Twisting the q-deformations of compact semisimple Lie groups

By Sergey Neshveyev and Makoto Yamashita

(Received July 15, 2013)

Abstract

Given a compact semisimple Lie group G of rank r, and a parameter $q>0$, we can define new associativity morphisms in $\operatorname{Rep}\left(G_{q}\right)$ using a 3 -cocycle Φ on the dual of the center of G, thus getting a new tensor category $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$. For a class of cocycles Φ we construct compact quantum groups G_{q}^{τ} with representation categories $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$. The construction depends on the choice of an r-tuple τ of elements in the center of G. In the simplest case of $G=S U(2)$ and $\tau=-1$, our construction produces Woronowicz's quantum group $S U_{-q}(2)$ out of $S U_{q}(2)$. More generally, for $G=S U(n)$, we get quantum group realizations of the Kazhdan-Wenzl categories.

Introduction.

A known problem in the theory of quantum groups is classification of quantum groups with fusion rules of a given Lie group G, see e.g. [Wor88], [WZ94], [Ban96], [Ohn99], [Bic03], [Ohn05], [Mro15]. Although this problem has been completely solved in a few cases, most notably for $G=S L(2, \mathbb{C})$ [Ban96], [Bic03], as the rank of G grows the situation quickly becomes complicated. Already for $G=S L(3, \mathbb{C})$, even when requiring the dimensions of the representations to remain classical, one gets a large list of quantum groups that is not easy to grasp [Ohn99], [Ohn05]. A categorical version of the same problem turns out to be more manageable. Namely, the problem is to classify semisimple rigid monoidal \mathbb{C}-linear categories with fusions rules of G. As was shown by Kazhdan and Wenzl [KW93], for $G=S L(n, \mathbb{C})$ such categories \mathcal{C} are parametrized by pairs $\left(q_{\mathcal{C}}, \tau_{\mathcal{C}}\right)$ of nonzero complex numbers, defined up to replacing $\left(q_{\mathcal{C}}, \tau_{\mathcal{C}}\right)$ by $\left(q_{\mathcal{C}}^{-1}, \tau_{\mathcal{C}}^{-1}\right)$, such that $q_{\mathcal{C}}^{n(n-1) / 2}=\tau_{\mathcal{C}}^{n}$ and $q_{\mathcal{C}}$ is not a nontrivial root of unity. ${ }^{1}$ Concretely, these are twisted representation categories $\mathcal{C}=\operatorname{Rep}\left(S L_{q}(n)\right)^{\zeta}$, where q is not a nontrivial root of unity and ζ is a root of unity of order n; the corresponding parameters are $q_{\mathcal{C}}=q^{2}$ and $\tau_{\mathcal{C}}=\zeta^{-1} q^{n-1}$. The twists are defined by choosing a \mathbb{T}-valued 3 -cocycle on the dual of the center of $S L(n, \mathbb{C})$ and by using this cocycle to define new associativity morphisms in $\operatorname{Rep}\left(S L_{q}(n)\right)$. The third cohomology group of the dual of the center is cyclic of order n, and this explains the parametrization of twists of $\operatorname{Rep}\left(S L_{q}(n)\right)$ by roots of unity. A partial extension of the result of Kazhdan and Wenzl to types BCD was obtained by Tuba and Wenzl [TW05].

[^0]Although two problems are clearly related, a solution of the latter does not immediately say much about the former. The present work is motivated by the natural question whether there exist quantum groups with representation categories $\operatorname{Rep}\left(S L_{q}(n)\right)^{\zeta}$ for all ζ such that $\zeta^{n}=1$. Equivalently, do the categories $\operatorname{Rep}\left(S L_{q}(n)\right)^{\zeta}$ always admit fiber functors? For $n=2$ there is essentially nothing to solve, since for $q \neq 1$ the category $\operatorname{Rep}\left(S L_{q}(2)\right)^{-1}$ is equivalent to $\operatorname{Rep}\left(S L_{-q}(2)\right)$. For $q=1$ the answer is also known: the quantum group $S U_{-1}(2)$ defined by Woronowicz (which has nothing to do with the quantized universal enveloping algebra $\mathcal{U}_{q}\left(\mathfrak{F l}_{2}\right)$ at $q=-1$) has representation category $\operatorname{Rep}(S L(2, \mathbb{C}))^{-1}$. For $n \geq 2$, quantum groups with fusion rules of $S L(n, \mathbb{C})$ have been studied by many authors, see e.g. [Hai00] and the references therein. Usually, one starts by finding a solution of the quantum Yang-Baxter equation satisfying certain conditions, and from this derives a presentation of the algebra of functions on the quantum group [RTF89]. This approach cannot work in our case, since the category $\operatorname{Rep}\left(S L_{q}(n)\right)^{\zeta}$ does not have a braiding unless $\zeta^{2}=1$.

The approach we take works, to some extent, for any compact semisimple simply connected Lie group G. Assume that Φ is a \mathbb{T}-valued 3 -cocycle on the dual of the center of G. To construct a fiber functor φ from the category $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$ with associativity morphisms defined by Φ, such that $\operatorname{dim} \varphi(U)=\operatorname{dim} U$, is the same as to find an invertible element F in a completion $\mathcal{U}\left(G_{q} \times G_{q}\right)$ of $\mathcal{U}_{q}(\mathfrak{g}) \otimes \mathcal{U}_{q}(\mathfrak{g})$ satisfying

$$
\Phi=\left(\iota \otimes \hat{\Delta}_{q}\right)\left(F^{-1}\right)\left(1 \otimes F^{-1}\right)(F \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(F)
$$

Then, using the twist (or a pseudo-2-cocycle in the terminology of [EV96]) F, we can define a new comultiplication on $\mathcal{U}\left(G_{q}\right)$, thus getting a new quantum group with representation category $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$.

Our starting point is the simple remark that to solve the above cohomological equation we do not have to go all the way to G_{q}, it might suffice to pass from the center $Z(G)$ to a (quantum) subgroup of G_{q}, for example, to the maximal torus T. For simple G this is indeed enough: any 3-cocycle on $\widehat{Z(G)}$ becomes a coboundary when lifted to the dual $P=\hat{T}$ of T. The reason is that, for simple G, the center is contained in a torus of dimension at most 2. However, a 2-cochain f on P such that $\partial f=\Phi$ is unique only up to a 2-cocycle on P. Already for trivial Φ this leads to deformations of G_{q} by 2-cocycles on P that are not very well studied [AST91], [LS91], with associated C^{*}-algebras of functions (for $q>0$) that are typically not of type I.

Our next observation is that, for arbitrary G, if Φ lifts to a coboundary on P, then the cochain f can be chosen to be of a particular form. This leads to a very special class of quantum groups G_{q}^{τ}, whose construction depends on the choice of elements $\tau_{1}, \ldots, \tau_{r} \in Z(G)$, where r is the rank of G. We show that the quantum groups G_{q}^{τ} are as close to G_{q} as one could hope. For example, they can be defined in terms of finite central extensions of $\mathcal{U}_{q}(\mathfrak{g})$.

Since we are, first of all, interested in compact quantum groups in the sense of Woronowicz, we will concentrate on the case $q>0$, when the categories $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$ have a C^{*}-structure and, correspondingly, G_{q}^{τ} become compact quantum groups. We then show that the C^{*}-algebras $C\left(G_{q}^{\tau}\right)$ are $K K$-isomorphic to $C(G)$, they are of type I,
and their primitive spectra are only slightly more complicated than that of $C\left(G_{q}\right)$. For $G=S U(n)$ we also find explicit generators and relations of the algebras $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ of regular functions on $S U_{q}^{\tau}(n)$.

To summarize, our construction produces quantum groups with nice properties and with representation category $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$ for any 3 -cocycle Φ on $\widehat{Z(G)}$ that lifts to a coboundary on \hat{T}. This covers the cases when G is simple, but in the general semisimple case there exist cocycles that do not have this property. For such cocycles the existence of fiber functors for $\operatorname{Rep}\left(G_{q}\right)^{\Phi}$ remains an open problem.

Acknowledgements. We would like to thank Kenny De Commer for stimulating discussions and valuable comments.

1. Preliminaries.

1.1. Compact quantum groups.

A compact quantum group \mathbb{G} is given by a unital C^{*}-algebra $C(\mathbb{G})$ together with a coassociative unital $*$-homomorphism $\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying the cancellation condition

$$
[\Delta(C(\mathbb{G}))(C(\mathbb{G}) \otimes 1)]=C(\mathbb{G}) \otimes C(\mathbb{G})=[\Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G}))]
$$

where brackets denote the closed linear span. Here we only introduce the relevant terminology and summarize the essential results, see e.g. [NT13] for details.

A theorem of Woronowicz gives a distinguished state h, the Haar state, which is an analogue of the normalized Haar measure over compact groups. Denote by $C_{r}(\mathbb{G})$ the quotient of $C(\mathbb{G})$ by the kernel of the GNS-representation defined by h. We will be interested in the case where h is faithful, so that $C_{r}(\mathbb{G})=C(\mathbb{G})$. This condition is automatically satisfied for coamenable compact quantum groups. The quantum groups studied in this paper will be coamenable thanks to Banica's theorem [Ban99, Proposition 6.1] and [$\mathbf{N T 1 3}$, Theorem 2.7.14].

A finite dimensional unitary representation of \mathbb{G} is given by a unitary element $U \in$ $B\left(\mathcal{H}_{U}\right) \otimes C(\mathbb{G})$ satisfying the condition $U_{13} U_{23}=(\iota \otimes \Delta)(U)$. The tensor product of two representations is defined by $U \oplus V=U_{13} V_{23}$. The category $\operatorname{Rep}(\mathbb{G})$ of finite dimensional unitary representations of \mathbb{G} has the structure of a rigid C^{*}-tensor category with a unitary fiber functor ('forgetful functor') $U \mapsto \mathcal{H}_{U}$ to the category Hilb H_{f} of finite dimensional Hilbert spaces. Woronowicz's Tannaka-Krein duality theorem states that the reduced quantum group $\left(C_{r}(\mathbb{G}), \Delta\right)$ can be axiomatized in terms of $\operatorname{Rep}(\mathbb{G})$ and the fiber functor.

We denote by $\mathbb{C}[\mathbb{G}] \subset C(\mathbb{G})$ the Hopf $*$-algebra of matrix coefficients of finite dimensional representations of \mathbb{G}. Denote by $\mathcal{U}(\mathbb{G})$ the dual $*$-algebra of $\mathbb{C}[\mathbb{G}]$, so $\mathcal{U}(\mathbb{G})=\prod_{U \in \operatorname{Irrep}(\mathbb{G})} B\left(\mathcal{H}_{U}\right)$. It can be considered from many different angles: as the algebra of functions on the dual discrete quantum group $\hat{\mathbb{G}}$, as the algebra of endomorphisms of the forgetful functor, as the multiplier algebra of the convolution algebra $\widehat{\mathbb{C}[\mathbb{G}]}$ of \mathbb{G}. We also write $\mathcal{U}\left(\mathbb{G}^{n}\right)$ for $n \geq 2$ to denote the 'tensor product' multipliers, such as

$$
\mathcal{U}\left(\mathbb{G}^{2}\right)=\prod_{U, V \in \operatorname{Irrep}(\mathbb{G})} B\left(\mathcal{H}_{U}\right) \otimes B\left(\mathcal{H}_{V}\right) .
$$

By duality, the multiplication map $m: \mathbb{C}[\mathbb{G}] \otimes \mathbb{C}[\mathbb{G}] \rightarrow \mathbb{C}[\mathbb{G}]$ defines a 'coproduct' $\hat{\Delta}: \mathcal{U}(\mathbb{G}) \rightarrow \mathcal{U}\left(\mathbb{G}^{2}\right)$.

1.2. Twisting of quantum groups.

Let \mathbb{G} be a compact quantum group, and Φ be an invariant unitary 3 -cocycle over the discrete dual of $\mathbb{G}\left[\mathbf{N T 1 3}\right.$, Chapter 3]. Thus, Φ is a unitary element in $\mathcal{U}\left(\mathbb{G}^{3}\right)$ satisfying the cocycle condition

$$
\begin{equation*}
(1 \otimes \Phi)(\iota \otimes \hat{\Delta} \otimes \iota)(\Phi)(\Phi \otimes 1)=(\iota \otimes \iota \otimes \hat{\Delta})(\Phi)(\hat{\Delta} \otimes \iota \otimes \iota)(\Phi) \tag{1.1}
\end{equation*}
$$

and the invariance condition $[\Phi,(\hat{\Delta} \otimes \iota) \hat{\Delta}(x)]=0$ for $x \in \mathcal{U}(\mathbb{G})$.
Then, the representation category $\operatorname{Rep}(\mathbb{G})$ can be twisted into a new C^{*}-tensor category $\operatorname{Rep}(\mathbb{G})^{\Phi}$, by using the action by Φ on $\mathcal{H}_{U} \otimes \mathcal{H}_{V} \otimes \mathcal{H}_{W}$ as the new associativity morphism $(U \oplus V) \oplus W \rightarrow U \oplus(V \oplus W)$ for $U, V, W \in \operatorname{Rep}(\mathbb{G})$. The category $\operatorname{Rep}(\mathbb{G})^{\Phi}$ can be considered as the module category of the discrete quasi-bialgebra $(\widehat{\mathbb{C}[\mathbb{G}]}, \hat{\Delta}, \Phi)$ [Dri89].

