimura curve XD is the group of the
Atkin–Lehner involutions {ωm : m|D} and, thus, we have that Aut(XD) = AutQ(XD) '
(Z/2Z)2. We denote by w the hyperelliptic involution of XD and by u the unique Atkin–
Lehner involution such that the quotient curve X(u) := XD/〈u〉 has genus one. It follows
that Aut(XD) = {1, u, w, v}, where v = u · w, and the quotient curves X(w) := XD/〈w〉
and X(v) := XD/〈v〉 have genus 0 and 2 respectively. The Atkin-lehner involutions
ωm = u, ωm = v and ωm = w are displayed in the following table:

D 2 · 31 2 · 41 2 · 47 3 · 13 3 · 17 3 · 19 3 · 23 5 · 7 5 · 11
u ω2 ω82 ω2 ω13 ω3 ω57 ω3 ω7 ω5

v ω31 ω2 ω47 ω3 ω17 ω3 ω23 ω5 ω11

w ω62 ω41 ω94 ω39 ω51 ω19 ω69 ω35 ω55

Given a nontrivial involution ι ∈ Aut(XD), let us denote by πι : XD → X(ι) the
natural projection and Fι denotes the set of fixed points under ι. Hence, Fv = ∅, |Fu| = 4
and |Fw| = 8. For ι 6= v, the number field generated by the coordinates of the projection
πι(P ) of a point P ∈ Fι can be found in [6]. For instance, if U ∈ Fu we have

Table 1.
D Q(U) Q(πv(U)) = Q(πw(U))

2 · 31 Q(
√−1) or Q(

√−2) Q
2 · 41 Q(

√
−3± 4

√−2 ) Q(
√−2)

2 · 47 Q(
√−1) or Q(

√−2) Q
3 · 13 Q(

√−13,
√

13 ) Q(
√−1)

3 · 17 Q(
√−3) Q

3 · 19 Q(
√

3,
√−3 ) Q(

√−3)

3 · 23 Q(
√−3) Q

5 · 7 Q(
√−7) Q

5 · 11 Q(
√−5,

√
5) Q(

√−1)
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where for D = 62, 94, i.e. u = ω2, there are two fixed points whose coordinates generate
Q(
√−1), while the coordinates of the other two fixed points generate Q(

√−2).
The involution w induces involutions on the curves X(v) and X(u) that will be also

denoted by w. For the genus two curve X(v), w is the hyperelliptic involution and, thus,
the curve X(v) admits a hyperelliptic model over Q.

For the curve X(u), since w is defined over Q, it has an equation of the form y2 =
F (x) with F (x) ∈ Q[x] of degree 3 or 4 and for which the involution w acts sending
(x, y) to (x,−y). Any equation for X(u) of the form y2 = G(x) with G(x) ∈ Q[x] of
degree 3 or 4 for which the action of w is given by (x, y) 7→ (x,−y) is equivalent over Q
to y2 = F (x), namely, there exist

(
α β
γ δ

)
∈ GL(2,Q) and λ ∈ Q∗

such that

G(x) = λ2F

(
α x + β

γ x + δ

)
(γ x + δ)4.

3. Equations for XD from its Atkin–Lehner quotients.

In [12], the second author gives a method to compute equations for Atkin–Lehner
quotients of Shimura curves attached to an odd discriminant D which are hyperelliptic
over Q. For the particular case that XD has genus 3, he provides in Table 2 of [12]
equations for XD when D = 39, 55 and for X(v) when D = 35, 51, 57, 69. In this section
we show how one can obtain an equation for XD, even if XD is not hyperelliptic over Q,
from certain particular equations for X(u) and X(v).

We recall that, if a curve Y defined over a field K of genus g is hyperelliptic over
K, then for a point P ∈ Y (K) there exists a basis {λi}1≤i≤g of H0(Y,Ω1) such that for
all i:

ord P λi =

{
2 i− 2 if P is a Weierstrass point,

i− 1 otherwise.

For such a basis, the functions x = λg−1/λg, y = dx/λg generate the function field
of Y and provide a hyperelliptic model for Y , that is y2 = F (x) for some polynomial
F (x) ∈ K[x] without double roots, of degree 2 g + 1 or 2 g according to whether P is
a Weierstrass point or not. If the hyperelliptic involution w is defined over K and P

projects to a K-rational point of Y/〈w〉, then we can take λi ∈ H0(Y,Ω1
Y/K) for all i

and, thus, F (x) ∈ K[x] (see for instance Lemma 2.5 of [1]).
In our particular setting, we point out the following facts:

(a) The curve XD has a hyperelliptic model over Q if and only if X(w)(Q) ' P1(Q), i.e.
D 6= 57, 82. Since XD(R) = ∅ (cf. [18]), a point Q lies in π−1

w (X(w)(Q)) if and only
if there is an integer e < 0 such that Q ∈ XD(Q(

√
e )) with w(Q) = Qσ, where σ is
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the nontrivial automorphism in Gal(Q(
√

e )/Q). In this case, XD admits an affine
equation of the form:

y2 = eF (x), F (x) ∈ Q[x], (1)

where F is monic without double roots, x ∈ Q(XD) and div x + (Q) + (w(Q)) ≥ 0.
The curve XD does not have any real point and, thus, does not have any rational
Weierstrass point. Therefore, deg F = 8.

(b) From the equality

H0(XD,Ω1
XD/Q) = π∗u

(
H0(X(u),Ω1

X(u)/Q)
)⊕ π∗v

(
H0(X(v),Ω1

X(v)/Q)
)
,

we can take a basis {ν1, ν2, ν3} of H0(XD,Ω1
XD/Q) such that ν1 lies in

π∗u(H0(X(u),Ω1
X(u)/Q)) and ν2, ν3 are in π∗v(H0(X(v),Ω1

X(v)/Q)). Since the hyperel-
liptic involution w acts on H0(XD,Ω1

XD/Q) as the multiplication by −1 and w = u ·v,
the action of u, v on this basis is the following:

ν1 ν2 ν3

u ν1 −ν2 −ν3

v −ν1 ν2 ν3

It is clear that div ν1 =
∑

U∈Fu
(U).

(c) The set of Weierstrass points of X
(v)
D consists of the four points of the set πv(Fw)

and the two points of πv(Fu).

Now, we split our nine cases in three types and we present for each of them a
particular class of equations. The first two types correspond to the case XD hyperelliptic
over Q.

3.1. Type 1: D ∈ {35,51,62,69,94}.
Proposition 3.1. Assume D ∈ {35, 51, 62, 69, 94}. Then, the curve X(v) admits

an equation of the form

Y 2 = eX(X4 + aX3 + bX2 + cX + d)

for some a, b, c, d, e ∈ Q, where πv(Fu) is the set of Weierstrass points corresponding
to X = 0,∞ and Q(

√
e) is the field of definition of a point U ∈ Fu. For any such an

equation,

( i ) if D ∈ {35, 51, 69}, then

y2 = e(x8 + a x6 + b x4 + c x2 + d)

is an equation for XD and y2 = e (X4 + aX3 + bX2 + cX + d) is an equation for
X(u) for which w(X, y) = (X,−y).
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( ii ) if D ∈ {62, 94} and, additionally, y2 = e (X4+aX3+bX2+cX+d) is an equation
for X(u) with w(X, y) = (X,−y), then

y2 = e(x8 + a x6 + b x4 + c x2 + d)

is an equation for XD.

Proof. Every Q ∈ Fu is defined over an imaginary quadratic field (cf. Table 1)
and w(Q) is the Galois conjugate of Q. We fix one of such Q ∈ Fu. Since the Weierstrass
point πu(Q) of X(v) is rational, we can choose ν2 ∈ π∗v

(
H0(X(v),Ω1

X(v)/Q)
)

such that

div ν2 = 2(Q) + 2(w(Q)).

