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Abstract. The Schramm-Loewner evolution (SLE) is a probability mea-
sure on random fractal curves that arise as scaling limits of two-dimensional
statistical physics systems. In this paper we survey some results about the
Hausdorff dimension and Minkowski content of SLEκ paths and then extend
the recent work on Minkowski content to the intersection of an SLE path with
the real line.

1. Introduction.

The Schramm-Loewner evolution (SLE) is a family of curves introduced by Oded
Schramm [21] as a candidate for the scaling limit of discrete statistical physics models
in two dimensions. We will consider chordal SLEκ in simply connected domains in this
paper for 0 < κ < 8. (SLEκ for κ ≥ 8 is also interesting but it has two-dimensional
plane-filling paths for which the questions discussed in this paper are not relevant.) This
is a probability measure on curves connecting two distinct boundary points; by conformal
invariance, it suffices to define it in the upper half plane H with boundary points 0 and
∞. There is a one-to-one relationship between κ ∈ (0, 8) and the fractal dimension
dκ ∈ (1, 2); indeed, dκ = 1 + (κ/8). In this paper, we first review a number of recent
results about the fractal behavior of the paths. Then we will use the ideas to prove a
new result about the Minkowski content of the “real points” of an SLE curve.

We will parametrize SLEκ in a way that is most convenient for doing the stochastic
calculus computations. Throughout this paper, we let 0 < κ < 8 and a = 2/κ ∈ (1/4,∞).
Then chordal SLEκ from 0 to ∞ can be defined as the random curve γ : [0,∞) → H
with γ(0) = 0 such that the following holds. We will write γt for γ[0, t] and let Ht be the
unbounded component of H \ γt. Let gt : Ht → H be the conformal transformation with
gt(z)− z = o(1), as z →∞. Then gt satisfies the Loewner equation

∂tgt(z) =
a

gt(z)− Ut
, g0(z) = z, (1)

where Ut = −Wt is a standard (real) Brownian motion. For every z ∈ C \ {0}, the
solution to (1) exists up to time Tz ∈ (0,∞] satisfying gt(z) = gt(z) and Tz = Tz. Then
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Ht = {z ∈ H : Tz > t}.

Under our parametrization,

gt(z) = z +
at

z
+ O(|z|−2), z →∞.

More generally, SLEκ connecting distinct boundary points in a simply connected domain
is obtained by transforming this measure by a conformal map. This is considered as a
measure on paths modulo reparametrization.

The definition of γ as given is indirect. Instead of specifying the random dynamics
of the curve γ, an equation is given for the flow away from the curve induced by the
random conformal maps. If z ∈ C \ {0} and Zt = Zt(z) = gt(z)−Ut = gt(z)+ dWt, then
the Loewner equation (1) becomes a stochastic differential equation

dZt =
a

Zt
dt + dWt.

This allows us to use the powerful techniques of Itô calculus to analyze gt and Zt. Un-
derstanding the curve γ is trickier because it is the moving boundary of the domain of
a conformal map (equivalently, the boundary of the image of the inverse map). We will
discuss properties of γ in this paper. Although γ(t) itself does not satisfy an SDE, the
analysis makes heavy use of traditional stochastic analysis on quantities such as Zt.

Rohde and Schramm showed [20] that such a curve γ exists. Moreover, if 0 < κ ≤ 4,
the curve is simple with γ(0,∞) ⊂ H while if 4 ≤ κ < 8, the curve has double points
and hits the real line. They also gave strong evidence, as well as a rigorous upper bound,
that the fractal dimension of the path is d = dκ = 1+(κ/8) = 1+(1/4a). The basic idea
is as follows. Suppose that the curves have fractal dimension d. Then we would expect
that approximately ε−d disks of radius ε would be needed to cover the intersection of γ

with a fixed disk. This would indicate that the probability that a given disk of radius
ε intersects γ should decay like ε2−d as ε → 0. This leads to the following conjecture:
there exists a function G(z) such that

lim
ε↓0

εd−2 P{dist(z, γ) ≤ ε} = G(z). (2)

Using Itô’s formula and scale invariance of SLEκ, Rohde and Schramm showed that this
would only be possible if d = 1 + (κ/8) and

G(z) = c̃ [Im(z)]d−2 [sin arg(z)]4a−1.

This function is often called the chordal SLEκ Green’s function. More generally, we define
the Green’s function for SLEκ in simply connected D from w1 to w2 by

GD(z;w1, w2) = |F ′(z)|2−d G(F (z)),
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where F : D → H is a conformal transformation with F (w1) = 0, F (w2) = ∞. We can
also write

GD(z;w1, w2) = c̃ 22−d cradD(z)d−2 S(z;w1, w2)4a−1,

where crad denotes conformal radius, that is, cradD(ζ) = |f ′(0)|, where f : D → D is
a conformal transformation with f(0) = ζ. Also, S denotes the conformally invariant
quantity “sine of the angle of z with respect to w1, w2”, that is, sin arg F (z), with F as
above. The Koebe 1/4-theorem [5, Theorem 2.3] and the Schwarz lemma imply that

dist(ζ, ∂D) ≤ cradD(ζ) ≤ 4 dist(ζ, ∂D).

While Rohde and Schramm did not establish the limit (2), it has since been established,
first with distance replaced with conformal radius [10, Theorem 3.11]

lim
ε↓0

εd−2 P{crad(z,H \ γ) ≤ ε} = G∗(z), (3)

where G∗(z) = c∗ [Im(z)]d−2 [sin arg(z)]4a−1 for an explicit c∗ = c∗κ, and later in [14] there
is a proof of (2) with G(z) = c̃ [Im(z)]d−2 [sin arg(z)]4a−1 without an explicit expression
for c̃ = c̃κ.

There exists a standard technique for proving Hausdorff dimension of random curves.
In order to apply it for SLEκ one needs “second moment estimates”, that is, estimation
of

P{dist(z, γ) < ε, dist(w, γ) < ε}.

In analogy with (2), we might conjecture that there is a function G(z, w) such that

P{dist(z, γ) < ε, dist(w, γ) < ε} ∼ G(z, w) ε2(2−d), ε ↓ 0, (4)

and a little thought will lead one to guess that G(z, w) ³ G(z) |z − w|d−2 as w → z.
This two-point estimate turns out to be tricky. For example, suppose that τ = inf{t :
dist(z, γ) < ε} and suppose that dist(w, γτ ) > ε. Then the conditional probability
P{dist(w, γ) < ε | γτ} depends very strongly on the curve γτ . Indeed there is no nontrivial
uniform upper bound on this conditional probability. Beffara [4] was the first to show
that for z, w not too close to the real line

P{dist(z, γ) < ε, dist(w, γ) < ε} ³ ε2(2−d) |z − w|d−2,

and proved that the Hausdorff dimension of the paths is d with probability one. An
alternative approach to this theorem with extensions to exceptional points of the path
using the “reverse Loewner flow” can be found in [9], [11]. Beffara’s two-point estimate
was refined in [16] where it is shown that there exists a function G(z, w) such that the
“conformal radius” version of (4) holds,
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P{cradH\γ(z) < ε, cradH\γ(w) < ε} ∼ G∗(z, w) ε2(2−d), ε ↓ 0.

The function G∗(z, w) was not given explicitly. However, it was described in terms of
a process called two-sided radial SLEκ (from 0 to ∞ through z stopped when it reaches
z). Two-sided radial SLEκ is the limiting distribution of SLEκ conditioned so that
cradH\γ(z) < ε. It can be defined precisely in terms of a particular local martingale and
Girsanov’s theorem. Roughly speaking, if a path is going to get very close to both z

and w it is going to first get very close to one of them and then will get very close to
the other. What the path does not do (proving this is one of the hardest steps in these
estimates!) is to go back and forth getting close to z, then close to w, then even closer
to z, then even closer to w, etc. It is proved that

lim
ε↓0

ε2(d−2) P{cradH\γ(z) < ε, cradH\γ(w) < ε}

= G∗(z)E∗z
[
G∗HTz

(w)
]
+ G∗(w)E∗w

[
G∗HTw

(z)
]
. (5)

We read the right hand side as the (normalized) “probability to go through z times the
conditional probability to go through w afterwards given that the path goes through z”
plus the analogous term with z and w switched. Here E∗z denotes the measure of two-
sided radial going through z and Tz is the time that it reaches z. The process reaches
z with probability one in this new measure which shows that the measure is singular
with respect to chordal SLE which does not hit points. Using the results in [14], we can
derive (4) with G(z, w) = cG∗(z, w). While the function G(z, w) is not known explicitly,
one can give an explicit function φ(z, w) such that G(z, w) ³ φ(z, w); in particular, one
can show that G(z, w) ³ G(z) |z − w|d−2 as w → z.

The technique for establishing lower bounds for Hausdorff dimension is to find a
measure supported on the curve that is “d-dimensional”; such measures are sometimes
called Frostman measures. The one and two point estimates suffice for showing tightness
of a sequence of approximating measures, and then a subsequential limit is taken. This
subsequential limit establishes the Hausdorff dimension, but it would be nice to be able to
show that there is a limit measure. The measure would be the d-dimensional Minkowski
content given for a subset V ⊂ C by

Contd[V ] = lim
ε↓0

εd−2 Area{z : dist(z, V ) < ε},

provided that the limit exists. Suppose that γ is an SLEκ path in C and that Contd[γt]
exists for all t such that t 7→ Contd[γt] is continuous and strictly increasing. Then the
curve could be reparametrized so that Contd[γt] = t for all t. This is called the natural
parametrization of SLEκ and is conjectured (but has not been proved) to be the scaling
limit of the discrete paths given by the number of steps of a path.

Establishing the existence of the limit is nontrival for SLE. Suppose for a moment
that it did exist. Let V be a disk in C and let Yt = Cont(γt ∩ V ), Y∞ = limt→∞ Yt =
Cont(γ ∩ V ). Using (2) and (4), we see that
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E[Y ] =
∫

V

G(z) dA(z), E[Y 2] =
∫

V

∫

V

G(z, w) dA(w) dA(z),

where dA denotes integration with respect to area. Using the Markov property, we see
that

E[Y | γt] = Yt + E[Cont(γ[t,∞) ∩ V ) | γt] = Yt + Lt, (6)

where

Lt =
∫

V \γt

GHt
(z; γ(t),∞) dA(z).

This gives a characterization of Yt as the unique increasing process such that Yt +Lt is a
martingale. In [15], [17], the natural parametrization was constructed using this Doob–
Meyer decomposition of the supermartingale Lt. More recently, in [14] the Minkowski
content for SLEκ was established: with probability one, Cont[γt] exists and gives a
continuous, strictly increasing function of t. We will adapt the idea of that paper to
prove a (somewhat easier) boundary version of this result. Before discussing the boundary
questions, we make a few remarks about the Minkowski content.