Suppose the category $\operatorname{Rep}(\mathbb{G})^{\Phi}$ is rigid. This is equivalent to the condition that the central element

$$
\Phi_{1} \hat{S}\left(\Phi_{2}\right) \Phi_{3}=m(m \otimes \iota)(\iota \otimes \hat{S} \otimes \iota)(\Phi)
$$

in $\mathcal{U}(\mathbb{G})$ is invertible. Suppose also that there exists a unitary $F \in \mathcal{U}\left(\mathbb{G}^{2}\right)$ such that

$$
\begin{equation*}
\Phi=(\iota \otimes \hat{\Delta})\left(F^{*}\right)\left(1 \otimes F^{*}\right)(F \otimes 1)(\hat{\Delta} \otimes \iota)(F) \tag{1.2}
\end{equation*}
$$

Then the discrete quantum group $\mathcal{U}(\mathbb{G})$ can be deformed into another one, with the new coproduct $\hat{\Delta}_{F}(x)=F \hat{\Delta}(x) F^{*}$. By duality, the function algebra $\mathbb{C}[\mathbb{G}]$ can be endowed with the new product

$$
x \cdot_{F} y=m\left(F^{*} \triangleright(x \otimes y) \triangleleft F\right) .
$$

Here, \triangleright and \triangleleft are the natural actions of $\mathcal{U}(\mathbb{G})$ on $\mathbb{C}[\mathbb{G}]$ given by $X \triangleright a=\left\langle X, a_{[2]}\right\rangle a_{[1]}$ and $a \triangleleft X=\left\langle X, a_{[1]}\right\rangle a_{[2]}$. We denote the corresponding compact quantum group by \mathbb{G}_{F}. Note that in general the involution on $\mathbb{C}\left[\mathbb{G}_{F}\right]$ differs from the original one, see $[\mathbf{N T 1 3}$, Example 2.3.9].

We have a unitary monoidal equivalence of the C^{*}-tensor categories $\operatorname{Rep}(\mathbb{G})^{\Phi}$ and $\operatorname{Rep}\left(\mathbb{G}_{F}\right)$. The tensor functor $\varphi: \operatorname{Rep}(\mathbb{G})^{\Phi} \rightarrow \operatorname{Rep}\left(\mathbb{G}_{F}\right)$ is given by the identity map on objects and morphisms, but with the nontrivial tensor transformation $\varphi(U) \oplus \varphi(V) \rightarrow$ $\varphi(U \oplus V)$ defined by

$$
\mathcal{H}_{U} \otimes \mathcal{H}_{V} \rightarrow \mathcal{H}_{U} \otimes \mathcal{H}_{V}, \quad \xi \otimes \eta \mapsto F^{*}(\xi \otimes \eta)
$$

In terms of fiber functors, F gives a tensor functor $\operatorname{Rep}(\mathbb{G})^{\Phi} \rightarrow$ Hilb $_{f}$ which is the same as that of $\operatorname{Rep}(\mathbb{G})$ on objects and morphisms, but with the modified tensor transformation $\mathcal{H}_{U} \otimes \mathcal{H}_{V} \rightarrow \mathcal{H}_{U \oplus V}$ given by $\xi \otimes \eta \mapsto F^{*}(\xi \otimes \eta)$.

Examples of invariant 3 -cocycles can be obtained as follows. Assume \mathbb{H} is a closed central subgroup of \mathbb{G}, so \mathbb{H} is a compact abelian group and we are given a surjective homomorphism $\pi: \mathbb{C}[\mathbb{G}] \rightarrow \mathbb{C}[\mathbb{H}]$ of Hopf $*$-algebras such that the image of $\mathcal{U}(\mathbb{H})$ under the dual homomorphism $\mathcal{U}(\mathbb{H}) \rightarrow \mathcal{U}(\mathbb{G})$ is a central subalgebra of $\mathcal{U}(\mathbb{G})$, or equivalently, for any irreducible unitary representation U of \mathbb{G} the element $(\iota \otimes \pi)(U)$ has the form $1 \otimes \chi_{U}$ for a character χ_{U} of \mathbb{H}. Unitary 3-cocycles in $\mathcal{U}\left(\mathbb{H}^{3}\right)$ are nothing else than \mathbb{T}-valued 3 -cocycles on the Pontryagin dual $\hat{\mathbb{H}}$. Any such cocycle defines an invariant cocycle Φ in $\mathcal{U}\left(\mathbb{G}^{3}\right)$; when \mathbb{G} is itself compact abelian, this is just the usual pullback homomorphism $Z^{3}(\hat{\mathbb{H}} ; \mathbb{T}) \rightarrow Z^{3}(\hat{\mathbb{G}} ; \mathbb{T})$. Explicitly, the action of Φ on $\mathcal{H}_{U} \otimes \mathcal{H}_{V} \otimes \mathcal{H}_{W}$ is by multiplication by $\Phi\left(\chi_{U}, \chi_{V}, \chi_{W}\right)$. For such cocycles Φ the C^{*}-tensor category $\operatorname{Rep}(\mathbb{G})^{\Phi}$ is always rigid.

1.3. Quantized universal enveloping algebra.

Throughout the whole paper G denotes a semisimple simply connected compact Lie group, and \mathfrak{g} denotes its complexified Lie algebra. We fix a maximal torus T in G, and denote the corresponding Cartan subalgebra by \mathfrak{h}. The root lattice is denoted by Q, and the weight lattice by P. We fix a choice of positive roots, and denote the corresponding positive simple roots by $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. We also fix an ad-invariant symmetric form on \mathfrak{g} such that it is negative definite on the real Lie algebra of G. If G is simple, we assume that this form is standardly normalized, meaning that $(\alpha, \alpha)=2$ for every short root α. The Cartan matrix is denoted by $\left(a_{i j}\right)_{1 \leq i, j \leq r}$, and the Weyl group is denoted by W. The center $Z(G)$ of G is contained in T and can be identified with the dual of P / Q.

In what follows the variable q ranges over the strictly positive real numbers, although many results remain true for all $q \neq 0$ such that the numbers $q_{i}=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$ are not nontrivial roots of unity. For $q \neq 1$, the quantized universal enveloping algebra $\mathcal{U}_{q}(\mathfrak{g})$ is the universal algebra over \mathbb{C} generated by the elements E_{i}, F_{i}, and $K_{i}^{ \pm 1}$ for $1 \leq i \leq r$ satisfying the relations

$$
\begin{gathered}
{\left[K_{i}, K_{j}\right]=0, \quad K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{i j}} F_{j},} \\
{\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}},} \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{k} E_{j} E_{i}^{1-a_{i j}-k}=0, \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{k} F_{j} F_{i}^{1-a_{i j}-k}=0 .
\end{gathered}
$$

It has the structure of a Hopf $*$-algebra defined by the operations

$$
\begin{gathered}
\hat{\Delta}_{q}\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i}, \quad \hat{\Delta}_{q}\left(F_{i}\right)=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i}, \quad \hat{\Delta}_{q}\left(K_{i}\right)=K_{i} \otimes K_{i}, \\
\hat{S}_{q}\left(E_{i}\right)=-K_{i}^{-1} E_{i}, \quad \hat{S}_{q}\left(F_{i}\right)=-F_{i} K_{i}^{-1}, \quad \hat{S}_{q}\left(K_{i}\right)=K_{i}^{-1},
\end{gathered}
$$

$$
\begin{gathered}
\hat{\epsilon}_{q}\left(E_{i}\right)=\hat{\epsilon}_{q}\left(F_{i}\right)=0, \quad \hat{\epsilon}_{q}\left(K_{i}\right)=1, \\
E_{i}^{*}=F_{i} K_{i}, \quad F_{i}^{*}=K_{i}^{-1} E_{i}, \quad K_{i}^{*}=K_{i}
\end{gathered}
$$

A representation (π, V) of $\mathcal{U}_{q}(\mathfrak{g})$ is said to be admissible when V admits a decomposition $\bigoplus_{\chi \in P} V_{\chi}$ such that $\left.\pi\left(K_{i}\right)\right|_{V_{\chi}}$ is equal to the scalar $q^{\left(\alpha_{i}, \chi\right)}$. The category of finite dimensional admissible $*$-representations of $\mathcal{U}_{q}(\mathfrak{g})$ is a C^{*}-tensor category with the forgetful functor. We denote the associated compact quantum group by G_{q}. There is a natural inclusion of T into $\mathcal{U}\left(G_{q}\right)$. Then the set $Z\left(G_{q}\right)$ of group-like central elements in $\mathcal{U}\left(G_{q}\right)$ coincides with $Z(G)$. The class of representations of G_{q} on which $Z(G)$ acts trivially corresponds to a quotient quantum group denoted by $G_{q} / Z(G)$.

2. Twisted q-deformations.

2.1. Extension of the QUE-algebra.

For $q>0$, we let $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ denote the universal $*$-algebra generated by $\mathcal{U}_{q}(\mathfrak{g})$ and unitary central elements C_{1}, \ldots, C_{r}. It is not difficult to check that for $q \neq 1$ the following formulas define a Hopf $*$-algebra structure on $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$:

$$
\hat{\Delta}\left(E_{i}\right)=E_{i} \otimes C_{i}+K_{i} \otimes E_{i}, \quad \hat{\Delta}\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \hat{\Delta}\left(C_{i}\right)=C_{i} \otimes C_{i} .
$$

Similarly, for $q=1$, we define

$$
\hat{\Delta}\left(E_{i}\right)=E_{i} \otimes C_{i}+1 \otimes E_{i}, \quad \hat{\Delta}\left(H_{i}\right)=H_{i} \otimes 1+1 \otimes H_{i}, \quad \hat{\Delta}\left(C_{i}\right)=C_{i} \otimes C_{i} .
$$

There is a Hopf $*$-algebra homomorphism from $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ onto $\mathcal{U}_{q}(\mathfrak{g})$, defined by $C_{i} \mapsto 1$ and by the identity map on the copy of $\mathcal{U}_{q}(\mathfrak{g})$. There is also a Hopf $*$-algebra homomorphism onto $\mathbb{C}\left[\left(C_{i}\right)_{i=1}^{r}\right]$, given by $E_{i} \mapsto 0, F_{i} \mapsto 0, K_{i} \mapsto 1$, and by the identity map on the C_{i} 's. We regard representations of $\mathcal{U}_{q}(\mathfrak{g})$ and of $\mathbb{C}\left[\left(C_{i}\right)_{i=1}^{r}\right]$ as the ones of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ via these homomorphisms.

Remark 2.1. The Hopf algebra $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ is closely related to the Drinfeld double $\mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right)$of $\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)=\left\langle E_{i}, K_{i} \mid 1 \leq i \leq r\right\rangle$. Namely, put

$$
X_{i}^{+}=E_{i} C_{i}^{-1}, \quad K_{i}^{+}=K_{i} C_{i}^{-1}, \quad X_{i}^{-}=F_{i}, \quad K_{i}^{-}=K_{i} C_{i} .
$$

Then we see that the elements X_{i}^{+}and K_{i}^{+}generate a copy of $\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)$, while the X_{i}^{-} and K_{i}^{-}generate a copy of $\mathcal{U}_{q}\left(\mathfrak{b}_{-}\right)$, and taking together these subalgebras give a copy of $\mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right)$in $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$. The homomorphism $\tilde{\mathcal{U}}_{q}(\mathfrak{g}) \rightarrow \mathcal{U}_{q}(\mathfrak{g})$ is an extension of the standard projection $\mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right) \rightarrow \mathcal{U}_{q}(\mathfrak{g})$. If we add square roots of $K_{i}^{ \pm}$to $\mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right)$, thus getting a Hopf algebra $\left.\mathcal{D}\left(\widetilde{\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right.}\right)\right)$, we can recover $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ by letting $C_{i}=\left(K_{i}^{-}\right)^{1 / 2}\left(K_{i}^{+}\right)^{-1 / 2}$. Therefore we have inclusions of Hopf algebras $\mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right) \subset \tilde{\mathcal{U}}_{q}(\mathfrak{g}) \subset \mathcal{D}\left(\mathcal{U}_{q}\left(\mathfrak{b}_{+}\right)\right)$.

Let $\tau=\left(\tau_{1}, \ldots, \tau_{r}\right)$ be an r-tuple of elements in $Z(G)$. We say that a representation (π, V) of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ is τ-admissible if its restriction to $\mathcal{U}_{q}(\mathfrak{g})$ is admissible and the elements C_{i} act on the weight spaces V_{χ} as scalars $\left\langle\tau_{i}, \chi\right\rangle$. The category of τ-admissible repre-
sentations is a rigid C^{*}-tensor category with forgetful functor. Moreover, the $G_{q} / Z(G)$ representations are naturally included in the τ-admissible representations as a C^{*}-tensor subcategory.

Definition 2.2. We let G_{q}^{τ} denote the compact quantum group realizing the category of finite dimensional τ-admissible $*$-representations of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ together with its canonical fiber functor.

In other words, $\mathbb{C}\left[G_{q}^{\tau}\right] \subset \tilde{\mathcal{U}}_{q}(\mathfrak{g})^{*}$ is spanned by matrix coefficients of finite dimensional τ-admissible representations, and the Hopf $*$-algebra structure on $\mathbb{C}\left[G_{q}^{\tau}\right]$ is defined by duality using that of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$.

Since every admissible representation of $\mathcal{U}_{q}(\mathfrak{g})$ extends uniquely to a τ-admissible representation of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$, and every τ-admissible representation is obtained this way, we can identify the $*$-algebra $\mathcal{U}\left(G_{q}^{\tau}\right)$ with $\mathcal{U}\left(G_{q}\right)$. The image $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$ of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$ in $\mathcal{U}\left(G_{q}^{\tau}\right)=$ $\mathcal{U}\left(G_{q}\right)$ plays the role of a quantized universal enveloping algebra for G_{q}^{τ}. As an algebra it is generated by $E_{i}, F_{i}, K_{i}^{ \pm 1}$ and τ_{i} (which is the image of C_{i}), but is endowed with a modified coproduct

$$
\begin{equation*}
\hat{\Delta}\left(E_{i}\right)=E_{i} \otimes \tau_{i}+K_{i} \otimes E_{i}, \quad \hat{\Delta}\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \hat{\Delta}\left(\tau_{i}\right)=\tau_{i} \otimes \tau_{i} . \tag{2.1}
\end{equation*}
$$

To put it differently, as a $*$-algebra, $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$ is the tensor product of $\mathcal{U}_{q}(\mathfrak{g})$ and the group algebra of the group $T_{\tau} \subset Z(G)$ generated by $\tau_{1}, \ldots, \tau_{r}$, while the coproduct is defined by (2.1). As a quotient of $\tilde{\mathcal{U}}_{q}(\mathfrak{g})$, the Hopf $*$-algebra $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$ is obtained by requiring that the unitaries C_{1}, \ldots, C_{r} satisfy the same relations as $\tau_{1}, \ldots, \tau_{r} \in Z(G)$.