Set x = ν1/ν2 and y = dx/ν2. By scaling y by a suitable rational if necessary, x

and y satisfies a relationship as in (1), where Q(
√

e) is the field of definition of Q. The
involutions u and v act by sending (x, y) to (−x, y) and (−x,−y) respectively. Therefore,
there is a polynomial G(x) = x4 + a x3 + b x2 + c x + d ∈ Q[x] such that

XD : y2 = eG(x2),

X(u) : y2 = eG(X),

X(v) : Y 2 = eX G(X),

where X = x2 and Y = y x.
It is clear that w acts on X(u) by sending (X, y) to (X,−y). Since div x = (Q′) +

(w(Q′))− (Q)− (w(Q)) for Q′ ∈ Fu\{Q,w(Q)}, we have that Fu coincides with the set
of points in XD with coordinates x = 0,∞. Thus, the expressions X = 0 and X = ∞
yield the set πv(Fu) on the curve X

(v)
D . Since Q(

√
ed) is the field of definition of Q′, one

has d ∈ Q2, for D 6= 62, 94, and 2d ∈ Q2, otherwise.
Let T 2 = eZ F (Z) be any equation of X(v) with F (Z) ∈ Q[Z] monic of degree 4 and

such that πv(Fu) is the set of points in X(v) corresponding to Z = 0,∞. Since the group
Aut(X(v)) is commutative (cf. Proposition 1.5 of [8]), the set of fixed points of u in X(v)

is stable under the action of all automorphisms of the curve. Hence, any isomorphism
between T 2 = eZ F (Z) and Y 2 = eX G(X) must send the points Z = 0 and Z = ∞ to
the points X = 0 and X = ∞. Therefore, it must be of the form (X, Y ) = (α Z, λT ) or
(X, Y ) = (α/Z, λ T/Z3) for some α, λ ∈ Q∗. Observe that if d ∈ Q2, by changing in the
equation y2 = eG(x2) the variables (x, y) by (1/x,

√
d y/x4) if necessary, we can assume

that the isomorphism sends Z = 0 to X = 0 and, thus, (X, Y ) = (α Z, λ T ).
If (X, Y ) = (α Z, λT ), it is easy to check that α5 = λ2 and, thus, (α, λ) = (β2, β5)

for some β ∈ Q∗. The changes of variables (x, y) = (β z, β4t) and (X, y) = (β2 Z, β4t)
provide isomorphisms between the genus three curves y2 = eG(x2) and t2 = eF (z2) and
the genus one curves y2 = eG(X) and t2 = eF (Z) respectively.

If (X, Y ) = (α/Z, λ T/Z3), then dα = λ2. If, moreover, the equation
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t2 =
e

d
G

(
α

Z

)
Z4

is equivalent to the equation y2 = eG(X), then d must be a rational square and, thus,
the result follows. ¤

Remark 3.1. According to Table 1, the values e, up to rational square factors, for
each of the three cases of the above proposition are:

D 3 · 17 3 · 23 5 · 7
e −3 −3 −7

and for D = 62, 94 we will choose e = −1.

3.2. Type 2: D ∈ {39,55}.
Proposition 3.2. Assume D ∈ {39, 55}. Let e < 0 be an integer for which there

is a point Q defined over Q(
√

e) such that πw(Q) ∈ X(w)(Q). Then, X(v) admits an
equation of the form

Y 2 = e(X4 + aX3 + bX2 + cX + d)(X2 + 4)

for some a, b, c, d ∈ Q, where πv(Fu) is the set of Weierstrass points corresponding to the
roots of X2 + 4 and

V 2 = e(X4 + aX3 + bX2 + cX + d)

is an equation for X(u) with w(X, V ) = (X,−V ). For any such an equation for X(v),
the curve XD is defined by the equation

y2 = e(x8 + a x7 + B x6 + C x5 + E x4 − C x3 + B x2 − a x + 1),

where B = b− 4, C = c− 3 a, E = d− 2 b + 6.

Proof. In this case, for any choice of Q in π−1
w (X(w)(Q)) we have Q /∈ Fu. Since

u is defined over Q, also u(Q) ∈ XD(Q(
√

e)) and v(Q) = u(w(Q)) = u(Q)σ.
We can choose λ1, λ2 ∈ H0(XD,Ω1

XD/Q) such that:

div λ1 = (Q) + (w(Q)) + (v(Q)) + (u(Q)), div λ2 = 2(Q) + 2(w(Q)).

Set x = λ1/λ2 and y = dx/λ2 = x dx/λ1. Then, we have a relationship as in (1) by
escaling y by a suitable rational if necessary. Due to the fact that

div u∗(x) = div u∗(λ1)− div u∗(λ2) = div λ2 − div λ1 = −div x,

it is clear that u∗(x) = ε/x for some ε ∈ Q∗. The divisor of λ1 is invariant under u

and λ1 /∈ 〈ν1〉 since div ν1 =
∑

U∈Fu
(U). Therefore, λ1 must satisfy u∗(λ1) = −λ1.
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Hence, u∗(y) = y ε2/x4 and u sends (x, y) to (ε/x, y ε2/x4). Note that ε /∈ Q2, otherwise
πw(Fu) ⊂ X(w)(Q). By scaling x by a suitable rational, we can assume that ε is square-
free. Since Q(

√
ε) ⊆ Q(πv(U)) for all U ∈ Fu, it follows that ε = −1 (see Table 1).

Hence,

XD : y2 = e(x8 + Ax7 + B x6 + C x5 + E x4 − C x3 + B x2 −Ax + 1),

X(u) : V 2 = e(X4 + AX3 + (B + 4)X2 + (C + 3 A)X + E + 2 b + 2), (2)

X(v) : Y 2 = e(X4 + AX3 + (B + 4)X2 + (C + 3A)X + E + 2B + 2)(X2 + 4),

for some A,B, C, E ∈ Q and where

X = x− 1/x, V = y/x2 and Y = V (x + 1/x) = y(x2 + 1)/x3.

Writing a = A, b = B + 4, c = C + 3 A and d = E + 2 B + 2, we recover the notation as
in the statement. Since the points of Fu correspond to the points whose x-coordinates
satisfy x2 = −1, it follows that their projections to X(v) satisfy X2 = −4. Moreover, w

acts on X(u) by sending (X, V ) to (X,−V ).
Set g(x) := e(x8 + Ax7 + B x6 + C x5 + E x4−C x3 + B x2−Ax + 1) and G(X) :=

X4 + aX3 + bX2 + cX + d. Let T 2 = e (Z2 + 4)F (Z) be any equation of X(v) with
F (Z) ∈ Q[Z] monic of degree 4 and such that πv(Fu) is the set of points corresponding to
Z2 = −4 and S2 = eF (Z) is an equation of X(u) equivalent to V 2 = eG(X). Changing
(x, y) by (−x, y) in the equation given in (2) for XD if necessary, we can assume that
an isomorphism defined over Q between T 2 = e (Z2 + 4)F (Z) and Y 2 = e(X2 + 4)G(X)
sends Z = 2 i and Z = −2 i to X = 2 i and X = −2 i respectively. Therefore, this
isomorphism must be of the form

(X, Y ) =
(
− 4

Z
, λ

T

Z3

)
or (X, Y ) =

(
Z − 4γ

γ Z + 1
, λ

T

(γZ + 1)3

)

for some γ, λ ∈ Q.
If (X, Y ) = (−4/Z, λ T/Z3), we consider the equation t2 = f(z) obtained from the

equation y2 = g(x) by means of the change of variables

(x, y) = ((z − 1)/(z + 1), λ 2 t/(z + 1)4).

It is easy to prove that

(
t

z4

)2

= f

(
− 1

z

)
, Z = z − 1

z
, S =

t

z2
, T = t

z2 + 1
z3

. (3)

Hence, t2 = f(z) is the equation of the genus three curve obtained from the equation
T 2 = e(Z2 + 4)F (Z) after applying the rule given in the statement.

