
c©2015 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 67, No. 2 (2015) pp. 637–662
doi: 10.2969/jmsj/06720637

Twisting the q-deformations of compact semisimple Lie groups

By Sergey Neshveyev and Makoto Yamashita

(Received July 15, 2013)

Abstract. Given a compact semisimple Lie group G of rank r, and a
parameter q > 0, we can define new associativity morphisms in Rep(Gq) using
a 3-cocycle Φ on the dual of the center of G, thus getting a new tensor category
Rep(Gq)Φ. For a class of cocycles Φ we construct compact quantum groups

Gτ
q with representation categories Rep(Gq)Φ. The construction depends on

the choice of an r-tuple τ of elements in the center of G. In the simplest
case of G = SU(2) and τ = −1, our construction produces Woronowicz’s
quantum group SU−q(2) out of SUq(2). More generally, for G = SU(n), we
get quantum group realizations of the Kazhdan–Wenzl categories.

Introduction.

A known problem in the theory of quantum groups is classification of quantum
groups with fusion rules of a given Lie group G, see e.g. [Wor88], [WZ94], [Ban96],
[Ohn99], [Bic03], [Ohn05], [Mro15]. Although this problem has been completely
solved in a few cases, most notably for G = SL(2,C) [Ban96], [Bic03], as the rank of G

grows the situation quickly becomes complicated. Already for G = SL(3,C), even when
requiring the dimensions of the representations to remain classical, one gets a large list
of quantum groups that is not easy to grasp [Ohn99], [Ohn05]. A categorical version of
the same problem turns out to be more manageable. Namely, the problem is to classify
semisimple rigid monoidal C-linear categories with fusions rules of G. As was shown by
Kazhdan and Wenzl [KW93], for G = SL(n,C) such categories C are parametrized by
pairs (qC , τC) of nonzero complex numbers, defined up to replacing (qC , τC) by (q−1

C , τ−1
C ),

such that q
n(n−1)/2
C = τn

C and qC is not a nontrivial root of unity.1 Concretely, these are
twisted representation categories C = Rep(SLq(n))ζ , where q is not a nontrivial root of
unity and ζ is a root of unity of order n; the corresponding parameters are qC = q2 and
τC = ζ−1qn−1. The twists are defined by choosing a T-valued 3-cocycle on the dual of
the center of SL(n,C) and by using this cocycle to define new associativity morphisms
in Rep(SLq(n)). The third cohomology group of the dual of the center is cyclic of order
n, and this explains the parametrization of twists of Rep(SLq(n)) by roots of unity. A
partial extension of the result of Kazhdan and Wenzl to types BCD was obtained by
Tuba and Wenzl [TW05].
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Although two problems are clearly related, a solution of the latter does not immedi-
ately say much about the former. The present work is motivated by the natural question
whether there exist quantum groups with representation categories Rep(SLq(n))ζ for all
ζ such that ζn = 1. Equivalently, do the categories Rep(SLq(n))ζ always admit fiber
functors? For n = 2 there is essentially nothing to solve, since for q 6= 1 the category
Rep(SLq(2))−1 is equivalent to Rep(SL−q(2)). For q = 1 the answer is also known:
the quantum group SU−1(2) defined by Woronowicz (which has nothing to do with the
quantized universal enveloping algebra Uq(sl2) at q = −1) has representation category
Rep(SL(2,C))−1. For n ≥ 2, quantum groups with fusion rules of SL(n,C) have been
studied by many authors, see e.g. [Hai00] and the references therein. Usually, one starts
by finding a solution of the quantum Yang–Baxter equation satisfying certain conditions,
and from this derives a presentation of the algebra of functions on the quantum group
[RTF89]. This approach cannot work in our case, since the category Rep(SLq(n))ζ does
not have a braiding unless ζ2 = 1.

The approach we take works, to some extent, for any compact semisimple simply
connected Lie group G. Assume that Φ is a T-valued 3-cocycle on the dual of the center
of G. To construct a fiber functor ϕ from the category Rep(Gq)Φ with associativity
morphisms defined by Φ, such that dimϕ(U) = dimU , is the same as to find an invertible
element F in a completion U(Gq ×Gq) of Uq(g)⊗ Uq(g) satisfying

Φ = (ι⊗ ∆̂q)(F−1)(1⊗ F−1)(F ⊗ 1)(∆̂q ⊗ ι)(F ).

Then, using the twist (or a pseudo-2-cocycle in the terminology of [EV96]) F , we can
define a new comultiplication on U(Gq), thus getting a new quantum group with repre-
sentation category Rep(Gq)Φ.

Our starting point is the simple remark that to solve the above cohomological equa-
tion we do not have to go all the way to Gq, it might suffice to pass from the center Z(G)
to a (quantum) subgroup of Gq, for example, to the maximal torus T . For simple G

this is indeed enough: any 3-cocycle on Ẑ(G) becomes a coboundary when lifted to the
dual P = T̂ of T . The reason is that, for simple G, the center is contained in a torus of
dimension at most 2. However, a 2-cochain f on P such that ∂f = Φ is unique only up
to a 2-cocycle on P . Already for trivial Φ this leads to deformations of Gq by 2-cocycles
on P that are not very well studied [AST91], [LS91], with associated C∗-algebras of
functions (for q > 0) that are typically not of type I.

Our next observation is that, for arbitrary G, if Φ lifts to a coboundary on P ,
then the cochain f can be chosen to be of a particular form. This leads to a very
special class of quantum groups Gτ

q , whose construction depends on the choice of elements
τ1, . . . , τr ∈ Z(G), where r is the rank of G. We show that the quantum groups Gτ

q are
as close to Gq as one could hope. For example, they can be defined in terms of finite
central extensions of Uq(g).

Since we are, first of all, interested in compact quantum groups in the sense of
Woronowicz, we will concentrate on the case q > 0, when the categories Rep(Gq)Φ

have a C∗-structure and, correspondingly, Gτ
q become compact quantum groups. We

then show that the C∗-algebras C(Gτ
q ) are KK -isomorphic to C(G), they are of type I,
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and their primitive spectra are only slightly more complicated than that of C(Gq). For
G = SU (n) we also find explicit generators and relations of the algebras C[SU τ

q (n)] of
regular functions on SU τ

q (n).
To summarize, our construction produces quantum groups with nice properties and

with representation category Rep(Gq)Φ for any 3-cocycle Φ on Ẑ(G) that lifts to a
coboundary on T̂ . This covers the cases when G is simple, but in the general semisimple
case there exist cocycles that do not have this property. For such cocycles the existence
of fiber functors for Rep(Gq)Φ remains an open problem.

Acknowledgements. We would like to thank Kenny De Commer for stimulating
discussions and valuable comments.

1. Preliminaries.

1.1. Compact quantum groups.
A compact quantum group G is given by a unital C∗-algebra C(G) together with a

coassociative unital ∗-homomorphism ∆: C(G) → C(G)⊗ C(G) satisfying the cancella-
tion condition

[∆(C(G))(C(G)⊗ 1)] = C(G)⊗ C(G) = [∆(C(G))(1⊗ C(G))],

where brackets denote the closed linear span. Here we only introduce the relevant ter-
minology and summarize the essential results, see e.g. [NT13] for details.

A theorem of Woronowicz gives a distinguished state h, the Haar state, which is
an analogue of the normalized Haar measure over compact groups. Denote by Cr(G)
the quotient of C(G) by the kernel of the GNS-representation defined by h. We will
be interested in the case where h is faithful, so that Cr(G) = C(G). This condition is
automatically satisfied for coamenable compact quantum groups. The quantum groups
studied in this paper will be coamenable thanks to Banica’s theorem [Ban99, Proposition
6.1] and [NT13, Theorem 2.7.14].

A finite dimensional unitary representation of G is given by a unitary element U ∈
B(HU ) ⊗ C(G) satisfying the condition U13U23 = (ι ⊗ ∆)(U). The tensor product
of two representations is defined by U ©> V = U13V23. The category Rep(G) of finite
dimensional unitary representations of G has the structure of a rigid C∗-tensor category
with a unitary fiber functor (‘forgetful functor’) U 7→ HU to the category Hilbf of finite
dimensional Hilbert spaces. Woronowicz’s Tannaka–Krein duality theorem states that
the reduced quantum group (Cr(G),∆) can be axiomatized in terms of Rep(G) and the
fiber functor.

We denote by C[G] ⊂ C(G) the Hopf ∗-algebra of matrix coefficients of finite
dimensional representations of G. Denote by U(G) the dual ∗-algebra of C[G], so
U(G) =

∏
U∈Irrep(G) B(HU ). It can be considered from many different angles: as the

algebra of functions on the dual discrete quantum group Ĝ, as the algebra of endomor-
phisms of the forgetful functor, as the multiplier algebra of the convolution algebra Ĉ[G]
of G. We also write U(Gn) for n ≥ 2 to denote the ‘tensor product’ multipliers, such as
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U(G2) =
∏

U,V ∈Irrep(G)

B(HU )⊗B(HV ).