2.2. Twisting and associator.

Given $\tau=\left(\tau_{1}, \ldots, \tau_{r}\right) \in Z(G)^{r}$, we obtain a 3-cocycle on $\widehat{Z(G)}=P / Q$ as follows. First, let $f(\lambda, \mu)$ be a \mathbb{T}-valued function on $P \times P$ satisfying

$$
\begin{equation*}
f(\lambda, \mu+Q)=f(\lambda, \mu), \quad f\left(\lambda+\alpha_{i}, \mu\right)=\left\langle\tau_{i}, \mu\right\rangle f(\lambda, \mu) . \tag{2.2}
\end{equation*}
$$

These conditions imply that f can be determined by its restriction to the image of a settheoretic section $(P / Q)^{2} \rightarrow P^{2}$. For example, if $\lambda_{1}, \ldots, \lambda_{n}$ is a system of representatives of P / Q, then we can put

$$
f\left(\lambda_{i}+\sum_{j=1}^{r} m_{j} \alpha_{j}, \mu\right)=\prod_{j=1}^{r}\left\langle\tau_{j}, \mu\right\rangle^{m_{j}}
$$

for all $1 \leq i \leq n$ and $\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}^{r}$.
Using (2.2), the coboundary of f,

$$
(\partial f)(\lambda, \mu, \nu)=f(\mu, \nu) f(\lambda+\mu, \nu)^{-1} f(\lambda, \mu+\nu) f(\lambda, \mu)^{-1}
$$

is seen to be invariant under the translation by Q in each variable. Thus, ∂f can be considered as a 3 -cochain on P / Q with values in \mathbb{T}. By construction, it is a cocycle. If
f^{\prime} satisfies the same condition as f above, the difference $f^{\prime} f^{-1}$ is Q^{2}-invariant, that is, it defines a function on $(P / Q)^{2}$. Thus, the cohomology class of ∂f in $H^{3}(P / Q ; \mathbb{T})$ depends only on τ. It also follows that the twisted coproduct $\hat{\Delta}_{f}(x)=f \hat{\Delta}_{q}(x) f^{*}$ does not depend on the choice of f.

Since $(\partial f)^{*}$ belongs to $\mathcal{U}\left(Z(G)^{3}\right)$, as we discussed in Section 1.2, it can be regarded as an invariant 3-cocycle in $\mathcal{U}\left(G_{q}^{3}\right)$ which is denoted by Φ^{τ}. Similarly, f can be considered as a unitary in $\mathcal{U}\left(G_{q}^{2}\right)$, and we have

$$
\Phi^{\tau}=\left(\iota \otimes \hat{\Delta}_{q}\right)\left(f^{*}\right)\left(1 \otimes f^{*}\right)(f \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(f) .
$$

Proposition 2.3. The coproduct $\hat{\Delta}_{f}$ on $\mathcal{U}\left(G_{q}\right)$ coincides with the coproduct $\hat{\Delta}$ defined by (2.1).

Proof. Since f is contained in $\mathcal{U}\left(T^{2}\right) \subset \mathcal{U}\left(G_{q}^{2}\right), \hat{\Delta}_{f}=\hat{\Delta}_{q}$ on the elements K_{i}. For E_{i}, since the action of E_{i} on an admissible module increases the weight of a vector by α_{i}, identities (2.2) imply that $f\left(K_{i} \otimes E_{i}\right) f^{*}=K_{i} \otimes E_{i}$ and $f\left(E_{i} \otimes 1\right) f^{*}=E_{i} \otimes \tau_{i}$. Comparing these identities with (2.1), we obtain the assertion.

Corollary 2.4. The representation category of G_{q}^{τ} is unitarily monoidally equivalent to $\operatorname{Rep}\left(G_{q}\right)^{\Phi^{\tau}}$, the representation category of G_{q} with associativity morphisms defined by Φ^{τ}.

This result can also be interpreted as follows. Let $\Phi_{\mathrm{KZ}, q} \in \mathcal{U}\left(G^{3}\right)$ be the Drinfeld associator coming from the Knizhnik-Zamolodchikov equations associated with the parameter $\hbar=\log (q) / \pi i$. The representation category of G_{q} is equivalent to that of G with associativity morphisms defined by $\Phi_{\mathrm{KZ}, q}$. The equivalence is given by a unitary Drinfeld twist $F_{D} \in \mathcal{U}\left(G^{2}\right)$ satisfying (1.2) for $\Phi_{\mathrm{KZ}, q}\left[\mathbf{N T 1 3}\right.$, Chapter 4]. It follows that $\operatorname{Rep}\left(G_{q}^{\tau}\right)$ is unitarily monoidally equivalent to the category $\operatorname{Rep}(G)$ with associativity morphisms defined by

$$
\Phi_{\mathrm{KZ}, q}^{\tau}=(\iota \otimes \hat{\Delta})\left(F_{D}^{*}\right)\left(1 \otimes F_{D}^{*}\right) \Phi^{\tau}\left(F_{D} \otimes 1\right)(\hat{\Delta} \otimes \iota)\left(F_{D}\right)=\Phi^{\tau} \Phi_{\mathrm{KZ}, q},
$$

where we now consider Φ^{τ} as an element of $\mathcal{U}\left(G^{3}\right)$. Correspondingly, the unitary $F_{D}^{\tau}=$ $f F_{D} \in \mathcal{U}\left(G^{2}\right)$ plays the role of a Drinfeld twist for G_{q}^{τ}.

Remark 2.5. The construction of [$\mathbf{N T 1 0}$] can be carried out for G_{q}^{τ} to obtain a spectral triple over $\mathbb{C}\left[G_{q}^{\tau}\right]$ as an isospectral deformation of the spin Dirac operator on G. Indeed, it is enough to verify the boundedness of $\left[1 \otimes(\iota \otimes \gamma)(t),(\pi \otimes \iota \otimes \widetilde{\mathrm{ad}})\left(\Phi_{\mathrm{KZ}, q}^{\tau}\right)\right]$ for any irreducible representation π, where t is the standard symmetric tensor $\sum_{i} x_{i} \otimes x_{i}$ [$\mathbf{N T 1 0}$, Corollary 3.2]. Since $(\pi \otimes \iota \otimes \widetilde{\mathrm{ad}})\left(\Phi^{\tau}\right) \in \mathbb{C} \otimes \mathcal{U}(Z(G)) \otimes \mathbb{C}$ commutes with $1 \otimes(\iota \otimes \gamma)(t)$, we can reduce the proof to the case of trivial τ.

A natural question is how large the class of cocycles of the form Φ^{τ} is. These cocycles are analyzed in detail in Appendix. Using that analysis we point out the following.

Proposition 2.6. A \mathbb{T}-valued 3 -cocycle Φ on P / Q is cohomologous to Φ^{τ} for some
$\tau_{1}, \ldots, \tau_{r} \in Z(G)$ if and only if Φ lifts to a coboundary on P. This is always the case if P / Q can be generated by not more than two elements. For example, this is the case if G is simple.

Proof. The first statement is proved in Corollary A.4. It is also shown there that another equivalent condition on Φ is that it vanishes on $\bigwedge^{3}(P / Q) \subset H_{3}(P / Q ; \mathbb{Z})$. This condition is obviously satisfied if P / Q can be generated by two elements. Finally, if G is simple, then it is known that P / Q is cyclic in all cases except for $G=\operatorname{Spin}(4 n)$, in which case $P / Q \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Therefore for simple G the quantum groups G_{q}^{τ} realize all possible associativity morphisms on $\operatorname{Rep}\left(G_{q}\right)$ defined by 3-cocycles on the dual of the center. In the semisimple case this is not true as soon as the center becomes slightly more complicated, namely, as soon as $\bigwedge^{3}(P / Q) \neq 0$. We conjecture that in this case, if we take a cocycle Φ on P / Q that does not lift to a coboundary on P, then there are no unitary fiber functors on $\operatorname{Rep}(G)^{\Phi}$, that is, there are no compact quantum groups with this representation category. Note that by Corollary A. 5 any such cocycle Φ is cohomologous to product of a cocycle Φ^{τ} and a 3-character on P / Q that is nontrivial on $\bigwedge^{3}(P / Q) \subset(P / Q)^{\otimes 3}$.

2.3. Isomorphisms of twisted quantum groups.

Denote the cohomology class of the cocycle Φ^{τ} in $H^{3}(P / Q ; \mathbb{T})$ by $\Theta(\tau)$. This way we obtain a homomorphism

$$
\Theta: Z(G)^{r} \rightarrow H^{3}(P / Q ; \mathbb{T})
$$

Assume $\tau \in \operatorname{ker} \Theta$. Let f be a function satisfying (2.2). Then there exists a 2 -cochain $g:(P / Q)^{2} \rightarrow \mathbb{T}$ such that $\partial f=\partial g$, so that $f g^{-1}$ is a 2 -cocycle on P. Another choice of f and g would give us a cocycle that differs from $f g^{-1}$ by a 2 -cocycle on P / Q. Therefore taking the cohomology class of fg^{-1} we get a well-defined homomorphism

$$
\Upsilon: \operatorname{ker} \Theta \rightarrow H^{2}(P ; \mathbb{T}) / H^{2}(P / Q ; \mathbb{T})
$$

Proposition 2.7. Assume $\tau^{\prime}, \tau \in Z(G)^{r}$ are such that

$$
\tau^{\prime} \tau^{-1} \in \operatorname{ker} \Theta \quad \text { and } \quad \tau^{\prime} \tau^{-1} \in \operatorname{ker} \Upsilon .
$$

Then the quantum groups $G_{q}^{\tau^{\prime}}$ and G_{q}^{τ} are isomorphic.
Proof. Denote by $\hat{\Delta}^{\prime}$ and $\hat{\Delta}$ the coproducts on $\mathcal{U}\left(G_{q}\right)$ defined by τ^{\prime} and τ, see (2.1). Let f^{\prime} and f be functions satisfying (2.2) for τ^{\prime} and τ, respectively, so that $\hat{\Delta}^{\prime}=\hat{\Delta}_{f^{\prime}}$ and $\hat{\Delta}=\hat{\Delta}_{f}$. The assumptions of the proposition mean that there exists a 2-cochain g on P / Q such that $f^{\prime} f^{-1} g$ is a coboundary on P. In other words, there exists a unitary $u \in \mathcal{U}\left(T^{2}\right) \subset \mathcal{U}\left(G_{q}^{2}\right)$ such that

$$
f^{\prime} g=(u \otimes u) f \hat{\Delta}_{q}(u)^{*} .
$$

Then $\operatorname{Ad} u$ is an isomorphism of $\left(\mathcal{U}\left(G_{q}\right), \hat{\Delta}\right)$ onto $\left(\mathcal{U}\left(G_{q}\right), \hat{\Delta}^{\prime}\right)$, hence $G_{q}^{\tau} \cong G_{q}^{\tau^{\prime}}$.
Apart from the isomorphisms given by this proposition, we have $G_{q}^{\tau} \cong G_{q^{-1}}^{\tau^{-1}}$. There also are isomorphisms induced by symmetries of the based root datum of G. Finally, for $q=1$ there can be additional isomorphisms defined by conjugation by elements in $\mathcal{U}(G)$ that lie in the normalizer of the maximal torus.

3. Function algebras of twisted quantum groups.

3.1. Crossed product description.

As before, assume $\tau=\left(\tau_{1}, \ldots, \tau_{r}\right) \in Z(G)^{r}$. Recall that we denote by T_{τ} the subgroup of $Z(G)$ generated by the elements $\tau_{1}, \ldots, \tau_{r}$. There is a homomorphism

$$
\psi: \hat{T}_{\tau} \rightarrow T / Z(G)
$$

defined as follows. Given $\chi \in \hat{T}_{\tau}$, we define a character on the root lattice Q by $\alpha_{i} \mapsto$ $\chi\left(\tau_{i}\right)$. It can be extended to P, and we obtain an element $\tilde{\psi}(\chi) \in \hat{P}=T$. The ambiguity of this extension is in $Q^{\perp} \cap T=Z(G)$. Thus, the image $\psi(\chi)$ of $\tilde{\psi}(\chi)$ in $T / Z(G)$ is well-defined.

The homomorphism ψ allows us to define an action of \hat{T}_{τ} by conjugation on G_{q}, that is, we have an action $\operatorname{Ad} \psi$ of \hat{T}_{τ} on $C\left(G_{q}\right)$ defined by

$$
(\operatorname{Ad} \psi(\chi))(a)=\left\langle\tilde{\psi}\left(\chi^{-1}\right), a_{[1]}\right\rangle\left\langle\tilde{\psi}(\chi), a_{[3]}\right\rangle a_{[2]} ;
$$

recall that the elements of T define characters of $C\left(G_{q}\right)$, that is, they are group-like unitary elements in $\mathcal{U}\left(G_{q}\right)$.

Theorem 3.1. There is a canonical isomorphism

$$
C\left(G_{q}^{\tau}\right) \cong\left(C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}\right)^{T_{\tau}}
$$

where the group T_{τ} acts on $C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}$ by right translations ρ on $C\left(G_{q}\right)$ and by the dual action on $C^{*}\left(\hat{T}_{\tau}\right)$.

Proof. Let us first identify the compact quantum group \tilde{G}_{q}^{τ} defined by the category of finite dimensional representations of $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$ such that their restrictions to $\mathcal{U}_{q}(\mathfrak{g})$ are admissible. Any such irreducible representation is tensor product of an irreducible admissible representation of $\mathcal{U}_{q}(\mathfrak{g})$ and a character of T_{τ}; recall that these can be regarded as representations of $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$. It follows that the Hopf $*$-algebra $\mathbb{C}\left[\tilde{G}_{q}^{\tau}\right]$ contains copies of $\mathbb{C}\left[G_{q}\right]$ and $C^{*}\left(\hat{T}_{\tau}\right)$, and as a space it is tensor product of these Hopf $*$-subalgebras. It remains to find relations between elements of $\mathbb{C}\left[G_{q}\right]$ and $C^{*}\left(\hat{T}_{\tau}\right)$ inside $\mathbb{C}\left[\tilde{G}_{q}^{\tau}\right]$.

