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Abstract. Entropy was first introduced in 1865 by Rudolf Clausius in
his study of the connection between work and heat. A mathematical definition
was given by Boltzmann as the logarithm of the number of micro states that
corresponds to a macro state. It plays important roles in statistical mechanics,
in the theory of large deviations in probability, as an invariant in ergodic theory
and as a useful tool in communication theory. This article explores some of
the connections between these different contexts.

1. Introduction.

The concept of entropy appears in many different contexts, in many different forms
and is used in many different ways. The earliest appearance of the term seems to be in
the work of Rudolf Clausius [3] in connection with his development of classical theory of
thermodynamics. Its increase was viewed as a loss due to inefficiency in the conversion
of heat to work. It was a property defined in the bulk. Boltzmann [2] later gave a
microscopic definition of entropy. If S is a macro state that consists of a set Ω = {s} of
micro states then the Boltzmann entropy is defined as

H(S) = k log |Ω|

where |Ω| is the size of Ω measured as the number of states s ∈ Ω in the discrete case
or the volume of Ω in the continuous case. This plays an important role in statistical
mechanics on which the modern theory of thermodynamics is based.

2. Entropy and Information theory.

In Shannon’s theory of communication [15] the notion of entropy plays a central
role. If p = {p1, p2, . . . , pk} is a probability distribution on a set of k points, i.e. pi ≥ 0
and

∑
i pi = 1, then Shannon’s entropy is

h(p) = −
k∑

i=1

pi log pi.
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There are many axiomatic derivations of this (see [1] for instance) based on properties
that a good entropy function, defined for all probability distributions on finite sets of
points should have. However it is more interesting to see the connection with Boltzmann’s
definition. One can think of a large collection of N objects. Each object can be one of k

possible types. The micro states are the set of functions

t : {1, 2, . . . , N} → {1, 2, . . . , k}

specifying the type of the object i as t(i). The macro state p = {p1, . . . , pk} corresponds
to the collection Ωp of micro states {t} where the proportion of objects of type j is
roughly pj . Then by the multinomial formula, we have

|Ωp| ' N !
(Np1)!(Np2)! · · · (Npk)!

.

One can use the approximation for factorials provided by Stirling’s formula

log N ! =
(

N +
1
2

)
log N −N +

1
2

log(2π) + o(1)

to conclude that

log |Ωp| = −N

k∑

i=1

pi log pi + o(N) = Nh(p) + o(N)

establishing a direct connection between Shannon’s entropy and Boltzmann’s entropy.
There is also the notion of conditional entropy. Let X : Ω → {1, 2, . . . , k} be a

random variable on (Ω,F , P ) and Σ ⊂ F be a sub σ-field. The conditional probability
p(i, ω) = P [X = i|Σ] is the probability that X = i given Σ. The conditional entropy is
given by

h(p(ω)) = −
k∑

i=1

p(i, ω) log p(i, ω)

and the average conditional entropy given by

EP [h(p(ω))].

The unconditional probability is p = E[p(ω)] and the convexity of the function x log x

and Jensen’s inequality imply that

h(p) ≥ E[h(p(ω)].

If F and G are two finite sets and r(x, y) = p(x)q(y|x) is a probability distribution r on
F ×G, with marginal p = p(·) and conditional qx = q(·|x), it is easy to see that
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h(r) = h(p) + Ep[h(qx)].

Let us suppose that we have a stationary stochastic process {Xn} with values from
a finite set F . Denoting the distribution of the process by P , for any finite n, we have
the joint distribution pn of X1, . . . , Xn on Fn and the corresponding entropy

Hn(P ) = h(pn) = −
∑

pn(x1, . . . , xn) log pn(x1, . . . , xn)

where pn(x1, . . . , xn) = P [X1 = x1, . . . , Xn = xn]. It follows from the properties of the
entropy function h(p), that

Hn+1(P ) ≥ Hn(P ); Hn+m(P ) ≤ Hn(P ) + Hm(P )

and in fact

Hn+1(P )−Hn(P ) ≤ Hn(P )−Hn−1(P ).