By duality, the multiplication map m : C[G] ⊗ C[G] → C[G] defines a ‘coproduct’
∆̂ : U(G) → U(G2).

1.2. Twisting of quantum groups.
Let G be a compact quantum group, and Φ be an invariant unitary 3-cocycle over the

discrete dual of G [NT13, Chapter 3]. Thus, Φ is a unitary element in U(G3) satisfying
the cocycle condition

(1⊗ Φ)(ι⊗ ∆̂⊗ ι)(Φ)(Φ⊗ 1) = (ι⊗ ι⊗ ∆̂)(Φ)(∆̂⊗ ι⊗ ι)(Φ) (1.1)

and the invariance condition [Φ, (∆̂⊗ ι)∆̂(x)] = 0 for x ∈ U(G).
Then, the representation category Rep(G) can be twisted into a new C∗-tensor

category Rep(G)Φ, by using the action by Φ on HU ⊗HV ⊗HW as the new associativity
morphism (U ©> V )©> W → U ©> (V ©> W ) for U, V,W ∈ Rep(G). The category Rep(G)Φ

can be considered as the module category of the discrete quasi-bialgebra (Ĉ[G], ∆̂,Φ)
[Dri89].

Suppose the category Rep(G)Φ is rigid. This is equivalent to the condition that the
central element

Φ1Ŝ(Φ2)Φ3 = m(m⊗ ι)(ι⊗ Ŝ ⊗ ι)(Φ)

in U(G) is invertible. Suppose also that there exists a unitary F ∈ U(G2) such that

Φ = (ι⊗ ∆̂)(F ∗)(1⊗ F ∗)(F ⊗ 1)(∆̂⊗ ι)(F ). (1.2)

Then the discrete quantum group U(G) can be deformed into another one, with the new
coproduct ∆̂F (x) = F ∆̂(x)F ∗. By duality, the function algebra C[G] can be endowed
with the new product

x ·F y = m(F ∗¤(x⊗ y) ¢F ).

Here, ¤ and ¢ are the natural actions of U(G) on C[G] given by X ¤ a =
〈
X, a[2]

〉
a[1]

and a¢X =
〈
X, a[1]

〉
a[2]. We denote the corresponding compact quantum group by GF .

Note that in general the involution on C[GF ] differs from the original one, see [NT13,
Example 2.3.9].

We have a unitary monoidal equivalence of the C∗-tensor categories Rep(G)Φ and
Rep(GF ). The tensor functor ϕ : Rep(G)Φ → Rep(GF ) is given by the identity map on
objects and morphisms, but with the nontrivial tensor transformation ϕ(U) ©> ϕ(V ) →
ϕ(U ©> V ) defined by

HU ⊗HV → HU ⊗HV , ξ ⊗ η 7→ F ∗(ξ ⊗ η).
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In terms of fiber functors, F gives a tensor functor Rep(G)Φ → Hilbf which is the same as
that of Rep(G) on objects and morphisms, but with the modified tensor transformation
HU ⊗HV → HU©>V given by ξ ⊗ η 7→ F ∗(ξ ⊗ η).

Examples of invariant 3-cocycles can be obtained as follows. Assume H is a closed
central subgroup of G, so H is a compact abelian group and we are given a surjective
homomorphism π : C[G] → C[H] of Hopf ∗-algebras such that the image of U(H) under
the dual homomorphism U(H) → U(G) is a central subalgebra of U(G), or equivalently,
for any irreducible unitary representation U of G the element (ι ⊗ π)(U) has the form
1⊗χU for a character χU ofH. Unitary 3-cocycles in U(H3) are nothing else than T-valued
3-cocycles on the Pontryagin dual Ĥ. Any such cocycle defines an invariant cocycle Φ in
U(G3); when G is itself compact abelian, this is just the usual pullback homomorphism
Z3(Ĥ;T) → Z3(Ĝ;T). Explicitly, the action of Φ on HU ⊗HV ⊗HW is by multiplication
by Φ(χU , χV , χW ). For such cocycles Φ the C∗-tensor category Rep(G)Φ is always rigid.

1.3. Quantized universal enveloping algebra.
Throughout the whole paper G denotes a semisimple simply connected compact Lie

group, and g denotes its complexified Lie algebra. We fix a maximal torus T in G, and
denote the corresponding Cartan subalgebra by h. The root lattice is denoted by Q, and
the weight lattice by P . We fix a choice of positive roots, and denote the corresponding
positive simple roots by

{
α1, . . . , αr

}
. We also fix an ad-invariant symmetric form on g

such that it is negative definite on the real Lie algebra of G. If G is simple, we assume
that this form is standardly normalized, meaning that (α, α) = 2 for every short root
α. The Cartan matrix is denoted by (aij)1≤i,j≤r, and the Weyl group is denoted by W .
The center Z(G) of G is contained in T and can be identified with the dual of P/Q.

In what follows the variable q ranges over the strictly positive real numbers, although
many results remain true for all q 6= 0 such that the numbers qi = q(αi,αi)/2 are not
nontrivial roots of unity. For q 6= 1, the quantized universal enveloping algebra Uq(g) is
the universal algebra over C generated by the elements Ei, Fi, and K±1

i for 1 ≤ i ≤ r

satisfying the relations

[Ki,Kj ] = 0, KiEjK
−1
i = q

aij

i Ej , KiFjK
−1
i = q

−aij

i Fj ,

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

,

1−aij∑

k=0

(−1)k

[
1− aij

k

]

qi

Ek
i EjE

1−aij−k
i = 0,

1−aij∑

k=0

(−1)k

[
1− aij

k

]

qi

F k
i FjF

1−aij−k
i = 0.

It has the structure of a Hopf ∗-algebra defined by the operations

∆̂q(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, ∆̂q(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆̂q(Ki) = Ki ⊗Ki,

Ŝq(Ei) = −K−1
i Ei, Ŝq(Fi) = −FiK

−1
i , Ŝq(Ki) = K−1

i ,
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ε̂q(Ei) = ε̂q(Fi) = 0, ε̂q(Ki) = 1,

E∗
i = FiKi, F ∗i = K−1

i Ei, K∗
i = Ki.

A representation (π, V ) of Uq(g) is said to be admissible when V admits a decom-
position

⊕
χ∈P Vχ such that π(Ki)|Vχ

is equal to the scalar q(αi,χ). The category of
finite dimensional admissible ∗-representations of Uq(g) is a C∗-tensor category with the
forgetful functor. We denote the associated compact quantum group by Gq. There is
a natural inclusion of T into U(Gq). Then the set Z(Gq) of group-like central elements
in U(Gq) coincides with Z(G). The class of representations of Gq on which Z(G) acts
trivially corresponds to a quotient quantum group denoted by Gq/Z(G).

2. Twisted q-deformations.

2.1. Extension of the QUE-algebra.
For q > 0, we let Ũq(g) denote the universal ∗-algebra generated by Uq(g) and unitary

central elements C1, . . . , Cr. It is not difficult to check that for q 6= 1 the following
formulas define a Hopf ∗-algebra structure on Ũq(g):

∆̂(Ei) = Ei ⊗ Ci + Ki ⊗ Ei, ∆̂(Ki) = Ki ⊗Ki, ∆̂(Ci) = Ci ⊗ Ci.

Similarly, for q = 1, we define

∆̂(Ei) = Ei ⊗ Ci + 1⊗ Ei, ∆̂(Hi) = Hi ⊗ 1 + 1⊗Hi, ∆̂(Ci) = Ci ⊗ Ci.

There is a Hopf ∗-algebra homomorphism from Ũq(g) onto Uq(g), defined by Ci 7→ 1
and by the identity map on the copy of Uq(g). There is also a Hopf ∗-algebra homomor-
phism onto C[(Ci)r

i=1], given by Ei 7→ 0, Fi 7→ 0, Ki 7→ 1, and by the identity map on
the Ci’s. We regard representations of Uq(g) and of C[(Ci)r

i=1] as the ones of Ũq(g) via
these homomorphisms.

Remark 2.1. The Hopf algebra Ũq(g) is closely related to the Drinfeld double
D(Uq(b+)) of Uq(b+) = 〈Ei,Ki | 1 ≤ i ≤ r〉. Namely, put

X+
i = EiC

−1
i , K+

i = KiC
−1
i , X−

i = Fi, K−
i = KiCi.

Then we see that the elements X+
i and K+

i generate a copy of Uq(b+), while the X−
i

and K−
i generate a copy of Uq(b−), and taking together these subalgebras give a copy of

D(Uq(b+)) in Ũq(g). The homomorphism Ũq(g) → Uq(g) is an extension of the standard
projection D(Uq(b+)) → Uq(g). If we add square roots of K±

i to D(Uq(b+)), thus getting

a Hopf algebra ˜D(Uq(b+)), we can recover Ũq(g) by letting Ci = (K−
i )1/2(K+

i )−1/2.

Therefore we have inclusions of Hopf algebras D(Uq(b+)) ⊂ Ũq(g) ⊂ ˜D(Uq(b+)).