• Implicit in the assumption (6) is the additivity of the Minkowski content on the
path. A necessary property of SLEκ in order for the proof to work is that the
fractal dimension of the set of double points of the path is strictly less than d. For
κ ≤ 4, this is obvious since the paths are simple, but it is also true for 4 < κ < 8.
See [18] for more information on the dimension of the set of double points.

• We could also define the 2-dimensional Minkowski content of a Brownian path in
Rd. If d ≤ 2, this turns out to be zero, but for d ≥ 3 it is nonzero and in fact grows
linearly in time. (This follows, e.g., from estimates in [8, p.252].) One needs d ≥ 3
for the double points of Brownian motion to have strictly smaller dimension than
two.

• The Hausdorff d-dimensional measure of SLEκ paths is zero [19]. This is typical for
random fractals. Roughly speaking, the Hausdorff measure is obtained by finding
optimal coverings by balls of radius less than or equal to ε while the Minkowski
content covers by balls of radius exactly ε. For deterministic self-similar fractals,
this often does not make a significant difference, but for realizations of random
fractals one can find better coverings by allowing the radius to vary.

• Similarly, the Hausdorff 2-dimensional measure of Brownian paths is zero. For
Brownian motion, one can find the gauge function such that the Hausdorff measure
with the gauge function is nontrivial. (See, e.g., [23].) The main part of the
analysis is to find the upper tail for the amount of time that a Brownian motion
spends in a disk. This is a relatively straightforward eigenvalue computation.

• We do not know if there is such a gauge function for the SLEκ paths. To start
to analyze this, we would need the upper tail for the occupation measure of a
disk. This is much more difficult for SLE than for Brownian motion since the
distribution of the future depends on the past and we do not know what an SLE
path looks like given that it has spent a long time in a disk.
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We now consider the equivalent boundary questions. Suppose x > 0. Find the
exponent β and function G̃(x) such that

P{dist(x, γ) ≤ ε} ∼ Ĝ(x) εβ , ε ↓ 0.

Scaling implies that P{dist(x, γ) ≤ ε x} = P{dist(1, γ) ≤ ε} and hence the function Ĝ(x)
would have to be ĉ x−β for some ĉ. For 4 < κ < 8 we could consider a similar quantity

P{γ ∩ [x− ε, x + ε] 6= ∅}.

It has been known for a while, see, e.g., [1], that

β = 4a− 1 =
8
κ
− 1, (7)

and that P{dist(1, γ) ≤ ε} ³ εβ . However, we do not believe that the limit has been
shown to exist. This is the first step to giving the Minkowski content of the set and is
the first theorem of this paper.

Theorem 1. If 0 < κ < 8, there exists ĉ = ĉκ ∈ (0,∞) such that if x ∈ R \ {0}
and γ is an SLEκ path from 0 to ∞, then

P{dist(x, γ) ≤ ε |x|} = P{dist(1, γ) ≤ ε} ∼ ĉ εβ , ε ↓ 0, (8)

In fact, there exist c < ∞, 0 < α ≤ 1 such that for all ε > 0,

∣∣ε−β P{dist(1, γ) ≤ ε} − ĉ
∣∣ ≤ c εα. (9)

Here β = (8/κ)− 1.

It will be easier to get a “conformal radius” version of this result first. Since x is a
boundary point of Ht, we cannot talk of the conformal radius of Ht with respect to 1.
Instead, we will reflect our domain and let

Dt = Ht ∪ {z : z ∈ Ht} ∪ {x > 0 : Tx > t}. (10)

If t < Tx, then x is an interior point of Dt and we can let

Υt(x) =
1
4

cradDt(x).

The factor 1/4 is put in so that Υ0(x) = x. The conformal radius is closely related to
the distance to the boundary; indeed, the Koebe 1/4 theorem and the Schwarz lemma
imply that

1
4

dist(x, ∂Dt) ≤ Υt(x) ≤ dist(x, ∂Dt). (11)
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We write Υt = Υt(1). As a preliminary step in proving this theorem, we will show that

P{Υ∞ ≤ ε} ∼ c′ εβ , (12)

for an explicit value of c′.
In [2], Alberts and Sheffield used the relation P{γ ∩ [1− ε, 1 + ε] 6= ∅} ³ εβ to study

the dimension of γ ∩ R for 4 < κ < 8. (Actually, in this case, the exact probability is
known.) The expected number of intervals of length ε needed to cover γ ∩ [1, 2] is εβ−1

which predicts a fractal dimension of 1−β = 2− (8/κ). They used the standard method
to prove that the Hausdorff dimension is indeed 1 − β. The main step is to get a two-
point estimate. In analogy to the interior point situation, we would expect that there is
a function G̃(x, y) for x < y, such that

P{dist(x, γ) < ε, dist(y, γ) < ε} ∼ G̃(x, y) ε−2β ,

and scaling would imply that

G̃(r, r(1 + x)) = r−2βG̃(1, 1 + x) =: φ(x).

Also, a heuristic estimate would give φ(x) ³ x−β . Alberts and Sheffield showed that
P{dist(1, γ) < ε, dist(1 + x, γ) < ε} ³ x−β ε2β , which allowed them to prove the result.
The function φ was found by Schramm and Zhou [22] to be a constant times x−β h(x)
where h = hκ is the hypergeometric function

h(x) =
Γ(2a) Γ(8a− 1)
Γ(4a) Γ(6a− 1) 2F1(2a, 1− 4a; 4a;x). (13)

The constant is put in so that h(1) = 1 and hence

h(0) =
Γ(2a) Γ(8a− 1)
Γ(4a) Γ(6a− 1)

.

Theorem 2. If 0 < κ < 8, and x > 0, then

lim
ε,δ↓0

ε−β δ−βP{Υ∞(1) ≤ ε,Υ∞(1 + x) ≤ δ} = (c′)2 x−β h

(
x

1 + x

)
, (14)

lim
ε,δ↓0

ε−β δ−βP{dist(1, γ) ≤ ε,dist(1 + x, γ) ≤ δ} = ĉ2 x−β h

(
x

1 + x

)
, (15)

where ĉ is as in Theorem 1, c′ is given in (12), and h is given in (13).

We will also give another expression for the limit that is analogous to (5),

lim
ε,δ↓0

ε−β δ−βP{Υ∞(1) ≤ ε,Υ∞(1 + x) ≤ δ} = (c′)2 E∗
[
ΥT1(1 + x)−β

]
, (16)
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where E∗ denotes a measure called two-sided chordal from 0 to ∞ through 1 (stopped
when it reaches 1).

One of the reasons to establish (9) is to establish the existence of the Minkowski
content of γ ∩R for 4 < κ < 8. The boundary analogues of the results in [15], [17] were
carried out in [3]. However, the existence of the content was left open. For y1 < x < y2,
there are two possible ways to define the content Cont1−β(γ ∩ [y1, y2]),

Y [y1, y2] = lim
ε↓0

εβ−1 l{x ∈ [y1, y2] : dist(x, γ) ≤ ε}, (17)

Ỹ [y1, y2] = lim
ε↓0

εβ−1 l{x ∈ [y1, y2] : dist(x, γ ∩ R) ≤ ε},

where l denotes length. We will use the first, but our argument would work equally well
for the second and Ỹ [y1, y2] = c Y [y1, y2] for some constant c.

Theorem 3. For every 0 < y1 < y2 < ∞, the limit (17) exists with probability
one. Moreover if Y = Y [y1, y2], then

E[Y ] =
∫ y2

y1

G̃(x) dx =
c̃ (y2 − y1)1−β

1− β
, E[Y 2] = 2

∫ y2

y1

∫ y2

x

G̃(x, y) dy dx.

The next two sections are dedicated to proving these theorems. The basic outline is
close to that in [14], but is actually easier in the boundary case. We will rely very little
on results of previous papers. Our hope is that this paper can be read as an introduction
to the proof techniques used in this area.

We finish with two final sections. In Section 4, we discuss a particular one-
dimensional SDE. This equation arises in the work here, and we discuss one way to
establish the facts that we need. An important fact that we need is that the equation
satisfies a form of a parabolic Harnack inequality. What this means in this simple ex-
ample is that within one unit of time, independent of the starting position, the density
of the processes is within multiplicative constants of the invariant density. The basic
idea is fundamental to many of our arguments, and since this is not familiar to some
probabilists, we explain how we can get this for many equations using known results
about the Bessel process and Girsanov’s theorem.

The final section proves some analogous results in the context of what are sometimes
called SLE(κ, ρ) processes. These processes are obtained from Girsanov’s theorem by
tilting by an appropriate local martingale. We give some examples of how to get results;
the goal here is to demonstrate a proof technique that has become standard in this area.
I would like to thank Dapeng Zhan and an anonymous referee for comments on this
paper.

2. Proof of Theorem 1.

We will prove the stronger result (9). We fix 0 < κ < 8 and let a = 2/κ ∈ (1/4,∞).
All constants may depend on κ. We assume that γ(t) is an SLEκ path from 0 to ∞ in H
with corresponding conformal maps gt satisfying (1) where Ut = −Wt is a standard real
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Brownian motion. We consider gt(z) defined for z ∈ C \ {0} up to time Tz. Let T = T1

and Xt = gt(1)− Ut which satisfies

dXt =
a

Xt
dt + dWt, 0 ≤ t < T, (18)

with X0 = 1. Let Dt be the reflected domain as in (10), so that

C \Dt = (−∞, 0] ∪ {z ∈ C : Tz ≤ t},

and Υt = cradDt
(1)/4. Let xt denote the rightmost point of [C \Dt] ∩ R and let

g(xt) = inf{g(x) : x > 0 : Tx > t}, Ot = gt(xt)− Ut.

In the case κ ≤ 4, we view xt as the prime end corresponding to the “positive” side of 0.
The Loewner equation implies that

dOt =
a

Ot
dt + dWt.

If 4 < κ < 8, we must interpret this as a reflected Bessel process. We also set

Yt = Xt −Ot, Jt =
Yt

Xt
.

The scaling property of conformal radius implies that

Υt =
1
4

cradDt
(1) =

cradgt(Dt)(Xt)
4 g′t(1)

=
Xt −Ot

g′t(1)
=

Yt

g′t(1)
= Jt

Xt

g′t(1)
.