Let (π, V) be a finite dimensional admissible representation of $\mathcal{U}_{q}(\mathfrak{g})$, and χ be a character of T_{τ}. Then, on the one hand, $\pi \otimes \chi$ is a representation on V with E_{i} acting by $\chi\left(\tau_{i}\right) \pi\left(E_{i}\right)$. On the other hand, $\chi \otimes \pi$ is also a representation on the same space V with E_{i} acting by $\pi\left(E_{i}\right)$. From this we see that the operator $\pi(\tilde{\psi}(\chi))$, where we consider
the standard extension of π to $\mathcal{U}\left(G_{q}\right)$, intertwines $\chi \otimes \pi$ with $\pi \otimes \chi$. In other words, if $U_{\pi} \in B(V) \otimes \mathbb{C}\left[G_{q}\right]$ is the representation of G_{q} defined by π, then in $B(V) \otimes \mathbb{C}\left[\tilde{G}_{q}^{\tau}\right]$ we have

$$
\left(\pi(\tilde{\psi}(\chi)) \otimes u_{\chi}\right) U_{\pi}=U_{\pi}\left(\pi(\tilde{\psi}(\chi)) \otimes u_{\chi}\right)
$$

Since

$$
\left(\pi\left(\tilde{\psi}(\chi)^{-1}\right) \otimes 1\right) U_{\pi}(\pi(\tilde{\psi}(\chi)) \otimes 1)=(\iota \otimes \operatorname{Ad} \psi(\chi))\left(U_{\pi}\right)
$$

this exactly means that if $a \in \mathbb{C}\left[G_{q}\right]$ is a matrix coefficient of π, then $u_{\chi} a=$ $(\operatorname{Ad} \psi(\chi))(a) u_{\chi}$. Therefore $\mathbb{C}\left[\tilde{G}_{q}^{\tau}\right]=\mathbb{C}\left[G_{q}\right] \rtimes_{\operatorname{Ad} \psi} \hat{T}_{\tau}$.

Now, the quantum group G_{q}^{τ} is the quotient of \tilde{G}_{q}^{τ} defined by the category of τ admissible representations. By definition, a representation $\pi \otimes \chi$ of $\mathcal{U}_{q}^{\tau}(\mathfrak{g})$ is τ-admissible if $\pi\left(\tau_{i}\right)=\chi\left(\tau_{i}\right)$. Therefore $\mathbb{C}\left[G_{q}^{\tau}\right] \subset \mathbb{C}\left[\tilde{G}_{q}^{\tau}\right]=\mathbb{C}\left[G_{q}\right] \rtimes_{\operatorname{Ad} \psi} \hat{T}_{\tau}$ is spanned by elements of the form $a u_{\chi}$, where a is a matrix coefficient of an admissible representation π such that $\pi\left(\tau_{i}\right)=\chi\left(\tau_{i}\right)$. If π is irreducible, then $\pi\left(\tau_{i}\right)$ is scalar, and we have $\rho\left(\tau_{i}\right)(a)=\pi\left(\tau_{i}\right) a$. Hence $\mathbb{C}\left[G_{q}^{\tau}\right]=\left(\mathbb{C}\left[G_{q}\right] \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}\right)^{T_{\tau}}$.

Corollary 3.2. The C^{*}-algebra $C\left(G_{q}^{\tau}\right)$ is of type I.
Proof. Since $C\left(G_{q}^{\tau}\right) \subset C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}$, this follows from the known fact that the C^{*}-algebra $C\left(G_{q}\right)$ is of type I.

Recall that the family $\left(C\left(G_{q}\right)\right)_{0<q<\infty}$ has canonical structure of a continuous field of C^{*}-algebras [$\left.\mathbf{N T 1 1}\right]$.

Corollary 3.3. The C^{*}-algebras $\left(C\left(G_{q}^{\tau}\right)\right)_{0<q<\infty}$ form a continuous field of C^{*} algebras.

3.2. Primitive spectrum.

Let us turn to a description of the primitive spectrum of $C\left(G_{q}^{\tau}\right)$. We will concentrate on the case $q \neq 1$, the case $q=1$ can be treated similarly. First of all observe that the action of T_{τ} on $C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}$ is saturated, since every spectral subspace contains a unitary. We thus obtain a strong Morita equivalence

$$
\begin{equation*}
C\left(G_{q}^{\tau}\right) \sim_{M} C\left(G_{q}\right) \rtimes_{\operatorname{Ad} \psi} \hat{T}_{\tau} \rtimes_{\rho, \widehat{\operatorname{Ad} \psi}} T_{\tau} \cong C\left(G_{q}\right) \rtimes_{\rho} T_{\tau} \rtimes_{\operatorname{Ad} \psi, \hat{\rho}} \hat{T}_{\tau} . \tag{3.1}
\end{equation*}
$$

Recall how to describe primitive spectra of crossed products, see e.g. [Wil07]. Let Γ be a finite group acting on a separable C^{*}-algebra A. Then any primitive ideal J of $A \rtimes \Gamma$ is determined by the Γ-orbit of an ideal $I \in \operatorname{Prim}(A)$ and an ideal $J_{0} \in \operatorname{Prim}\left(A \rtimes \operatorname{Stab}_{\Gamma}(I)\right)$ by the condition $J_{0} \cap A=I$ and $J=\operatorname{Ind} J_{0}$.

If A is of type I, the ideals J_{0} can, in turn, be described as follows. Put $\Gamma_{0}=$ $\operatorname{Stab}_{\Gamma}(I)$. We want to describe irreducible representations of $A \rtimes \Gamma_{0}$ whose restrictions to A have kernel I. Let H be the space of an irreducible representation π of A with kernel I. Then the action of Γ_{0} on A / I is implemented by a projective unitary representation
$\gamma \mapsto u_{\gamma}$ of Γ_{0} on H. Let ω be the corresponding 2-cocycle. Consider the regular $\bar{\omega}$ representation $\gamma \mapsto \lambda_{\gamma}^{\bar{\omega}}$ of Γ_{0} on $\ell^{2}\left(\Gamma_{0}\right)$. Then $A \rtimes \Gamma_{0}$ has a representation on $H \otimes \ell^{2}\left(\Gamma_{0}\right)$ defined by $a \mapsto \pi(a) \otimes 1, \gamma \mapsto u_{\gamma} \otimes \lambda_{\gamma}^{\bar{\omega}}$. Any irreducible representation of $A \rtimes \Gamma_{0}$ whose restriction to A has kernel I is a subrepresentation of this representation. So it remains to decompose the representation of $A \rtimes \Gamma_{0}$ on $H \otimes \ell^{2}\left(\Gamma_{0}\right)$ into irreducible subrepresentations. The von Neumann algebra generated by the image of $A \rtimes \Gamma_{0}$ is $B(H) \otimes C^{*}\left(\Gamma_{0} ; \bar{\omega}\right)$. Therefore the representations we are interested in are in a one-to-one correspondence with irreducible representations of $C^{*}\left(\Gamma_{0} ; \bar{\omega}\right)$.

To summarize, if A is a separable C^{*}-algebra of type I and Γ is a finite group acting on A, then the primitive spectrum $\operatorname{Prim}(A \rtimes \Gamma)$ can be identified with the set of pairs ($[I], J$), where $[I]$ is the Γ-orbit of an ideal $I \in \operatorname{Prim}(A), J \in \operatorname{Prim}\left(C^{*}\left(\Gamma_{I} ; \bar{\omega}_{I}\right)\right.$), and ω_{I} is the 2-cocycle on $\Gamma_{I}=\operatorname{Stab}_{\Gamma}(I)$ defined by a projective representation of Γ_{I} implementing the action of Γ_{I} on the image of A under an irreducible representation with kernel I.

Returning to $C\left(G_{q}^{\tau}\right)$, for an element $w \in W$ of the Weyl group and a character $\chi \in \hat{T}_{\tau}$, put $\theta_{w}(\chi)=w^{-1}(\tilde{\psi}(\chi)) \tilde{\psi}(\chi)^{-1}$. This defines a homomorphism from \hat{T}_{τ} to T.

Proposition 3.4. For $q>0, q \neq 1$, the primitive spectrum of $C\left(G_{q}^{\tau}\right)$ can be identified with

$$
\coprod_{w \in W}\left(\theta_{w}\left(\hat{T}_{\tau}\right) \backslash T / T_{\tau}\right) \times \widehat{\theta_{w}^{-1}\left(T_{\tau}\right)} .
$$

Proof. In view of the strong Morita equivalence (3.1) it suffices to describe the primitive spectrum of

$$
C\left(G_{q}\right) \rtimes_{\rho} T_{\tau} \rtimes_{\operatorname{Ad} \psi, \hat{\rho}} \hat{T}_{\tau} .
$$

Recall that the spectrum of $C\left(G_{q}\right)$ is $W \times T$. The right translation action of T_{τ} on $C\left(G_{q}\right)$ defines an action on $W \times T$ that is simply the action by translations on T. Therefore $\operatorname{Prim}\left(C\left(G_{q}\right) \rtimes_{\rho} T_{\tau}\right)$ can be identified with $W \times T / T_{\tau}$, and every irreducible representation of $C\left(G_{q}\right) \rtimes_{\rho} T_{\tau}$ is induced from an irreducible representation of $C\left(G_{q}\right)$.

Next, we have to understand the action of \hat{T}_{τ} on $\operatorname{Prim}\left(C\left(G_{q}\right) \rtimes_{\rho} T_{\tau}\right)$. Since the dual action preserves the equivalence class of any induced representation, we just have to look at the action $\mathrm{Ad} \psi$. Given a representation $\pi_{w} \otimes \pi_{t}$ of $C\left(G_{q}\right)$ corresponding to $(w, t) \in W \times T$, we have

$$
\left(\pi_{w} \otimes \pi_{t}\right)\left(\operatorname{Ad} \psi\left(\chi^{-1}\right)\right) \sim \pi_{w} \otimes \pi_{\theta_{w}(\chi) t}
$$

by [NT12, Lemma 3.4] and [Yam13, Lemma 8]. It follows that the action of \hat{T}_{τ} on $\operatorname{Prim}\left(C\left(G_{q}\right) \rtimes_{\rho} T_{\tau}\right)=W \times T / T_{\tau}$ is by translations on T / T_{τ} via the homomorphisms $\theta_{w}: \hat{T}_{\tau} \rightarrow T$. Hence the space of \hat{T}_{τ}-orbits is $\coprod_{w \in W} \theta_{w}\left(\hat{T}_{\tau}\right) \backslash T / T_{\tau}$, and the stabilizer of a point $\left(w, t T_{\tau}\right)$ is $\theta_{w}^{-1}\left(T_{\tau}\right) \subset \hat{T}_{\tau}$.

To finish the proof of the proposition it remains to show that the action $(\operatorname{Ad} \psi, \hat{\rho})$ of $\theta_{w}^{-1}\left(T_{\tau}\right)$ on $C\left(G_{q}\right) \rtimes_{\rho} T_{\tau}$ can be implemented in the space of the induced representation
$\operatorname{Ind}\left(\pi_{w} \otimes \pi_{t}\right)$ by a unitary representation of $\theta_{w}^{-1}\left(T_{\tau}\right)$. For this, in turn, it suffices to show that the equivalences

$$
\left(\pi_{w} \otimes \pi_{t^{\prime}}\right)\left(\operatorname{Ad} t^{-1}\right) \sim \pi_{w} \otimes \pi_{w^{-1}(t) t^{-1} t^{\prime}}
$$

from [NT12, Lemma 3.4] and [Yam13, Lemma 8] can be implemented by a unitary representation $t \mapsto v_{t}$ of $T / Z(G)$ on the space of representation π_{w}. But this is easy to see. Specifically, using the notation of [NT12] and [Yam13], if $w=s_{i}$ is the reflection corresponding to a simple root α_{i}, then the required representation $t \mapsto v_{t}$ on $\ell^{2}\left(\mathbb{Z}_{+}\right)$can be defined by $v_{t} e_{n}=\left\langle t, \alpha_{i}\right\rangle^{n} e_{n}$. For arbitrary w we just have to take tensor products of such representations.

Remark 3.5. A description of the topology on $\operatorname{Prim}\left(C\left(G_{q}\right)\right)$ is given in [NT12]. The above argument is, however, not quite enough to understand the topology on $\operatorname{Prim}\left(C\left(G_{q}^{\tau}\right)\right)$.

3.3. K-theory.

The maximal torus T is embedded in $\mathcal{U}\left(G_{q}^{\tau}\right)$, so it can be considered as a subgroup of G_{q}^{τ}. Let us consider the right translation action ρ of T on $C\left(G_{q}^{\tau}\right)$. The crossed product $C\left(G_{q}^{\tau}\right) \rtimes_{\rho} T$ is a \hat{T} - C^{*}-algebra with respect to the dual action.

Proposition 3.6. The dual action of \hat{T} on $C\left(G_{q}^{\tau}\right) \rtimes_{\rho} T$ is equivariantly strongly Morita equivalent to an action on $C\left(G_{q}\right) \rtimes_{\rho} T$ that is homotopic to the dual action.

Proof. If we identify $C\left(G_{q}^{\tau}\right)$ with $\left(C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}\right)^{T_{\tau}}$, then the action of T by right translations on $C\left(G_{q}^{\tau}\right)$ extends to an action on $C\left(G_{q}\right) \rtimes_{\operatorname{Ad} \psi} \hat{T}_{\tau}$ that is trivial on $C^{*}\left(T_{\tau}\right)$ and coincides with the action by right translations on $C\left(G_{q}\right)$. This action of T on $C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau}$ commutes with the action of T_{τ}. Hence the strong Morita equivalence (3.1) is T-equivariant, and taking crossed products we get a \hat{T}-equivariant strong Morita equivalence

$$
\begin{equation*}
C\left(G_{q}^{\tau}\right) \rtimes_{\rho} T \sim_{M} C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau} \rtimes_{\rho, \widehat{A d \psi}} T_{\tau} \rtimes_{\rho} T . \tag{3.2}
\end{equation*}
$$

Denote the C^{*}-algebra on the right hand side by A. We claim that A is isomorphic to

$$
B=C\left(G_{q}\right) \rtimes_{\mathrm{Ad} \psi} \hat{T}_{\tau} \rtimes_{\widehat{\operatorname{Ad} \psi}} T_{\tau} \rtimes_{\rho} T
$$

Indeed, the map $a u_{\chi} u_{t} u_{t^{\prime}} \mapsto a u_{\chi} u_{t} u_{t t^{\prime}}$ for $a \in C\left(G_{q}\right), \chi \in \hat{T}_{\tau}, t \in T_{\tau}$ and $t^{\prime} \in T$ is the required isomorphism. The dual action of \hat{T} on A corresponds to an action β on B which is given by the dual action on the copy of $C^{*}(T)$ and by the dual action on the copy of $C^{*}\left(T_{\tau}\right)$ via the canonical homomorphism $r: \hat{T} \rightarrow \hat{T}_{\tau}$.