Let τ = (τ1, . . . , τr) be an r-tuple of elements in Z(G). We say that a representation
(π, V ) of Ũq(g) is τ -admissible if its restriction to Uq(g) is admissible and the elements
Ci act on the weight spaces Vχ as scalars

〈
τi, χ

〉
. The category of τ -admissible repre-
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sentations is a rigid C∗-tensor category with forgetful functor. Moreover, the Gq/Z(G)-
representations are naturally included in the τ -admissible representations as a C∗-tensor
subcategory.

Definition 2.2. We let Gτ
q denote the compact quantum group realizing the

category of finite dimensional τ -admissible ∗-representations of Ũq(g) together with its
canonical fiber functor.

In other words, C[Gτ
q ] ⊂ Ũq(g)∗ is spanned by matrix coefficients of finite dimensional

τ -admissible representations, and the Hopf ∗-algebra structure on C[Gτ
q ] is defined by

duality using that of Ũq(g).
Since every admissible representation of Uq(g) extends uniquely to a τ -admissible

representation of Ũq(g), and every τ -admissible representation is obtained this way, we
can identify the ∗-algebra U(Gτ

q ) with U(Gq). The image Uτ
q (g) of Ũq(g) in U(Gτ

q ) =
U(Gq) plays the role of a quantized universal enveloping algebra for Gτ

q . As an algebra
it is generated by Ei, Fi, K±1

i and τi (which is the image of Ci), but is endowed with a
modified coproduct

∆̂(Ei) = Ei ⊗ τi + Ki ⊗ Ei, ∆̂(Ki) = Ki ⊗Ki, ∆̂(τi) = τi ⊗ τi. (2.1)

To put it differently, as a ∗-algebra, Uτ
q (g) is the tensor product of Uq(g) and the group

algebra of the group Tτ ⊂ Z(G) generated by τ1, . . . , τr, while the coproduct is defined
by (2.1). As a quotient of Ũq(g), the Hopf ∗-algebra Uτ

q (g) is obtained by requiring that
the unitaries C1, . . . , Cr satisfy the same relations as τ1, . . . , τr ∈ Z(G).

2.2. Twisting and associator.
Given τ = (τ1, . . . , τr) ∈ Z(G)r, we obtain a 3-cocycle on Ẑ(G) = P/Q as follows.
First, let f(λ, µ) be a T-valued function on P × P satisfying

f(λ, µ + Q) = f(λ, µ), f(λ + αi, µ) =
〈
τi, µ

〉
f(λ, µ). (2.2)

These conditions imply that f can be determined by its restriction to the image of a set-
theoretic section (P/Q)2 → P 2. For example, if λ1, . . . , λn is a system of representatives
of P/Q, then we can put

f

(
λi +

r∑

j=1

mjαj , µ

)
=

r∏

j=1

〈
τj , µ

〉mj

for all 1 ≤ i ≤ n and (m1, . . . , mr) ∈ Zr.
Using (2.2), the coboundary of f ,

(∂f)(λ, µ, ν) = f(µ, ν)f(λ + µ, ν)−1f(λ, µ + ν)f(λ, µ)−1,

is seen to be invariant under the translation by Q in each variable. Thus, ∂f can be
considered as a 3-cochain on P/Q with values in T. By construction, it is a cocycle. If
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f ′ satisfies the same condition as f above, the difference f ′f−1 is Q2-invariant, that is, it
defines a function on (P/Q)2. Thus, the cohomology class of ∂f in H3(P/Q;T) depends
only on τ . It also follows that the twisted coproduct ∆̂f (x) = f∆̂q(x)f∗ does not depend
on the choice of f .

Since (∂f)∗ belongs to U(Z(G)3), as we discussed in Section 1.2, it can be regarded
as an invariant 3-cocycle in U(G3

q) which is denoted by Φτ . Similarly, f can be considered
as a unitary in U(G2

q), and we have

Φτ = (ι⊗ ∆̂q)(f∗)(1⊗ f∗)(f ⊗ 1)(∆̂q ⊗ ι)(f).

Proposition 2.3. The coproduct ∆̂f on U(Gq) coincides with the coproduct ∆̂
defined by (2.1).

Proof. Since f is contained in U(T 2) ⊂ U(G2
q), ∆̂f = ∆̂q on the elements Ki.

For Ei, since the action of Ei on an admissible module increases the weight of a vector
by αi, identities (2.2) imply that f(Ki ⊗ Ei)f∗ = Ki ⊗ Ei and f(Ei ⊗ 1)f∗ = Ei ⊗ τi.
Comparing these identities with (2.1), we obtain the assertion. ¤

Corollary 2.4. The representation category of Gτ
q is unitarily monoidally equiva-

lent to Rep(Gq)Φ
τ

, the representation category of Gq with associativity morphisms defined
by Φτ .

This result can also be interpreted as follows. Let ΦKZ,q ∈ U(G3) be the Drinfeld
associator coming from the Knizhnik–Zamolodchikov equations associated with the pa-
rameter ~ = log(q)/πi. The representation category of Gq is equivalent to that of G with
associativity morphisms defined by ΦKZ,q. The equivalence is given by a unitary Drinfeld
twist FD ∈ U(G2) satisfying (1.2) for ΦKZ,q [NT13, Chapter 4]. It follows that Rep(Gτ

q )
is unitarily monoidally equivalent to the category Rep(G) with associativity morphisms
defined by

Φτ
KZ,q = (ι⊗ ∆̂)(F ∗D)(1⊗ F ∗D)Φτ (FD ⊗ 1)(∆̂⊗ ι)(FD) = ΦτΦKZ,q,

where we now consider Φτ as an element of U(G3). Correspondingly, the unitary F τ
D =

fFD ∈ U(G2) plays the role of a Drinfeld twist for Gτ
q .

Remark 2.5. The construction of [NT10] can be carried out for Gτ
q to obtain a

spectral triple over C[Gτ
q ] as an isospectral deformation of the spin Dirac operator on G.

Indeed, it is enough to verify the boundedness of [1⊗(ι⊗γ)(t), (π⊗ι⊗ãd)(Φτ
KZ,q)] for any

irreducible representation π, where t is the standard symmetric tensor
∑

i xi⊗xi [NT10,
Corollary 3.2]. Since (π⊗ ι⊗ ãd)(Φτ ) ∈ C⊗U(Z(G))⊗C commutes with 1⊗ (ι⊗ γ)(t),
we can reduce the proof to the case of trivial τ .

A natural question is how large the class of cocycles of the form Φτ is. These cocycles
are analyzed in detail in Appendix. Using that analysis we point out the following.

Proposition 2.6. A T-valued 3-cocycle Φ on P/Q is cohomologous to Φτ for some
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τ1, . . . , τr ∈ Z(G) if and only if Φ lifts to a coboundary on P . This is always the case if
P/Q can be generated by not more than two elements. For example, this is the case if G

is simple.

Proof. The first statement is proved in Corollary A.4. It is also shown there that
another equivalent condition on Φ is that it vanishes on

∧3(P/Q) ⊂ H3(P/Q;Z). This
condition is obviously satisfied if P/Q can be generated by two elements. Finally, if G

is simple, then it is known that P/Q is cyclic in all cases except for G = Spin(4n), in
which case P/Q ∼= Z/2Z⊕ Z/2Z. ¤

Therefore for simple G the quantum groups Gτ
q realize all possible associativity

morphisms on Rep(Gq) defined by 3-cocycles on the dual of the center. In the semisimple
case this is not true as soon as the center becomes slightly more complicated, namely,
as soon as

∧3(P/Q) 6= 0. We conjecture that in this case, if we take a cocycle Φ on
P/Q that does not lift to a coboundary on P , then there are no unitary fiber functors
on Rep(G)Φ, that is, there are no compact quantum groups with this representation
category. Note that by Corollary A.5 any such cocycle Φ is cohomologous to product of
a cocycle Φτ and a 3-character on P/Q that is nontrivial on

∧3(P/Q) ⊂ (P/Q)⊗3.

2.3. Isomorphisms of twisted quantum groups.
Denote the cohomology class of the cocycle Φτ in H3(P/Q;T) by Θ(τ). This way

we obtain a homomorphism

Θ: Z(G)r → H3(P/Q;T).

Assume τ ∈ kerΘ. Let f be a function satisfying (2.2). Then there exists a 2-cochain
g : (P/Q)2 → T such that ∂f = ∂g, so that fg−1 is a 2-cocycle on P . Another choice of
f and g would give us a cocycle that differs from fg−1 by a 2-cocycle on P/Q. Therefore
taking the cohomology class of fg−1 we get a well-defined homomorphism

Υ: kerΘ → H2(P ;T)/H2(P/Q;T).

Proposition 2.7. Assume τ ′, τ ∈ Z(G)r are such that

τ ′τ−1 ∈ kerΘ and τ ′τ−1 ∈ kerΥ.

Then the quantum groups Gτ ′
q and Gτ

q are isomorphic.