For the isomorphism (X, Y ) = ((Z − 4γ)/(γ Z + 1), λ T/(γZ + 1)3), we get that
γ(1 + 4 γ2)(a + γ + b γ + c γ2 + d γ3) = λ2. Moreover, since the equation
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S2 = eF (Z) =
e

γ(a + γ + b γ + c γ2 + d γ3)
G

(
Z − 4γ

γ Z + 1

)
(γ Z + 1)4,

is equivalent to V 2 = eG(X), the expression γ(a+γ+b γ+c γ2+d γ3) must be a rational
square and, thus, also 1 + 4 γ2 ∈ Q2. Let ν be any root of the polynomial γ x2 + x− γ,
which is a rational number different from ±1. The change of variables

(x, y) =
(

z − ν

ν z + 1
,−λ

ν2 + 1
(ν2 − 1)3

t

(ν z + 1)4

)

provides an equation t2 = f(z) for XD satisfying all conditions in (3). Hence, the
statement is proved. ¤

Remark 3.2. By the theory of Heegner points, we can choose e of the previous
proposition to be −7 for D = 39 and −3 for D = 55, up to rational square factors.

3.3. Type 3: D = 57,82.
Proposition 3.3. Assume D = 57, 82. Let e < 0 be a square-free integer for which

there exists a point P ∈ XD(Q(
√

e)) such that πu(P ) ∈ X(u)(Q) and let α be either 3 or
2 depending on whether D is equal to 57 or 82. Then, X(v) admits an equation of the
form

Y 2 = e(x2 + α)F (x),

where F (x) ∈ Q[x] is a monic polynomial of degree 4, πv(Fu) is the set of Weierstrass
points corresponding to x = ±√−α and y2 = F (x) is an equation for X(u) with w(x, y) =
(x,−y). For such an equation,

y2 = F (x), t2 = e(x2 + α)

is an equation for XD.

Proof. Since for D = 57, 82 we have that | X(u)(Q) |= ∞, we can
choose two points P, Q in π−1

u (X(u)(Q)) such that the sets {P, u(P ), v(P ), w(P )} and
{Q, u(Q), v(Q), w(Q)} are disjoint. It is clear that both sets are stable by Galois con-
jugations and each of them has all its points defined in the same imaginary quadratic
field.

With the same argument used for λ1 in the above proposition, we choose ν2, ν3 in
π∗v(H0(X(v),Ω1

X(v)/Q)) such that

div ν2 = (Q) + (u(Q)) + (w(Q)) + (v(Q)), div ν3 = (P ) + (u(P )) + (w(P )) + (v(P )).

Set x = ν2/ν3 and y = dx/ν1. The functions x and y2, viewed as functions on XD/〈u, v〉,
have a unique pole of multiplicity 1 and 4 respectively at the projection of P . Therefore,
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Q(X(u)/〈w〉) = Q(X(v)/〈w〉) = Q(x), Q(X(u)) = Q(x, y) and y2 = F (x),

where F (x) ∈ Q[x] has degree 4 and w acts by sending (x, y) to (x,−y). Observe that
the leading coefficient of F and F (0) are rational squares since the projections of P and
Q into X(u) are rational.

Set t = ν1/ν3 ∈ Q(XD). Of course, u∗(t) = v∗(t) = −t and w∗(t) = t. In particular
t 6∈ Q(X(v)) and t2 ∈ Q(XD/〈u, v〉). Since t2, viewed as a function on XD/〈u, v〉, has
a unique pole of multiplicity 2 at the projection of P , t2 is a polynomial of degree 2 in
x with rational coefficients. The function t2, now viewed as a function on X(v), has its
zeros at the points of πv(Fu), defined over Q(

√−α) (see Table 1), and has its poles at
the points of πv({P, u(P )}, defined over Q(

√
e). Therefore, after changing the variables

t by a t and x by b x + c for a suitable a, b, c ∈ Q, we get t2 = e(x2 + α). Now, by scaling
y by a suitable rational, F can be chosen to be monic. Taking Y = t y, we obtain the
following equation for XD:

XD : y2 = F (x) and t2 = e (x2 + α),

X(u) : y2 = F (x), (4)

X(v) : Y 2 = e(x2 + α)F (x).

Set F (x) = x4 + a x3 + b x2 + c x + d. Let T 2 = d(z2 + α)G(z) be any equation for
X(v)/Q such that πv(Fu) corresponds to the set of points with x = ±√−α and t2 = G(z)
is an equation equivalent to y2 = F (x). We can assume that the isomorphism between
both equations for X(v) sends z =

√−α and z = −√−α to x =
√−α and x = −√−α

respectively. So, the isomorphism must be of the form

(x, Y ) =
(
− α

z
, λ

T

z3

)
or (x, Y ) =

(
z − α γ

γ z + 1
, λ

T

(γ z + 1)3

)
.

If (x, Y ) = (−α/z, λ T/z3), the condition that the equation

t2 = G(z) =
α

λ2
F

(
− α

z

)
z4

is equivalent to y2 = F (x) leads to the contradiction that α should be a rational square.
If (x, Y ) = ((z − α γ)/(γ z + 1), λ T/(γ z + 1)3), then

(1 + α γ2)(1 + b γ2 + c γ3 + d γ4) = λ2.

Moreover, since

t2 = G(z) =
1

1 + b γ2 + c γ3 + d γ4
F

(
− α

z

)
z4

is equivalent to y2 = F (x), we have that 1 + b γ2 + c γ3 + d γ4 is a rational square and,



Genus three Shimura curves 619

thus, 1 + α γ2 = β2 for some β ∈ Q. Hence, the change of variables

(x, Y, t) =
(

z − α γ

γ z + 1
, λ

T

(γ z + 1)3
, β W

)

provides an isomorphism between the equation for XD given in (4) and the equation
T 2 = G(z) and W 2 = e(z2 + α). ¤

Remark 3.3. By the theory of Heegner points, we can choose e = −1 and e = −3
for D = 59 and D = 82 respectively.

4. Equations for Atkin–Lehner quotients and XD.

4.1. Genus one quotients.
Here, we focus our attention on the curve X(u). The Jacobian of the curve X(u) has

conductor D because it is a quotient of the new part of the Jacobian of X0(D) defined
over Q and its Q-isomorphism class can be determined by using the Cěrednik–Drinfeld
description of the fibers of XD at primes p | D (cf. [17] and the footnote in page 938 of
[6]). Next, we show the set X(u)(Q), given as group when X(u) is elliptic over Q, and
Cremona’s label of the elliptic curve Jac(X(u)):

D 2 · 31 2 · 41 2 · 47 3 · 13 3 · 17 3 · 19 3 · 23 5 · 7 5 · 11
X(u)(Q) ∅ Z× Z/2Z ∅ ∅ {0} Z ∅ Z/3Z ∅

Jac(X(u)) A3 A1 A2 A1 A2 A1 A2 A1 A1

Proposition 4.1. The following table shows equations for X(u)/Q of the form
Z2 = F (X), for which the involution w acts sending (X, Z) to (X,−Z) :

Table 2.
D X(u)

35 Z2 = −(7 X + 1)(X3 + 197 X2 + 51 X + 7)
39 Z2 = −(7 X2 + 23 X + 19)(X2 + X + 1)
51 Z2 = −(X + 3)(243X3 + 235 X2 − 31 X + 1)
55 Z2 = −(3 X2 − 4 X + 16)(X2 + 4 X + 48)
57 Z2 = (X + 4)(X3 + 20 X2 + 48 X + 32)
62 Z2 = −(64 X4 + 99 X3 + 90 X2 + 43 X + 8)
69 Z2 = −(3X4 + 28 X3 + 74 X2 − 1268 X + 2187)
82 Z2 = 16X4 − 32 X3 + 1032 X2 + 1576 X + 1549
94 Z2 = −(8 X4 − 69 X3 + 234 X2 − 381 X + 256)