Using the Loewner equation (1) we see that

∂tYt =
a

Xt
− a

Ot
= − aYt

Xt Ot
= − aYt

X2
t (1− Jt)

, if Ot > 0, (19)

∂tg
′
t(1) = −a g′t(1)

X2
t

,

∂tΥt = aΥt

[
1

X2
t

− 1
Ot Xt

]
= −aΥt

Yt

X2
t (Xt − Yt)

= −aΥt
Jt

X2
t (1− Jt)

. (20)

Here we write dXt to denote a stochastic differential and ∂tYt to denote an actual deriva-
tive. Using Itô’s formula, we can see that

Mt = g′t(1)4a−1 X1−4a
t = g′t(1)β X−β

t , t < T,

is a local martingale satisfying
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dMt =
1− 4a

Xt
Mt dWt, M0 = 1. (21)

We will let P∗,E∗ denote probabilities and expectations with respect to the measure
obtained by tilting by the local martingale Mt. To be precise, if ε > 0, τ < T is a
stopping time such that dist(1, γτ ) ≥ ε, and Z is a random variable depending only on
γτ , then

E∗[Z] = E[Z Mτ ].

By the Girsanov theorem and (21), there is a standard Brownian motion Bt with respect
to P∗ such that

dWt =
1− 4a

Xt
dt + dBt, t < T.

The process γ under the measure P∗ is an example of what is called an SLE(κ, ρ) process.
This particular case is called two-sided chordal (from 0 to ∞ in H through 1 stopped when
it reaches 1) in [17].

Note that

dXt =
1− 3a

Xt
dt + dBt.

Using Itô’s formula and the product rule, we see that

dJt =
Jt

X2
t

(
1− a− a

1− Jt

)
dt− Jt

Xt
dWt (22)

=
Jt

X2
t

(
3a− a

1− Jt

)
dt− Jt

Xt
dBt. (23)

This equation becomes nicer if we use a “radial parametrization” in which log Υt decays
linearly. Define the stopping times

σ(t) = inf{s : Υs = e−at}. (24)

On the event {σ(t) < ∞} we define Υ̂t = Υσ(t) = e−at, X̂t = Xσ(t), Ĵt = Jσ(t), ĝt = gσ(t),

D̂t = Dσ(t) and

M̂t = Mσ(t) = |ĝ′t(z)|β X̂−β
t = Υ̂−β

t [Ĵt Xt]β X−β
t = eatβ Ĵβ

t .

By the chain rule and (20), we see that

−a Υ̂t = −a e−at = ∂tΥ̂t = σ̇(t)
−a Ĵt

X̂2
t (1− Ĵt)

Υ̂t,
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and hence

σ̇(t) =
X̂2

t (1− Ĵt)
Ĵt

.

Using this we can change time in the equation (23) to get

dĴt =
[
2a− 3a Ĵt

]
dt +

√
Ĵt(1− Ĵt) dB̂t, (25)

for a standard Brownian motion B̂t. It is convenient to change variables in (25). If we
write Ĵt = (1− cos Θ̂t)/2, then Itô’s formula shows that Θ̂t, 0 < Θ̂t ≤ π satisfies

dΘ̂t = φ(Θ̂t) dt + dB̂t, if 0 < Θ̂t < π, (26)

where

φ(θ) =
(

3a− 1
2

)
cot θ +

a

sin θ
.

Note that as θ ↓ 0,

φ(θ) =
4a− 1/2

θ
[1 + O(θ2)], φ(π − θ) =

1/2− 2a

θ
[1 + O(θ2)]. (27)

By comparison with the Bessel process we can see that a process satisfying (26) does
not reach the origin for all κ < 8, does not reach π if 0 < κ ≤ 4; but does reach π if
4 < κ < 8. In the latter case it is reflected in the same way that the Bessel process is
reflected.

Using this equation we can see that P∗{σ(t) < ∞} = 1. Indeed, since Θ̂t does not
reach zero in finite time, neither does X̂t. This implies that in the tilted measure ΥT = 0
and hence dist(γT , 1) = 0. Below we discuss the stronger fact, that with P∗-probability
one

lim
t↑T

γ(t) = 1.

Although Mt in the original half-plane capacity parametrization is only a local martin-
gale, the process M̂t is an actual martingale; indeed, it is bounded on every compact
time interval.

The invariant probability density for (26) is

ψ(θ) = c (sin θ)4a−1 (1− cos θ)2a,

where c is chosen to make this a probability density. There are various ways to see this.
One way, as described in Section 4, is to see that (26) can be obtained by starting with
a Brownian motion and weighting locally by Φ, where in this case,
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Φ(x) = [sinx]2a−1/2 [1− cos x]a.

The invariant density is ψ(θ) = cΦ2 where c is a normalizing constant. From this we get
the invariant density for Ĵt is a beta distribution

h(x) =
Γ(6a)

Γ(4a) Γ(2a)
x4a−1 (1− x)2a−1,

and

∫ 1

0

x1−4a h(x) dx =
1
2a

Γ(6a)
Γ(4a) Γ(2a)

=
Γ(6a)

Γ(4a) Γ(2a + 1)
.

Let ψ̂t(θ0, θ) denote the density (as a function of θ) of Θ̂t given Θ̂0 = θ0. Standard
techniques (see Section 4 for more details) show that there exists c1, c2, α such that

c1 ψ(θ) ≤ ψ̂t(θ0, θ) ≤ c2 ψ(θ), t ≥ 1, (28)

ψ̂t(θ0, θ) = ψ(θ) [1 + O(e−αt)]. (29)

Indeed, for (28), we can use properties of the Bessel process and (27) to show that our
process is absolutely continuous with respect to a Bessel process near the endpoints.
With this, we can get (29) either by computing an eigenvalue or by a coupling argument.
It follows that for any positive function f ,

E∗
[
f(Θ̂t) | Θ̂0 = θ0

]
=

∫ π

0

f(θ) ψ̂t(θ0, θ) dθ = [1 + O(e−αt)]
∫ π

0

f(θ) ψ(θ) dθ. (30)

Using f(θ) = [1− cos θ]/2, we see that

E∗
[
Ĵt | Θ̂0 = θ0

]
=

Γ(6a)
Γ(4a) Γ(2a + 1)

+ O(e−αt).

Let Θ̃t = Θ̂t/a so that Υ̃t = e−t, and let σ̃(t) = σ(t/a) = inf{s : Υs = e−t}. Let
ψt(θ0, θ

′) = ψ̂t/a(y, θ′) denote the transition probability for Θ̃t assuming Θ̃0 = y. This
also satisfies (28)–(30) (with a different α). We emphasize that ψ describes the evolution
with respect to the tilted measure P∗, that is,

P∗{Θ̃t ∈ V | Θ̃0 = y} =
∫

V

ψt(y, θ) dθ.

Let φt(y, θ) denote the density of Θ̃t with respect to the measure P restricted to the event
{σ̃(t) < ∞} assuming Θ̃0 = y, that is,

P{σ̃(t) < ∞; Θ̃t ∈ V | Θ̃0 = y} =
∫

V

φt(y, θ) dθ.
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We can write φt in terms of ψt and the Radon-Nikodym derivative between the measures
P,P∗. Let F (x) = [1− cos x]/2 so that J̃t = F (Θ̃t), M̃t = eβt F (Θ̃t)β . If Θ̃0 = y, then

dP∗

dP
=

M̃t

M̃0

= F (y)−β eβt F (Θt)β ,

and hence

φt(y, θ) = F (y)β e−βt ψt(y, θ) F (θ)−β

= F (y)β e−βt ψ(θ) F (θ)−β [1 + O(e−αt)].

Note that

P{σ̃(t) < ∞} = E[1{σ̃(t) < ∞}]
= e−βt E

[
M̃t F (Θ̃t)−β ; σ̃(t) < ∞]

= e−βt E∗
[
F (Θ̃t)−β

]
(31)

= e−βt

[
Γ(6a)

Γ(4a) Γ(2a + 1)
+ O(e−αt)

]
. (32)

In the third equality we used P∗{σ̃(t) < ∞} = 1. Using the Koebe 1/4-theorem, we can
see that (32) implies that

P{dist(1, γ) ≤ ε} ³ εβ . (33)

Let

q(ε) =
∫ π

0

P{dist(1, γ) ≤ ε F (θ)}ψ(θ) F (θ)−β dθ,

c+ = lim sup
ε↓0

ε−β q(ε).

The estimate (33) implies that 0 < c+ < ∞. We will now show that

lim
ε↓0

ε−β q(ε) = c+. (34)

Note that g̃′t(1) = et X̃t J̃t. Let

ht(z) =
g̃t(z)− Ũt

X̃t

,

so that ht : D̃t → C\(−∞, J̃t] with ht(1) = 1. Recall that h′t(1) = J̃t et and dist(1, ∂D̃t) ³
e−t. Distortion estimates (see (35)) imply that for every u > 0, there exists s0 = s0(u) <
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∞ such that for all t and all s ≥ s0, the image under ht of the disk of radius e−(t+s)

about 1 is contained in a disk of radius J̃t e−(s−u) about 1 and contains a disk of radius
J̃t e−(s+u) about 1. Therefore, on the event {σ̃(t) < ∞},

P
{

dist(1, γ) ≤ J̃t e−(s+u) | γσ̃(t)

} ≤ P{dist(1, γ) ≤ e−(t+s) | γσ̃(t)}
≤ P{dist(1, γ) ≤ J̃t e−(s−u) | γσ̃(t)}.

Let p(s) = esβ q(e−s). Then, for all s ≥ s0, and all t ≥ 0,

e−β(t+s) p(t + s)

=
∫ π

0

P{dist(1, γ) ≤ F (x) e−(t+s)}ψ(x) F (x)−β dx

≥
∫ π

0

ψ(x) F (x)−β

[ ∫ π

0

φt(x, y)P{dist(1, γ) ≤ F (y) e−(s+u)} dy

]
dx

= e−βt

∫ π

0

∫ π

0

F (y)−β ψ(x) ψt(x, y)P{dist(1, γ) ≤ F (y) e−(s+u)} dy dx

= e−βt

∫ π

0

F (y)−β

[ ∫ π

0

ψ(x) ψt(x, y) dx

]
P{dist(1, γ) ≤ F (y) e−(s+u)} dy

= e−βt

∫ π

0

F (y)−β ψ(y)P{dist(1, γ) ≤ F (y) e−(s+u)} dx

= e−βt q(e−(s+u)) = e−β(t+s+u) p(s + u).