Proof. Denote by ∆̂′ and ∆̂ the coproducts on U(Gq) defined by τ ′ and τ , see
(2.1). Let f ′ and f be functions satisfying (2.2) for τ ′ and τ , respectively, so that
∆̂′ = ∆̂f ′ and ∆̂ = ∆̂f . The assumptions of the proposition mean that there exists a
2-cochain g on P/Q such that f ′f−1g is a coboundary on P . In other words, there exists
a unitary u ∈ U(T 2) ⊂ U(G2

q) such that

f ′g = (u⊗ u)f∆̂q(u)∗.



646 S. Neshveyev and M. Yamashita

Then Adu is an isomorphism of (U(Gq), ∆̂) onto (U(Gq), ∆̂′), hence Gτ
q
∼= Gτ ′

q . ¤

Apart from the isomorphisms given by this proposition, we have Gτ
q
∼= Gτ−1

q−1 . There
also are isomorphisms induced by symmetries of the based root datum of G. Finally, for
q = 1 there can be additional isomorphisms defined by conjugation by elements in U(G)
that lie in the normalizer of the maximal torus.

3. Function algebras of twisted quantum groups.

3.1. Crossed product description.
As before, assume τ = (τ1, . . . , τr) ∈ Z(G)r. Recall that we denote by Tτ the

subgroup of Z(G) generated by the elements τ1, . . . , τr. There is a homomorphism

ψ : T̂τ → T/Z(G)

defined as follows. Given χ ∈ T̂τ , we define a character on the root lattice Q by αi 7→
χ(τi). It can be extended to P , and we obtain an element ψ̃(χ) ∈ P̂ = T . The ambiguity
of this extension is in Q⊥ ∩ T = Z(G). Thus, the image ψ(χ) of ψ̃(χ) in T/Z(G) is
well-defined.

The homomorphism ψ allows us to define an action of T̂τ by conjugation on Gq,
that is, we have an action Adψ of T̂τ on C(Gq) defined by

(Adψ(χ))(a) =
〈
ψ̃(χ−1), a[1]

〉〈
ψ̃(χ), a[3]

〉
a[2];

recall that the elements of T define characters of C(Gq), that is, they are group-like
unitary elements in U(Gq).

Theorem 3.1. There is a canonical isomorphism

C(Gτ
q ) ∼= (C(Gq)oAdψ T̂τ )Tτ ,

where the group Tτ acts on C(Gq)oAdψ T̂τ by right translations ρ on C(Gq) and by the
dual action on C∗(T̂τ ).

Proof. Let us first identify the compact quantum group G̃τ
q defined by the cate-

gory of finite dimensional representations of Uτ
q (g) such that their restrictions to Uq(g)

are admissible. Any such irreducible representation is tensor product of an irreducible
admissible representation of Uq(g) and a character of Tτ ; recall that these can be regarded
as representations of Uτ

q (g). It follows that the Hopf ∗-algebra C[G̃τ
q ] contains copies of

C[Gq] and C∗(T̂τ ), and as a space it is tensor product of these Hopf ∗-subalgebras. It
remains to find relations between elements of C[Gq] and C∗(T̂τ ) inside C[G̃τ

q ].
Let (π, V ) be a finite dimensional admissible representation of Uq(g), and χ be a

character of Tτ . Then, on the one hand, π ⊗ χ is a representation on V with Ei acting
by χ(τi)π(Ei). On the other hand, χ ⊗ π is also a representation on the same space V

with Ei acting by π(Ei). From this we see that the operator π(ψ̃(χ)), where we consider



Twisting quantum groups 647

the standard extension of π to U(Gq), intertwines χ ⊗ π with π ⊗ χ. In other words, if
Uπ ∈ B(V ) ⊗ C[Gq] is the representation of Gq defined by π, then in B(V ) ⊗ C[G̃τ

q ] we
have

(π(ψ̃(χ))⊗ uχ)Uπ = Uπ(π(ψ̃(χ))⊗ uχ).

Since

(π(ψ̃(χ)−1)⊗ 1)Uπ(π(ψ̃(χ))⊗ 1) = (ι⊗Adψ(χ))(Uπ),

this exactly means that if a ∈ C[Gq] is a matrix coefficient of π, then uχa =
(Adψ(χ))(a)uχ. Therefore C[G̃τ

q ] = C[Gq]oAdψ T̂τ .
Now, the quantum group Gτ

q is the quotient of G̃τ
q defined by the category of τ -

admissible representations. By definition, a representation π⊗χ of Uτ
q (g) is τ -admissible

if π(τi) = χ(τi). Therefore C[Gτ
q ] ⊂ C[G̃τ

q ] = C[Gq] oAdψ T̂τ is spanned by elements of
the form auχ, where a is a matrix coefficient of an admissible representation π such that
π(τi) = χ(τi). If π is irreducible, then π(τi) is scalar, and we have ρ(τi)(a) = π(τi)a.
Hence C[Gτ

q ] = (C[Gq]oAdψ T̂τ )Tτ . ¤

Corollary 3.2. The C∗-algebra C(Gτ
q ) is of type I.

Proof. Since C(Gτ
q ) ⊂ C(Gq)oAdψ T̂τ , this follows from the known fact that the

C∗-algebra C(Gq) is of type I. ¤

Recall that the family (C(Gq))0<q<∞ has canonical structure of a continuous field
of C∗-algebras [NT11].

Corollary 3.3. The C∗-algebras (C(Gτ
q ))0<q<∞ form a continuous field of C∗-

algebras.

3.2. Primitive spectrum.
Let us turn to a description of the primitive spectrum of C(Gτ

q ). We will concentrate
on the case q 6= 1, the case q = 1 can be treated similarly. First of all observe that the
action of Tτ on C(Gq) oAdψ T̂τ is saturated, since every spectral subspace contains a
unitary. We thus obtain a strong Morita equivalence

C(Gτ
q ) ∼M C(Gq)oAdψ T̂τ oρ, dAdψ

Tτ
∼= C(Gq)oρ Tτ oAdψ,ρ̂ T̂τ . (3.1)

Recall how to describe primitive spectra of crossed products, see e.g. [Wil07]. Let Γ
be a finite group acting on a separable C∗-algebra A. Then any primitive ideal J of AoΓ is
determined by the Γ-orbit of an ideal I ∈ Prim(A) and an ideal J0 ∈ Prim(AoStabΓ(I))
by the condition J0 ∩A = I and J = IndJ0.

If A is of type I, the ideals J0 can, in turn, be described as follows. Put Γ0 =
StabΓ(I). We want to describe irreducible representations of A o Γ0 whose restrictions
to A have kernel I. Let H be the space of an irreducible representation π of A with kernel
I. Then the action of Γ0 on A/I is implemented by a projective unitary representation
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γ 7→ uγ of Γ0 on H. Let ω be the corresponding 2-cocycle. Consider the regular ω̄-
representation γ 7→ λω̄

γ of Γ0 on `2(Γ0). Then AoΓ0 has a representation on H ⊗ `2(Γ0)
defined by a 7→ π(a) ⊗ 1, γ 7→ uγ ⊗ λω̄

γ . Any irreducible representation of A o Γ0

whose restriction to A has kernel I is a subrepresentation of this representation. So
it remains to decompose the representation of A o Γ0 on H ⊗ `2(Γ0) into irreducible
subrepresentations. The von Neumann algebra generated by the image of A o Γ0 is
B(H)⊗C∗(Γ0; ω̄). Therefore the representations we are interested in are in a one-to-one
correspondence with irreducible representations of C∗(Γ0; ω̄).

To summarize, if A is a separable C∗-algebra of type I and Γ is a finite group acting
on A, then the primitive spectrum Prim(A o Γ) can be identified with the set of pairs
([I], J), where [I] is the Γ-orbit of an ideal I ∈ Prim(A), J ∈ Prim(C∗(ΓI ; ω̄I)), and ωI is
the 2-cocycle on ΓI = StabΓ(I) defined by a projective representation of ΓI implementing
the action of ΓI on the image of A under an irreducible representation with kernel I.

Returning to C(Gτ
q ), for an element w ∈ W of the Weyl group and a character

χ ∈ T̂τ , put θw(χ) = w−1(ψ̃(χ))ψ̃(χ)−1. This defines a homomorphism from T̂τ to T .

Proposition 3.4. For q > 0, q 6= 1, the primitive spectrum of C(Gτ
q ) can be

identified with

∐

w∈W

(θw(T̂τ )\T/Tτ )× ̂θ−1
w (Tτ ).

Proof. In view of the strong Morita equivalence (3.1) it suffices to describe the
primitive spectrum of

C(Gq)oρ Tτ oAdψ,ρ̂ T̂τ .

Recall that the spectrum of C(Gq) is W × T . The right translation action of Tτ

on C(Gq) defines an action on W × T that is simply the action by translations on T .
Therefore Prim(C(Gq) oρ Tτ ) can be identified with W × T/Tτ , and every irreducible
representation of C(Gq)oρ Tτ is induced from an irreducible representation of C(Gq).