The map $\hat{T} \ni \chi \mapsto u_{r(\chi)} \in C^{*}\left(\hat{T}_{\tau}\right) \subset M(B)$ is a 1-cocycle for the action β. Therefore β is strongly Morita equivalent to the action γ defined by $\gamma_{\chi}=\left(\operatorname{Ad} u_{r(\chi)}\right) \beta_{\chi}$. This action is already trivial on $C^{*}\left(T_{\tau}\right)$, while on $C\left(G_{q}\right)$ it is given by $\operatorname{Ad} \psi(r(\chi))$, and on $C^{*}(T)$ it coincides with the dual action.

Denote by δ the restriction of γ to $C\left(G_{q}\right) \rtimes_{\rho} T \subset M(B)$. Then, similarly to (3.2), the actions δ and γ are strongly Morita equivalent.

Combining the Morita equivalences that we have obtained, we conclude that the dual action of \hat{T} on $C\left(G_{q}^{\tau}\right) \rtimes_{\rho} T$ is strongly Morita equivalent to the action $\delta=(\operatorname{Ad} \psi(r(\cdot)), \hat{\rho})$ on $C\left(G_{q}\right) \rtimes_{\rho} T$. Choosing a basis in $\hat{T}=P$ and paths from $\tilde{\psi}(r(\chi))$ to the neutral element in T for every basis element χ, we see that δ is homotopic to the dual action on $C\left(G_{q}\right) \rtimes_{\rho} T$.

Theorem 3.7. The C^{*}-algebra $C\left(G_{q}^{\tau}\right)$ is $K K$-isomorphic to $C\left(G_{q}\right)$, hence to $C(G)$.
Proof. Since the torsion-free commutative group \hat{T} satisfies the strong BaumConnes conjecture, the functor $A \mapsto A \rtimes \hat{T}$ maps homotopic actions into $K K$ isomorphisms of the corresponding crossed products. By the previous proposition, this, together with the Takesaki-Takai duality, implies that $C\left(G_{q}^{\tau}\right)$ and $C\left(G_{q}\right)$ are KKisomorphic. By [NT12] we also know that $C\left(G_{q}\right)$ is $K K$-isomorphic to $C(G)$.

Remark 3.8.

(i) The above proof shows that the continuous field of Corollary 3.3 is a $K K$-fibration in the sense of [ENOO09]. The argument of [NT11] applies to the Dirac operator D given by Remark 2.5, and we obtain that the K-homology class of D is independent of q. The bi-equivariance of D and the construction in the proof of Proposition 3.6 imply that the K-homology class of D is also independent of τ up to the isomorphism of Theorem 3.7.
(ii) For the group \hat{T} the strong Baum-Connes conjecture is a consequence of the Pimsner-Voiculescu sequence in $K K$-theory. Therefore the proof of Theorem 3.7 can be written such that it relies only on this sequence, see e.g. [San11, Section 5.1] for a related argument.

4. Twisted $S U_{q}(n)$.

4.1. Special unitary group.

Let us review the structure of $S U(n)$, see e.g. [FH91, Chapter 15]. For the sake of presentation, it is convenient to consider also the unitary group $U(n)$. We take the subgroup of the diagonal matrices \tilde{T} as a maximal torus of $U(n)$, and take $T=\tilde{T} \cap$ $S U(n)$ as a maximal torus of $S U(n)$. We will often identify \tilde{T} with \mathbb{T}^{n}. We write the corresponding Cartan subalgebras as $\tilde{\mathfrak{h}} \subset \mathfrak{g l}_{n}$ and $\mathfrak{h} \subset \mathfrak{s l}_{n}$.

Let $\left\{e_{i j}\right\}_{i, j=1}^{n}$ be the matrix units in $M_{n}(\mathbb{C})=\mathfrak{g l}_{n}$, and $\left\{\tilde{L}_{i}\right\}_{i=1}^{n}$ be the basis in $\tilde{\mathfrak{h}}^{*}$ dual to the basis $\left\{e_{i i}\right\}_{i=1}^{n}$ in $\tilde{\mathfrak{h}}$. Denote by L_{i} the image of \tilde{L}_{i} in \mathfrak{h}^{*}. Therefore any $n-1$ elements among L_{1}, \ldots, L_{n} form a basis in \mathfrak{h}^{*}, and we have $\sum_{i} L_{i}=0$.

The weight lattice $P \subset \mathfrak{h}^{*}$ is generated by the elements L_{i}. The pairing between T and P is given by $\left\langle t, L_{i}\right\rangle=t_{i}$ for $t \in T \subset \mathbb{T}^{n}$. As simple roots we take

$$
\alpha_{i}=L_{i}-L_{i+1}, \quad 1 \leq i \leq n-1 .
$$

The fundamental weights are then given by

$$
\varpi_{i}=L_{1}+\cdots+L_{i}, \quad 1 \leq i \leq n-1 .
$$

Consider the homomorphism $|\cdot|: P \rightarrow \mathbb{Z}$ such that $L_{1} \mapsto n-1$ and $L_{i} \mapsto-1$ for $1<i \leq n$. In other words,

$$
\left|a_{1} \varpi_{1}+\cdots+a_{n-1} \varpi_{n-1}\right|=\lambda_{1}+\cdots+\lambda_{n-1}
$$

where λ_{n-i} is given by $a_{1}+\cdots+a_{i}$. The image of Q under $|\cdot|$ is $n \mathbb{Z}$, and therefore we can use this homomorphism to identify P / Q with $\mathbb{Z} / n \mathbb{Z}$.

4.2. Twisted quantum special unitary groups.

By Proposition A.3, the cohomology group $H^{3}(\mathbb{Z} / n \mathbb{Z} ; \mathbb{T})$ is isomorphic to $\mathbb{Z} / n \mathbb{Z}$, and a cocycle generating this group can be defined by

$$
\phi(a, b, c)=\zeta_{n}^{\omega_{n}(a, b) c}, \quad \text { where } \zeta_{n}=e^{2 \pi i / n} \text { and } \omega_{n}(a, b)=\left\lfloor\frac{a+b}{n}\right\rfloor-\left\lfloor\frac{a}{n}\right\rfloor-\left\lfloor\frac{b}{n}\right\rfloor .
$$

Using this generator we identify $H^{3}(\mathbb{Z} / n \mathbb{Z} ; \mathbb{T})$ with the group $\mu_{n} \subset \mathbb{T}$ of units of order n. Therefore, given $\zeta \in \mu_{n}$, we have a category $\operatorname{Rep}\left(S U_{q}(n)\right)^{\zeta}$ with associativity morphisms defined by multiplication by $\zeta^{\omega_{n}(|\lambda|,|\eta|)|\nu|}$ on the tensor product $V_{\lambda} \otimes V_{\eta} \otimes V_{\nu}$ of irreducible $\mathcal{U}_{q}(\mathfrak{g})$-modules with highest weights λ, η, ν. This agrees with the conventions of Kazhdan and Wenzl [KW93].

It is also convenient to identify $Z(S U(n))$ with the group μ_{n}. Thus, for $\tau=$ $\left(\tau_{1}, \ldots, \tau_{n-1}\right) \in \mu_{n}^{n-1}$, we can define a twisting $S U_{q}^{\tau}(n)$ of $S U_{q}(n)$. Its representation category is one of $\operatorname{Rep}\left(S U_{q}(n)\right)^{\zeta}$, and to find ζ we have to compute the homomorphism $\Theta: Z(S U(n))^{n-1} \rightarrow H^{3}(P / Q ; \mathbb{T})$ introduced in Section 2.3. Under our identifications this becomes a homomorphism $\mu_{n}^{n-1} \rightarrow \mu_{n}$.

Proposition 4.1. We have $\Theta(\tau)=\prod_{i=1}^{n-1} \tau_{i}^{-i}$.
Proof. Recall the construction of Θ. We choose a function $f: P \times P \rightarrow \mathbb{T}$ such that it factors through $P \times(P / Q)$ and $f\left(\lambda+\alpha_{i}, \mu\right)=\overline{\left\langle\tau_{i}, \mu\right\rangle} f(\lambda, \mu)$. Then $\Theta(\tau)$ is the cohomology class of ∂f in $H^{3}(P / Q ; \mathbb{T})$.

Note that $\left\langle\tau_{i}, \mu\right\rangle=\tau_{i}^{-|\mu|}$, which is immediate for $\mu=L_{j}$, and define a character χ of $Q \otimes(P / Q)=Q \otimes(\mathbb{Z} / n \mathbb{Z})$ by

$$
\chi\left(\alpha_{i} \otimes k\right)=\tau_{i}^{k} \text { for } 1 \leq i \leq n-1 \text { and } k \in \mathbb{Z} / n \mathbb{Z},
$$

so that $f(\lambda+\alpha, \mu)=\chi(\alpha \otimes|\mu|) f(\lambda, \mu)$ for all $\alpha \in Q$. By Proposition A. 6 , the cohomology class of ∂f depends only on the restriction of χ to

$$
\operatorname{ker}(Q \otimes(\mathbb{Z} / n \mathbb{Z}) \rightarrow P \otimes(\mathbb{Z} / n \mathbb{Z})) \cong \operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / n \mathbb{Z}
$$

and by varying τ we get this way an isomorphism $\operatorname{Hom}\left(\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}), \mathbb{T}\right) \cong$ $H^{3}(\mathbb{Z} / n \mathbb{Z} ; \mathbb{T})$. In order to compute this isomorphism we can use the resolution $n \mathbb{Z} \rightarrow$ $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ instead of $Q \rightarrow P \xrightarrow{|\cdot|} \mathbb{Z} / n \mathbb{Z}$. Define a morphism between these resolutions by
$\mathbb{Z} \rightarrow P, 1 \mapsto \varpi_{n-1}=-L_{n}$. By pulling back χ under this morphism, we get a character $\tilde{\chi}$ of $(n \mathbb{Z}) \otimes(\mathbb{Z} / n \mathbb{Z})$ such that

$$
\tilde{\chi}(n \otimes k)=\chi\left(n \varpi_{n-1} \otimes k\right) .
$$

We have $n \varpi_{n-1}=\sum_{i=1}^{n-1} i \alpha_{i}$. Therefore

$$
\tilde{\chi}(n \otimes k)=\zeta^{k}, \quad \text { where } \zeta=\prod_{i=1}^{n-1} \tau_{i}^{i}
$$

Then the function $\tilde{f}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{T}$ defined by

$$
\tilde{f}(a, b)=\zeta^{\lfloor a / n\rfloor b}
$$

factors through $\mathbb{Z} \times(\mathbb{Z} / n \mathbb{Z}), \tilde{f}(a+n, b)=\tilde{\chi}(n \otimes b) \tilde{f}(a, b)$ and $(\partial \tilde{f})(a, b, c)=\zeta^{-\omega_{n}(a, b) c}$. Therefore the class of $\partial \tilde{f}$ in $H^{3}(\mathbb{Z} / n \mathbb{Z} ; \mathbb{T})=\mu_{n}$ is ζ^{-1}.

In Section 2.3 we also introduced a homomorphism Υ. In the present case we have $H^{2}(P / Q ; \mathbb{T})=0$, so Υ is a homomorphism $\operatorname{ker} \Theta \rightarrow H^{2}(P ; \mathbb{T})$.

Lemma 4.2. The homomorphism $\Upsilon: \operatorname{ker} \Theta \rightarrow H^{2}(P ; \mathbb{T})$ is injective.
Proof. Assume $\tau \in \operatorname{ker} \Theta$, so $\prod_{i=1}^{n-1} \tau_{i}^{i}=1$. In this case the character χ of $Q \otimes(P / Q)$ from the proof of the previous proposition extends to $P \otimes(P / Q)$ by

$$
\chi\left(L_{i} \otimes \mu\right)=\left(\tau_{1} \cdots \tau_{i-1}\right)^{-|\mu|} \text { for } 1 \leq i \leq n \text { and } \mu \in P
$$

Therefore if we consider χ as a function on $P \times P$, we can take it as a function f in that proof. Then f is a 2-cocycle, and by definition, the image of τ under Υ is the cohomology class of \bar{f}. It is well-known, and also follows from Proposition A.1, that f is a coboundary if and only if f is symmetric. For $1<i<j \leq n$ we have

$$
f\left(L_{i}, L_{j}\right) \overline{f\left(L_{j}, L_{i}\right)}=\left(\tau_{i} \cdots \tau_{j-1}\right)^{-1}
$$

So if f is symmetric, then $\tau_{2}=\cdots=\tau_{n-1}=1$, but then also $\tau_{1}=1$.
Therefore Proposition 2.7 does not give us any nontrivial isomorphisms between the quantum groups $S U_{q}^{\tau}(n)$. On the other hand, the flip map on the Dynkin diagram induces an automorphism of $\mathcal{U}\left(S U_{q}(n)\right)$ such that $K_{i} \mapsto K_{n-i}$ and $E_{i} \mapsto E_{n-i}$ for $1 \leq i \leq n-1$. On $Z(S U(n)) \subset \mathcal{U}\left(S U_{q}(n)\right)$ this automorphism is $t \mapsto t^{-1}$. It follows that it induces isomorphisms

$$
S U_{q}^{\left(\tau_{1}, \ldots, \tau_{n-1}\right)}(n) \cong S U_{q}^{\left(\tau_{n-1}^{-1}, \ldots, \tau_{1}^{-1}\right)}(n)
$$

For $0<q<1$, these seem to be the only obvious isomorphisms between the quantum groups $S U_{q}^{\tau}(n)$.