Therefore the limit

lim
n→∞

Hn+1 −Hn(P ) = lim
n→∞

Hn(P )
N

= H(P )

exists and defines the entropy rate of the process. It is not difficult to see that

H(P ) = EP [h(p(ω))] = EP

[
−

∑

x∈F

p(x|ω) log p(x|ω)
]

where Σ is the σ-field of past history generated by X0, X−1, . . . and

p(x|ω) = P [X1 = x|Σ].

If P is a product measure with marginal p, then

H(P ) = h(p).

If it is Markov with transition probability q(y|x) and invariant distribution p then

H(P ) = −
∑
x,y

p(x)q(y|x) log q(y|x).

Entropy plays an important role in measuring ones ability to compress data by coding.
We want to code an incoming data stream distributed according to P in the alphabet F of
size k into words from an alphabet G of size r. Although the number of possible incoming
words of length n is kn, a small fraction of them will carry most of the probability.
Their number is roughly enH(P ), and they can be coded in to em log r words of length
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m = nH(P )/ log r, because en(H(P )+o(1)) = em log r.
What makes it possible is the following theorem of Shannon, Breiman and McMillan:

let P be the distribution of a stationary ergodic stochastic process. Given any ε > 0,
for sufficiently large n, we can find a set of enH(P )+o(n) words of length n, each having,
under the n dimensional joint distribution of P , probability e−nH(P )+o(n) and carrying
a total probability of at least 1− ε.

A coding theorem due to Feinstein tells us how the rate at which one can transmit
messages with a small probability of error through a noisy channel also involves entropy.
A noisy stationary channel ν(x, dy) is specified by the distribution of the output sequence
y = {yj} given that the input sequence was x = {xi} and satisfies ν(x, A) = ν(Tx, TA)
where T is the shift in the space of sequences. Let us suppose for simplicity that ν(x, A)
is such if A is measurable with respect to the σ-field generated by y1, . . . , yk then ν(x, A)
depends only on x1, x2, . . . xk. If N is the length of an input signal, we want to find kN in-
put sequences of length N and KN mutually disjoint subsets in output space {y1, . . . , yN}
such that ν(xi, Ai) ≥ 1− ε. The maximum number kN that we can find determines the
capacity C of the channel

C = lim
N→∞

1
N

log kN .

Feinstein’s theorem states that under certain assumptions on the channel ν, C is given
by

sup
α

[H(α) + H(β)−H(γ)].

Here the sup is taken over all stationary processes α and for any stationary process α,
γ(dx, dy) = α(dx)ν(x, dy) and β is the marginal of y. [7] and [10] are good resources
for this material.

3. Entropy and dynamical systems.

A dynamical system is a measure space (Ω,Σ, P ) with a measure preserving invert-
ible transformation T : Ω → Ω. Two dynamical systems (Ω,Σ, P, T ) and (Ω′,Σ′, P ′, T ′)
are isomorphic if there is a one to one map S of the measure space (Ω,Σ, P ) onto
(Ω′,Σ′, P ′) that intertwines T and T ′, i.e. ST = T ′S. The measure preserving trans-
formation generates a unitary map of L2(Ω,Σ, P ) and its spectral type is also invariant
under isomorphisms. Kolmogorov [11] defined the entropy of a dynamical system in the
following manner. Given any finite partition P, i.e. a measurable map f : Ω → F of Ω
into a finite set F , a stationary stochastic process Pf can be generated by Xn = f(Tnω).
Its entropy can be calculated as H(Pf ) and the Kolmogorov entropy of (Ω,Σ, P, T ) is
defined as

H = sup
f

(H(Pf ))

where the supremum is calculated over all maps f into finite sets.He proved that entropy
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is an invariant and that it is not determined by the spectrum. That left open the
possibility that entropy could be a complete invariant, at least within a large class of
dynamical systems. Sinai [16] proved a weak form of the converse. Ornstein later proved
[13] that the equality of entropy was sufficient to establish an isomorphism under fairly
general assumptions on the two systems. In particular if P1 and P2 are product measures
on two product spaces F∞1 and F∞2 with marginals p1 and p2, there exists a one to one
measure preserving translation invariant mapping of (F∞1 ,Σ1, P1) onto (F∞2 ,Σ2, P2) if
and only if

h(p1) = −
∑

a∈F1

p1(a) log p1(a) = −
∑

a∈F2

p2(a) log p2(a) = h(p2).

