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Robustness of noninvertible dichotomies
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Abstract. We establish the robustness of exponential dichotomies for
evolution families of linear operators in a Banach space, in the sense that
the existence of an exponential dichotomy persists under sufficiently small
linear perturbations. We note that the evolution families may come from
nonautonomous differential equations involving unbounded operators. We also
consider the general case of a noninvertible dynamics, thus including several
classes of functional equations and partial differential equations. Moreover,
we consider the general cases of nonuniform exponential dichotomies and of
dichotomies that may exhibit stable and unstable behaviors with respect to
arbitrary asymptotic rates ecρ(t) for some function ρ(t).

1. Introduction.

Our main aim is to establish the robustness of exponential dichotomies for evolution
families T (t, s) of linear operators in a Banach space. This means that all sufficiently
small linear perturbations of an exponential dichotomy are also exponential dichotomies.
We consider simultaneously the general cases of:

1. nonautonomous dynamics (of course including the case of autonomous dynamics),
which in particular may be defined by an nonautonomous differential equation involv-
ing unbounded operators;

2. noninvertible dynamics, thus including several classes of functional equations such as
delay equations and partial differential equations such as parabolic equations;

3. nonuniformly hyperbolic dynamics, in which the notion of (uniform) exponential di-
chotomy is replaced by the more general notion of nonuniform exponential dichotomy;

4. arbitrary growth rates, with dichotomies that may exhibit stable and unstable behav-
iors with respect to arbitrary asymptotic rates ecρ(t) for some function ρ(t).

In particular, we give a unified proof of the robustness property that includes all these
general situations simultaneously.

The notion of exponential dichotomy, essentially introduced by Perron in [17], plays
a central role in a substantial part of the theory of differential equations and dynamical
systems. In particular, the existence of an exponential dichotomy for a linear equation
x′ = A(t)x, or more generally for an evolution family, causes the existence of stable
and unstable invariant manifolds for the nonlinear differential equation x′ = A(t)x +
f(t, x), or respectively for an appropriate perturbation of the evolution family, up to
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mild additional assumptions on the nonlinear part f(t, x) of the vector field. Moreover,
the local instability of trajectories caused by the existence of an exponential dichotomy
influences the global behavior of the system. In particular, this instability is one of
the main mechanisms responsible for the occurrence of stochastic behavior, especially
in the presence of a nontrivial recurrence caused by the existence of a finite invariant
measure. Certainly, the theory of exponential dichotomies and its applications are widely
developed. We refer to the books [10], [12], [13], [15], [21] for details and references.

In view of the central role played by the notion of exponential dichotomy in a substan-
tial part of the theory of differential equations and dynamical systems, not surprisingly
the study of robustness has a long history. In particular, in the case of (uniform) expo-
nential dichotomies the robustness was discussed by Massera and Schäffer [14] (building
on earlier work of Perron [17]; see also [15]), Coppel [9], and in the case of Banach
spaces by Dalec′kĭı and Krĕın [11], with different approaches and successive generaliza-
tions. For more recent works we refer to [8], [16], [18], [19] and the references therein.
In particular, Chow and Leiva [8] and Pliss and Sell [18] considered the context of lin-
ear skew-product semiflows and gave examples of applications in the infinite-dimensional
setting, including to parabolic partial differential equations and functional differential
equations. In the general case of a noninvertible dynamics we refer in particular to
Räbiger, Schnaubelt, Rhandi and Voigt [20] for a class of perturbations of evolutions
families with bounded growth rate. We emphasize that all these works consider only the
case of uniform exponential dichotomies.

The study of robustness in the general setting of a nonuniform exponential behavior
was initiated in our work [3], although only for an invertible dynamics. In [5] we consid-
ered the more general case of arbitrary growth rates using an elaboration of the approach
in [3]. More recently, in [6] we obtained a much shorter proof of the robustness property
using Lyapunov functions, at the expense of considering only an invertible dynamics and
without obtaining explicit formulas for the projections in the stable and unstable spaces.
Building on classical work of Perron on the admissibility property, in [7] we suggested an
alternative approach to the study of robustness of a nonuniformly hyperbolic dynamics
using a characterization of hyperbolicity in terms of the existence of bounded solutions
of a linear dynamics under bounded perturbations.

As we already mentioned, we consider simultaneously the general cases of nonau-
tonomous dynamics, noninvertible dynamics, nonuniformly hyperbolic dynamics, and
arbitrary growth rates, with emphasis on the noninvertibility and the nonuniform hyper-
bolicity of the dynamics when compared to former work. Incidentally, it should be noted
that a nonuniformly hyperbolic dynamics (which is not uniformly hyperbolic) cannot
be autonomous (since then it would automatically be uniform), and thus, considering a
nonuniform exponential behavior requires considering dynamics that are not necessarily
autonomous (we note that by definition a uniformly hyperbolic dynamics is a particular
case of nonuniformly hyperbolic dynamics).