4.3. Generators and relations.

The C^{*}-algebra $C\left(S U_{q}(n)\right)$ is generated by the matrix coefficients $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ of the natural representation of $S U_{q}(n)$ on \mathbb{C}^{n}, the fundamental representation with highest weight ϖ_{1}. They satisfy the relations $[\mathbf{D r i 8 7}]$ and $[$ Wor88]

$$
\begin{gather*}
u_{i j} u_{i l}=q u_{i l} u_{i j} \quad(j<l), \quad u_{i j} u_{k j}=q u_{k j} u_{i j} \quad(i<k), \tag{4.1}\\
u_{i j} u_{k l}=u_{k l} u_{i j} \quad(i>k, j<l), \quad u_{i j} u_{k l}-u_{k l} u_{i j}=\left(q-q^{-1}\right) u_{i l} u_{k j} \quad(i<k, j<l), \tag{4.2}\\
\operatorname{qdet}\left(\left(u_{i j}\right)_{i, j}\right)=\sum_{\sigma \in S_{n}}(-q)^{|\sigma|} u_{1 \sigma(1)} \cdots u_{n \sigma(n)}=1 . \tag{4.3}
\end{gather*}
$$

Here, $|\sigma|$ is the inversion number of the permutation σ. The involution is defined by

$$
u_{i j}^{*}=(-q)^{j-i} q \operatorname{det}\left(U_{\hat{j}}^{\hat{i}}\right)
$$

where $U_{\hat{j}}^{\hat{i}}$ is the matrix obtained from $U=\left(u_{k l}\right)_{k, l}$ by deleting the i-th row and j-th column.

In order to find generators and relations of $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$, we will use the embedding of the algebra $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ into $\mathbb{C}\left[S U_{q}(n)\right] \rtimes_{\text {Ad } \psi} \hat{T}_{\tau}$ described in Theorem 3.1. Recall that $\psi: \hat{T}_{\tau} \rightarrow T / Z(S U(n))=T / \mu_{n}$ is the homomorphism such that $\left\langle\tilde{\psi}(\chi), \alpha_{i}\right\rangle=\chi\left(\tau_{i}\right)$, where $\tilde{\psi}(\chi)$ is a lift of $\psi(\chi)$ to T. Hence

$$
\tilde{\psi}(\chi)=\left(z, z \chi\left(\tau_{1}\right)^{-1}, \ldots, z \chi\left(\tau_{1} \cdots \tau_{n-1}\right)^{-1}\right) \in T \subset \mathbb{T}^{n}
$$

where $z \in \mathbb{T}$ is a number such that $z^{n}=\prod_{i=1}^{n-1} \chi\left(\tau_{i}\right)^{-i}$. It follows that

$$
\begin{equation*}
(\operatorname{Ad} \psi(\chi))\left(u_{i j}\right)=\left(\prod_{1 \leq p<i} \chi\left(\tau_{p}\right)\right)\left(\prod_{1 \leq p<j} \chi\left(\tau_{p}\right)^{-1}\right) u_{i j} \tag{4.4}
\end{equation*}
$$

Now, the algebra $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ is generated by matrix coefficients of the fundamental representation of $S U_{q}^{\tau}(n)$ with highest weight ϖ_{1}. Under the embedding $\mathbb{C}\left[S U_{q}^{\tau}(n)\right] \hookrightarrow \mathbb{C}\left[S U_{q}(n)\right] \rtimes_{\text {Ad } \psi} \hat{T}_{\tau}$, these matrix coefficients correspond to $v_{i j}=u_{i j} u_{\chi_{\text {nat }}}$, where $\chi_{\text {nat }} \in \hat{T}_{\tau}$ is the character determined by the natural representation of $S U_{q}(n)$ on \mathbb{C}^{n}, so $\chi_{\mathrm{nat}}\left(\tau_{i}\right)=\tau_{i}$. From (4.1)-(4.3) we then get the following relations:

$$
\begin{gather*}
v_{i j} v_{i l}=\left(\prod_{j \leq p<l} \tau_{p}^{-1}\right) q v_{i l} v_{i j}(j<l), \quad v_{i j} v_{k j}=\left(\prod_{i \leq p<k} \tau_{p}\right) q v_{k j} v_{i j} \quad(i<k), \tag{4.5}\\
v_{i j} v_{k l}=\left(\prod_{k \leq p<i} \tau_{p}^{-1}\right)\left(\prod_{j \leq p<l} \tau_{p}^{-1}\right) v_{k l} v_{i j} \quad(i>k, j<l), \tag{4.6}\\
\left(\prod_{j \leq p<l} \tau_{p}\right) v_{i j} v_{k l}-\left(\prod_{i \leq p<k} \tau_{p}\right) v_{k l} v_{i j}=\left(q-q^{-1}\right) v_{i l} v_{k j} \quad(i<k, j<l), \tag{4.7}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} \tau^{m(\sigma)}(-q)^{|\sigma|} v_{1 \sigma(1)} \cdots v_{n \sigma(n)}=1 \tag{4.8}
\end{equation*}
$$

where $m(\sigma)=\left(m(\sigma)_{1}, \ldots, m(\sigma)_{n-1}\right)$ is the multi-index given by $m(\sigma)_{i}=\sum_{k=2}^{n}(k-$ 1) $m_{i}^{(k, \sigma(k))}$, and

$$
m_{i}^{(k, j)}= \begin{cases}1, & \text { if } k \leq i<j \\ -1, & \text { if } j \leq i<k \\ 0, & \text { otherwise }\end{cases}
$$

Proposition 4.3. For any $\tau \in \mu_{n}^{n-1}$, the algebra $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ is a universal algebra generated by elements $v_{i j}$ satisfying relations (4.5)-(4.8).

Proof. We already know that relations (4.5)-(4.8) are satisfied in $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$, so we just have to show that there are no other relations. Let \mathcal{A} be a universal algebra generated by elements $w_{i j}$ satisfying relations (4.5)-(4.8). We can define an action of \hat{T}_{τ} on \mathcal{A} by (4.4). Then in $\mathcal{A} \rtimes \hat{T}_{\tau}$ the elements $w_{i j} u_{\chi_{\text {nat }}}^{-1}$ satisfy the defining relations of $\mathbb{C}\left[S U_{q}(n)\right]$, so we have a homomorphism $\mathbb{C}\left[S U_{q}(n)\right] \rightarrow \mathcal{A} \rtimes \hat{T}_{\tau}$ mapping $u_{i j}$ into $w_{i j} u_{\chi_{\text {nat }}}^{-1}$. It extends to a homomorphism $\mathbb{C}\left[S U_{q}(n)\right] \rtimes \hat{T}_{\tau} \rightarrow \mathcal{A} \rtimes \hat{T}_{\tau}$ that is identity on the group algebra of \hat{T}_{τ}. Restricting to $\mathbb{C}\left[S U_{q}^{\tau}(n)\right] \subset \mathbb{C}\left[S U_{q}(n)\right] \rtimes \hat{T}_{\tau}$, we get a homomorphism $\mathbb{C}\left[S U_{q}^{\tau}(n)\right] \rightarrow \mathcal{A}$ mapping $v_{i j}$ into $w_{i j}$.

The involution on $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ is determined by requiring the invertible matrix $\left(v_{i j}\right)_{i, j}$ to be unitary. An explicit formula can be easily found using that for $\mathbb{C}\left[S U_{q}(n)\right]$.

Remark 4.4. The relations in $\mathbb{C}\left[S U_{q}^{\tau}(n)\right]$ cannot be obtained using the FRTapproach, since the categories $\operatorname{Rep}\left(S U_{q}(n)\right)^{\zeta^{\zeta}}$ are typically not braided. More precisely, $\operatorname{Rep}\left(S U_{q}(n)\right)^{\zeta}$ has a braiding if and only if either $\zeta=1$ or n is even and $\zeta=-1$. This statement is already implicit in [KW93], and it can be proved as follows. If $\zeta=1$ or n is even and $\zeta=-1$, then a braiding indeed exists, see e.g. [Pin07]. Conversely, suppose we have a braiding. In other words, there exists an R-matrix \mathcal{R} for $\left(\mathcal{U}\left(S U_{q}(n)\right), \hat{\Delta}_{q}, \Phi\right)$, where $\Phi=\zeta^{\omega_{n}(|\lambda|,|\eta|)|\nu|}$. Recall that this means that \mathcal{R} is an invertible element in $\mathcal{U}\left(S U_{q}(n) \times S U_{q}(n)\right)$ such that $\hat{\Delta}_{q}^{\mathrm{op}}=\mathcal{R} \hat{\Delta}_{q}(\cdot) \mathcal{R}^{-1}$ and

$$
\left(\hat{\Delta}_{q} \otimes \iota\right)(\mathcal{R})=\Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi, \quad\left(\iota \otimes \hat{\Delta}_{q}\right)(\mathcal{R})=\Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12} \Phi^{-1}
$$

Since Φ is central and symmetric in the first two variables, the last two identities can be written as

$$
\left(\hat{\Delta}_{q}^{\mathrm{op}} \otimes \iota\right)(\mathcal{R})=\mathcal{R}_{23} \mathcal{R}_{13} \Phi, \quad\left(\iota \otimes \hat{\Delta}_{q}\right)(\mathcal{R})=\mathcal{R}_{13} \mathcal{R}_{12} \Phi_{321}^{-1}
$$

On the other hand, we know that $\operatorname{Rep}\left(S U_{q}(n)\right)$ is braided, so there exists an element \mathcal{R}_{q} satisfying the above properties with Φ replaced by 1 . Consider the element $F=\mathcal{R}_{q}^{-1} \mathcal{R}$. Then F is invariant, meaning that it commutes with the image of $\hat{\Delta}_{q}$. Furthermore, we have

$$
\begin{aligned}
(F \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(F) & =\left(\mathcal{R}_{q}^{-1} \otimes 1\right)\left(\hat{\Delta}_{q}^{\mathrm{op}} \otimes \iota\right)\left(\mathcal{R}_{q}^{-1}\right)\left(\hat{\Delta}_{q}^{\mathrm{op}} \otimes \iota\right)(\mathcal{R})(\mathcal{R} \otimes 1) \\
& =\left(\left(\mathcal{R}_{q}\right)_{23}\left(\mathcal{R}_{q}\right)_{13}\left(\mathcal{R}_{q}\right)_{12}\right)^{-1} \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} \Phi,
\end{aligned}
$$

and similarly

$$
\begin{aligned}
(1 \otimes F)\left(\iota \otimes \hat{\Delta}_{q}\right)(F) & =\left(\iota \otimes \hat{\Delta}_{q}\right)\left(\mathcal{R}_{q}^{-1}\right)\left(1 \otimes \mathcal{R}_{q}^{-1}\right)(1 \otimes \mathcal{R})\left(\iota \otimes \hat{\Delta}_{q}\right)(\mathcal{R}) \\
& =\left(\left(\mathcal{R}_{q}\right)_{23}\left(\mathcal{R}_{q}\right)_{13}\left(\mathcal{R}_{q}\right)_{12}\right)^{-1} \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} \Phi_{321}^{-1} .
\end{aligned}
$$

Therefore

$$
\left(\iota \otimes \hat{\Delta}_{q}\right)\left(F^{-1}\right)\left(1 \otimes F^{-1}\right)(F \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(F)=\Phi_{321} \Phi .
$$

This implies that $\operatorname{Rep}\left(S U_{q}(n)\right)$ is monoidally equivalent to $\operatorname{Rep}\left(S U_{q}(n)\right)^{\Phi_{321} \Phi}$. Since the cocycle $\Phi_{321} \Phi$ on the dual of the center is cohomologous to the cocycle $\zeta^{2 \omega_{n}(|\lambda|,|\eta|)|\nu|}$, this means that $\operatorname{Rep}\left(S U_{q}(n)\right)$ is monoidally equivalent to $\operatorname{Rep}\left(S U_{q}(n)\right)^{\zeta^{2}}$. By the KazhdanWenzl classification this is the case only if $\zeta^{2}=1$.

Appendix A. Cocycles on abelian groups.

Let Γ be a discrete abelian group. As is common in operator algebra, we denote the generators of the group algebra $\mathbb{Z}[\Gamma]$ by $\lambda_{\gamma}(\gamma \in \Gamma)$. Let $\left(C_{*}(\Gamma), d\right)$ be the nonnormalized bar-resolution of the $\mathbb{Z}[\Gamma]$-module \mathbb{Z}, so $C_{n}(\Gamma)(n \geq 0)$ is the free $\mathbb{Z}[\Gamma]$-module with basis consisting of n-tuples of elements in Γ, written as $\left[\gamma_{1}|\cdots| \gamma_{n}\right]$, and the differential $d: C_{n}(\Gamma) \rightarrow C_{n-1}(\Gamma)$ is defined by

$$
d\left[\gamma_{1}|\cdots| \gamma_{n}\right]=\lambda_{\gamma_{1}}\left[\gamma_{2}|\cdots| \gamma_{n}\right]+\sum_{i=1}^{n-1}(-1)^{i}\left[\gamma_{1}|\cdots| \gamma_{i}+\gamma_{i+1}|\cdots| \gamma_{n}\right]+(-1)^{n}\left[\gamma_{1}|\cdots| \gamma_{n-1}\right] .
$$

Let M be a commutative group endowed with the trivial Γ-module structure. The group cohomology $H^{*}(\Gamma ; M)$ can be computed from the standard complex induced by the bar-resolution. Concretely, we have a cochain complex

$$
C^{*}(\Gamma ; M)=\operatorname{Hom}_{\mathbb{Z}[\Gamma]}\left(C_{*}(\Gamma), M\right)=\operatorname{Map}\left(\Gamma^{*}, M\right),
$$

endowed with the boundary map $\partial: C^{n}(\Gamma ; M) \rightarrow C^{n+1}(\Gamma ; M)$ defined by

$$
\begin{aligned}
(\partial \phi)\left(\gamma_{1}, \ldots, \gamma_{n+1}\right)=\phi & \left(\gamma_{2}, \ldots, \gamma_{n+1}\right)-\phi\left(\gamma_{1}+\gamma_{2}, \gamma_{3}, \ldots, \gamma_{n+1}\right)+\cdots \\
& +(-1)^{n} \phi\left(\gamma_{1}, \ldots, \gamma_{n-1}, \gamma_{n}+\gamma_{n+1}\right)+(-1)^{n+1} \phi\left(\gamma_{1}, \ldots, \gamma_{n}\right) .
\end{aligned}
$$

By M-valued cocycles on Γ we mean cocycles in $\left(C^{*}(\Gamma ; M), \partial\right)$. We will consider only \mathbb{T}-valued cocycles, but with minor modifications everything what we say remains true for cocycles with values in any divisible group M.