Hence for all s ≥ s0 and all t,

p(s + t) ≥ e−βu p(s + u)

which implies that

lim inf
t→∞

p(t) ≥ e−βu lim sup
t→∞

p(t) = e−βu c+,

and since this holds for all u > 0, we get (34).
To finish the argument, note that if s ≥ s0(u), then

P{dist(1, γ) ≤ e−(t+s)}

≥
∫ π

0

φt(π, θ)P{dist(1, γ) ≤ e−(s+u) F (θ)} dθ

= e−βt ψ(π)
∫ π

0

ψt(π, θ)P{dist(1, γ) ≤ e−(s+u) F (θ)}F (θ)−β dθ
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= e−βt ψ(π) [1−O(e−αt)]
∫ π

0

ψ(θ) P{dist(1, γ) ≤ e−(s+u) F (θ)}F (θ)−β dθ

= e−βt q(e−(s+u)) ψ(π) [1−O(e−αt)].

Similarly,

P{dist(1, γ) ≤ e−(t+s)} ≤ e−βt q(e−(s−u))ψ(π) [1 + O(e−αt)].

2.1. Two-point estimates.
We will consider two-point estimates and, among other things, will prove Theorem 2.

As in [16], the starting point for two-point estimates is a very good one-point estimate.
The next proposition is an almost immediate corollary of (9), but it will be useful to state
it in this form. The proof uses classical distortion theorems (see, e.g., [5, Theorem 2.5]).
We need the following: there exists c0 < ∞ such that if f : D → f(D) is a conformal
transformation with f(0) = 0, then

|f(z)− f ′(z) z| ≤ c0 |f ′(z)| |z|2, |z| ≤ 1/2. (35)

An explicit c0 can be given, but we only need that the constant c0 is uniform over all
such f .

Proposition 2.1. If γ is an SLEκ path, ε > 0, and ρ is a stopping time with
dist(γρ, 1) ≥ 2ε, then

P{dist(γ, 1) ≤ ε | γρ} = ĉ εβ (Jρ/Υρ)β [1 + O((Jρ/Υρ)α)], (36)

where ĉ, α are as in (9). In particular, there exists c < ∞, such that for all such ε, γ,

P{dist(γ, 1) ≤ ε | γρ} ≤ c

(
ε

dist(γρ, 1)

)β

. (37)

Proof. We view gt as a conformal transformation of the reflected domain Dt and
let δ = g′t(1). Let B(z, r) denote the closed disk of radius r about z. The distortion
estimate (35) implies that

B(gρ(1), δε[1− c0ε]) ⊂ gρ[B(1, ε)] ⊂ B(gρ(1), δε[1 + c0ε]).

Therefore, (8) implies that

P{dist(γ, 1) ≤ ε | γρ} = ĉ εβ (δ/Xρ)β [1 + O((δ/Xρ)α)]

= ĉ εβ (Jρ/Υρ)β [1 + O((Jρ/Υρ)α)]. ¤

It is useful to phrase the boundary estimate in terms of a conformally invariant
quantity, excursion measure. There are various ways to define this measure. If D is a
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domain and V1, V2 are disjoint analytic curves on ∂D, we define

ED(V1, V2) =
∫

V1

∂nφ(z) |dz|,

where ∂n denotes derivative in the inward normal direction and φ is the harmonic function
on D with boundary value 1 on V2 and zero elsewhere. It is well known that ED(V1, V2) =
ED(V2, V1), and that this is a conformal invariant,

ED(V1, V2) = Ef(D)(f(V1), f(V2)).

It is not hard to show that if η is a simple curve in H that intersects the positive real
line, then

EH\η(η, (−∞, 0]) ∧ 1 ³ diam(η)
dist(η, (−∞, 0])

∧ 1.

Therefore, using (8) (actually, we need only the up-to-constants version from [1]), we can
see that

P{γ ∩ η 6= ∅} ≤ c
[EH\η(η, (−∞, 0])

]β
. (38)

In applying this estimate, we use the following easy estimate. Suppose η1, η2 : [0, 1] → H
are two simple curves with η1(0), η2(0) ∈ R and diam(η1)+diam(η2) ≤ dist(η1, η2). Then
if D is the connected component of H \ (η1 ∪ η2) containing η1 and η2 on its boundary,

ED(η1, η2) ³ diam(η1) diam(η2)
dist(η1, η2)2

. (39)

Lemma 2.2. There exists c < ∞ such that the following holds. Suppose η1 :
(0,∞) → H is a simple curve with η1(0+) = 0 and η1(t) → ∞ as t → ∞. Let η :
(0, 1) → H be a curve with η(0+) ∈ (0,∞) and η ∩ η1 = ∅. Let D denote the connected
component of H \ (η1 ∪ η) whose boundary includes both η1 and η. Then if γ is an SLEκ

curve from 0 to ∞ in H,

P{γ ∩ η 6= ∅} ≤ c ED(η, η1)β . (40)

Proof. Since η1 disconnects η from (−∞, 0) in H, monotonicity of the excursion
measure implies that ED(η, η1) ≥ ED(η, (−∞, 0]) and we can use (38). ¤

The next lemma is the “up-to-constants” two-point estimate. Similar estimates were
given in [2] and [22] but for completeness sake we give a proof here. This estimate is
significantly easier than the analogous estimate for two interior points. The topology of
the boundary is such that once the SLE curve gets near 1 + x it is unlikely to get close
to 1 in the future.
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Lemma 2.3. There exists c < ∞ such that if x > 0, then

P{dist(γ, 1) < ε, dist(γ, 1 + x) < δ} ≤ c x−β εβ δβ . (41)

Proof. Without loss of generality we will assume that ε ≤ 1/10 and δ ≤ x/10.
Indeed, if either of these does not hold, then the result follows directly from (8). Without
loss of generality we may assume that δ = 2−n for some integer n. Let r be the integer
with 2−r ≤ x < 2−r+1. Let σ = inf{t : dist(1, γt) = ε} and let τk = inf{t : dist(1+x, γt) =
2−k}. Using (8) and (37), we get

P{σ < τr+4 < τn < ∞} ≤ P{σ < ∞}P{τn < ∞ | σ < τr+4}
≤ c εβ [2−n/2−(r+4)]β

≤ c εβ x−β δβ .

We will show that

P{τn < σ < ∞} ≤ c εβ x−β δβ 2−βn, (42)

and if r + 4 ≤ k < n− 1,

P{τk < σ < τk+1 < ∞; τn < ∞} ≤ c εβ x−β δβ 2−β(k−r). (43)

The result follows by summing over k.
Let C denote the half circle in H of radius ε about 1 and ηk the half circle in H of

radius 2−k about 1 + x. Let H = Hτk
. The circle ηk separates C from one-side of the

curve γτk
. Therefore, (40) and monotonicity of excursion measure imply that if Dk is

the component of H \ (C ∪ ηk) containing C and ηk on its boundary,

P{σ < ∞ | τk < σ} ≤ c EDk
(C, ηk)β .

Using (39), we see that

EDk
(C, ηk) ≤ diam(C) diam(ηk)

dist(C, ηk)2
≤ c ε 2−k x−2.

Therefore,

P{σ < ∞ | τk < σ} ≤ c εβ 2−kβ x−2β ≤ c εβ x−β 2−β(k−r). (44)

The one-point estimates (8) and (37) give

P{τk < σ} ≤ P{τk < ∞} ≤ c 2−βk, (45)

P{τn < ∞ | τk < σ < τk+1} ≤ c 2−β(n−k). (46)
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The estimates (44)–(46) imply (42) and (43). ¤

In the preceding proof, we split the events {σ < ∞, τn < ∞} into a union of event
like those on the left-hand side of (43). If we had used just the one-point estimate to
estimate the quantities, the right-hand side would not have had the 2−βk term and the
estimate would not be good enough. We had to do a more delicate argument showing
that as k gets larger, these probabilities decrease, that is, the SLEκ does not want to
get close to 1 + x, and then close to 1 afterwards. The topology here was such that the
proof was not too difficult. It is more challenging in the case of two interior points, see
[4], [16].

Before proving Theorem 2, we will prove a continuity result for two-sided chordal
SLEκ (from 0 to ∞ going through 1 stopped at 1). Recall that this is the solution to the
Loewner equation (1) where the driving function Ut = −Wt satisfies

dWt =
1− 4a

Xt
dt + dBt,

and Bt is a P∗-Brownian motion. In other words,

dXt =
1− 3a

Xt
dt + dBt,

which is valid up to time T = T1 < ∞. In Section 2 we saw that with P∗-probability one,
dist(γT , 1) = 0. The next proposition shows that the path is continuous at the endpoint.
This is an extension of results in [6], [12] where radial and two-sided radial SLE are
studied, and is related to [7] where boundary questions are studied.

Proposition 2.4. With P∗-probability one,

lim
t↑T

γ(t) = 1.

In fact, if Cs denotes the half circle in H centered at 1 of radius e−s, and σs = inf{t :
dist(γ, 1) = e−s}, then there exists c′, ξ such that

P∗{γ[σs, T ] ∩ Cs/2 6= ∅} ≤ c e−ξs.

Proof. If r < s, then Hσs ∩Cr contains a (finite or countably infinite) collection
of subarcs that are crosscuts of Hσs

. We will focus on the two crosscuts that hit the real
line. Let l−s,r, l

+
s,r denote the closure of the subarcs whose endpoints include 1− e−r and

1 + e−r, respectively, let ls,r = l−s,r ∪ l+s,r and

λ±s,r = inf{t ≥ σs : γ(t) ∈ l±s,r}, λs,r = λ+
s,r ∧ λ−s,r.

We claim there exists c < ∞ such that for all 0 < r < s, if σs < ∞, then

P∗{λs,r < ∞ | γσs
} ≤ c eβ(r−s). (47)
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We will first show that

P∗{λs,r < σs+1 | γσs
} ≤ c eβ(r−s). (48)

We may assume s > r + 2. Let λ = λ−s,s−2 < λ−s,r. Then

P∗{λs,r < σs+1} = P∗{λ < σs+1}P∗{λs,r < σs+1 | λ < σs+1}.

We claim that Jλ ³ 1. To see this, let ∂1
t denote the part of ∂Ht that is sent to

[Ut, gt(1)] and let ∂2
t = {x ∈ ∂1

t ∩R : Tx > t} be the part of ∂1
t that is not on the hull at

time t. Then using conformal invariance, we can see that

Jt = lim
y→∞

hmHt(iy, ∂2
t )

hmHt
(iy, ∂1

t )
,

where hm denotes harmonic measure. At time λ consider the subarc η of Cs−1 starting
at 1−e−(s−1) stopping when it reaches γλ. Let l denote a line starting at 1 towards γ(σs)
stopped when it reaches γλ. Note that the length of l is at most e−s; the length of η is
at most π e−s+1 and dist(l, η) ≥ dist(Cs, Cs−1) = e−s. Hence there exists an absolute c

such that the excursion measure between l and η in Hλ is less than c. If y is large, then
any path starting at iy that leaves Hλ at ∂1

λ \ ∂2
λ must go through l and then through

η. Let R be the component of Hλ \ (l ∪ η) that includes both l as η on its boundary
and consider it as a conformal rectangle with two of its sides being l, η. We know that
ER(l, η) ≤ c for some absolute c. By mapping to a standard rectangle for which the
harmonic measure can be given explicitly (in terms of an integral or an infinite series),
we can see there exists δ = δ(c) > 0 such that for all z ∈ R sufficiently close to l,

hmR(z, I) ≤ δ hmR(z, η), I = [1− e−s, 1].