4. Relative entropy and large deviations.

Whereas the entropy h(p) can be defined for discrete probability distributions, it is
not clear how to define it more generally. A natural definition for a distribution given by
a density f(x) on R or Rd can be h(f) =

∫
f(x) log f(x)dx. The Lebesgue measure is only

defined up to a multiplicative constant which creates a mild ambiguity in h(f). There
is also the difference of the sign in front of the integral, when compared with Shannon’s
definition. If α is a singular distribution on R or a measure on some abstract space, it
is not clear what one should do. It is important to note that there has always been a
second measure in the background, i.e. the counting measure in the discrete case and
the Lebesgue measure when we have a density. Relative entropy involves two probability
measures α and β on the same measurable space (X, Σ) and it is given by

h(β : α) =
∫

log
dβ

dα
(x)β(dx) =

∫
dβ

dα
(x) log

dβ

dα
(x)α(dx)

provided β ¿ α and the Radom–Nikodym derivative f(x) = (dβ/dα)(x) has the property

∫
| log f(x)|β(dx) =

∫
f(x)| log f(x)|α(dx) < ∞.

Otherwise h(β : α) is taken as +∞. It is important to observe that on X−={x :f(x)<1}∫
X−

| log f(x)|f(x)α(dx) is always finite, in fact bounded by e−1 and the divergence can
arise only from large values of f(x) or log+ f(x). Shannon entropy and the relative
entropy h(p; q) where q is the uniform distribution on k points with qi = 1/k are related

h(p; q) = log k +
∑

i

pi log pi = h(q)− h(p).

Relative entropy or Kullback–Leibler number h(β : α) satisfies h ≥ 0 and h = 0 if
and only if α = β. It can be thought of as measuring the distance from α to β. However
it is not symmetric. If we have n independent observations from α then the empirical
distribution (1/n)

∑n
i=1 δxi

is close to α with probability nearly 1 and the probability
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that it is close to a different distribution β is very small as n → ∞. It is exponentially
small in n, i.e. exp[−cn+o(n)] and the constant c depends on β and is in fact c = h(β : α).
This was proved by Sanov [14].

The proper definition of Large Deviations for a sequence Pn of probability measures
on a complete separable metric space X is the existence of a rate function I(x) ≥ 0 such
that for each ` < ∞, the set K` = {x : I(x) ≤ `} is compact and for any C closed

lim sup
n→∞

1
n

log Pn(C) ≤ − inf
x∈C

I(x) (4.1)

and for any G open

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

I(x). (4.2)

Such estimates are often obtained locally, i.e. one shows that

lim
δ→0

lim sup
n→∞

1
n

log Pn(B(x, δ)) = lim
δ→0

lim inf
n→∞

1
n

log Pn(B(x, δ)) = −I(x).

From such an estimate the lower bound (4.2) would follow but the upper bound (4.1) can
be shown only for compact sets by the standard covering argument. To obtain (4.1) for
all closed sets one needs a companion estimate of the following form. Given any ` < ∞
there is a compact set K` such that for any closed set C ⊂ Kc

`

lim sup
n→∞

1
n

log Pn(C) ≤ −`.

If we have a large deviation result for Pn with rate function I(x) on some Polish space
X and f : X → Y is a continuous map then Qn = Pnf−1 on Y satisfies a large deviation
property with rate function

J(y) = inf
x:f(x)=y

I(x).