For the sake of computation, it is also convenient to introduce the integer homology
$H_{*}(\Gamma)=H_{*}(\Gamma ; \mathbb{Z})$, which is given as the homology of the complex $C_{*}(\Gamma ; \mathbb{Z})=\mathbb{Z} \otimes_{\mathbb{Z}[\Gamma]}$ $C_{*}(\Gamma)$. Since the action of Γ on \mathbb{T} is trivial, we have $C^{*}(\Gamma ; \mathbb{T})=\operatorname{Hom}_{\mathbb{Z}[\Gamma]}\left(C_{*}(\Gamma), \mathbb{T}\right)=$ $\operatorname{Hom}\left(C_{*}(\Gamma ; \mathbb{Z}), \mathbb{T}\right)$. Moreover, the injectivity of \mathbb{T} as a \mathbb{Z}-module implies that any character of $H_{n}(\Gamma ; \mathbb{Z})$ can be lifted to a character of $C_{n}(\Gamma ; \mathbb{Z})$. It follows that the groups $H^{n}(\Gamma ; \mathbb{T})$ and $H_{n}(\Gamma)$ are Pontryagin dual to each other. This is a particular case of the Universal Coefficient Theorem.

A map $\phi: \Gamma^{n} \rightarrow \mathbb{T}(n \geq 1)$ is called an n-character on Γ if it is a character in every variable, so it is defined by a character on $\Gamma^{\otimes n}$ (unless specified otherwise, all tensor products in this appendix are over \mathbb{Z}). It is easy to see that every n-character is a \mathbb{T} valued cocycle. An n-character ϕ is called alternating if $\phi\left(\gamma_{1}, \ldots, \gamma_{n}\right)=1$ as long as $\gamma_{i}=\gamma_{i+1}$ for some i; then $\phi\left(\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}\right)=\phi\left(\gamma_{1}, \ldots, \gamma_{n}\right)^{\operatorname{sgn}(\sigma)}$ for any $\sigma \in S_{n}$. In other words, an n-character is alternating if it factors through the exterior power $\Lambda^{n} \Gamma$, which is the quotient of $\Gamma^{\otimes n}$ by the subgroup generated by elements $\gamma_{1} \otimes \cdots \otimes \gamma_{n}$ such that $\gamma_{i}=\gamma_{i+1}$ for some i. It will sometimes be convenient to view $\bigwedge^{n} \Gamma$ as a subgroup of $\Gamma^{\otimes n}$ via the embedding

$$
\gamma_{1} \wedge \cdots \wedge \gamma_{n} \mapsto \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \gamma_{\sigma(1)} \otimes \cdots \otimes \gamma_{\sigma(n)}
$$

We will also consider $\bigwedge^{n} \Gamma$ as a subgroup of $H_{n}(\Gamma)$. The embedding $\bigwedge^{*} \Gamma \hookrightarrow H_{*}(\Gamma)$ is constructed using the canonical isomorphism $\Gamma \cong H_{1}(\Gamma)$ and the Pontryagin product on $H_{*}(\Gamma)$, see [Bro94, Theorem V.6.4]. On the chain level the latter product can be defined using the shuffle product, so that $\gamma_{1} \wedge \cdots \wedge \gamma_{n}$ is identified with the homology class of the cycle

$$
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(1 \otimes\left[\gamma_{\sigma(1)}|\cdots| \gamma_{\sigma(n)}\right]\right) \in C_{n}(\Gamma ; \mathbb{Z})
$$

For free abelian groups we have $\Lambda^{*} \Gamma=H_{*}(\Gamma)$. By duality we get the following description of cocycles.

Proposition A.1. If Γ is free abelian, then for every $n \geq 1$ we have:
(i) any \mathbb{T}-valued n-cocycle on Γ is cohomologous to an alternating n-character;
(ii) an n-character is a coboundary if and only if it vanishes on $\bigwedge^{n} \Gamma \subset \Gamma^{\otimes n}$; in particular, an alternating n-character is a coboundary if and only its order divides $n!$.

Proof. The value of an n-cocycle ϕ on $\gamma_{1} \wedge \cdots \wedge \gamma_{n} \in H_{n}(\Gamma)$ is

$$
\left\langle\phi, \gamma_{1} \wedge \cdots \wedge \gamma_{n}\right\rangle=\prod_{\sigma \in S_{n}} \phi\left(\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}\right)^{\operatorname{sgn}(\sigma)}
$$

This immediately implies (ii), since if ϕ is an n-character, then the above product is exactly the value of ϕ on $\gamma_{1} \wedge \cdots \wedge \gamma_{n}$ considered as an element of $\Gamma^{\otimes n}$.

Turning to (i), assume ψ is an n-cocycle. It defines a character χ of $H_{n}(\Gamma)=\Lambda^{n} \Gamma$.

Let ϕ be a character of $\bigwedge^{n} \Gamma$ such that $\phi^{n!}=\chi$. Then ϕ is an alternating n-character, and ϕ is cohomologous to ψ, since both cocycles ϕ and ψ define the same character χ of $H_{n}(\Gamma)=\bigwedge^{n} \Gamma$.

We now turn to the more complicated case of finite abelian groups and concentrate on 3-cocycles. In this case $\bigwedge^{3} \Gamma$ is a proper subgroup of $H_{3}(\Gamma)$: as follows from Proposition A. 3 below, the quotient $H_{3}(\Gamma) / \bigwedge^{3} \Gamma$ is (noncanonically) isomorphic to $\Gamma \oplus(\Gamma \bigwedge \Gamma)$. Correspondingly, not every third cohomology class can be represented by a 3 -character. Additional 3-cocycles can be obtained by the following construction.

Lemma A.2. Assume $\Gamma=\Gamma_{1} / \Gamma_{0}$ for some abelian groups Γ_{1} and Γ_{0}. Suppose $f: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ is a function such that

$$
f(\alpha, \beta+\gamma)=f(\alpha, \beta) \text { and } f(\alpha+\gamma, \beta)=\chi(\gamma \otimes \beta) f(\alpha, \beta)
$$

for all $\alpha, \beta \in \Gamma_{1}$ and $\gamma \in \Gamma_{0}$, where χ is a character of $\Gamma_{0} \otimes \Gamma$. Then the function

$$
(\partial f)(\alpha, \beta, \gamma)=f(\beta, \gamma) f(\alpha+\beta, \gamma)^{-1} f(\alpha, \beta+\gamma) f(\alpha, \beta)^{-1}
$$

on Γ_{1}^{3} is Γ_{0}^{3}-invariant, hence it defines a \mathbb{T}-valued 3-cocycle on Γ.
Proof. This is a straightforward computation.
In order to describe explicitly generators of $H^{3}(\Gamma ; \mathbb{T})$, let us introduce some notation. For natural numbers n_{1}, \ldots, n_{k}, denote by $\left(n_{1}, \ldots, n_{k}\right)$ their greatest common divisor. For $n \in \mathbb{N}$, denote by χ_{n} the character of $\mathbb{Z} / n \mathbb{Z}$ defined by $\chi_{n}(1)=e^{2 \pi i / n}$. Finally, for integers a and b and a natural number n, put

$$
\omega_{n}(a, b)=\left\lfloor\frac{a+b}{n}\right\rfloor-\left\lfloor\frac{a}{n}\right\rfloor-\left\lfloor\frac{b}{n}\right\rfloor .
$$

Note that ω_{n} is a well-defined function on $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ with values 0 or 1 .
Proposition A.3. Assume $\Gamma=\bigoplus_{i=1}^{m} \mathbb{Z} / n_{i} \mathbb{Z}$ for some $n_{i} \geq 1$. Then

$$
H^{3}(\Gamma ; \mathbb{T}) \cong \bigoplus_{i} \mathbb{Z} / n_{i} \mathbb{Z} \oplus \bigoplus_{i<j} \mathbb{Z} /\left(n_{i}, n_{j}\right) \mathbb{Z} \oplus \bigoplus_{i<j<k} \mathbb{Z} /\left(n_{i}, n_{j}, n_{k}\right) \mathbb{Z}
$$

Explicitly, generators ϕ_{i} of $\mathbb{Z} / n_{i} \mathbb{Z}$, $\phi_{i j}$ of $\mathbb{Z} /\left(n_{i}, n_{j}\right) \mathbb{Z}$ and $\phi_{i j k}$ of $\mathbb{Z} /\left(n_{i}, n_{j}, n_{k}\right) \mathbb{Z}$ can be defined by

$$
\begin{gathered}
\phi_{i}(a, b, c)=\chi_{n_{i}}\left(\omega_{n_{i}}\left(a_{i}, b_{i}\right) c_{i}\right), \quad \phi_{i j}(a, b, c)=\chi_{n_{j}}\left(\omega_{n_{i}}\left(a_{i}, b_{i}\right) c_{j}\right), \\
\phi_{i j k}(a, b, c)=\chi_{\left(n_{i}, n_{j}, n_{k}\right)}\left(a_{i} b_{j} c_{k}\right) .
\end{gathered}
$$

Proof. Recall first how to compute the homology of finite cyclic groups. Consider the group $\mathbb{Z} / n \mathbb{Z}$. Then there is a free resolution $\left(P_{*}, d\right)$ of the $\mathbb{Z}[\mathbb{Z} / n \mathbb{Z}]$-module \mathbb{Z} such
that P_{k} is generated by one basis element e_{k}, and

$$
d e_{2 k+1}=\lambda_{1} e_{2 k}-e_{2 k} \text { and } d e_{2 k+2}=\sum_{a \in \mathbb{Z} / n \mathbb{Z}} \lambda_{a} e_{2 k+1} \text { for } k \geq 0
$$

The morphism $P_{0} \rightarrow \mathbb{Z}$ is given by $e_{0} \mapsto 1$. Using this resolution we get

$$
H_{2 k+1}(\mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / n \mathbb{Z} \text { and } H_{2 k+2}(\mathbb{Z} / n \mathbb{Z})=0 \text { for } k \geq 0
$$

Turning to the proof of the proposition, the first statement is equivalent to

$$
H_{3}(\Gamma) \cong \bigoplus_{i} \mathbb{Z} / n_{i} \mathbb{Z} \oplus \bigoplus_{i<j} \mathbb{Z} /\left(n_{i}, n_{j}\right) \mathbb{Z} \oplus \bigoplus_{i<j<k} \mathbb{Z} /\left(n_{i}, n_{j}, n_{k}\right) \mathbb{Z}
$$

This, in turn, is proved by induction on m using the isomorphisms

$$
H_{1}(\Gamma) \cong \Gamma, \quad H_{2}(\Gamma) \cong \Gamma \bigwedge \Gamma
$$

which are valid for any abelian group Γ, and the Künneth formula, which gives that $H_{3}(\Gamma \oplus \mathbb{Z} / n \mathbb{Z})$ is isomorphic to

$$
H_{3}(\Gamma) \oplus\left(H_{2}(\Gamma) \otimes H_{1}(\mathbb{Z} / n \mathbb{Z})\right) \oplus H_{3}(\mathbb{Z} / n \mathbb{Z}) \oplus \operatorname{Tor}_{1}^{\mathbb{Z}}\left(H_{1}(\Gamma), H_{1}(\mathbb{Z} / n \mathbb{Z})\right)
$$

Note only that

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / k \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} /(k, n) \mathbb{Z} \cong \mathbb{Z} / k \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}
$$

Let us check next that the functions $\phi_{i}, \phi_{i j}$ and $\phi_{i j k}$ are indeed 3-cocycles. For $\phi_{i j k}$ this is clear, since it is a 3 -character. Concerning ϕ_{i}, consider the function

$$
f_{i}(a, b)=\chi_{n_{i}}\left(-\left\lfloor\frac{a_{i}}{n_{i}}\right\rfloor b_{i}\right)
$$

on $\mathbb{Z}^{m} \times \mathbb{Z}^{m}$. It is of the type described in Lemma A. 2 for $\Gamma_{1}=\mathbb{Z}^{m}$ and $\Gamma_{0}=\bigoplus_{i=1}^{m} n_{i} \mathbb{Z}$, so $\phi_{i}(a, b, c)=\left(\partial f_{i}\right)(a, b, c)$ is a 3-cocycle on Γ. Similarly, consider the function

$$
f_{i j}(a, b)=\chi_{n_{j}}\left(-\left\lfloor\frac{a_{i}}{n_{i}}\right\rfloor b_{j}\right)
$$

It is again of the type described in Lemma A.2, so $\phi_{i j}=\partial f_{i j}$ is a 3-cocycle.
Our next goal is to construct a 'dual basis' in $H_{3}(\Gamma)$. Let u_{i} be the generator $1 \in \mathbb{Z} / n_{i} \mathbb{Z} \subset \Gamma$. Denote by $\theta_{i j k}$ the cycle representing $u_{i} \wedge u_{j} \wedge u_{k} \in \bigwedge^{3} \Gamma \subset H_{3}(\Gamma)$ obtained by the shuffle product, so

$$
\theta_{i j k}=\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma)\left(1 \otimes\left[u_{\sigma(i)}\left|u_{\sigma(j)}\right| u_{\sigma(k)}\right]\right),
$$

where we consider S_{3} as the group of permutations of $\{i, j, k\}$.
Consider the $\mathbb{Z}\left[\mathbb{Z} / n_{i} \mathbb{Z}\right]$-resolution $\left(P_{*}^{i}, d\right)$ of \mathbb{Z} described at the beginning of the proof. Let e_{n}^{i} be the basis element of P_{n}^{i}. We have a chain map $P_{*}^{i} \rightarrow C_{*}\left(\mathbb{Z} / n_{i} \mathbb{Z}\right)$ of resolutions of \mathbb{Z} defined by

$$
\begin{equation*}
e_{0}^{i} \mapsto[\emptyset], \quad e_{1}^{i} \mapsto[1], \quad e_{2}^{i} \mapsto \sum_{a \in \mathbb{Z} / n_{i} \mathbb{Z}}[a \mid 1], \quad e_{3}^{i} \mapsto \sum_{a \in \mathbb{Z} / n_{i} \mathbb{Z}}[1|a| 1], \ldots \tag{A.1}
\end{equation*}
$$