Next, we have to understand the action of T̂τ on Prim(C(Gq) oρ Tτ ). Since the
dual action preserves the equivalence class of any induced representation, we just have
to look at the action Adψ. Given a representation πw ⊗ πt of C(Gq) corresponding to
(w, t) ∈ W × T , we have

(πw ⊗ πt)(Adψ(χ−1)) ∼ πw ⊗ πθw(χ)t

by [NT12, Lemma 3.4] and [Yam13, Lemma 8]. It follows that the action of T̂τ on
Prim(C(Gq) oρ Tτ ) = W × T/Tτ is by translations on T/Tτ via the homomorphisms
θw : T̂τ → T . Hence the space of T̂τ -orbits is

∐
w∈W θw(T̂τ )\T/Tτ , and the stabilizer of

a point (w, tTτ ) is θ−1
w (Tτ ) ⊂ T̂τ .

To finish the proof of the proposition it remains to show that the action (Adψ, ρ̂) of
θ−1

w (Tτ ) on C(Gq)oρ Tτ can be implemented in the space of the induced representation
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Ind(πw⊗πt) by a unitary representation of θ−1
w (Tτ ). For this, in turn, it suffices to show

that the equivalences

(πw ⊗ πt′)(Adt−1) ∼ πw ⊗ πw−1(t)t−1t′

from [NT12, Lemma 3.4] and [Yam13, Lemma 8] can be implemented by a unitary
representation t 7→ vt of T/Z(G) on the space of representation πw. But this is easy to
see. Specifically, using the notation of [NT12] and [Yam13], if w = si is the reflection
corresponding to a simple root αi, then the required representation t 7→ vt on `2(Z+) can
be defined by vten =

〈
t, αi

〉n
en. For arbitrary w we just have to take tensor products of

such representations. ¤

Remark 3.5. A description of the topology on Prim(C(Gq)) is given in [NT12].
The above argument is, however, not quite enough to understand the topology on
Prim(C(Gτ

q )).

3.3. K-theory.
The maximal torus T is embedded in U(Gτ

q ), so it can be considered as a subgroup
of Gτ

q . Let us consider the right translation action ρ of T on C(Gτ
q ). The crossed product

C(Gτ
q )oρ T is a T̂ -C∗-algebra with respect to the dual action.

Proposition 3.6. The dual action of T̂ on C(Gτ
q ) oρ T is equivariantly strongly

Morita equivalent to an action on C(Gq)oρ T that is homotopic to the dual action.

Proof. If we identify C(Gτ
q ) with (C(Gq) oAdψ T̂τ )Tτ , then the action of T by

right translations on C(Gτ
q ) extends to an action on C(Gq) oAdψ T̂τ that is trivial on

C∗(Tτ ) and coincides with the action by right translations on C(Gq). This action of T

on C(Gq)oAdψ T̂τ commutes with the action of Tτ . Hence the strong Morita equivalence
(3.1) is T -equivariant, and taking crossed products we get a T̂ -equivariant strong Morita
equivalence

C(Gτ
q )oρ T ∼M C(Gq)oAdψ T̂τ oρ,dAdψ

Tτ oρ T. (3.2)

Denote the C∗-algebra on the right hand side by A. We claim that A is isomorphic to

B = C(Gq)oAdψ T̂τ odAdψ
Tτ oρ T.

Indeed, the map auχutut′ 7→ auχututt′ for a ∈ C(Gq), χ ∈ T̂τ , t ∈ Tτ and t′ ∈ T is the
required isomorphism. The dual action of T̂ on A corresponds to an action β on B which
is given by the dual action on the copy of C∗(T ) and by the dual action on the copy of
C∗(Tτ ) via the canonical homomorphism r : T̂ → T̂τ .

The map T̂ 3 χ 7→ ur(χ) ∈ C∗(T̂τ ) ⊂ M(B) is a 1-cocycle for the action β. Therefore
β is strongly Morita equivalent to the action γ defined by γχ = (Adur(χ))βχ. This action
is already trivial on C∗(Tτ ), while on C(Gq) it is given by Adψ(r(χ)), and on C∗(T ) it
coincides with the dual action.
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Denote by δ the restriction of γ to C(Gq) oρ T ⊂ M(B). Then, similarly to (3.2),
the actions δ and γ are strongly Morita equivalent.

Combining the Morita equivalences that we have obtained, we conclude that the dual
action of T̂ on C(Gτ

q )oρ T is strongly Morita equivalent to the action δ = (Adψ(r(·)), ρ̂)
on C(Gq) oρ T . Choosing a basis in T̂ = P and paths from ψ̃(r(χ)) to the neutral
element in T for every basis element χ, we see that δ is homotopic to the dual action on
C(Gq)oρ T . ¤

Theorem 3.7. The C∗-algebra C(Gτ
q ) is KK-isomorphic to C(Gq), hence to C(G).

Proof. Since the torsion-free commutative group T̂ satisfies the strong Baum–
Connes conjecture, the functor A 7→ A o T̂ maps homotopic actions into KK -
isomorphisms of the corresponding crossed products. By the previous proposition,
this, together with the Takesaki–Takai duality, implies that C(Gτ

q ) and C(Gq) are KK -
isomorphic. By [NT12] we also know that C(Gq) is KK -isomorphic to C(G). ¤

Remark 3.8.

( i ) The above proof shows that the continuous field of Corollary 3.3 is a KK -fibration
in the sense of [ENOO09]. The argument of [NT11] applies to the Dirac oper-
ator D given by Remark 2.5, and we obtain that the K-homology class of D is
independent of q. The bi-equivariance of D and the construction in the proof of
Proposition 3.6 imply that the K-homology class of D is also independent of τ up
to the isomorphism of Theorem 3.7.

( ii ) For the group T̂ the strong Baum–Connes conjecture is a consequence of the
Pimsner–Voiculescu sequence in KK -theory. Therefore the proof of Theorem 3.7
can be written such that it relies only on this sequence, see e.g. [San11, Section
5.1] for a related argument.

4. Twisted SUq(n).

4.1. Special unitary group.
Let us review the structure of SU (n), see e.g. [FH91, Chapter 15]. For the sake

of presentation, it is convenient to consider also the unitary group U(n). We take the
subgroup of the diagonal matrices T̃ as a maximal torus of U(n), and take T = T̃ ∩
SU (n) as a maximal torus of SU (n). We will often identify T̃ with Tn. We write the
corresponding Cartan subalgebras as h̃ ⊂ gln and h ⊂ sln.

Let {eij}n
i,j=1 be the matrix units in Mn(C) = gln, and {L̃i}n

i=1 be the basis in h̃∗

dual to the basis {eii}n
i=1 in h̃. Denote by Li the image of L̃i in h∗. Therefore any n− 1

elements among L1, . . . , Ln form a basis in h∗, and we have
∑

i Li = 0.
The weight lattice P ⊂ h∗ is generated by the elements Li. The pairing between T

and P is given by
〈
t, Li

〉
= ti for t ∈ T ⊂ Tn. As simple roots we take

αi = Li − Li+1, 1 ≤ i ≤ n− 1.

The fundamental weights are then given by
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$i = L1 + · · ·+ Li, 1 ≤ i ≤ n− 1.

Consider the homomorphism | · | : P → Z such that L1 7→ n − 1 and Li 7→ −1 for
1 < i ≤ n. In other words,

|a1$1 + · · ·+ an−1$n−1| = λ1 + · · ·+ λn−1,

where λn−i is given by a1 + · · ·+ ai. The image of Q under | · | is nZ, and therefore we
can use this homomorphism to identify P/Q with Z/nZ.

4.2. Twisted quantum special unitary groups.
By Proposition A.3, the cohomology group H3(Z/nZ;T) is isomorphic to Z/nZ, and

a cocycle generating this group can be defined by

φ(a, b, c) = ζωn(a,b)c
n , where ζn = e2πi/n and ωn(a, b) =

⌊
a + b

n

⌋
−

⌊
a

n

⌋
−

⌊
b

n

⌋
.

Using this generator we identify H3(Z/nZ;T) with the group µn ⊂ T of units of order n.
Therefore, given ζ ∈ µn, we have a category Rep(SU q(n))ζ with associativity morphisms
defined by multiplication by ζωn(|λ|,|η|)|ν| on the tensor product Vλ⊗Vη⊗Vν of irreducible
Uq(g)-modules with highest weights λ, η, ν. This agrees with the conventions of Kazhdan
and Wenzl [KW93].

It is also convenient to identify Z(SU (n)) with the group µn. Thus, for τ =
(τ1, . . . , τn−1) ∈ µn−1

n , we can define a twisting SU τ
q (n) of SU q(n). Its representation

category is one of Rep(SU q(n))ζ , and to find ζ we have to compute the homomorphism
Θ: Z(SU (n))n−1 → H3(P/Q;T) introduced in Section 2.3. Under our identifications
this becomes a homomorphism µn−1

n → µn.

Proposition 4.1. We have Θ(τ) =
∏n−1

i=1 τ−i
i .