In this language, Sanov’s theorem takes the following form. Let Pn be the distribution
of the empirical distribution (1/n)

∑n
i=1 δxi

induced by the product measure Πα on
X∞ on the space M(X) of probability distributions on X, endowed with the topology
of weak convergence. Then Pn satisfies a large deviation property with rate function
I(β) = h(β : α).

The notion of relative entropy can be pushed to the process level [6]. Suppose P

and Q are two stationary stochastic processes, i.e. two measures on the product space
X∞, then we saw earlier that we can consider the conditional distributions p(dx|ω) and
q(dx|ω) of x1 given the past history {xi; i ≤ 0}. The relative entropy H(Q : P ) can
perhaps be defined as

H(Q;P ) = EQ[h(q(·|ω), p(·|ω))].
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One would expect this to control the large deviation probability that the empirical dis-
tribution of not just the one dimensional marginals as in Sanov’s theorem, but the prob-
ability that all the finite dimensional distributions look like they came from Q. It should
be roughly exp[−nH(Q : P ) + o(n)]. But there is a serious problem. p(·|ω) and q(·|ω)
are only defined almost everywhere with respect to P and Q respectively. But in general
P and Q are orthogonal and one can not define h(q(·|ω), p(·|ω)) a.e. Q in order to be able
to integrate. But often p(·|ω) is globally defined. Like when P is a product measure p is
independent of ω or when it is Markov with a well defined transition probability. In such
situations H(Q : P ) is well defined and one can prove a large deviation result for the
“empirical process”. Technically the empirical process is a random stationary process
obtained by placing equal probability of 1/n at each of the n points of the periodic orbit
obtained by extending (x1, x2, . . . , xn) ∈ Xn periodically in both directions.

In the end any large deviation from ergodicity is eventually a contraction of
H(Q : P ). To illustrate this, Cramer’s rate function [4] for sums of independent random
variables with a common distribution α is given by

I(a) = sup
θ

[θa− log M(θ)] (4.3)

where

M(θ) =
∫

exp[θ y]dα(y).

One can verify that with P = Π α

inf
Q:
R

x1dQ=a
H(Q : P ) = I(a)

and that the infimum is attained at Q = Π β with dβ = (1/M(c))ec ydα, c being the
value of θ where the supremum is attained in (4.3).

If P is a Markov Chain on a finite state space X with transition probabilities p(x, y)
and invariant distribution α(x), one can ask for the analog of Sanov’s theorem for the
empirical distribution. From the contraction principle

I(β) = inf
Q∈M(β)

H(Q : P )

where M(β) are stationary processes with marginal β. The infimum can be limited to
Markov Chains with transition probability q and invariant distribution β so that

I(β) = inf
q:βq=β

∑
x,y

β(x) q(x, y) log
q(x, y)
p(x, y)

.

One can deal with continuous time processes as well. One looks at the conditional
distributions on [0, T ] given the past and calculates HT (Q : P ) as the average relative
entropy on [0, T ] of the conditional of Q with respect to the conditional of P . Assuming
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it is well defined one can show that HT (Q : P ) = TH for some constant H and H =
H(Q : P ) now controls the large deviation rates.

5. Entropy and duality.

In analysis the duality between the two functions |x|p/p and |y|q/q plays an impor-
tant role. If 1/p + 1/q = 1,

|x|p
p

= sup
y

[
xy − |y|q

q

]

and we have the Hölder inequality

∣∣∣∣
∫

fgdµ

∣∣∣∣ ≤ ‖f‖p‖g‖q.

The two functions x log x− x and ey are duals

ey = sup
x>0

[xy − (x log x− x)]

and for x ≥ 0

x log x− x = sup
y

[xy − ey].

This leads to the following generalization of Jensen’s inequality

∫
f(x)dβ(x) ≤ h(β : α) + log

∫
exp[f(x)]dα(x).

One can take f to be cχA(x) and obtain by optimizing over c > 0,

β(A) ≤ h(β : α) + 2
log(1/α(A))

. (5.1)

This can be thought of as the entropy analog of

∫

A

|f(x)|dα ≤ [α(A)]1/p‖f‖q.