Therefore, for all y sufficiently large,

hmHλ
(iy, I) ≥ δ hmHλ

(iy, ∂1),

which establishes the claim.
Hence, on the event {λ < σs+1 < ∞} we have Mσs+1 ≤ cMλ. This implies that

P∗{λ−s,r < σs+1 | λ < σs+1} ≤ cP{λ−s,r < σs+1 | λ < σs+1} ≤ P{λ−s,r < ∞ | λ < σs+1}.

On the event λ−s,r < σs+1, the arc l−s,s−2 separates l−s,r from one side of the curve γλ. If
D denotes the connected component of Hλ \ (l−s,s−2 ∪ l−s,r), then (38) and (39) imply that

ED(l−s,s−2, l
−
s,r) ≤ c e−(s−r),

and hence,
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P∗{λ−s,r < ∞ | λ < σs+1} ≤ c e−β(s−r).

For the other side, let λ+ = λ+
s,r and write H = Hλ+ , ∂j = ∂j

λ+ . We claim that if
λ+ < ∞, then Jλ+ ≤ c e−β(s−r) Jσs

. To see this, let η0 denote the circular arc in H∩Cs−r

with endpoints 1+e−βr and γ(λ+), let η1 denote the circular arc in H∩Cs−1 that includes
1+e−β(s−1), and let η2 be the circular arc in H∩Cs that includes 1+e−βs. Note that for
y large, any Brownian path starting at iy that leaves H at ∂2 must go through the arcs
η0, η1, η2 in order before reaching ∂2. Let R1 be the connected component of H \(η0∪η1)
that contains both η0 and η1 on its boundary. We view this as a conformal rectangle with
η0, η1 two of the edges. The other two edges are [1 + e1−s, 1 + er−s] and a subset of ∂1.
We have ER1(η0, η1) ≤ EH\(Cs−1∪Cs−r)(Cs−1, Cs−r) ≤ c er−s. Hence, using the estimate
for rectangles, we see for every z ∈ η0, the probability that a Brownian motion starting
at z hits η2 before leaving H, is less than c er−s times the probability that it leaves H at
∂1.

Given that the Brownian motion reaches η2 before leaving H, the probability that
it leaves H at ∂2 is bounded above by the supremum of this probability over z ∈ ∂2.
This probability is only larger if we replace H with Hσs

and by the (boundary) Harnack
principle this is bounded above by a constant times the probability that a Brownian
motion leaves H at ∂2 given that it reaches l+s,s. But this last probability is bounded
above by Js. Combining all these estimates gives the claim.

Once we have the claim, we see that if λ+ < σs+1, then Mλ+ ≤ c eβ(r−s) Mσs , and
hence

P∗{λ+
s,r ≤ σs+1 | σs} ≤ c e−β(s−r).

This finishes the proof of (48). By iterating this argument, we see that

P∗{λs+k,r < σs+k+1 | λs+k,r > σs+k} ≤ c eβ(r−s−k),

and by summing over k we get (47).
To finish the argument, for each positive integer s let K(s) be the largest positive

integer k such that γ[σs−k, σk] ∩ Cs−k−1 = ∅. By looking at a particular event, it is not
difficult to show that for every r there exists δr > 0 such that

P∗{K(s + r + 2) ≥ r | γσs
} = P∗{γ[σs+2, σs+r+2] ∩ Cs = ∅ | γσs

} ≥ δr. (49)

If γ[σs+2, σs+r+2] ∩ Cs = ∅, then any curve from γ(σs+r+2) to Cs staying in Hσs+r+s

must go though ls+r+2,s+2. Hence (47) implies that

P∗{K(s + 1) ≥ r + 1 | K(s) ≥ r} ≥ 1− c e−βs. (50)

The inequalities (49) and (50) imply that there exists c′, ξ such that

P{K(s) ≤ s/2} ≤ c′ e−ξs.
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See, e.g., [12, Lemma 4.5]. The value of ξ depends on the values of δr and so is difficult
to estimate; however, we do get existence. ¤

Proof of Theorem 2. We fix 0 < κ < 8 and x > 0. All constants may depend
on κ and x. Let Xt = gt(1)− Ut, Zt = gt(1 + x)− Ut, and Ot = gt(xt)− Ut. Let

Jt =
Xt −Ot

Xt
, Kt =

Zt −Ot

Zt
,

Υt = Υt(1) =
Xt −Ot

g′t(1)
, Ψt = Υt(1 + x) =

Zt −Ot

g′t(1 + x)
.

As before, let T = T1 = inf{t : Xt = 1}, let Mt be the local martingale

Mt = Υ−β
t Jβ

t ,

and let P∗,E∗ denote the measures obtained by tilting by Mt.
Let

σε = inf{t : Υt = ε}, τδ = inf{t : Ψt = δ}.

For fixed u, let us write

{σε < ∞, τδ < ∞} = {σε ≤ τu < τδ < ∞} ∪ {τu < σε < ∞, τδ < ∞}.

The Koebe 1/4-theorem (11) implies that dist(1+x, γτu
) ≤ u, Arguing as in (43), we see

that

P{τu < σε < ∞, τδ < ∞} ≤ c εβ δβ uβ .

(The x−β and 2rβ terms in (43) have been included in the x-dependent constant c.)
Hence,

lim sup
ε,δ↓0

ε−β δ−β P{τu < σε < ∞; τδ < ∞} ≤ c uβ . (51)

For fixed u and δ < u/2, ε sufficiently small, we use (36) to get

P{σε ≤ τu < τδ < ∞} = E[1{σε < τu < τδ < ∞}]
= E[1{σε < τu}P{τδ < ∞ | γσε

}]
= c′ δβ [1 + O((δ/u)α)]E[1{σε ≤ τu} (Kσε

/Ψσε
)β ]

= (c′)2 εβ δβ [1 + O(δα) + O(εα)]E∗[(Kσε
/Ψσε

)β 1{σε ≤ τu}].

Using the last lemma, we can see that with P∗-probability one,
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lim
ε↓0

(Kσε
/Ψσε

)β 1{σε ≤ τu} = (KT /ΨT )β 1{T ≤ τu} = Ψ−β
T 1{T ≤ τu}.

Here we have used the fact that γ is continuous at time T with γ(T ) = 1 and hence
OT = XT = 0. By the dominated convergence theorem,

lim
ε,δ↓0

ε−β δ−β P{σε ≤ τu < τδ < ∞} = (c′)2 E∗
[
Ψ−β

T ;T ≤ τu

]
. (52)

Combining (51) and (52) and using the monotone convergence theorem, we get (16).
We are left with computing E∗[Ψ−β

T ]. Let

Qt =
[
g′t(Z0) (Z0 −X0)

Zt −Xt

]β

, f(s) = E[QT | X0 = sZ0],

where E denotes expectation with respect to two-sided chordal SLE going through X0.
Scaling shows that f(s) is independent of X0. Note that E∗[Ψ−β

T ] = x−β f(1/(1 + x)).
The right-hand side is easier to compute because we do not need to keep track of Ot.
Note that (41) implies that f is uniformly bounded on (0, 1). Itô’s formula shows that

d

[
Xt

Zt

]
=

Xt

Zt

[(
1− 3a

X2
t

+
1− a

Z2
t

+
4a− 2
XtZt

)
dt +

(
1

Xt
− 1

Zt

)
dBt

]
.

We now change time choosing

ζ̇(t) =
X2

t Z2
t

(Zt −Xt)2
=

X2
t

(1−Xt/Zt)2
.

If we set Rt = Xζ(t)/Zζ(t), we get

dRt = Rt

[(
1− 3a

(1−Rt)2
+

(1− a)R2
t

(1−Rt)2
+

(4a− 2) Rt

(1−Rt)2

)
dt + dWt

]
,

for a standard Brownian motion Wt. Also,

∂tQt = Qt

[
a(1− 4a)

Z2
t

+
a(4a− 1)

ZtXt

]
.

Therefore, if Q̃t = Q̃ζ(t),

∂tQ̃t = Q̃t
a(1− 4a)R2

t + a(4a− 1) Rt

(1−Rt)2
= Q̃t

a(4a− 1)Rt (1−Rt)
(1−Rt)2

.

Note that

E[QT | γζ(t)] = Q̃t f(Rt).
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The left-hand side is a martingale and

d[Q̃t f(Rt)] = f(Rt) dQ̃t + Q̃t

[
f ′(Rt) dRt +

1
2

f ′′(Rt) d〈R〉t
]
.

Setting φ(s) = f(1− s), using Itô’s formula again, and setting the dt term equal to zero
gives the equation

x (1− x) φ′′(x) + [4a− 2(1− a)x]φ′(x) + 2a (4a− 1) φ(x) = 0,

which is the hypergeometric equation with bounded solution φ(x) = 2F1(2a, 1−4a, 4a, x).
This gives (14).

Similarly, let ρε,u = σε ∧ τu. Since Mt∧ρε,u Nt∧ρε,u is a bounded martingale,

E[M0N0] = E[Mt∧ρε,u Nσε∧τu ] = E∗[Nσε∧τu ].

Arguing as in Lemma 2.3, we see that

P∗{τu < σε} ≤ c u2β ,

and hence,

E∗[Nσε∧τu
; τu < σε] ≤ c uβ .

Also, as in the previous paragraph,

lim
ε↓0
E∗[Nσε∧τu

;σε < τu] = E∗[NT ;T < τu] = E∗
[
Ψ−β

T ;T < τu

]
.

Combining the last two equalities, we see that

lim
ε↓0,δ↓0

E∗[Nσε∧τδ
] = E∗

[
Ψ−β

T ;T < τu

]
.

But the left-hand side also equals N0 = x−β h(x/(1 + x)). Combining this with (16) we
get (14). ¤

3. Proof of Theorem 3.

For this section we will assume that 4 < κ < 8 and hence that γ ∩ R is a nonempty
strict subset of R. We will prove the result with y1 = 1, y2 = 2, but the same ideas work
for all y1 < y2. For x ∈ R and s > 0, let

Js(x) = eβs 1{dist(x, γ) ≤ e−s},

Js =
∫ 2

1

Js(x) dx.
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By (37), we have

E[Js(x)] = ĉ x−β + O(e−αs),

E[Js] =
∫ 2

1

E[Js(x)] dx =
(21−β − 1) ĉ

1− β
+ O(e−αs),

E[Js(x)− Jt(x)] = O(e−α(s∧t)), E[Js − Jt] = O(e−α(s∧t)).