In particular, any equation for X(u) of the form Z2 = G(X) with deg G(X) = 3 or 4 for
which the action of w is given by (X, Z) 7→ (X,−Z) is equivalent over Q to the equation
given in Table 2.
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Proof. When X(u)(Q) = ∅, i.e. for D 6= 35, 51, 57 and 82, see Theorem 4.2 of
[6]. For D = 51, 57 and 82, we proceed as in [6]. We take a subset {P1, . . . , Pn} ⊂
Jac(X(u))(Q) of representative elements of the group Jac(X(u))(Q)/2 Jac(X(u))(Q) and
for each Pi we attach an equation y2 = Fi(x) as in Subsection 2.1 of [6]. The equation
in the statement corresponds to the unique equivalence class such that the number field
generated by the roots of Fi(x) agrees with the number field generated by the coordinates
of the points in πu(Fw). Since for D = 35 this procedure gives two equivalence classes
satisfying the previous condition, we use another argument in this case. Indeed, from
[12] we know that

y2 = −x(9 x + 4)(4x + 1)(172x3 + 176 x2 + 60 x + 7)

is an equation for X(v) and, moreover, it can be checked that the x-coordinates of the
Weierstrass points coming from Fu are 0 and −4/9. Since the change

x =
4X

−9X + 1
, y =

4Y

(−9X + 1)3

provides an isomorphism with the curve Y 2 = −X(7X + 1)(X3 + 197X2 + 51X + 7)
sending x = 0,−4/9 to X = 0,∞, the equation in Table 2 is obtained by applying part
(1) of Proposition 3.1. ¤

4.2. Genus two quotients.
Now, we deal with the curve X(v). Equations for D = 35, 51, 57, 69 can be found in

[12]. Moreover, the procedure used in this paper allows us to determine which Weierstrass
points come from fixed points of u. For D = 39, 55 we can determine equations for
X(v) either following the same procedure used for the before mentioned cases or finding
the explicit action of the automorphism v in the equations presented for XD in [12]
and determining equations por the corresponding quotients. We omit details of these
computations. Equations for all these cases, namely for D odd, are presented in Table 4
of Proposition 4.4.

For D even, i.e. D = 62, 82, 94, it is harder to find equations for X(v) than for the
odd case. We do not have a description of the thicknesses of the singular points in terms
of the valuation of the difference of the roots of the polynomials involved in a suitable
model of the form Y 2 = R(X) at p = 2 (see Theorem 2.3 of [12]). This is basically due
to the fact that a model of the form Y 2 = R(X) is not a good model at p = 2.

Let W be a model for X(v) over Z of the form:

W : Y 2 + Q(X)Y = P (X), P (X), Q(X) ∈ Z[X]. (5)

For such a model, its discriminant is defined as follows:

∆(W) =

{
2−12Disc(4P (X) + Q(X)2) if deg(4P (X) + Q(X)2) = 6,

2−12c2Disc(4P (X) + Q(X)2) if deg(4P (X) + Q(X)2) = 5,
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where c is the leading coefficient of 4P (X)+Q(X)2. Let W0 be the model with minimal
discriminant. The following result due to Q. Liu [10, Théorèmes 1, 2 and Proposition
1] describes the valuation of the discriminant ∆(W0) in terms of the canonical model
of X(v), its minimal regular model and the exponent of the conductor attached to the
Galois representation on the Tate module of its Jacobian. Since the Jacobian of X(v)

is isogenous over Q to an abelian subvariety of Jac(X0(D))new, we know by H. Carayol
(cf. [2]) that its conductor is D raised to its dimension. Thus the result provides the
valuations of the discriminant ∆(W0).

Theorem 4.2. Let C be a smooth projective geometrically connected curve of genus
2 defined over a finite extension K of Qp, with integer ring OK . Let Ccan/OK and
Cmin/OK be its canonical and minimal regular models, respectively. Let us denote by
σ the extension of the hyperelliptic involution of C to Ccan. Let n be the number of
irreducible components of the special fiber of Cmin and let d be the number of connected
components of the special fiber of the minimal desingularization of Ccan/σ. Then, the
exponent of the conductor f of C/K can be expressed as:

f(C/K) = υ(∆(W0))− 11 · d− 1
2

− n + 1,

where υ is the normalized valuation of K.

Since the conductor of the Jacobian of X(p) is D raised to its dimension, we have
f(X(v)/Qp) = 2 at every prime p | D. Moreover, the Cěrednik–Drinfeld special fiber
of XD at p | D can be computed using MAGMA, together with the action of u, v and
w on its irreducible components and singular points (see [8]). Hence, we are able to
compute the special fiber of a semistable model for X(v) and the action of the hyperel-
liptic involution w on it. Contracting exceptional divisors and next blowing-down and
blowing-up singularities, we obtain the special fibers of X

(v)
can and X

(v)
min, the canonical and

minimal regular models of X(v) respectively, together with the action of the hyperelliptic
involution on both of them. Thus, we determine n, d and, thus, υp(∆(W0)) at every
prime p | D. Using this procedure we obtain the following result

Proposition 4.3. The absolute values of the discriminants ∆(W0) of the minimal
hyperelliptic models W0/Z of X(v) are given by the following table:

D 2 · 31 2 · 41 2 · 47
|∆(W0)| 215 · 314 215 · 417 219 · 472

Proof. We compute the valuation of ∆(W0) at every prime of bad reduction
using the above theorem and the procedure, described in the previous paragraph, to
compute the special fibers of X

(v)
can and X

(v)
min together with the action of the hyperelliptic

involution on both of them. We show this procedure for the three even values of D and
p = 2.

Case 4.1. For D = 94 and p = 2, we compute the special fiber of XD using Cěrednik–
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Drinfeld theory. We describe graphically the quotients, contractions of exceptional divi-
sors, blown-ups and blow-downs we have apply to obtain the special fibers of X

(v)
can and

X
(v)
min:

We obtain that the number of irreducible components of the special fiber of the min-
imal regular model is n = 18 and, moreover, the number of connected components of
the special fiber of the minimal desingularization of X

(v)
can/w is d = 1. Thus, we get

υ2(∆(W0)) = 19.

Case 4.2. The case D = 62 and p = 2 is similar to the previous case. We obtain that
the number of irreducible components of the special fiber of the minimal regular model
is n = 14. Moreover, the number of connected components of the special fiber of the
minimal desingularization of X

(v)
can/w is also d = 1. Thus, we get υ2(∆(W0)) = 15.

Case 4.3. For D = 82 and p = 2, we have the following special fibers:
We obtain that the number of irreducible components of the special fiber of the minimal
regular model is n = 3 and, moreover, the number of connected components of the special
fiber of the minimal desingularization of X

(v)
can/w is d = 3. Thus, we get υ2(∆(W0)) = 15.

The computation of the valuations υp(∆(W0)) provides ∆(W0) up to sign, namely,
the absolute value |∆(W0)|. ¤

From W0, we obtain a model W ′
0 of the form Y 2 = R(X) = 4P (X) + Q2(X). Note

that ∆(W0) provides the discriminant of R(X). The roots of R(X) are the X-coordinates
of the Weierstrass points of X(v), i.e. πv(Fw) ∪ πv(Fu). In Table 1, it is given the field
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of definition Lu of the coordinates of any U ∈ πv(Fu). Again by using [6], the fields of
definition Lw of the coordinates of any W ∈ πv(Fw) are:

Table 3.
D Lw = Q(W )

2 · 31 Q[X]/(X4 + X3 + 4X2 − 2X + 4)
2 · 41 Q[X]/(X4 + 2X3 −X2 − 2X + 2)
2 · 47 Q[X]/(X4 + 5X2 + 18)

Note that Lu and Lw are the fields involved in the factorization of R(X) =
∏

i pi(X).
The above analysis of the special fibers provides

Disc(R) =
∏

i

Disc(pi)
∏

i,j

Res(pi, pj)2.

By using specialization of Heegner points we can determine the valuations of Disc(pi) and
Res(pi, pj) at every odd prime (see Section 4 of [12]). Since we know the 2-valuation of
Disc(R), we have a finite number of possible 2-valuations for Disc(pi). Moreover, its sign
is determined by the field of definition of pi. A suitable choice of the points at infinity
(they are going to be also Heegner points) provides the leading coefficients of the pi.