Concerning the nonuniform hyperbolicity of the dynamics, we note that the existence
of a uniform exponential dichotomy is a strong requirement and it is of interest to look
for more general types of hyperbolic behavior. In comparison with the notion of uniform
exponential dichotomy, the notion of nonuniform exponential dichotomy is a much weaker
requirement. In particular, in the case of Rn essentially any linear equation x′ = A(t)x
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with nonzero Lyapunov exponents has a nonuniform exponential dichotomy (we refer to
[4] for details). On the other hand, as a consequence of Oseledets’ multiplicative ergodic
theorem, from the point of view of ergodic theory the nonuniformity in the dichotomies
of “most” of these equations is arbitrarily small. We refer to [1] for a detailed exposition
of the nonuniform hyperbolicity theory.

We also consider exponential dichotomies that may exhibit stable and unstable be-
haviors with asymptotic rates of the form ecρ(t) for an arbitrary function ρ(t). The
main motivation are those linear equations for which all Lyapunov exponents are infinite
(either +∞ or −∞), and thus to which one is not able, at least without further modifica-
tions, to apply the existing stability theory. This gives rise to the notion of ρ-nonuniform
exponential dichotomy, which turns out to be rather common. In particular, we showed
in [2] that for ρ in a large class of functions, any linear ordinary differential equation
in a finite-dimensional space, with two blocks having asymptotic rates ecρ(t) respectively
with c negative and positive, has a ρ-nonuniform exponential dichotomy.

2. Robustness of nonuniform exponential dichotomies.

We establish in this section the robustness of nonuniform exponential dichotomies.
We first recall the notion of dichotomy for a dynamics that need not be invertible.

We denote by B(X) the space of bounded linear operators in a Banach space X. Let
T (t, s) be an evolution family of linear operators in B(X) for t, s ∈ R with t ≥ s. This
means hat:

1. T (t, t) = Id, and

T (t, τ)T (τ, s) = T (t, s), t ≥ τ ≥ s;

2. (t, s, x) 7→ T (t, s)x is continuous on {(t, s, x) ∈ R2 ×X : t ≥ s}.
Consider an increasing differentiable function ρ : R→ R with

ρ(0) = 0 and lim
t→±∞

ρ(t) = ±∞.

We say that the evolution family T (t, s) admits a ρ-nonuniform exponential dichotomy
if:

1. there exist projections P (t) : X → X for each t ∈ R satisfying

T (t, s)P (s) = P (t)T (t, s), t ≥ s,

such that the map

T (t, s) := T (t, s)| kerP (s) : kerP (s) → kerP (t)

is invertible for each t ≥ s;
2. there exist constants λ,D > 0 and a ≥ 0 such that
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‖T (t, s)P (s)‖ ≤ De−λ(ρ(t)−ρ(s))+a|ρ(s)|, t ≥ s, (1)

and

‖T (t, s)Q(s)‖ ≤ De−λ(ρ(s)−ρ(t))+a|ρ(s)|, s ≥ t, (2)

where Q(t) = Id−P (t) for each t ∈ R, and where

T (t, s) = T (s, t)−1| kerP (s), t ≤ s. (3)

We then define stable and unstable subspaces for each t ∈ R respectively by

E(t) = P (t)X and F (t) = Q(t)X.

We also consider the perturbed equation

u(t) = T (t, s)u(s) +
∫ t

s

T (t, τ)B(τ)u(τ) dτ, t ≥ s, (4)

where B : R→ B(X) is strongly continuous (this means that t 7→ B(t)x is continuous for
each x ∈ X). We always assume that equation (4) defines an evolution family T̂ (t, s) of
bounded linear operators. For example, if T (t, s) has bounded growth, that is,

‖T (t, s)‖ ≤ Kec(t−s), t ≥ s,

for some constants K, c > 0, and the function t 7→ B(t) is bounded, then equation (4)
defines an evolution family T̂ (t, s) (see [22] for details and references).

The following is our robustness result for nonuniform exponential dichotomies.

Theorem 1. Let T (t, s) be an evolution family admitting a ρ-nonuniform expo-
nential dichotomy with λ > 2a > 0, and let B : R → B(X) be a continuous function
satisfying

‖B(t)‖ ≤ δe−3a|ρ(t)|ρ′(t), t ∈ R,

such that equation (4) also defines an evolution family T̂ (t, s). If δ is sufficiently small,
then T̂ (t, s) admits a ρ-nonuniform exponential dichotomy, with the constants λ and a

replaced respectively by λ and 2a.

Proof. We divide the proof of the theorem into several steps.