Proof. Recall the construction of Θ. We choose a function f : P × P → T such
that it factors through P × (P/Q) and f(λ + αi, µ) =

〈
τi, µ

〉
f(λ, µ). Then Θ(τ) is the

cohomology class of ∂f in H3(P/Q;T).
Note that

〈
τi, µ

〉
= τ

−|µ|
i , which is immediate for µ = Lj , and define a character χ

of Q⊗ (P/Q) = Q⊗ (Z/nZ) by

χ(αi ⊗ k) = τk
i for 1 ≤ i ≤ n− 1 and k ∈ Z/nZ,

so that f(λ+α, µ) = χ(α⊗|µ|)f(λ, µ) for all α ∈ Q. By Proposition A.6, the cohomology
class of ∂f depends only on the restriction of χ to

ker(Q⊗ (Z/nZ) → P ⊗ (Z/nZ)) ∼= TorZ1 (Z/nZ,Z/nZ) ∼= Z/nZ,

and by varying τ we get this way an isomorphism Hom(TorZ1 (Z/nZ,Z/nZ),T) ∼=
H3(Z/nZ;T). In order to compute this isomorphism we can use the resolution nZ →
Z→ Z/nZ instead of Q → P

|·|−→ Z/nZ. Define a morphism between these resolutions by
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Z → P , 1 7→ $n−1 = −Ln. By pulling back χ under this morphism, we get a character
χ̃ of (nZ)⊗ (Z/nZ) such that

χ̃(n⊗ k) = χ(n$n−1 ⊗ k).

We have n$n−1 =
∑n−1

i=1 iαi. Therefore

χ̃(n⊗ k) = ζk, where ζ =
n−1∏

i=1

τ i
i .

Then the function f̃ : Z× Z→ T defined by

f̃(a, b) = ζba/ncb,

factors through Z× (Z/nZ), f̃(a + n, b) = χ̃(n⊗ b)f̃(a, b) and (∂f̃)(a, b, c) = ζ−ωn(a,b)c.
Therefore the class of ∂f̃ in H3(Z/nZ;T) = µn is ζ−1. ¤

In Section 2.3 we also introduced a homomorphism Υ. In the present case we have
H2(P/Q;T) = 0, so Υ is a homomorphism kerΘ → H2(P ;T).

Lemma 4.2. The homomorphism Υ: kerΘ → H2(P ;T) is injective.

Proof. Assume τ ∈ kerΘ, so
∏n−1

i=1 τ i
i = 1. In this case the character χ of

Q⊗ (P/Q) from the proof of the previous proposition extends to P ⊗ (P/Q) by

χ(Li ⊗ µ) = (τ1 · · · τi−1)−|µ| for 1 ≤ i ≤ n and µ ∈ P.

Therefore if we consider χ as a function on P × P , we can take it as a function f in
that proof. Then f is a 2-cocycle, and by definition, the image of τ under Υ is the
cohomology class of f̄ . It is well-known, and also follows from Proposition A.1, that f is
a coboundary if and only if f is symmetric. For 1 < i < j ≤ n we have

f(Li, Lj)f(Lj , Li) = (τi · · · τj−1)−1.

So if f is symmetric, then τ2 = · · · = τn−1 = 1, but then also τ1 = 1. ¤

Therefore Proposition 2.7 does not give us any nontrivial isomorphisms between the
quantum groups SU τ

q (n). On the other hand, the flip map on the Dynkin diagram induces
an automorphism of U(SU q(n)) such that Ki 7→ Kn−i and Ei 7→ En−i for 1 ≤ i ≤ n− 1.
On Z(SU (n)) ⊂ U(SU q(n)) this automorphism is t 7→ t−1. It follows that it induces
isomorphisms

SU (τ1,...,τn−1)
q (n) ∼= SU

(τ−1
n−1,...,τ−1

1 )
q (n).

For 0 < q < 1, these seem to be the only obvious isomorphisms between the quantum
groups SU τ

q (n).
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4.3. Generators and relations.
The C∗-algebra C(SU q(n)) is generated by the matrix coefficients (uij)1≤i,j≤n of

the natural representation of SU q(n) on Cn, the fundamental representation with highest
weight $1. They satisfy the relations [Dri87] and [Wor88]

uijuil = quiluij (j < l), uijukj = qukjuij (i < k), (4.1)

uijukl = ukluij (i > k, j < l), uijukl − ukluij = (q − q−1)uilukj (i < k, j < l), (4.2)

qdet((uij)i,j) =
∑

σ∈Sn

(−q)|σ|u1σ(1) · · ·unσ(n) = 1. (4.3)

Here,
∣∣σ∣∣ is the inversion number of the permutation σ. The involution is defined by

u∗ij = (−q)j−i qdet
(
U î

ĵ

)
,

where U î
ĵ

is the matrix obtained from U = (ukl)k,l by deleting the i-th row and j-th
column.

In order to find generators and relations of C[SU τ
q (n)], we will use the embedding

of the algebra C[SU τ
q (n)] into C[SU q(n)]oAdψ T̂τ described in Theorem 3.1. Recall that

ψ : T̂τ → T/Z(SU (n)) = T/µn is the homomorphism such that
〈
ψ̃(χ), αi

〉
= χ(τi), where

ψ̃(χ) is a lift of ψ(χ) to T . Hence

ψ̃(χ) = (z, zχ(τ1)−1, . . . , zχ(τ1 · · · τn−1)−1) ∈ T ⊂ Tn,

where z ∈ T is a number such that zn =
∏n−1

i=1 χ(τi)−i. It follows that

(Adψ(χ))(uij) =
( ∏

1≤p<i

χ(τp)
)( ∏

1≤p<j

χ(τp)−1

)
uij . (4.4)

Now, the algebra C[SU τ
q (n)] is generated by matrix coefficients of the funda-

mental representation of SU τ
q (n) with highest weight $1. Under the embedding

C[SU τ
q (n)] ↪→ C[SU q(n)]oAdψ T̂τ , these matrix coefficients correspond to vij = uijuχnat ,

where χnat ∈ T̂τ is the character determined by the natural representation of SU q(n) on
Cn, so χnat(τi) = τi. From (4.1)–(4.3) we then get the following relations:

vijvil =
( ∏

j≤p<l

τ−1
p

)
qvilvij (j < l), vijvkj =

( ∏

i≤p<k

τp

)
qvkjvij (i < k), (4.5)

vijvkl =
( ∏

k≤p<i

τ−1
p

)( ∏

j≤p<l

τ−1
p

)
vklvij (i > k, j < l), (4.6)

( ∏

j≤p<l

τp

)
vijvkl −

( ∏

i≤p<k

τp

)
vklvij = (q − q−1)vilvkj (i < k, j < l), (4.7)
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∑

σ∈Sn

τm(σ)(−q)|σ|v1σ(1) · · · vnσ(n) = 1, (4.8)

where m(σ) = (m(σ)1, . . . , m(σ)n−1) is the multi-index given by m(σ)i =
∑n

k=2(k −
1)m(k,σ(k))

i , and

m
(k,j)
i =





1, if k ≤ i < j,

−1, if j ≤ i < k,

0, otherwise.

Proposition 4.3. For any τ ∈ µn−1
n , the algebra C[SU τ

q (n)] is a universal algebra
generated by elements vij satisfying relations (4.5)–(4.8).

Proof. We already know that relations (4.5)–(4.8) are satisfied in C[SU τ
q (n)], so

we just have to show that there are no other relations. Let A be a universal algebra
generated by elements wij satisfying relations (4.5)–(4.8). We can define an action of T̂τ

on A by (4.4). Then in A o T̂τ the elements wiju
−1
χnat

satisfy the defining relations of
C[SU q(n)], so we have a homomorphism C[SU q(n)] → Ao T̂τ mapping uij into wiju

−1
χnat

.
It extends to a homomorphism C[SU q(n)]o T̂τ → Ao T̂τ that is identity on the group
algebra of T̂τ . Restricting to C[SU τ

q (n)] ⊂ C[SU q(n)] o T̂τ , we get a homomorphism
C[SU τ

q (n)] → A mapping vij into wij . ¤

The involution on C[SU τ
q (n)] is determined by requiring the invertible matrix (vij)i,j

to be unitary. An explicit formula can be easily found using that for C[SU q(n)].

Remark 4.4. The relations in C[SU τ
q (n)] cannot be obtained using the FRT-

approach, since the categories Rep(SU q(n))ζ are typically not braided. More precisely,
Rep(SU q(n))ζ has a braiding if and only if either ζ = 1 or n is even and ζ = −1. This
statement is already implicit in [KW93], and it can be proved as follows. If ζ = 1 or n

is even and ζ = −1, then a braiding indeed exists, see e.g. [Pin07]. Conversely, suppose
we have a braiding. In other words, there exists an R-matrix R for (U(SU q(n)), ∆̂q,Φ),
where Φ = ζωn(|λ|,|η|)|ν|. Recall that this means that R is an invertible element in
U(SU q(n)× SU q(n)) such that ∆̂op

q = R∆̂q(·)R−1 and

(∆̂q ⊗ ι)(R) = Φ312R13Φ−1
132R23Φ, (ι⊗ ∆̂q)(R) = Φ−1

231R13Φ213R12Φ−1.