The key estimate is the following lemma which is not as sharp as one could prove,
but it is good enough for our purposes. We will first show how to derive Theorem 3 from
Lemma 3.1, and then we will prove the lemma. Let

Qs,r(x) = Js+r(x)− Js(x), Qs,r = Js+r − Js.

Lemma 3.1. There exist 0 < c, λ < ∞ such that if x ≥ 1 + e−λs and 0 ≤ r ≤ 1,
then

|E[Qs,r(1)Qs,r(x)]| ≤ c e−λs.

We will actually prove this with λ = α/8 but this is not the optimal value; we
assume λ < 1. Using scaling, we see that Lemma 3.1 implies that if y ≥ 1, x ≥ y + e−sλ,
then

|E[Qs,r(y) Qs,r(x)]| ≤ c e−λs.

If x ≤ y + e−λs we will use the crude estimate

|Qs,r(y)| ≤ eβ(s+r) 1{Js(y) 6= 0},

and (41) to conclude that

|E[Qs,r(y) Qs,r(x)]| ≤ e2β(s+r) P{Js(y) 6= 0, Js(x) 6= 0} ≤ c |x− y|−β .

Since β < 1, we see that

E[Q2
s,r] = 2

∫ 2

1

∫ 2

y

E[Qs,r(y) Qs,r(x)] dx dy = O(e−ξs), ξ = (1− β)λ.

This is the key estimate and the rest of the argument uses standard techniques. If
k is a nonnegative integer, u = 2−k, and Yn = Jnu, then for m > n,

‖Yn − Ym‖2 ≤
m∑

j=n+1

‖Yj − Yj−1‖2 ≤ c
∞∑

j=n+1

e−ξuj/2 ≤ c e−ξun/2.

Therefore, the sequence {Yn} is a Cauchy sequence in L2 and converges to a limit random
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variable J . The limit does not depend on k, and since E[(Js+r − Js)2] ≤ c e−ξs for
r ≤ 1, we can see that Js → J in L2. To get convergence with probability one, we use
Chebyshev’s inequality to see that

P{|Yj+1 − Yj | ≥ e−jξu/4} ≤ ejξu/2 E[(Yj − Yj−1)2] ≤ c e−jξu/2.

By the Borel-Cantelli lemma, with probability one, for all j sufficiently large, |Yj+1−Yj | ≥
e−jξu/4, and hence with probability one, for each k,

lim
n→∞

Jn2−k = J.

We can then use the monotonicity relation Js+r ≤ eβr Js, to conclude with probability
one

lim
s→∞

Js = J.

Since the convergence is in L2, we have

E[J ] = lim
s→∞

E[Js] = ĉ

∫ 2

1

x−β dx,

E[J2] = lim
s→∞

E[J2
s ] = lim

s→∞
2

∫ 2

1

∫ 2

x

E[Js(x) Js(y)] dy dx

= 2
∫ 2

1

∫ 2

x

x−2β E[Js(1)Js(y/x)] dy dx

= 2 ĉ2

∫ 2

1

∫ 2

x

x−β (y − x)−2β h

(
x

x + y

)
dy dx.

Proof of Lemma 3.1. For notational ease, we will assume that r = 1 but the
argument works identically for 0 ≤ r ≤ 1. We write Qs(y) = Qs,1(y) = Js+1(y)− Js(y).
We let λ = α/8 ≤ 1/8. We assume that x ≥ 1 + e−λs ≥ 1 + e−s/8. We recall that

|E[Qs(y)]| ≤ c e−αs, |Qs(y)| ≤ e(s+1)β 1{dist(γ, y) ≤ e−s}.

Let ηs, η
′
s denote the circles of radius e−s about 1 and x, respectively, and

σs = inf{t : dist(γt, 1) ≤ e−s}, τs = inf{t : dist(γt, x) ≤ e−s},
ρs = inf{t ≥ τ7s/8 : dist(γt, 1) < e−s ∧ dist(γτ7s/8 , 1)},

where ρs = ∞ if τ7s/8 = ∞. Arguing as in Lemma 2.3, we see that

P{τ7s/8 < ρs < ∞} ≤ P{τ7s/8 < ∞}P{ρs < ∞ | τ7s/8 < σs}
≤ [c e−7sβ/8] [c e−7βs/8 e−βs (x− 1)−2β ] ≤ c e−5β/2. (53)
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Here we are using x ≥ e−s/8.
Let γ̂ = γτ7s/8 where γ̂ = γ if τ7s/8 = ∞, and

J̃s(1) = eβs 1{dist(1, γ̂) < e−s}, J̃s+1(1) = eβ(s+1) 1{dist(1, γ̂) < e−(s+1)},
Q̃s(1) = J̃s(1)− J̃s+1(1).

Since Qs(x) = 0 on the event {τ7s/8 = ∞}, we can write

E[Qs(1)Qs(x)] = E
[
Q̃s(1)Qs(x)

]
+ E

[
(Qs(1)− Q̃s(1))Qs(x)

]
.

Note that (53) implies that

E
[|Qs(1)− Q̃s(1)|Qs(x)

] ≤ e2sβ P{ρs < ∞} ≤ c e−s/2.

Also,

E
[
Q̃s(1)Qs(x)

]
= E

[
Q̃s(1)E(Qs(x) | γ̂)

]
,

where the conditional expectation is defined to be zero if τ7s/8 = ∞. We now use (36)
to say that there exists α > 0, c < ∞ such that on the event {τ7s/8 < ∞},

|E(Qs(x) | γ̂)| ≤ c e−αs/8 e7sβ/8.

Therefore,

∣∣E[Q̃s(1)Qs(x)]
∣∣ ≤ c e−αs/8. ¤

4. Asymptotically Bessel processes.

In Section 2, as is often the case in SLE, we had a simple SDE of the form

dXt = F (Xt) dt + dBt, 0 < t < π.

Here we will discuss one way to establish the results that we needed there. The idea is to
write F (x) = [log Φ(x)]′ and to consider this as a Brownian motion Xt weighted locally
by Φ(Xt).

Suppose Xt is a standard Brownian motion starting at x ∈ (0, π) and Φ is a (strictly)
positive C2 and L2 function on (0, π). Let T = inf{t : Xt ∈ {0, π}} and let

Mt = Φ(Xt) At, where At = exp
{
− 1

2

∫ t

0

Φ′′(Xs)
Φ(Xs)

ds

}
. (54)

Then Itô’s formula shows that Mt is a local martingale for t < T satisfying
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dMt = [log Φ(Xt)]′Mt dXt.

If ε > 0 and τ is a stopping time with inft≤τ sinXt ≥ ε, then Mt∧τ is a martingale and
we can write Px

Φ,Ex
Φ for probabilities and expectations with respect to the new measure.

That is, if Y is Ft∧τ -measurable, then

Ex
Φ[Y ] = M−1

0 Ex[Y Mt∧τ ] = Φ(x)−1 Ex[Y Mt∧τ ].

Girsanov’s theorem states that

dXt = [log Φ(Xt)]′ dt + dBt, (55)

where Bt is a standard Brownian motion with respect to Px
Φ. This holds for t < τ , but

since the equation does not include τ , we can write the equation for t < T .
For 0 < x, y < π, let p(t, x, y) denote the density at time t of a Brownian motion

starting at x that is killed when it leaves (0, π), that is,

Px{y1 < Xt < y2;T > t} =
∫ y2

y1

p(t, x, y) dy.

Let pΦ(t, x, ·) be the corresponding density for Xt under the tilted measure Px
Φ,

Px
Φ{y1 < Xt < y2;T > t} =

∫ y2

y1

pΦ(t, x, y) dy.

We note that Px
Φ and Px, considered as measures on paths Xs, 0 ≤ s ≤ t, are mutually

absolutely continuous on the event {T > t} with Radon-Nikodym derivative

dPx
Φ

dPx
=

Mt

M0
=

Φ(Xt)
Φ(X0)

At,

where At is as in (54). If Px
Φ{T < ∞} = 0, then pΦ(t, x, y) is a probability density,

∫ π

0

pΦ(t, x, y) dy = 1.

Lemma 4.1. If 0 < x < y < π and t > 0, then

pΦ(t, x, y)Φ(x)2 = pΦ(t, y, x)Φ(y)2.

In particular, if Px
Φ{T < ∞} = 0, then the invariant density for (55) is cΦ2 where c is

chosen to make this a probability measure.

Proof. For each path ω : [0, t] → (0, π) with ω(0) = x, ω(t) = y, let ωR denote
the reverse path ωR(s) = ω(t − s) which goes from y to x. The Brownian measure on
paths from y to x staying in (0, π) can be obtained from the corresponding measure
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for paths from x to y by the transformation ω 7→ ωR. The compensating term At is a
function of the path ω, and we can see that At(ω) = At(ωR). Then

pΦ(t, x, y) = p(t, x, y)
Φ(y)
Φ(x)

Ex,y,t[At], pΦ(t, y, x) = p(t, y, x)
Φ(x)
Φ(y)

Ey,x,t[At],

where Ex,y,t denotes the probability measure associated to Brownian bridges of time
duration t starting at x, ending at y, and staying in (0, π). This quantity is not easy to
compute, but the path reversal argument shows that Ex,y,t[At] = Ey,x,t[At]. This gives
the first assertion, and then

∫ π

0

Φ(x)2 pΦ(t, x, y) dx =
∫ π

0

Φ(y)2 pΦ(y, x, t) dx = Φ(y)2. ¤

If Φ is L2, but Px
Φ{T < ∞} = 1, then an appropriate reflecting process can be

defined. One way to construct it is to find a sequence Φn ↑ Φ of C2 functions for which
Px

Φn
{T < ∞} = 0 and such that Φ(x) = Φn(x) for x ∈ [1/n, π − 1/n]. For each ε, if

we only view the process during the excursions from {2ε, π − 2ε} to {ε, π − ε}, then the
process is the same for all Φn with n > 1/ε. In particular, we can see that the invariant
probability for the reflected process must also be proportional to Φ2.