Step 1: Construction of bounded solutions I. The first step is the construction of bounded
solutions of equation (4) into the future and into the past, already with an appropriate
exponential rate.

We first construct solutions into the future. Set

I = {(t, s) ∈ R× R : t ≥ s}. (5)
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We consider the Banach space

C =
{
U : I → B(X) : U is continuous and ‖U‖ < +∞}

with the norm

‖U‖ = sup
{‖U(t, s)‖eλ(ρ(t)−ρ(s))−a|ρ(s)| : (t, s) ∈ I

}
.

Lemma 1. If δ is sufficiently small, then there is a unique U ∈ C such that

U(t, s) = T (t, s)P (s) +
∫ t

s

T (t, τ)P (τ)B(τ)U(τ, s) dτ

−
∫ ∞

t

T (t, τ)Q(τ)B(τ)U(τ, s) dτ

for every (t, s) ∈ I. Moreover, for each ξ ∈ X the function u(t) = U(t, s)ξ is a solution
of equation (4).

Proof of the lemma. For the first property, we show that the operator L de-
fined for each U ∈ C by

(LU)(t, s) = T (t, s)P (s) +
∫ t

s

T (t, τ)P (τ)B(τ)U(τ, s) dτ

−
∫ ∞

t

T (t, τ)Q(τ)B(τ)U(τ, s) dτ (6)

has a unique fixed point in C. We first note that

∫ ∞

t

‖T (t, τ)Q(τ)B(τ)U(τ, s)‖ dτ

≤ Dδe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖
∫ ∞

t

e−2λ(ρ(τ)−ρ(t))ρ′(τ) dτ

≤ D

2λ
δe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖ < +∞.

Therefore, (LU)(t, s) is well defined, and

‖(LU)(t, s)‖ ≤ ‖T (t, s)P (s)‖+
∫ t

s

‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ

+
∫ ∞

t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ
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≤ De−λ(ρ(t)−ρ(s))+a|ρ(s)| + Dδe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖
∫ t

s

e−a|ρ(τ)|ρ′(τ) dτ

+ Dδe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖
∫ ∞

t

e−2λ(ρ(τ)−ρ(t))ρ′(τ) dτ

≤ De−λ(ρ(t)−ρ(s))+a|ρ(s)| +
D

a
δe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖

+
D

2λ
δe−λ(ρ(t)−ρ(s))+a|ρ(s)|‖U‖. (7)

This implies that

‖LU‖ ≤ D + δD

(
1
a

+
1
2λ

)
‖U‖ < +∞, (8)

and thus we have a well-defined operator L : C → C. Using (6) and proceeding in a similar
manner to that in (7) we also obtain

‖LU1 − LU2‖ ≤ δD

(
1
a

+
1
2λ

)
‖U1 − U2‖,

for every U1, U2 ∈ C. Therefore, for any sufficiently small δ the operator L is a contrac-
tion, and there exists a unique U ∈ C such that LU = U .

Finally, we note that

U(t, s)− T (t, s)U(s, s) = T (t, s)P (s)− T (t, s)P (s) +
∫ t

s

T (t, τ)P (τ)B(τ)U(τ, s) dτ

+
∫ t

s

T (t, τ)Q(τ)B(τ)U(τ, s) dτ

=
∫ t

s

T (t, τ)B(τ)U(τ, s) dτ (9)

for each t ≥ s. This completes the proof of the lemma. ¤

We also show that the bounded solutions constructed in Lemma 1 have a certain in-
variance property. Later on this will correspond to the invariance of the stable subspaces
of the perturbed dynamics.

Lemma 2. If δ is sufficiently small, then

U(t, τ)U(τ, s) = U(t, s), t ≥ τ ≥ s.

Proof of the lemma. We first note that
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U(t, τ)U(τ, s) = T (t, s)P (s) +
∫ τ

s

T (t, σ)P (σ)B(σ)U(σ, τ)U(τ, s) dσ

+
∫ t

τ

T (t, σ)P (σ)B(σ)U(σ, τ)U(τ, s) dσ

−
∫ ∞

t

T (t, σ)Q(σ)B(σ)U(σ, τ)U(τ, s) dσ.

Given s ∈ R, we set

Is =
{
(t, τ) ∈ R× R : t ≥ τ ≥ s

}
,

and we consider the Banach space

Cs =
{
H : Is → B(X) : H is continuous and ‖H‖s < +∞}

with the norm

‖H‖s = sup
{‖H(t, τ)‖e−2a|ρ(t)| : (t, τ) ∈ Is

}
.