Once we know the leading coefficient ci, we proceed to determine the corresponding
monic polynomial qi(X) = cdeg pi−1

i pi(X/ci) ∈ Z[X], whose discriminant is Disc qi =
c
(deg pi−1)(deg pi−2)
i Disc pi. By [7], there are only finitely many monic polynomials with

integer coefficients, up to translation by integers, with the same discriminant and field
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of definition as qi. Let Li is the field of definition of pi and let OLi
be its integer ring,

let αi ∈ OLi
be a root of qi. Since the discriminant of qi provide the index of the order

Z[αi] in Oi, by means of the instruction IndexFormEquation of MAGMA, we determine
a finite number of candidates for αi and pi up to translation by integers. For any of these
choices for all i, we determine R(x) by using that Res(pi, pj) is known. Next, we will
use properties of Shimura curves to discard fake equations in case that our procedure
produces more than one candidate.

4.2.1. Computing equations.
The cases D = 62 and 94 are similar and correspond to type 1 introduced in Section

3. In both cases the pair of Weierstrass points coming from the fixed points of u are
rational. We choose one of these rational Weierstrass points to be the point of infinity.
Therefore the model W ′

0 is given by

W ′
0 : Y 2 = R(X) = ±p1(X) · p2(X),

where p1 is the polynomial of degree 1 corresponding to the other rational point and p2 is
the irreducible polynomial corresponding the Galois orbit πv(Fw) with field of definition
Lw. Recall that ∆(W0) = 2−12c2 Disc(R) is given, where c is the leading coefficient of
R. For the case D = 62, we have ∆(W0) = 215314 while for D = 94, ∆(W0) = 219472.
By the results on the reduction of Heegner points (cf. [13], [12]), we can compute the
valuation of Disc(p2) at every odd prime. Set υ2(Disc(p2)) = t, we computed

Disc(p2) =

{
2t314, if D = 62,

2t472, if D = 94.

Since Disc(R) = Disc(p2)Res(p1, p2)2, we obtain that c and Res(p1, p2) are powers of 2.
Therefore,

{
p1(X) = 2αX + b,

p2(X) = 2γX4 + dX3 + eX3 + fX2 + g,

Disc(p2)Res(p1, p2)2 = 212c−2∆(W0) =

{
2272−2α−2γ314 if D = 62,

2312−2α−2γ472 if D = 94,
(6)

α + γ ≤ 12 + υ2(∆(W0))
2

; α + γ ≤
{

13 if D = 62,

15 if D = 94.
(7)

First we compute the polynomial p2. Notice that

t ≤ 12 + υ2(∆(W0))− 2α− 2γ =

{
27− 2α− 2γ if D = 62,

31− 2α− 2γ if D = 94.
(8)

Instead of determining the polynomial p2(X), we determine the corresponding monic
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polynomial with integer coefficients

q2(X) = 23γp2(X/2γ) = X4 + dX3 + 2γeX3 + 22γfX2 + 23γg

with Disc(q2) = 26γ Disc(p2). We do not know explicitly υ2(Disc(q2)), but we can bound
it thanks to (7) and (8):

υ2(Disc(q2)) = t + 6γ ≤ 12 + υ2(∆(W0)) + 4γ ≤ 36 + 3υ2(∆(W0)).

Since q2 is monic and defines the field Lw given in Table 2, we have Disc(q2) =
N2 Disc(Lw), where N ∈ Z is the index. It is known that there are finitely many
possible q2 for a given N and Lw, up to translation by integers. In our case, N = 2m

and, moreover, m is bounded since υ2(Disc(q2)) ≤ 36 + 3υ2(∆(W0)).
By means of the instruction IndexFormEquation of MAGMA, we compute all the

possible values of m which provide candidates for q2. We obtain

D m

62 3, 9, 12, 15, 18, 21, 24
94 3, 6, 9, 12, 15, 18, 21, 24, 27

Notice that 2m + υ2(Disc(L)) = υ2(Disc(q2)) = t + 6γ and, thus,

γ ≤ 2m + υ2(Disc(L))
6

.

This inequality provides a finite number of possibilities for the leading coefficient 2γ for
a fixed q2. Among all possibilities for the pairs (q2, γ), we select those for which there
is an integer s in a set of representatives modulo 2γ such that p2(x) = 2−3γq2(2γx + s)
has integer coefficients and, moreover, υ2(Disc(p2)) ≤ 12 + υ2(∆(W0))− 2γ. Finally, we
obtain 17 possibilities for p2 if D = 62 and 68 if D = 94.

Recall that

Res(p1, p2)2 = 28αp2(−b/2α)2 = 2122−2α−2γ Disc(p2)−1∆(W0).

Thus, α ≤ (12−2γ−υ2(Disc(p2))+υ2(∆(W0)))/2 := r. Now, for a given p2 and a in the
range [0, . . . , r], we select the pairs (p2, α) such that the equation p2(x) = ±2r−5α admits
the rational solution −b/2α. For each of such pairs, we have two possible equations for
X(v): Y 2 = ±(2αX + b)p2(X).

In the case D = 62, we obtain 6 possible solutions up to Q-isomorphisms:

Y 2 = (X + 6)(X4 + 6X3 + 27X2 + 116X + 236), (C+
1 )

Y 2 = −(X + 6)(X4 + 6X3 + 27X2 + 116X + 236), (C−1 )

Y 2 = (X + 3)(4X4 + 12X3 + 27X2 + 58X + 59), (C+
2 )
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Y 2 = −(X + 3)(4X4 + 12X3 + 27X2 + 58X + 59), (C−2 )

Y 2 = X(64X4 + 99X3 + 90X2 + 43X + 8), (C+
3 )

Y 2 = −X(64X4 + 99X3 + 90X2 + 43X + 8). (C−3 )

By using the instruction genus2reduction of SAGE, we determine the type of reduction
modulo p = 2 of these curves. We obtain that (C+

1 ), (C−1 ), (C+
2 ) and (C−2 ) have stable

reduction of type V , while (C+
3 ) and (C−3 ) have stable reduction of type IV with the Liu

notation (cf. [11]). Since X(v) have stable reduction of type IV at p = 2, our candidates
are now (C+

3 ) and (C−3 ).
Since Jac(X62) is isogenous over Q to Jac(X0(62))new and this abelian variety is

isogenous over Q to the product of an elliptic curve and a simple abelian surface, there
is a normalized newform f = q +

∑
n>1 anqn ∈ S2(Γ0(62)) such that the abelian surface

Af attached to f by Shimura is isogenous over Q to Jac(X(v)). One has that Q({an}) =
Q(
√

3) and, moreover, a3 = 1 +
√

3. Applying the Eichler-Shimura congruence, we know
that the trace of the Frobenius automorphism Frob3 acting on the `-adic (` 6= 3) Tate
module of the reduction of Jac(X(u)) mod 3 is equal to a3 plus its Galois conjugate, i.e.
2. An easy computation allows us to discard the equation C+

3 and we obtain that X(v)

has the following equation

X(v) : Y 2 = −X(64X4 + 99X3 + 90X2 + 43X + 8).

In the case D = 94, we only obtain two possibilities up to Q-isomorphisms:

Y 2 = (X + 3)(8X4 + 27X3 + 45X2 + 24X + 4), (C+
1 )

Y 2 = −(X + 3)(8X4 + 27X3 + 45X2 + 24X + 4). (C−1 )

Now, the corresponding normalized newform f of level 94 attached to Jac(X(v)) is f =
q − q2 + · · ·+ (−2− 2

√
2)q7 + · · · and, thus, the trace of Frob7 is −4. We conclude that

X(v) has the following equation

X(v) : Y 2 = −(X + 3)(8X4 + 27X3 + 45X2 + 24X + 4).

The case D = 82 corresponds to type 3 and, thus, is slightly different to the above
cases. In this case, X(v) does not have any rational Weierstrass point. Let {P∞, P̄∞} be
the image, under πv, of the set of Heegner points with CM by Z[(1 +

√−11)/2]. Since
such order has class number 1, by [6] we know that P∞ and P̄∞ lie in X(v)(Q(

√−11))
and the hyperelliptic involution acts on these points as the complex conjugation mapping
P∞ to P̄∞. We choose P∞, P̄∞ to be our infinity points in the hyperelliptic model.