It follows that we have a 3-cycle $\theta_{i} \in C_{3}(\Gamma ; \mathbb{Z})$ defined by

$$
\theta_{i}=\sum_{a=0}^{n_{i}-1} 1 \otimes\left[u_{i}\left|a u_{i}\right| u_{i}\right] .
$$

Finally, consider the $\mathbb{Z}\left[\mathbb{Z} / n_{i} \mathbb{Z} \oplus \mathbb{Z} / n_{j} \mathbb{Z}\right]$-resolution $P_{*}^{i} \otimes P_{*}^{j}$ of \mathbb{Z}. Using this resolution we get a third homology class represented by

$$
\frac{n_{j}}{\left(n_{i}, n_{j}\right)} 1 \otimes e_{2}^{i} \otimes e_{1}^{j}+\frac{n_{i}}{\left(n_{i}, n_{j}\right)} 1 \otimes e_{1}^{i} \otimes e_{2}^{j}
$$

A chain map between the resolutions $P_{*}^{i} \otimes P_{*}^{j}$ and $C_{*}\left(\mathbb{Z} / n_{i} \mathbb{Z} \oplus \mathbb{Z} / n_{j} \mathbb{Z}\right)$ can be defined by the tensor product of the chain maps (A.1) and the shuffle product. This gives us a 3 -cycle $\theta_{i j} \in C_{3}(\Gamma ; \mathbb{Z})$. Explicitly,

$$
\begin{aligned}
\theta_{i j}= & \frac{n_{j}}{\left(n_{i}, n_{j}\right)} \sum_{a=0}^{n_{i}-1} 1 \otimes\left(\left[a u_{i}\left|u_{i}\right| u_{j}\right]-\left[a u_{i}\left|u_{j}\right| u_{i}\right]+\left[u_{j}\left|a u_{i}\right| u_{i}\right]\right) \\
& +\frac{n_{i}}{\left(n_{i}, n_{j}\right)} \sum_{b=0}^{n_{j}-1} 1 \otimes\left(\left[u_{i}\left|b u_{j}\right| u_{j}\right]-\left[b u_{j}\left|u_{i}\right| u_{j}\right]+\left[b u_{j}\left|u_{j}\right| u_{i}\right]\right) .
\end{aligned}
$$

The only nontrivial pairings between the cocycles $\phi_{i}, \phi_{i j}, \phi_{i j k}$ and the cycles $\theta_{i}, \theta_{i j}$, $\theta_{i j k}$ are

$$
\left\langle\phi_{i}, \theta_{i}\right\rangle=\zeta_{n_{i}}, \quad\left\langle\phi_{i j}, \theta_{i j}\right\rangle=\zeta_{n_{j}}^{n_{j} /\left(n_{i}, n_{j}\right)}=\zeta_{\left(n_{i}, n_{j}\right)}, \quad\left\langle\phi_{i j k}, \theta_{i j k}\right\rangle=\zeta_{\left(n_{i}, n_{j}, n_{k}\right)},
$$

where $\zeta_{n}=e^{2 \pi i / n}$. This implies that these cocycles and cycles are the required generators of the Pontryagin dual groups $H^{3}(\Gamma ; \mathbb{T})$ and $H_{3}(\Gamma)$.

Corollary A.4. Assume Γ is a finite abelian group. Write Γ as Γ_{1} / Γ_{0} for a finite rank free abelian group Γ_{1}. Then for any \mathbb{T}-valued 3 -cocycle ϕ on Γ the following conditions are equivalent:
(i) ϕ vanishes on $\bigwedge^{3} \Gamma \subset H_{3}(\Gamma)$;
(ii) ϕ lifts to a coboundary on Γ_{1};
(iii) $\phi=\partial f$ for a function $f: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ as in Lemma A.2.

Proof. The equivalence of (i) and (ii) is clear, since a cocycle on Γ_{1} is a coboundary if and only if it vanishes on $H_{3}\left(\Gamma_{1}\right)=\bigwedge^{3} \Gamma_{1}$. Also, obviously (iii) implies (ii). Therefore the only nontrivial statement is that (i), or (ii), implies (iii). Assume ϕ is a cocycle that vanishes on $\Lambda^{3} \Gamma \subset H_{3}(\Gamma)$. We can identify Γ_{1} with \mathbb{Z}^{m} in such a way that $\Gamma_{0}=\bigoplus_{i=1}^{m} n_{i} \mathbb{Z}$ for some $n_{i} \geq 1$. Then in the notation of the proof of the above proposition the assumption on ϕ means that ϕ vanishes on the cycles $\theta_{i j k}$, whose homology classes are exactly $u_{i} \wedge u_{j} \wedge u_{k} \in \bigwedge^{3} \Gamma \subset H_{3}(\Gamma)$. It follows that ϕ is cohomologous to product of powers of cocycles ϕ_{i} and $\phi_{i j}$. But the cocycles ϕ_{i} and $\phi_{i j}$ are of the form ∂f with $f: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ as in Lemma A.2. Therefore ϕ is cohomologous to a cocycle of the form ∂f, hence ϕ itself is of the same form.

Since every character of $\bigwedge^{3} \Gamma \subset \Gamma^{\otimes 3}$ extends to a 3-character on Γ, this corollary can also be formulated as follows.

Corollary A.5. With $\Gamma=\Gamma_{1} / \Gamma_{0}$ as in the previous corollary, any \mathbb{T}-valued 3cocycle ϕ on Γ can be written as product of a 3 -character χ on Γ and a cocycle ∂f with $f: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ as in Lemma A.2. Such a cocycle ϕ lifts to a coboundary on Γ_{1} if and only if χ vanishes on $\bigwedge^{3} \Gamma \subset \Gamma^{\otimes 3}$, and in this case $\phi=\partial g$ with $g: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ as in Lemma A.2.

Let us now look more carefully at the construction of cocycles described in Lemma A.2. As Corollary A. 4 shows, the class of 3 -cocycles obtained by this construction does not depend on the presentation of Γ as quotient of a finite rank free abelian group. It is also clear that there is a lot of redundancy in this construction, since the group $H_{3}(\Gamma)$ can be much smaller than $\Gamma_{0} \otimes \Gamma$. The following proposition makes these observations a bit more precise.

Proposition A.6. Assume Γ is a finite abelian group, and write Γ as Γ_{1} / Γ_{0} for a finite rank free abelian group Γ_{1}. Let $f: \Gamma_{1} \times \Gamma_{1} \rightarrow \mathbb{T}$ be a function as in Lemma A.2, and χ be the associated character of $\Gamma_{0} \otimes \Gamma$. Then the cohomology class of ∂f in $H^{3}(\Gamma ; \mathbb{T})$ depends only on the restriction of χ to

$$
\operatorname{ker}\left(\Gamma_{0} \otimes \Gamma \rightarrow \Gamma_{1} \otimes \Gamma\right) \cong \operatorname{Tor}_{1}^{\mathbb{Z}}(\Gamma, \Gamma) \cong \Gamma \otimes \Gamma
$$

Therefore by varying χ we get a natural in Γ homomorphism

$$
\operatorname{Hom}\left(\operatorname{Tor}_{1}^{\mathbb{Z}}(\Gamma, \Gamma), \mathbb{T}\right) \rightarrow H^{3}(\Gamma ; \mathbb{T})
$$

whose image is the annihilator of $\bigwedge^{3} \Gamma \subset H_{3}(\Gamma)$.
Proof. It is easy to see that the cohomology class of ∂f depends only on χ, so we have a homomorphism $\operatorname{Hom}\left(\Gamma_{0} \otimes \Gamma, \mathbb{T}\right) \rightarrow H^{3}(\Gamma ; \mathbb{T})$. We have to check that if a character χ of $\Gamma_{0} \otimes \Gamma$ vanishes on $\operatorname{ker}\left(\Gamma_{0} \otimes \Gamma \rightarrow \Gamma_{1} \otimes \Gamma\right)$, then the image of χ in $H^{3}(\Gamma ; \mathbb{T})$ is zero. But this is clear, since we can extend χ to a character f of $\Gamma_{1} \otimes \Gamma$, and then f, considered as a function on $\Gamma_{1} \times \Gamma_{1}$, is of the type described in Lemma A.2, with associated character χ, and f is a 2 -character, so $\partial f=0$.

Naturality of the homomorphism $\operatorname{Hom}\left(\operatorname{Tor}_{1}^{\mathbb{Z}}(\Gamma, \Gamma), \mathbb{T}\right) \rightarrow H^{3}(\Gamma ; \mathbb{T})$ in Γ is straightforward to check. The statement that its image coincides with the annihilator of $\bigwedge^{3} \Gamma \subset H_{3}(\Gamma)$ follows from Corollary A.4.

References

[AST91] M. Artin, W. Schelter and J. Tate, Quantum deformations of GL ${ }_{n}$, Comm. Pure Appl. Math., 44 (1991), 879-895.
[Ban96] T. Banica, Théorie des représentations du groupe quantique compact libre $\mathrm{O}(n)$, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 241-244.
[Ban99] T. Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math., 509 (1999), 167-198.
[Bic03] J. Bichon, The representation category of the quantum group of a non-degenerate bilinear form, Comm. Algebra, 31 (2003), 4831-4851.
[Bro94] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994.
[Dri87] V. G. Drinfel'd, Quantum groups, In: Proceedings of the International Congress of Mathematicians, $1 \& 2$ (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798820.
[Dri89] V. G. Drinfel'd, Quasi-Hopf algebras, Algebra i Analiz, 1 (1989), 114-148. Translation in Leningrad Math. J., 1 (1990), 1419-1457.
[ENOO09] S. Echterhoff, R. Nest and H. Oyono-Oyono, Fibrations with noncommutative fibers, J. Noncommut. Geom., 3 (2009), 377-417.
[EV96] M. Enock and L. Vaĭnerman, Deformation of a Kac algebra by an abelian subgroup, Comm. Math. Phys., 178 (1996), 571-596.
[FH91] W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991.
[Hai00] P. H. Hai, On matrix quantum groups of type A_{n}, Internat. J. Math., 11 (2000), 11151146.
[KW93] D. Kazhdan and H Wenzl, Reconstructing monoidal categories, I. M. Gel'fand Seminar, Amer. Math. Soc., Providence, RI, 1993, pp. 111-136.
[LS91] S. Levendorskiĭ and Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys., 139 (1991), 141-170.
[Mro15] C. Mrozinski, Quantum automorphism groups and SO(3)-deformations, J. Pure Appl. Algebra, 219 (2015), 1-32.
[NT10] S. Neshveyev and L. Tuset, The Dirac operator on compact quantum groups, J. Reine Angew. Math., 641 (2010), 1-20.
[NT11] S. Neshveyev and L. Tuset, K-homology class of the Dirac operator on a compact quantum group, Doc. Math., 16 (2011), 767-780.
[NT12] S. Neshveyev and L. Tuset, Quantized algebras of functions on homogeneous spaces with Poisson stabilizers, Comm. Math. Phys., 312 (2012), 223-250.
[NT13] S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories, Cours Spécialsés [Specialized Courses], 20, Société Mathématique de France, Paris, 2013.
[Ohn99] C. Ohn, Quantum $S L(3, \boldsymbol{C})$'s with classical representation theory, J. Algebra, 213 (1999), 721-756.
[Ohn05] C. Ohn, Quantum $S L(3, \mathbb{C})$'s: the missing case, Hopf algebras in noncommutative geometry and physics, Dekker, New York, 2005, pp. 245-255.
[Pin07] C. Pinzari, The representation category of the Woronowicz quantum group $S_{\mu} U(d)$ as a braided tensor C^{*}-category, Internat. J. Math., 18 (2007), 113-136.
[PR11] C. Pinzari and J. E. Roberts, A rigidity result for extensions of braided tensor C^{*} categories derived from compact matrix quantum groups, Comm. Math. Phys., 306 (2011), 647-662.
[RTF89] N. Yu. Reshetikhin, L. A. Takhtadzhyan and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1 (1989), 178-206, Translation in Leningrad Math. J.,

1 (1990), 193-225.
[San11] A. Sangha, KK-fibrations arising from Rieffel deformations, preprint (2011), arXiv:1109. 5968 [math.OA].
[TW05] I. Tuba and H. Wenzl, On braided tensor categories of type $B C D, J$. Reine Angew. Math., 581 (2005), 31-69.
[Wil07] D. P. Williams, Crossed products of C^{*}-algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007.
[Wor88] S. L. Woronowicz, Tannaka-Kreı̆n duality for compact matrix pseudogroups, Twisted $S U(N)$ groups, Invent. Math., 93 (1988), 35-76.
[WZ94] S. L. Woronowicz and S. Zakrzewski, Quantum deformations of the Lorentz group. The Hopf *-algebra level, Compositio Math., 90 (1994), 211-243.
[Yam13] M. Yamashita, Equivariant comparison of quantum homogeneous spaces, Comm. Math. Phys., 317 (2013), 593-614.

Sergey Neshveyev
Department of Mathematics
University of Oslo
P.O. Box 1053 Blindern
NO-0316 Oslo, Norway
E-mail: sergeyn@math.uio.no

Makoto Yamashita
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
2100-København- \varnothing, Denmark
(on leave from Ochanomizu University)
E-mail: yamashita.makoto@ocha.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 17B37; Secondary 18D10.
 Key Words and Phrases. compact quantum group, q-deformation, tensor category.
 The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 307663, and supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92), and by JSPS KAKENHI Grant Number 25800058.
 ${ }^{1}$ This is not how the result is formulated in [KW93]. There is a known mistake in [KW93, Proposition 5.1], see [PR11, Section 7] for a discussion.