The reflected process can be a bit subtle at the boundary, but it is well understood
in the case of Bessel processes. Recall that the Bessel process is obtained by tilting by
the function Φ(x) = xa where a > −1/2. Let P̂x denote the probabilities under the
Bessel process reflected at 0 and killed at time Tπ. Then Xt satisfies the Bessel equation

dXt =
a

Xt
dt + dWt,

where Wt is a P̂x-Brownian motion. If −1/2 < a < 1/2 we must interpret this as the usual
reflecting Bessel process. We will say that Φ is asymptotically a-Bessel near the origin
if there exists an even, strictly positive C2 function g such that Φ(x) = g(x)xa, x ≤
3π/4. Similarly, we say that Φ is asymptotically a-Bessel near π if x 7→ Φ(π − x) is
asymptotically a-Bessel near the origin. We will focus on behavior near the origin, but
the same arguments work for behavior near π. We will be most interested in the example
Φ(x) = [sinx]u [1 − cos x]v, which is asymptotically (u + 2v)-Bessel at the origin and
u-Bessel near π, and gives the equation

dΘt =
[

v

sinΘt
+ (u + v) cot Θt

]
dt + dBt. (56)

This equation with v = 0 is sometimes called the radial Bessel equation. The invariant
density ψ is proportional to Φ2. If Θ has density ψ, then a standard calculation shows
that [1− cosΘ]/2 has a beta density

h(y) =
Γ(2u + 2v + 1)

Γ(u + 2v + 1/2) Γ(u + 1/2)
yu+2v−1/2(1− y)u−1/2, 0 < y < 1.



Minkowski content of intersection of SLE and real line 1659

Note that g, g′, g′′ are bounded on [0, 3π/4] as is g′(x)/[xg(x)] where the last function
is defined to be g′′(0)/g(0) at x = 0. Itô’s formula gives

dg(Xt) = g′(Xt) dXt +
1
2

g′′(Xt) dt

= g(Xt)
[(

a g′(Xt)
g(Xt) Xt

+
g′′(Xt)
2 g(Xt)

)
dt +

g′(Xt)
g(Xt)

dWt

]
.

Let T = T3π/4 = inf{t : Xt = 3π/4}. If

Mt = g(Xt) At, where At = exp
{
− 1

2

∫ t

0

(
a g′(Xs)
g(Xs) Xs

+
g′′(Xs)
2 g(Xs)

)
ds

}
,

then Mt∧T is a martingale satisfying

dMt =
g′(Xt)
g(Xt)

Mt dWt, t < T.

Also, | log At∧T |/(t ∧ T ) is uniformly bounded. Recall that Px
Φ is obtained from Px

by weighting locally by Φ(Xt) = Xa
t g(Xt). Equivalently, we can get Px

Φ from P̂x by
weighting locally by g(Xt). We take the latter viewpoint and note that

dWt =
g′(Xt)
g(Xt)

dt + dBt, t < T,

where Bt is a standard Brownian motion with respect to Px
∗ . The advantage is that the

last equation can be considered for the reflected process Xt under P̂x. We also write this
as

dXt =
[

a

Xt
+

g′(Xt)
g(Xt)

]
dt + dBt =

Φ′(Xt)
Φ(Xt)

dt + dBt, (57)

where the reflection is interpreted as above. If we start the reflected process at 0 and
write P∗ = P0

∗, then

dP∗
dP

= g(3π/4) AT .

By analyzing the equation (57), we can see that P∗{T < ∞} = 1, and hence

g(3π/4)E[AT ] = g(0).

Given this representation, it becomes straightforward to establish estimates about
the measure P∗. For example, it is standard to show that if ε > 0, then

P̂{T ≤ ε} > 0.
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It follows immediately, that this holds for P∗ as well. In particular, one can see that for
every ε > 0, there exists δ > 0 such that if X1

t , X2
t are independent processes satisfying

(57) starting at different points, then with probability at least δ, X1
t = X2

t for some t ≤ ε.
Using this and using a standard coupling procedure, we can define a process (X1

t , X2
t )

on the same probability space satisfying (57) with X1
0 = x1, X2

0 = x2 such that

P{X1
t = X2

t for all t ≥ nε} ≥ 1− (1− δ)n.

Also, by comparison with the Bessel process for which the transition density is known
explicitly, there exist 0 < c1(ε) < c2(ε) such that for all x, y and all t ≥ ε,

c1(ε)Φ2(y) ≤ pΦ(t, x, y) ≤ c2(ε)Φ2(y). (58)

Here we are writing pΦ(t, x, y) for the probability density of the reflected process. If we
start X1 with the invariant density c0 Φ2 and X2 with X2

0 = x, we see that we can couple
the processes so that with probability at least 1− c e−αt, the paths have coupled by time
t and hence

∫ π

0

|pΦ(t− 1, x, y)− c0 Φ(y)2| dy ≤ c e−αt.

In other words we can write

pΦ(t− 1, x, y) = [1− c e−αt] c0 Φ(y)2 + c e−αt φ(t− 1, x, y)

where φ(t, x, y) ≥ 0 with

∫ π

0

φ(t− 1, x, y) dy = 1.

Using (58), we see that for each z,

∫ π

0

φ(t− 1, x, z) φ(1, z, y) dz ³ Φ(y)2 = c0 Φ(y)2[1 + O(1)],

and hence we get

∣∣pΦ(t, x, y)− c0Φ2(y)
∣∣ ≤ c e−αt Φ2(y).

5. SLE(κ, ρ) processes.

5.1. Definition and properties.
Two-sided chordal SLE to 1 was obtained from chordal SLEκ by weighting locally

by X1−4a
t where Xt = gt(1) − Ut. By this we mean tilting in the sense of the Girsanov

theorem by the local martingale Mt = At X1−4a
t where At is the C1 process (compen-
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sator) that makes this a local martingale. More generally, we can weight locally by Xr
t ,

and that is what we will do in this section. Recall that SLEκ satisfies

dXt =
a

Xt
dt + dWt,

where Wt is a standard Brownian motion. Itô’s formula shows that

dXr
t = Xr

t

[
r2/2 + r(a− 1/2)

X2
t

dt +
r

Xt
dBt

]
.

Differentiating the Loewner equation gives

∂tg
′
t(1) = −a g′t(1)

X2
t

, g′t(1) = exp
{
−

∫ t

0

a ds

X2
s

}
.

Therefore, if λ = (r2/2a) + r(1− 1/2a) and

Mt = g′t(1)λ Xr
t = Xr

t exp
{
− λ

∫ t

0

a ds

X2
s

}
, (59)

then Mt is a local martingale satisfying

dMt =
r

Xt
Mt dWt, t < T.

If we let P∗ denote the measure obtained by tilting by Mt, then the Girsanov theorem
implies that

dWt =
r

Xt
dt + dBt,

where Bt is a P∗-Brownian motion. In particular,

dXt =
r + a

Xt
dt + dBt. (60)

If we change time X̂t = X2t/a = Xκt, then this equation becomes

dX̂t =
rκ + 2

X̂t

dt +
√

κ dB∗
t , (61)

for another standard Brownian motion B∗
t . A process satisfying (61) was called an

SLE(κ, ρ) process in [13] where ρ = rκ = 2r/a. This was perhaps a bad notation
because the parameter ρ depended strongly on the parametrization of the SLE path. I
find the parameter r more natural, but the important thing to remember is that the
SLE(κ, ρ) process (with charge point 1) is the process obtained from SLEκ by weighting



1662 G. F. Lawler

locally as above by X
aρ/2
t = X

ρ/κ
t . We will use the parameter r = ρ/κ in this section,

but will write SLE(κ, κr) to conform with the original notation.
We will use the radial parametrization and the notation from Section 2. Note that

(22) gives

dJt =
Jt

X2
t

(
1− a− a

1− Jt

)
dt− Jt

Xt
dWt

=
Jt

X2
t

(
1− a− r − a

1− Jt

)
dt− Jt

Xt
dBt.

If we change time as in that section, (25) becomes

dĴt =
[
(1− 2a− r)− (1− a− r) Ĵt

]
dt +

√
Ĵt (1− Ĵt) dB̂t.

If Ĵt = [1− cos Θ̂t]/2, then

dΘ̂t =
[
1− 3a− r

sin Θ̂t

+
(

1
2
− a− r

)
cot Θ̂t

]
dt + dB̂t. (62)

This is of the form (56) with

u = 2a− 1
2
, v = 1− 3a− r,

which is asymptotically (2a−1/2)-Bessel near π and asymptotically (3/2−4a−2r)-Bessel
near 0. From this we can deduce the following known properties.

• Since 2a− 1/2 > −1/2, the reflected process at π can be defined for all κ > 0.
• From (60), we see that if r ≥ 1/2−a (ρ ≥ κ/2−2), then the process in the capacity

parametrization exists for all times. In other words, T1 = ∞.
• If 1/2− 2a ≤ r < 1/2− a (κ/2− 4 ≤ ρ < κ/2− 2), then T1 < ∞, but Θ̂t reaches

zero in finite time. This implies that dist(γT1 , 1) > 0.
• If r < 1/2 − 2a (ρ < κ/2 − 4), then Θ̂t exists for all times. This implies that

dist(γT1 , 1) = 0.

5.2. Moments of derivatives.
The Girsanov theorem gives quick proofs of some of the estimates about moments

of the conformal maps gt. This has been known for a while, but I do not believe these
proofs in these cases have been written down. Anyway this gives a good example to
illustrate a now standard procedure. To compute the expectation of a derivative, find an
appropriate martingale or local martingale. The martingale property gives the expecta-
tion of the martingale at later times in terms of the original expectation. However, the
martingale often includes extra terms. To recover the expectation of the derivative, one
studies the process in the measure obtained by tilting by the local martingale.
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Proposition 5.1. If γ is a chordal SLEκ path with κ > 0 and

λ > −κ

4

(
2
κ

+
1
2

)2

,

then as t →∞,

E
[
g′t(1)λ;T1 > t

] ∼ c′ t−r/2,

where r is the larger root of (59),

r =
1
2

+
2
κ

+

√(
2
κ
− 1

2

)2

+
4λ

κ

and

c′ = Γ
(

2
κ

+
r

2
+

1
2

)/
Γ
(

2
κ

+ r +
1
2

)
.

Proof. We consider the local martingale Mt = g′t(1)λ Xr
t . Let P∗,E∗ denote

probabilities and expectations with respect to the tilted measure under which Xt satisfies
(60) with Bt a P∗-Brownian motion. Then

E
[
g′t(1)λ;T1 > t

]
= E

[
Mt X−r

t ;T1 > t
]

= E∗
[
X−r

t ;T1 > t
]

= t−r/2 E∗
[
(Xt/

√
t)−r

]
.

The last equality uses r + a > 1/2 which implies that P∗{T1 > t} = 1. The final
expectation is with respect to a Bessel process and can be given explicitly. To understand
the asymptotics it is useful to let Yt = e−t Xe2t which satisfies

dYt =
[
a + r

Yt
− Yt

]
dt + dWt,

for a standard Brownian motion Wt. This is the equation one gets by starting with a
standard Brownian motion Yt with Y0 = 1 and weighting locally by Φ(Yt) where

Φ(x) = xa+r e−x2/2.