Let c be the leading coefficient of the equation Y 2 = R(X) of W ′
0, once we have

chosen the infinity points to be P∞ and P̄∞. It is clear that c = −11N2 for some N ∈ Z.
In Section 6 of [12], it is computed the valuation of c at every p - D in terms of the moduli
interpretation of XD/Q and its Morita’s integral model XD/Z[1/D] as spaces that classify
abelian surfaces with quaternionic multiplication. Since W ′

0 has good reduction outside



Genus three Shimura curves 627

D, it is isomorphic to XD locally at p - D. This provides an interpretation of the valuation
of c at every p - D in terms of the CM abelian surfaces attached to P∞ and P̄∞. Applying
formulas of Theorem 6.4 in [12], we obtain that υp(c) = 0 for all p - 11 ·D and υ11(c) = 1.

To analyze the case p | D, we return to the integer model W0: Y 2+Q(X)Y = P (X),
where R(X) = Q(X)2 + 4P (X). Note that P∞ lives in the affine open defined by
v2 + Q1(u)v = P1(u), where Q1(u) = u3Q(1/u) and P1(u) = u6P (1/u). More precisely,
P∞ and P̄∞ corresponds to the points (u, v) = (0,±√c). Thus, if p | c then both infinity
points specialize to a single Weierstrass point. Using the results of [13], we determine
that all Weierstrass points have singular specialization at every p | D. Thus, if p | D and
p | c then P∞ specializes to a singular point in W0.

Any model W0 as in (5) satisfies that W0/ω is smooth. Moreover one can see that,
locally at p, such a model W0 with minimal discriminant can be obtained by normalizing
in X(v) any of the irreducible components of (X(v)

can/ω)p. Thus if we show that P∞ lies
in a non-singular point of any of the irreducible components of (X(v)

can)p, we will conclude
that there exists a model W0 such that P∞ has good reduction in it.

By Theorem 1.1 of [13], we know that the elements of the set π−1
v (P∞∪P̄∞) have non-

singular specialization in the Cěrednik–Drinfeld special fiber and we have a description
of the irreducible components were these points lie. Using this computation we check
that, even contracting exceptional divisors and blowing-down singularities (see Case 4.3),
P∞ and P̄∞ have non-singular specialization in (X(v)

can)p where p | D. Thus, if we choose
a suitable model W0, the infinity point P∞ has good reduction at p | D, which implies
that c = −11.

Recall that, since the set of Weierstrass points consists of the pair of Galois orbits
πv(Fw) and πv(Fu), an equation for W ′

0 is of the form Y 2 = R(X) = pu(X)pw(X),
where pu determines Lu and pw determines Lw. By means of the results of [13] and
[12] on the supersingular specialization of Heegner points, we can determine which
Weierstrass points reduce to the specialization of P∞ at p = 11. We obtain that the
only Weierstrass point that reduces to the specialization of P∞ is in πv(Fu). This fact
implies that the leading coefficients of pu and pw are −11 and 1 respectively. Thus,
pw(X) = X4 + cX3 + dX2 + eX + f , pu(X) = −11X2 + aX + b and, moreover,
Disc(R) = Disc(pu)Disc(pw)Res(pu, pw)2 = 417 · 227. As in the previous cases, we
computed that Disc(pw) = 41 · 2tw , where tw ≤ 24 because Disc(Lu) = 23. Since pw

determines Lw, we computed by means of the instruction IndexFormEquation that the
only possibilities for tw are 4, 6, 10 and 12, and we have 8 possible monic polynomials
pw, up to translation. By a similar computation we obtain 6 possibilities for pu with
Disc(pu) = 2tu . On the other hand, we know that

Res(pw(X + α), pu(X)) = ±413 · 2(27−tw−tu)/2

for some α ∈ Z. Selecting all pairs (pu, pw) for which the above equality admits an
integer solution α, we obtain 4 possibilities and, hence, 4 equations for the curve X(v),
that turn to be isomorphic. Thus, we obtain the following equation for X(v):

X(v) : Y 2 = −(11X2 − 40X + 48)(X4 − 6X3 + 13X2 − 8X + 4).
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Observe that for the equations presented for XD when D = 62, 82 and 94, the
Weierstrass points coming from fixed points of the involution u are those whose X-
coordinates are rational or ∞ for D = 62 and 94, or lie in Q(

√−2) for D = 82.

Proposition 4.4. Equations for the genus two curves X(v) together with the co-
ordinates of the two points of πv(Fu) are given in the following table:

Table 4.
D X(v) πv(Fu)
35 Y 2 = −X(7 X + 1)(X3 + 197 X2 + 51 X + 7) X = 0,∞
51 Y 2 = −X(X + 3)(243X3 + 235 X2 − 31 X + 1) X = 0,∞
62 Y 2 = −X(64 X4 + 99 X3 + 90 X2 + 43 X + 8) X = 0,∞
69 Y 2 = −X(3X4 + 28 X3 + 74 X2 − 1268 X + 2187) X = 0,∞
94 Y 2 = −X(8 X4 − 69 X3 + 234 X2 − 381 X + 256) X = 0,∞
39 Y 2 = −(7 X2 + 23 X + 19)(X2 + X + 1)(X2 + 4) X = ±2

√−1
55 Y 2 = −(3 X2 − 4 X + 16)(X2 + 4 X + 48)(X2 + 4) X = ±2

√−1
57 Y 2 = −(X2 + 3)(X + 4)(X3 + 20 X2 + 48 X + 32) X = ±√−3
82 Y 2 = −3(X2 + 2)(16X4 − 32 X3 + 1032 X2 + 1576 X + 1549) X = ±√−2

where, moreover, Z2 = F (X)/X, Z2 = F (X)/(X2 + 4), Z2 = −F (X)/(X2 + 3) and
Z2 = −(1/3)F (X)/(X2 + 2) is an equation for X(u) equivalent to the equation given in
Table 2 for D ∈ {35, 51, 62, 69, 94}, D ∈ {39, 55}, D = 57 and D = 82 respectively.

4.3. Genus three Shimura curves.
As a consequence of Propositions 3.1, 3.2 and 3.3, the equations in Proposition 4.4

determine equations for XD.

Theorem 4.5. The following table shows equations for the genus three Shimura
curves:

Table 5.
D XD

35 y2 = −(7 x2 + 1)(x6 + 197 x4 + 51 x2 + 7)
51 y2 = −(x2 + 3)(243x6 + 235 x4 − 31 x2 + 1)
62 y2 = −(64 x8 + 99 x6 + 90 x4 + 43 x2 + 8)
69 y2 = −(3x8 + 28 x6 + 74 x4 − 1268 x2 + 2187)
94 y2 = −(8 x8 − 69 x6 + 234 x4 − 381 x2 + 256)
39 y2 = −(x4 + x3 − x2 − x + 1)(7x4 + 23 x3 + 5 x2 − 23 x + 7)
55 y2 = −(x4 − x3 + x2 + x + 1)(3x4 + x3 − 5 x2 − x + 3)
57 y2 = (x + 4)(x3 + 20 x2 + 48 x + 32),

t2 = −(x2 + 3)
82 y2 = 16x4 − 32 x3 + 1032 x2 + 1576 x− 1549,

t2 = −3(x2 + 2)
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Remark 4.1. In Table 1 of [9], Kurihara conjectured equations for all Shimura
curves XD with D ≤ 65 and genus > 1. The six equations in Table 5 with D ≤ 62 are
according to the presented in [9].