Since Φ is central and symmetric in the first two variables, the last two identities can be
written as

(∆̂op
q ⊗ ι)(R) = R23R13Φ, (ι⊗ ∆̂q)(R) = R13R12Φ−1

321.

On the other hand, we know that Rep(SU q(n)) is braided, so there exists an element Rq

satisfying the above properties with Φ replaced by 1. Consider the element F = R−1
q R.

Then F is invariant, meaning that it commutes with the image of ∆̂q. Furthermore, we
have
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(F ⊗ 1)(∆̂q ⊗ ι)(F ) = (R−1
q ⊗ 1)(∆̂op

q ⊗ ι)(R−1
q )(∆̂op

q ⊗ ι)(R)(R⊗ 1)

= ((Rq)23(Rq)13(Rq)12)−1R23R13R12Φ,

and similarly

(1⊗ F )(ι⊗ ∆̂q)(F ) = (ι⊗ ∆̂q)(R−1
q )(1⊗R−1

q )(1⊗R)(ι⊗ ∆̂q)(R)

= ((Rq)23(Rq)13(Rq)12)−1R23R13R12Φ−1
321.

Therefore

(ι⊗ ∆̂q)(F−1)(1⊗ F−1)(F ⊗ 1)(∆̂q ⊗ ι)(F ) = Φ321Φ.

This implies that Rep(SU q(n)) is monoidally equivalent to Rep(SU q(n))Φ321Φ. Since the
cocycle Φ321Φ on the dual of the center is cohomologous to the cocycle ζ2ωn(|λ|,|η|)|ν|, this
means that Rep(SU q(n)) is monoidally equivalent to Rep(SU q(n))ζ2

. By the Kazhdan–
Wenzl classification this is the case only if ζ2 = 1.

Appendix A. Cocycles on abelian groups.

Let Γ be a discrete abelian group. As is common in operator algebra, we denote the
generators of the group algebra Z[Γ] by λγ (γ ∈ Γ). Let (C∗(Γ), d) be the nonnormalized
bar-resolution of the Z[Γ]-module Z, so Cn(Γ) (n ≥ 0) is the free Z[Γ]-module with
basis consisting of n-tuples of elements in Γ, written as [γ1| · · · |γn], and the differential
d : Cn(Γ) → Cn−1(Γ) is defined by

d[γ1| · · · |γn] = λγ1 [γ2| · · · |γn] +
n−1∑

i=1

(−1)i[γ1| · · · |γi + γi+1| · · · |γn] + (−1)n[γ1| · · · |γn−1].

Let M be a commutative group endowed with the trivial Γ-module structure. The
group cohomology H∗(Γ;M) can be computed from the standard complex induced by
the bar-resolution. Concretely, we have a cochain complex

C∗(Γ;M) = HomZ[Γ](C∗(Γ),M) = Map(Γ∗,M),

endowed with the boundary map ∂ : Cn(Γ;M) → Cn+1(Γ;M) defined by

(∂φ)(γ1, . . . , γn+1) = φ(γ2, . . . , γn+1)− φ(γ1 + γ2, γ3, . . . , γn+1) + · · ·
+ (−1)nφ(γ1, . . . , γn−1, γn + γn+1) + (−1)n+1φ(γ1, . . . , γn).

By M -valued cocycles on Γ we mean cocycles in (C∗(Γ;M), ∂). We will consider only
T-valued cocycles, but with minor modifications everything what we say remains true
for cocycles with values in any divisible group M .

For the sake of computation, it is also convenient to introduce the integer homology
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H∗(Γ) = H∗(Γ;Z), which is given as the homology of the complex C∗(Γ;Z) = Z ⊗Z[Γ]

C∗(Γ). Since the action of Γ on T is trivial, we have C∗(Γ;T) = HomZ[Γ](C∗(Γ),T) =
Hom(C∗(Γ;Z),T). Moreover, the injectivity of T as a Z-module implies that any char-
acter of Hn(Γ;Z) can be lifted to a character of Cn(Γ;Z). It follows that the groups
Hn(Γ;T) and Hn(Γ) are Pontryagin dual to each other. This is a particular case of the
Universal Coefficient Theorem.

A map φ : Γn → T (n ≥ 1) is called an n-character on Γ if it is a character in every
variable, so it is defined by a character on Γ⊗n (unless specified otherwise, all tensor
products in this appendix are over Z). It is easy to see that every n-character is a T-
valued cocycle. An n-character φ is called alternating if φ(γ1, . . . , γn) = 1 as long as
γi = γi+1 for some i; then φ(γσ(1), . . . , γσ(n)) = φ(γ1, . . . , γn)sgn(σ) for any σ ∈ Sn. In
other words, an n-character is alternating if it factors through the exterior power

∧n Γ,
which is the quotient of Γ⊗n by the subgroup generated by elements γ1 ⊗ · · · ⊗ γn such
that γi = γi+1 for some i. It will sometimes be convenient to view

∧n Γ as a subgroup
of Γ⊗n via the embedding

γ1 ∧ · · · ∧ γn 7→
∑

σ∈Sn

sgn(σ)γσ(1) ⊗ · · · ⊗ γσ(n).

We will also consider
∧n Γ as a subgroup of Hn(Γ). The embedding

∧∗ Γ ↪→ H∗(Γ)
is constructed using the canonical isomorphism Γ ∼= H1(Γ) and the Pontryagin product
on H∗(Γ), see [Bro94, Theorem V.6.4]. On the chain level the latter product can be
defined using the shuffle product, so that γ1 ∧ · · · ∧ γn is identified with the homology
class of the cycle

∑

σ∈Sn

sgn(σ)(1⊗ [γσ(1)| · · · |γσ(n)]) ∈ Cn(Γ;Z).

For free abelian groups we have
∧∗ Γ = H∗(Γ). By duality we get the following

description of cocycles.

Proposition A.1. If Γ is free abelian, then for every n ≥ 1 we have:

( i ) any T-valued n-cocycle on Γ is cohomologous to an alternating n-character ;
( ii ) an n-character is a coboundary if and only if it vanishes on

∧n Γ ⊂ Γ⊗n; in
particular, an alternating n-character is a coboundary if and only its order divides
n!.

Proof. The value of an n-cocycle φ on γ1 ∧ · · · ∧ γn ∈ Hn(Γ) is

〈
φ, γ1 ∧ · · · ∧ γn

〉
=

∏

σ∈Sn

φ(γσ(1), . . . , γσ(n))sgn(σ).

This immediately implies (ii), since if φ is an n-character, then the above product is
exactly the value of φ on γ1 ∧ · · · ∧ γn considered as an element of Γ⊗n.

Turning to (i), assume ψ is an n-cocycle. It defines a character χ of Hn(Γ) =
∧n Γ.
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Let φ be a character of
∧n Γ such that φn! = χ. Then φ is an alternating n-character,

and φ is cohomologous to ψ, since both cocycles φ and ψ define the same character χ of
Hn(Γ) =

∧n Γ. ¤

We now turn to the more complicated case of finite abelian groups and concentrate
on 3-cocycles. In this case

∧3 Γ is a proper subgroup of H3(Γ): as follows from Proposi-
tion A.3 below, the quotient H3(Γ)/

∧3 Γ is (noncanonically) isomorphic to Γ⊕ (Γ
∧

Γ).
Correspondingly, not every third cohomology class can be represented by a 3-character.
Additional 3-cocycles can be obtained by the following construction.

Lemma A.2. Assume Γ = Γ1/Γ0 for some abelian groups Γ1 and Γ0. Suppose
f : Γ1 × Γ1 → T is a function such that

f(α, β + γ) = f(α, β) and f(α + γ, β) = χ(γ ⊗ β)f(α, β)

for all α, β ∈ Γ1 and γ ∈ Γ0, where χ is a character of Γ0 ⊗ Γ. Then the function

(∂f)(α, β, γ) = f(β, γ)f(α + β, γ)−1f(α, β + γ)f(α, β)−1

on Γ3
1 is Γ3

0-invariant, hence it defines a T-valued 3-cocycle on Γ.

Proof. This is a straightforward computation. ¤

In order to describe explicitly generators of H3(Γ;T), let us introduce some notation.
For natural numbers n1, . . . , nk, denote by (n1, . . . , nk) their greatest common divisor.
For n ∈ N, denote by χn the character of Z/nZ defined by χn(1) = e2πi/n. Finally, for
integers a and b and a natural number n, put

ωn(a, b) =
⌊

a + b

n

⌋
−

⌊
a

n

⌋
−

⌊
b

n

⌋
.

Note that ωn is a well-defined function on Z/nZ× Z/nZ with values 0 or 1.

Proposition A.3. Assume Γ =
⊕m

i=1 Z/niZ for some ni ≥ 1. Then

H3(Γ;T) ∼=
⊕

i

Z/niZ⊕
⊕

i<j

Z/(ni, nj)Z⊕
⊕

i<j<k

Z/(ni, nj , nk)Z.