This is a positive recurrent diffusion on (0,∞) with invariant density φ(x) = cΦ(x)2.
Using this, we see that

lim
t→∞

E∗
[
(Xt/

√
t)−r

]
=

∫ ∞

0

x−r φ(x) dx =

∫∞
0

x2a+r e−x2
dx∫∞

0
x2a+2r e−x2 dx

=
Γ(a + r/2 + 1/2)
Γ(a + r + 1/2)

.

The last equality uses
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2
∫ ∞

0

xq e−x2
dx =

∫ ∞

0

u
q−1
2 e−u du = Γ

(
q + 1

2

)
. ¤

The proof shows the stronger fact that if I is an interval then

lim
t→∞

tr/2 E
[
g′t(1)λ;Xt/

√
t ∈ I, T1 > t

]
=

∫
I
x2a+r e−x2

dx

Γ(a + r + 1/2)
.

We can get more information. Let ĝt(z) = ge2t(z). Then,

− log ĝ′t(1) = − log g′e2t(1) =
∫ e2t

0

a ds

X2
s

=
∫ t

0

a[2 e2u du]
X2

e2u

=
∫ t

0

2a du

Y 2
u

.

Since Yt is a positive recurrent diffusion with invariant probability cΦ2, we see that with
P∗-probability one,

lim
t→∞

1
t

∫ t

0

2a du

Y 2
u

=
∫ ∞

0

2a y−2 cΦ2(y)

=

∫∞
0

x2a+2r−2 e−x2
dx∫∞

0
x2a+2r e−x2 dx

=
2

2a + 2r − 1
.

In other words, the typical value of g′e2t(1) for t large with respect to the measure tilted
by M is (e2t)−1/(2a+2r−1).

5.3. r < 1/2 − 2a.
We will consider the case r < 1/2 − 2a for which the process satisfying (62) avoids

the origin for all t > 0 and either avoids π if κ ≤ 4 or can be defined by reflection at π

for κ < 4 < ∞. We write ξ = r + λ and note that

ξ =
r2

2a
+ r

(
2− 1

2a

)
, r =

1
2
− 2a−

√(
2a− 1

2

)2

+ 2ξ. (63)

Alternatively, we could start with ξ > −(2a − 1/2)2/2, set r = rξ as above, and let
λ = ξ − r.

Since the curve approaches 1 in the tilted measure, the radial parametrization (24)
works well. We use the notation from Section 2, and let ĝt(z) = gσ(t)(z). We consider
the local martingale

M̂t = X̂r
t ĝ′t(1)λ = Υ̂r

t Ĵ−r
t ĝ′t(1)λ+r = eart Ĵ−r

t ĝ′t(1)ξ.

The two-sided chordal SLE is the case ξ = 0, r = 1 − 4a, λ = 0. If we let P∗ denote
probabilities with respect to the tilted measure then some calculation shows that the
analogue of (26) is
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dΘ̂t =
[
1− 3a− r

sin Θ̂t

+
(

1
2
− a− r

)
cotΘt

]
+ dB̂t,

where B̂t is a P∗-Brownian motion. This is of the form (56) with u = 2a − 1/2, v =
1− 3a− r. The invariant density for Ĵt is

h(y) =
Γ(2− 2a− 2r)

Γ(2− 4a− 2r) Γ(2a)
y1−4a−2r (1− y)2a−1.

Similarly to before, we can find α = αr,κ > 0 such that

E
[
g′σ(t)(1)ξ; Υ∞ < e−at

]
= eart E

[
M̂t Ĵr

t ;σ(t) < ∞]

= eart E∗
[
Ĵr

t

]
= e−art c′ [1 + O(e−αs)],

where

c′ =
∫ 1

0

yr h(y) dy =
Γ(2− 2a− 2r) Γ(2− 4a− r)
Γ(2− 4a− 2r) Γ(2− 2a− r)

. (64)

Note that we need r < 1− 2a for the integral to be finite.

Proposition 5.2. If r < 1/2 − 2a, then there exists α = α(r, κ) > 0 such that if
τε = inf{t : Υt = ε}, then

E
[
g′τε

(1)ξ; τε < ∞]
= c′ εr[1 + O(εα)],

where ξ, c′ are as in (63) and (64).

By looking at the tilted measure, we also see that typical value of g′τε
(1) in the

expectation. Let Lt = − log ĝ′t(z). Note that

∂tLt =
a

X2
σ(t)

σ̇(t) =
a (1− Ĵt)

Ĵt

, Lt = a

∫ t

0

1− Ĵs

Ĵs

ds,

and

∫ 1

0

1− y

y
h(y) dy =

Γ(1− 4a− 2r) Γ(2a + 1)
Γ(2− 4a− 2r) Γ(2a)

=
2a

1− 4a− 2r
.

Using positive recurrence of the diffusion under P∗, we see that with P∗-probability
one,

lim
t→∞

Lt

t
= am, m = mr,κ =

2a

1− 4a− 2r
=

4
(1− 2r)κ− 8

.
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We expect that Lt = mt + O(t1/2). Indeed, one can show that for u in a neighborhood
of the origin,

E∗
[

exp
{

u
Lt − amt√

t

}]
< ∞.

Proposition 5.3. If σs = inf{t : dist(γt, 1) ≤ e−s}, then

E
[
g′σs

(1)ξ;σs < ∞] ³ e−rs.

Moreover, the expectation is carried on an event where g′σs
(1)ξ ≈ e−ms. More precisely,

for u in a neighborhood of the origin,

E
[

exp
{

u [sm + log g′σε
(1)]√

s

}
g′σs

(1)ξ;σs < ∞
]
≤ c e−rs.

Roughly speaking, the expectation [g′σs
(1)ξ;σs < ∞] is carried on an event on which

g′σs
(1) ≈ e−m and the probability of this event is on the order e−s(r−ξm).

5.4. One-point estimate for SLE(κ, rκ) processes.
Our definition of SLE(κ, rκ) process used the point 1 as the force point. Here we

assume that the force point, which we call x0, lies in [0+, 1). To be more precise, using
the notation of Section 2, let Ot = gt(x0)− Ut which satisifes

dOt =
a + r

Ot
dt + dWt, O0 = x0

for a standard Brownian motion Wt. Here we assume that a + r > −1/2 so that this is
well defined, perhaps with reflection at the origin. Hence, if Xt = gt(1)− Ut,

dXt =
(

a

Xt
+

r

Ot

)
dt + dWt.

Let Yt, Jt,Υt be as in Section 2, and note that Y0 = J0 = Υ0 = 1− x0.

Proposition 5.4. Suppose 0 < κ < 8, rκ > max{κ/2 − 4,−2}, and γ is an
SLE(κ, rκ) process with force point x0 ∈ [0+, 1). Then there exists α > 0 such that if
0 < ε ≤ 1/2,

P{Υ∞ ≤ ε (1− x0)} = c∗ εβ(1+r/a) (1− x0)β [1 + O(εα)],

where

β = 4a + 2r − 1, c∗ =
Γ(6a + 4r)

Γ(4a + 2r) Γ(2a + 2r − 1)
.
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Note that the assumptions imply that r > (1/2 − 2a) ∨ (−a), and hence β > 0,

β(1 + r/a) > 0.

Proof. The case r = 0 was done in Section 2 and we follow the same approach.
Let Mt = Υβ(1+r/a)

t J−β
t . Itô’s formula shows that Mt is a local martingale satisfying

dMt = − β

Xt
Mt dWt, M0 = (1− x0)−βr/a.

If we tilt by M̃t, then

dXt =
(

1− 3a− 2r

Xt
+

r

Ot

)
dt + dBt,

dJt =
Jt

X2
t

(
3a + 2r − r + a

1− Jt

)
dt− Jt

Xt
dBt,

where Bt is a standard Brownian motion in the new measure P∗. If we change time
setting Ĵt = Jσ(t) where σ(t) = inf{t : Υt = e−at}, then

dĴt =
[
(2a + r)− (2r + 3a) Ĵt

]
dt +

√
Ĵt (1− Ĵt) dB̂t,

for a standard Brownian motion B̂t. If we let Ĵt = (1/2)[1− cosΘt], then

dΘt =
[

a

sinΘt
+

(
3a + 2r − 1

2

)
cotΘt

]
dt + dB̂t.

This is of the form of (56) with u = 2a + 2r − 1/2, v = a. Our assumptions imply that
u > −1/2, u+v > 1/2, and hence the process exists for all times, perhaps with reflection
at π, but not reaching the origin in finite time. The invariant density of Ĵt is

h(x) =
Γ(6a + 4r)

Γ(4a + 2r) Γ(2a + 2r)
x4a+2r−1 (1− x)2a+2r−1,

and

∫ 1

0

x1−2r−4a h(x) dx = (2a + 2r)
Γ(6a + 4r)

Γ(4a + 2r) Γ(2a + 2r)
=

Γ(6a + 4r)
Γ(4a + 2r) Γ(2a + 2r − 1)

.

Using exponential rate of convergence to the invariant distribution, we see that

E∗
[
Ĵβ

t

]
= c∗ + O(e−αt),

and hence, if e−at ≤ (1− x0),
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P{Υ∞ ≤ e−at} = E
[
1{Υ∞ ≤ e−at}]

= e−aβ(1+r/a)t E
[
M̃t J̃β

t ; Υ∞ ≤ e−at
]

= e−aβ(1+r/a)t M−1
0 E∗

[
J̃β

t

]

= c∗ e−aβ(1+r/a)t (1− x0)−βr/a[1 + O(e−ut)].

The third equality uses the fact that with P∗-probability one, Υt → 0. Therefore,

P{Υ∞ ≤ ε (1− x0)} = c∗[ε(1− x0)]β(1+r/a) (1− x0)−βr/a[1 + O(εα)]. ¤

When 0 < β(1 + r/a) < 1, then a “back of the envelope” calculation suggests that
the Hausdorff dimension of the γ(0,∞)∩ [0,∞) should be 1− β(1 + r/a) = 1− κ−1 (2 +
rκ) (4+rκ−κ/2). Indeed, this can be proved with standard techniques once a two-point
estimate analogous to Lemma 2.3 is established. One can do it in this case but it is a
little more difficult than the proof of Lemma 2.3. We choose not to do it here. One
reason to omit it is that a different proof of this result is available in [18]. Similarly, we
expect (although have not proved) that the one-point estimate with distance replacing
conformal distance and a Minkowski content result can be proved.
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