When the dimension n of the spaces gets large β and α are getting nearly orthogonal.
When dealing with f = dβ/dα one has better control on the entropy

∫
f log fdα that

typically grows linearly, than on the Lp norms ‖f‖p for p > 1 that grow exponentially
with n. In some sense, the entropy

∫
f log fdα should be thought of as ‖f‖1+0.
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6. Log Sobolev inequality.

If we have a Markov process on X, with a reversible invariant distribution µ(dx),
then we have the semigroup

(Ttf)(x) =
∫

f(y)p(t, x, dy)

which is a one parameter semigroup of self adjoint contractions on L2(X, µ). Assuming
some regularity we have the Dirichlet form

D(f) = lim
t→0

1
t
〈f − Ttf, f〉 = lim

t→0

1
2t

[‖f‖22 − ‖Ttf‖22
]
.

The log Sobolev inequality is an inequality of the following form. If f ≥ 0 and ‖f‖1 = 1

∫
f log fdµ ≤ cD(

√
f).

If we start the Markov process initially from a distribution with density f relative to
µ, the density then evolves like f(t) = Ttf . A simple calculation shows that if L is
differential operator ∇ ·A∇ on some Rn

− d

dt

∫
f(t) log f(t)dµ =

∫
[log f(t)Lf(t)]dµ =

∫ 〈∇f(t), A∇f(t)〉
f(t)

dµ = 4D(
√

f).

If the operator L is nonlocal, we still have the inequality

− d

dt

∫
f(t) log f(t)dµ ≥ 4D(

√
f).

There are many useful estimates on the maps Tt from Lp(X, µ) to Lq(X, µ) that follow
from a log Sobolev inequality. See [8] and [5] for an exposition.

7. Gibbs states.

In statistical mechanics one studies probability distributions on RN defined through
an interaction. Let us for simplicity consider the one dimensional case. A probability
distribution µN on RN is defined by

dµN =
1

ZN
exp

[
−

N∑

i=1

F (xi, xi+1, . . . , xi+k−1)−
N∑

i=1

V (xi)
]
Πdxi

where

ZN =
∫

RN

exp
[
−

N∑

i=1

F (xi, xi+1, . . . , xi+k−1)−
N∑

i=1

V (xi)
]
Πdxi.
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[We can assume that
∫

e−V (x)dx = 1 and 1, . . . , N are arranged periodically so that N +i

is identified with i.]
The first step is to calculate the limit

lim
N→∞

1
N

log ZN = ψ(F ).

We can express the sum
∑N

i=1 F (xi, xi+1, . . . , xi+k−1) as N
∫

FdQ in terms of the em-
pirical process Q with a large deviation rate of H(Q : P ) relative to the product
measure P = Πie

−V (xi)dxi. The local contribution to the integral ZN from Q is
exp[−N [

∫
FdQ + H(Q : P )]]. It is not hard to see that under suitable conditions

ψ(F ) = − inf
Q

[ ∫
FdQ + H(Q : P )

]

where the infimum is taken over all stationary processes. If the infimum is attained at a
unique Q then it defines a Gibbs state Q

dQ = c exp
[
−

∑

i

F (xi, xi+1, . . . , xi+k−1)−
∑

i

V (xi)
]
Πidxi.

ψ(F ) referred to as “Free Energy” can be used to calculate
∫

GdQ as the derivative at
λ = 0

d

dλ
ψ(F + λG)

∣∣∣∣
λ=0

.

See [12] for a detailed exposition.

8. Interacting particle systems.

In dealing with limiting behavior of large interacting systems with conserved quan-
tities and multiple equilibria the system starting from non equilibrium evolves slowly
towards equilibrium with local equilibria being established first and then the local equi-
libria converging slowly to a global equilibrium. This can be made precise. Initially the
relative entropy with respect to a global equilibrium is about the size of the system. Its
total decrease can not be more than the initial entropy H(0).