5. The kernel of Ribet’s isogeny.

We recall that an abelian variety B is said to be an optimal quotient of an abelian
variety A over a field K if there is a surjective morphism π : A → B defined over K with
connected kernel. In such a case, if K is a subfield of C, B is determined by the K-vector
space π∗(Ω1

B/K) and a complex torus for B is obtained by fixing a basis ω1, . . . , ωn of
π∗(Ω1

B/K) and taking the lattice {(∫
γ

ω1, . . . ,
∫

γ
ωn) : γ ∈ H1(A,Z)}. Note that the

property of being optimal quotient over K has the transitive property.
In the modular case, the assignation h(q) 7→ h(q) dq/q, where q = e2 π iz, yields a

bijection between the C-vector spaces S2(Γ0(N)) and Ω1
X0(N)/C and, moreover, Ω1

X0(N)/Q
corresponds to the Q-vector space of cuspidal newforms in S2(Γ0(N)) with ratio-
nal q-expansion, i.e. S2(Γ0(N)) ∩ Q[[q]]. The abelian variety Jac(X0(N))new de-
notes the optimal quotient of Jac(X0(N)) over Q corresponding to the Q-vector space
S2(Γ0(N))new ∩ Q[[q]] and for a normalized newform f of level N , Af shall denote the
optimal quotient of Jac(X0(N))new over Q determined by the Q-vector space of cusp-
idal newforms with rational q-expansion in the C-vector space generated by all Galois
conjugates of f .

Assume that the Shimura curve XD has genus three and set A3 := Jac(X0(D))new.
Since Jac(XD) is isogenous over Q to A3, there are exactly three normalized newforms
f1, f2 and f3 in S2(Γ0(D))new. Let f1 be such that A1 := Af1 is isogenous over Q to
Jac(X(u)). Let A2 be the optimal quotient of A3 such that it is isogenous over Q to
Jac(X(v)). For D 6= 57, A2 = Af2 and f3 is the Galois conjugate of f2. For D = 57,
A2 is isogenous over Q to the product Af2 × Af3 , where Af2 and Af3 are non-isogenous
elliptic curves over Q of conductor 57.

Due to the fact that D is the product of two primes p1 and p2, X0(D) has exactly 4
cusps: 0, 1/p1, 1/p2 and ∞. Since D is square-free, all of them are rational points and
the following cuspidal divisors

D∞ = (0)− (∞), Dp1 = (0)− (1/p1), Dp2 = (0)− (1/p2)

are torsion points in Jac(X0(D))(Q) because a multiple of each of them is the divisor
of a function in Q(X0(D)) obtained as product of integer powers of η-functions (for
instance, see [3]). Hence, they generate a finite subgroup G of Jac(X0(D))(Q) and each
element of G provides a rational torsion point in any quotient of Jac(X0(D)) defined
over Q that will be denoted using the same notation. Let G3, G2 and G1 be the groups
generated by all these divisors in A3, A2 and A1 respectively. We can view Gi as a finite
subgroup of H1(Ai,Z) ⊗ Q/H1(Ai,Z). By fixing a basis of regulars differentials of Ai,
we can determine the groups G3, G2 and G1. In Table 6 of the Appendix, we present a
description of all of them.

In our strategy to determine a subgroup c(D) of G3 such that Jac(X0(D))new/c(D)
is Jac(XD), an important ingredient is finding a subgroup G′ of G2 such that A2/G′ is
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the jacobian of a genus two curve defined over Q. To do that, we will need to have a
polarization on A2 defined over Q to apply the procedure used in [4]. In order to get
such a polarization, we will proceed as follows. We will determine the abelian subvariety
A′2 of Jac(X0(D)) isogenous over Q to A2 and stable under Hecke operators. Hence,
π(A′2) = A2, where π : Jac(X0(N)) → A2 is the natural projection. The action of the
Riemann form corresponding to the canonical polarization on Jac(X0(D)) restricted to
H1(A′2,Z) provides a polarization on A′2 defined over Q. Determining π−1

∗ (H1(A2,Z)) as
a subgroup of H1(A′2,Z)⊗Q, we will obtain a polarization on A2 defined over Q.

Theorem 5.1. With the above notation, there is a subgroup c(D) of G3 which is
the kernel of an isogeny Φ : Jac(X0(D))new −→ Jac(XD) defined over Q. The following
table shows c(D) for each of these values D:

D 2 · 31 2 · 41 2 · 47 3 · 13 3 · 17 3 · 19 3 · 23 5 · 7 5 · 11
c(D) 〈3D∞〉 〈D∞〉 〈D∞〉 〈4D∞〉 〈4D∞〉 G3 G3 〈12D∞〉 {0}
|c(D)| 8 7 4 7 3 20 8 2 1

Proof. Let {h1, h2, h3} be a basis of S2(Γ0(D))new with rational q-expansion such
that h1 = f1 and {h2, h3} is a basis of the vector space generated by f2 and f3. Let Ωc(D)

be a period matrix for Jac(X0(D))new/c(D) corresponding to this basis and a basis of the
Z-module H1(A3,Z) + Z c(D) ⊆ H1(A3,Z)⊗Q, where c(D) is as in the statement. For
a fixed basis of Ω1

XD/Q, let us denote by Ωsh a period matrix for Jac(XD) with respect
this basis. The statement amounts to prove that there are two matrices C ∈ GL3(Q)
and M ∈ GL6(Z) satisfying

Ωc(D) ·M = C · Ωsh. (9)

For XD, we take the equation y2 = f(x) given in Table 5 of Theorem 4.5. Let
Z2 = F (X) and Y 2 = H(X) be the corresponding equations presented for X(u) and
X(v) respectively in Table 4 of Proposition 4.4. For any subgroup G′3 of G3, let us denote
by G′2 and G′1 its projections in G2 and G1 respectively.

Since the proof will be done computationally, we have to take care with mistakes
coming from numerical approximations. For this reason, our procedure is based on the
two following facts. On the one hand, we shall determine a quotient of A2 by a subgroup
of G2 which is the jacobian of a genus two curve C defined over Q. This fact allows us to
find the explicit isogeny between Jac(C) and Jac(X(v)). On the other hand, to compute
Ωsh we shall choose the following basis of Ω1

XD/Q:

{ω1, ω2, ω3} = {π∗u(dX/Z), π∗v(dX/Y ), π∗v(X dX/Y )}.

In thus way, the matrix C as in (9) should be of the following form

C =



∗ 0 0
0 ∗ ∗
0 ∗ ∗


 ∈ GL3(Q).
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We sketch the proof by splitting the procedure used in the following steeps:

(i) Compute period matrices Ω3, Ω2 and Ω1 for A3, A2 and A1 with respect the
bases {h1(q)d/q, h2(q)dq/q, h3(q)dq/q}, {h2(q)dq/q, h3(q)dq/q} and h1(q)dq/q re-
spectively.

(ii) For every i ≤ 3, determine the coordinates of D∞, Dp1 and Dp2 with respect the
bases of the homologies H1(Ai,Z) used for computing the period matrices Ωi,
1 ≤ i ≤ 3.

(iii) Find a subgroup G′ of G2 such that A′ = A2/G′ has an irreducible principal polar-
ization over Q. Take a basis for G′+H1(A2,Z) and let Ω′2 be a period matrix with
respect this basis and the same basis of regular differentials used to compute the
matrix Ω2. Following the procedure used in 4.6 of [4], compute a genus two curve
C : y2 = r(x) such that Jac(C) = A′ (if possible, take G′ such that C is isomorphic
over Q to X(v)). Observe that using this procedure, the matrix Ω′2 is a matrix
period for Jac(C) with respect the basis {dx/y, x dx/y}. For instance,

D G′ C
2 · 31 {0} y2 = (2 + x)(10− x + 24 x2 − 21 x3 + 8 x4)

2 · 41 〈D∞〉 y2 = −3(2 + x2)(1549 + 1576x + 1032 x2 − 32 x3 + 16 x4)

2 · 47 {0} y2 = −x(−1 + 3 x)(8− 27 x + 45 x2 − 24 x3 + 4 x4)

3 · 13 {0} y2 = (1 + 2x)(3 + 2 x)(3 + 5 x + x2)(1 + 3 x + 3 x2)

3 · 17 〈2D∞〉 y2 = (1 + 2x)(5 + 7 x)(7 + 10 x)(51 + 255x + 421 x2 + 229 x3)

3 · 19 〈5D∞, D19〉 y2 = 2(−4 + x)(−1 + x)(4 + 5 x)(−2− 2 x + x3)

3 · 23 〈D3〉 y2 = −(1 + 4 x + x2)(1 + 14x + 43 x2 + 6 x3 + 9 x4)

5 · 7 〈2D∞〉 y2 = −(1 + 2 x)(3 + 2 x)(1 + 3 x)(5 + 25 x + 43 x2 + 19 x3)

5 · 11 {0} y2 = −x(−1 + 3 x)(8− 27 x + 45 x2 − 24 x3 + 4 x4)

(iv) Compute a period matrix Ωsh2 for X(v) with respect the basis dX/Y,X dX/Y

and determine a matrix A =
(

a b
c d

) ∈ GL2(Q) for which there exists a matrix
M2 ∈ M4(Z) such that

Ω′2 ·M2 = A · Ωsh2.