Explicitly, generators φi of Z/niZ, φij of Z/(ni, nj)Z and φijk of Z/(ni, nj , nk)Z can be
defined by

φi(a, b, c) = χni
(ωni

(ai, bi)ci), φij(a, b, c) = χnj
(ωni

(ai, bi)cj),

φijk(a, b, c) = χ(ni,nj ,nk)(aibjck).

Proof. Recall first how to compute the homology of finite cyclic groups. Consider
the group Z/nZ. Then there is a free resolution (P∗, d) of the Z[Z/nZ]-module Z such
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that Pk is generated by one basis element ek, and

de2k+1 = λ1e2k − e2k and de2k+2 =
∑

a∈Z/nZ
λae2k+1 for k ≥ 0.

The morphism P0 → Z is given by e0 7→ 1. Using this resolution we get

H2k+1(Z/nZ) ∼= Z/nZ and H2k+2(Z/nZ) = 0 for k ≥ 0.

Turning to the proof of the proposition, the first statement is equivalent to

H3(Γ) ∼=
⊕

i

Z/niZ⊕
⊕

i<j

Z/(ni, nj)Z⊕
⊕

i<j<k

Z/(ni, nj , nk)Z.

This, in turn, is proved by induction on m using the isomorphisms

H1(Γ) ∼= Γ, H2(Γ) ∼= Γ
∧

Γ,

which are valid for any abelian group Γ, and the Künneth formula, which gives that
H3(Γ⊕ Z/nZ) is isomorphic to

H3(Γ)⊕ (H2(Γ)⊗H1(Z/nZ))⊕H3(Z/nZ)⊕ TorZ1 (H1(Γ),H1(Z/nZ)).

Note only that

TorZ1 (Z/kZ,Z/nZ) ∼= Z/(k, n)Z ∼= Z/kZ⊗ Z/nZ.

Let us check next that the functions φi, φij and φijk are indeed 3-cocycles. For φijk

this is clear, since it is a 3-character. Concerning φi, consider the function

fi(a, b) = χni

(
−

⌊
ai

ni

⌋
bi

)

on Zm×Zm. It is of the type described in Lemma A.2 for Γ1 = Zm and Γ0 =
⊕m

i=1 niZ,
so φi(a, b, c) = (∂fi)(a, b, c) is a 3-cocycle on Γ. Similarly, consider the function

fij(a, b) = χnj

(
−

⌊
ai

ni

⌋
bj

)
.

It is again of the type described in Lemma A.2, so φij = ∂fij is a 3-cocycle.
Our next goal is to construct a ‘dual basis’ in H3(Γ). Let ui be the generator

1 ∈ Z/niZ ⊂ Γ. Denote by θijk the cycle representing ui ∧ uj ∧ uk ∈
∧3 Γ ⊂ H3(Γ)

obtained by the shuffle product, so

θijk =
∑

σ∈S3

sgn(σ)(1⊗ [uσ(i)|uσ(j)|uσ(k)]),
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where we consider S3 as the group of permutations of {i, j, k}.
Consider the Z[Z/niZ]-resolution (P i

∗, d) of Z described at the beginning of the proof.
Let ei

n be the basis element of P i
n. We have a chain map P i

∗ → C∗(Z/niZ) of resolutions
of Z defined by

ei
0 7→ [∅], ei

1 7→ [1], ei
2 7→

∑

a∈Z/niZ
[a|1], ei

3 7→
∑

a∈Z/niZ
[1|a|1], . . . . (A.1)

It follows that we have a 3-cycle θi ∈ C3(Γ;Z) defined by

θi =
ni−1∑
a=0

1⊗ [ui|aui|ui].

Finally, consider the Z[Z/niZ⊕Z/njZ]-resolution P i
∗⊗P j

∗ of Z. Using this resolution
we get a third homology class represented by

nj

(ni, nj)
1⊗ ei

2 ⊗ ej
1 +

ni

(ni, nj)
1⊗ ei

1 ⊗ ej
2.

A chain map between the resolutions P i
∗ ⊗ P j

∗ and C∗(Z/niZ ⊕ Z/njZ) can be defined
by the tensor product of the chain maps (A.1) and the shuffle product. This gives us a
3-cycle θij ∈ C3(Γ;Z). Explicitly,

θij =
nj

(ni, nj)

ni−1∑
a=0

1⊗ ([aui|ui|uj ]− [aui|uj |ui] + [uj |aui|ui])

+
ni

(ni, nj)

nj−1∑

b=0

1⊗ ([ui|buj |uj ]− [buj |ui|uj ] + [buj |uj |ui]).

The only nontrivial pairings between the cocycles φi, φij , φijk and the cycles θi, θij ,
θijk are

〈
φi, θi

〉
= ζni

,
〈
φij , θij

〉
= ζnj/(ni,nj)

nj
= ζ(ni,nj),

〈
φijk, θijk

〉
= ζ(ni,nj ,nk),

where ζn = e2πi/n. This implies that these cocycles and cycles are the required generators
of the Pontryagin dual groups H3(Γ;T) and H3(Γ). ¤

Corollary A.4. Assume Γ is a finite abelian group. Write Γ as Γ1/Γ0 for a
finite rank free abelian group Γ1. Then for any T-valued 3-cocycle φ on Γ the following
conditions are equivalent :

( i ) φ vanishes on
∧3 Γ ⊂ H3(Γ);

( ii ) φ lifts to a coboundary on Γ1;
(iii) φ = ∂f for a function f : Γ1 × Γ1 → T as in Lemma A.2.
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Proof. The equivalence of (i) and (ii) is clear, since a cocycle on Γ1 is a cobound-
ary if and only if it vanishes on H3(Γ1) =

∧3 Γ1. Also, obviously (iii) implies (ii).
Therefore the only nontrivial statement is that (i), or (ii), implies (iii). Assume φ is a
cocycle that vanishes on

∧3 Γ ⊂ H3(Γ). We can identify Γ1 with Zm in such a way that
Γ0 =

⊕m
i=1 niZ for some ni ≥ 1. Then in the notation of the proof of the above propo-

sition the assumption on φ means that φ vanishes on the cycles θijk, whose homology
classes are exactly ui ∧ uj ∧ uk ∈

∧3 Γ ⊂ H3(Γ). It follows that φ is cohomologous to
product of powers of cocycles φi and φij . But the cocycles φi and φij are of the form ∂f

with f : Γ1 × Γ1 → T as in Lemma A.2. Therefore φ is cohomologous to a cocycle of the
form ∂f , hence φ itself is of the same form. ¤

Since every character of
∧3 Γ ⊂ Γ⊗3 extends to a 3-character on Γ, this corollary

can also be formulated as follows.

Corollary A.5. With Γ = Γ1/Γ0 as in the previous corollary, any T-valued 3-
cocycle φ on Γ can be written as product of a 3-character χ on Γ and a cocycle ∂f with
f : Γ1 × Γ1 → T as in Lemma A.2. Such a cocycle φ lifts to a coboundary on Γ1 if and
only if χ vanishes on

∧3 Γ ⊂ Γ⊗3, and in this case φ = ∂g with g : Γ1 × Γ1 → T as in
Lemma A.2.

Let us now look more carefully at the construction of cocycles described in Lemma
A.2. As Corollary A.4 shows, the class of 3-cocycles obtained by this construction does
not depend on the presentation of Γ as quotient of a finite rank free abelian group. It is
also clear that there is a lot of redundancy in this construction, since the group H3(Γ)
can be much smaller than Γ0 ⊗ Γ. The following proposition makes these observations a
bit more precise.

Proposition A.6. Assume Γ is a finite abelian group, and write Γ as Γ1/Γ0 for
a finite rank free abelian group Γ1. Let f : Γ1 × Γ1 → T be a function as in Lemma A.2,
and χ be the associated character of Γ0⊗Γ. Then the cohomology class of ∂f in H3(Γ;T)
depends only on the restriction of χ to

ker(Γ0 ⊗ Γ → Γ1 ⊗ Γ) ∼= TorZ1 (Γ,Γ) ∼= Γ⊗ Γ.

Therefore by varying χ we get a natural in Γ homomorphism

Hom(TorZ1 (Γ,Γ),T) → H3(Γ;T),

whose image is the annihilator of
∧3 Γ ⊂ H3(Γ).

Proof. It is easy to see that the cohomology class of ∂f depends only on χ, so we
have a homomorphism Hom(Γ0⊗Γ,T) → H3(Γ;T). We have to check that if a character
χ of Γ0⊗Γ vanishes on ker(Γ0⊗Γ → Γ1⊗Γ), then the image of χ in H3(Γ;T) is zero. But
this is clear, since we can extend χ to a character f of Γ1⊗Γ, and then f , considered as
a function on Γ1 × Γ1, is of the type described in Lemma A.2, with associated character
χ, and f is a 2-character, so ∂f = 0.
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Naturality of the homomorphism Hom(TorZ1 (Γ,Γ),T) → H3(Γ;T) in Γ is straight-
forward to check. The statement that its image coincides with the annihilator of∧3 Γ ⊂ H3(Γ) follows from Corollary A.4. ¤
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