∫ ∞

0

D(
√

f(t))dt ≤ H(0) ≤ CN

where N is the size of the system. This provides an average decay rate for D(
√

f(t))
which can be used to establish local equilibria, and study how the system evolves to
global equilibria. This has been carried out for example in [9] for a class of models. The
critical step is the replacement of averages of rapidly changing quantities by their expec-
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tations under the appropriate equilibrium determined by the averages of the conserved
quantities. In the end it boils down to showing that certain quantities are negligible.
By using Feynman–Kac formula and eigenvalue estimates obtained through the Dirichlet
form we can manage to get the required quantities to be negligible in equilibrium with
exponentially small error probabilities. One can then use the entropy bound (5.1) to
control the probability of error in nonequilibrium.

9. Another example.

The totally asymmetric simple exclusion process on the one dimensional periodic
lattice of size N consists of ρN particles arranged with at most one particle per site at
N equally spaced points on the circle of arc length 1. The particles wait independently
for a random exponentially distributed time and try to jump to the next anti clockwise
site provided it is free. Otherwise it waits for the next chance. As N → ∞ the current
state can be condensed to a density profile

ρ(x)dx = lim
N→∞

1
N

N∑

i=1

δi/Nξi

where ξi = 1 if there is a particle at site i and 0 otherwise. As the system evolves, if
we look at times Nt, the profiles ρ(t, x) in the limit as N → ∞ are supposed to evolve
according to

∂ρ

∂t
+ [ρ(t, x)(1− ρ(t, x))]x = 0. (9.1)

If we are given a smooth solution of (9.1) with 0 < a ≤ ρ(t, x) ≤ b < 1, we can start the
particle system with a random product distribution µ0 with

µ0[ξi = 1] = ρ

(
0,

i

N

)
.

This will evolve in time Nt to a distribution µN (t) which will not in general be a product
measure and is difficult to compute. But we can define λN (t) as the product measure
with

λN (t)[ξi = 1] = ρ

(
t,

i

N

)
.

How close are λN (t) and µN (t)? One can look at the relative entropy HN (t) =
h(µN (t);λN (t)) and note that HN (0) = 0. By a Gronwall type argument one can show
that HN (t) = o(N). This is enough to conclude that the empirical density profile at time
Nt under µN (t) is very close to ρ(t, x) with probability close to 1. See [17] where this
method is carried out for a different model.
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10. Postscript.

Before I met Professor Itô I had studied Stochastic Differential Equations. As some
one interested in Markov processes I had started with semigroups of operators and the
functional analytic approach. But with SDE I felt I understood better what diffusions
were. I first met Professor Itô in Ithaca, NY when my wife Vasu and I visited Cornell in
the spring of 1972. I remember going out for dinner with Professor and Mrs Itô. Four
years later in 1976 there was a conference on SDE at Kyoto University for a week which
I attended and got to know him quite well. That was one of many conferences organized
by Professor Balakrishnan of UCLA on SDE where we usually met. My close interaction
with him was in 1980 when I visited Japan for a six week stay at Osaka University.
Professor Ikeda was my host. There were weekly seminars at Osaka as well as Kyoto
when most of probabilists from Tokyo to Fukuoka came and Professor Itô was an active
participant. Later I attended a couple of Taniguchi Symposia that were organized by
him. Another interesting occasion was when we both attended a Vilnius conference in
probability and went later to Moscow. I remember a lunch for a small group of us that
included both Professors Kolmogorov and Itô. The last time I saw him was when he was
in a nursing home near Kyoto. A small group of us visited him, Mrs Itô was there and
he was in good spirits.

Today everybody on Wall street knows about Itô’s formula and once after my lecture
on Itô’s formula in a course on Stochastic processes I was going up to my office in
an elevator. My notes were open and a student next to me asked if I was teaching
Mathematical Finance. I told him no and that I was teaching probability. His remark
‘Is there Itô’s formula in probability too?’
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