In order to do that, we can use the instruction IsIsogenousPeriodMatrices of the
program MAGMA to determine these matrices. When C is isomorphic to Xv, the
explicit isomorphism between both curves provides the matrices A and M2.

(v) Let G′3 be a subgroup of G3 such that G′2 = G′. Let Ω′1 be a period matrix of
A1/G′1 with respect the basis h1(q)dq/q. Compute a period matrix Ωsh1 for X(u)

with respect dX/Z and determine a rational m for which there exists a matrix
M1 ∈ M2(Z) such that

Ω′1 ·M1 = m · Ωsh1.
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(vi) Compute a period matrix Ωsh with respect to the basis ω1 = π∗u(dX/Z), ω2 =
π∗v(dX/Y ), ω3 = π∗v(X dX/Y ) of Ω1(XD). Observe that for D 6= 57, 82, one has
that

(ω1, ω2, ω3) =

{
(2xdx/y, 2dx/y, 2x2dx/y) if D ∈ {35, 51, 62, 69, 94},
((x2 + 1)dx/y, xdx/y, (x2 − 1)dx/y) if D ∈ {39, 55}.

For D = 57, 82, we have that H(X) = e(X2 + α)F (X) and Y = Z t. Setting
u = t/(X +

√−α), with the change

X = −√−α
u2 + e

u2 − e
, z =

(u2 − e)3 Z t

u
,

we obtain the hyperelliptic model defined over Q(
√−α) for X(v)

z2 = f(u) =
(u2 − e)6

u2
H

(
−√−α

u2 + e

u2 − e

)
,

which allows us to compute a matrix period for this equation with respect the basis
of regular differentials {du/z, u du/z, u2 du/z}. In this case

(ω1, ω2, ω3) =
(

8 e2 α
udu

z
, 4 e

√−α

(
u2 du

z
− e

du

z

)
, 4 e α

(
u2 du

z
+ e

du

z

))
.

(vii) Determine an integer λ for which there is a matrix M ′ ∈ M6(Z) such that

Ωc(D) ·M ′ = λ ·A′ · Ωsh, where A′ =




m 0 0
0 a b
0 c d


 .

(viii) By using the Hermite decomposition of the matrix M ′ and the action of
EndQ(A3/c(D)) on Ωc(D), we can find an endomorphism φ ∈ EndQ(A3/c(D))
whose action on the basis {h1, h2, h3} is given by a matrix B ∈ GL2(Q) and for
which

B · Ωc(D) ·M = Ωc(D) ·M ′,

for some M ∈ GL6(Z). Finally, putting C = λ ·B−1 ·A′ we obtain that

Ωc(D) ·M = C · Ωsh.

In Table 7 of the Appendix, we show the cusp forms h2 and h3 used in our computation, by
giving the first terms of their q-expansions, and the matrix C obtained. The matrix M is
omitted, since it depends on the chosen bases for the homologies of Jac(X0(D))new/c(D)
and Jac(XD). ¤
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6. Appendix.

Table 6.
D G3 G2 G1

2 · 31 Z/24Z Z/6Z Z/4Z
24D∞ = 8D2 = 3D31 = 0 6D∞ = 2D2 = 3D31 = 0 4D∞ = D31 = 0
8D∞ + D31 = 0 2D∞ + D31 = 0 D∞ = D2

9D∞ −D2 = 0 3D∞ + D2 = 0
2 · 41 Z/7Z Z/7Z {0}

7D∞ = 7D2 = D41 = 0 7D∞ = 7D2 = D41 = 0
D∞ = D2 D∞ = D2

2 · 47 Z/4Z Z/2Z Z/2Z
4D∞ = 4D2 = D47 = 0 2D∞ = 0 2D∞ = 0
D∞ = D2 D∞ = D2 D∞ = D2

3 · 13 Z/28Z× Z/2Z Z/14Z Z/2Z
28D∞ = 14D3 = 4D13 = 0 14D∞ = 7D2 = 2D13 = 0 2D∞ = 0
12D∞ + 2D3 = 0 6D∞ + D3 = 0 D3 = 0
14D∞ − 2D13 = 0 7D∞ −D13 = 0 D∞ = D13

3 · 17 Z/12Z× Z/2Z Z/4Z× Z/2Z Z/3Z
12D∞ = 6D3 = 4D17 = 0 4D∞ = 4D17 = 2D3 = 0 3D∞ = 0
3D∞ + 3D3 + D17 = 0 D∞ + D3 −D17 = 0 D∞ = D3

4D∞ + 2D3 = 0 2D∞ + 2D17 = 0 D17 = 0
3 · 19 Z/10Z× Z/2Z Z/10Z× Z/2Z {0}

10D∞ = 10D3 = 2D19 = 0 10D∞ = 10D3 = 2D19 = 0
D∞ −D3 −D19 = 0 D∞ −D3 −D19 = 0

3 · 23 Z/4Z× Z/2Z Z/2Z× Z/2Z Z/2Z
4D∞ = 4D3 = D23 = 0 2D∞ = 2D3 = 0 2D∞ = 0
2D∞ + 2D3 = 0 D∞ = D3

5 · 7 Z/24Z× Z/2Z Z/8Z× Z/2Z Z/3Z
24D∞ = 8D5 = 6D7 = 0 8D∞ = 8D5 = 2D7 = 0 3D∞ = 0
6D∞ + 2D5 = 0 2D∞ − 2D5 = 0 D∞ = D7

16D∞ + 2D7 = 0 D∞ −D5 + D7 = 0 D5 = 0
5 · 11 Z/4Z× Z/2Z Z/2Z Z/3Z

4D∞ = 4D5 = 2D11 = 0 2D∞ = D11 = 0 2D∞ = D11 = 0
D∞ −D5 −D11 = 0 D∞ = D5 D∞ = D5
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Table 7.
D h2 h3 C

2 · 31 q3 + · · · q − q2 + q3 + · · · 1
2




1 0 0
0 −1 −1
0 1 −1




2 · 41 q + q2 + q4 + · · · q3 + · · · 1
36



−3 0 0

0 6 8
0 15 22




2 · 47 q − q2 + q4 + · · · 2q3 − q5 + · · · 1
4




1 0 0
0 1 0
0 3 −2




3 · 13 q − q2 + q3 + · · · q2 − 2q4 + · · ·



1 0 0
0 −1 −1
0 1 0




3 · 17 q − q3 + · · · q2 − q4 + · · · 1
4




1 0 0
0 −7 −10
0 1 2




3 · 19 q + q2 + q3 + · · · q − 2q2 + q3 + · · · 1
6




3 0 0
0 0 3
0 4 −4




3 · 23 q − q3 + · · · q2 − q5 + · · · 1
2




8 0 0
0 13 −1
0 5 −1




5 · 7 q − q3 + · · · q2 − q3 + · · · 1
4




1 0 0
0 −3 −2
0 1 2




5 · 11 q2 − 2q3 + · · · q + 2q3 + · · ·



1 0 0
0 1 −2
0 1 −3



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