Writing

h(t, τ) = U(t, τ)U(τ, s)− U(t, s)

for t ≥ τ ≥ s (with s fixed), we obtain L1h = h, where

(L1H)(t, τ) =
∫ t

τ

T (t, σ)P (σ)B(σ)H(σ, s) dσ −
∫ ∞

t

T (t, σ)Q(σ)B(σ)H(σ, s) dσ.

for each H ∈ Cs and (t, τ) ∈ Is. Since ρ(s) ≤ ρ(τ) (note that s ≤ τ and that ρ is an
increasing function), we have

∫ t

τ

‖T (t, σ)P (σ)‖ · ‖B(σ)‖ · ‖H(σ, s)‖ dσ +
∫ ∞

t

‖T (t, σ)Q(σ)‖ · ‖B(σ)‖ · ‖H(σ, s)‖ dσ

≤ D

λ
δ‖H‖s +

D

λ
δ‖H‖s =

2D

λ
δ‖H‖s.

This shows that (L1H)(t, τ) is well defined, and that

‖L1H‖s ≤ 2D

λ
‖H‖s < +∞.

We thus obtain an operator L1 : Cs → Cs. Moreover, for each H1,H2 ∈ Cs and t ≥ τ , we
have



300 L. Barreira and C. Valls

‖(L1H1)(t, τ)− (L1H2)(t, τ)‖

≤
∫ t

τ

‖T (t, σ)P (σ)‖ · ‖B(σ)‖ · ‖H1(σ, s)−H2(σ, s)‖ dσ

+
∫ ∞

t

‖T (t, σ)Q(σ)‖ · ‖B(σ)‖ · ‖H1(σ, s)−H2(σ, s)‖ dσ

≤ D

λ
δ‖H1 −H2‖s +

D

λ
δ‖H1 −H2‖s =

2D

λ
‖H1 −H2‖s.

Therefore,

‖L1H1 − L1H2‖ ≤ 2D

λ
‖H1 −H2‖s.

This shows that for δ sufficiently small the operator L1 is a contraction, and thus there
exists a unique H ∈ Cs such that L1H = H. Since 0 ∈ Cs also satisfies this identity, we
have H = 0. Now we show that h ∈ Cs. Indeed, it follows from Lemma 1, together with
the inequalities ρ(t) ≥ ρ(τ) ≥ ρ(s) (since t ≥ τ ≥ s) and 2a < λ that

‖U(t, τ)U(τ, s)‖ ≤ ‖U(t, τ)‖ · ‖U(τ, s)‖
≤ ‖U‖2e−λ(ρ(t)−ρ(s))+a(|ρ(τ)|+|ρ(s)|)

≤ ‖U‖2e−λ(ρ(t)−ρ(s))ea(ρ(t)−ρ(τ))ea(ρ(t)−ρ(s))e2a|ρ(t)|

≤ ‖U‖2e(2a−λ)(ρ(t)−ρ(s))e2a|ρ(t)|,

and

‖U(t, s)‖ ≤ ‖U‖e−λ(ρ(t)−ρ(s))+a|ρ(s)|

≤ ‖U‖e(a−λ)(ρ(t)−ρ(s))+a|ρ(t)| ≤ ‖U‖e2a|ρ(t)|

for t ≥ τ ≥ s. This shows that h ∈ Cs, and by the uniqueness of the fixed point of L1 we
conclude that h = 0. ¤

We emphasize that Lemma 2 does not follow immediately from Lemma 1. Indeed,
since the operator

U(t, t) = P (t)−
∫ ∞

t

T (t, τ)Q(τ)B(τ)U(τ, t) dτ

need not be the identity, the solutions of equation (4) in [τ, +∞) given by t 7→
U(t, τ)U(τ, s)ξ and t 7→ U(t, s)ξ a priori need not have the same initial condition at
time τ , and thus we cannot deduce in this manner the identity in Lemma 2.

Step 2: Construction of bounded solutions II. Now we construct bounded solutions into
the past. We consider the set
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J = {(t, s) ∈ R× R : t ≤ s}, (10)

and the Banach space

D =
{
V : J → B(X) : V is continuous and ‖V ‖ < +∞}

,

with the norm

‖V ‖ = sup
{‖V (t, s)‖e−λ(ρ(t)−ρ(s))−a|ρ(s)| : (t, s) ∈ J

}
.

Lemma 3. If δ is sufficiently small, then there is a unique V ∈ D such that

V (t, s) = T (t, s)Q(s) +
∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ, s) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)V (τ, s) dτ.

for every (t, s) ∈ J . Moreover, for each ξ ∈ X the function t 7→ V (t, s)ξ is a solution of
equation (4).

Proof of the lemma. For the first property, we show that the operator M de-
fined for each V ∈ D by

(MV )(t, s) = T (t, s)Q(s) +
∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ, s) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)V (τ, s) dτ (11)

has a unique fixed point in D. We first note that

∫ t

−∞
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ, s)‖ dτ

≤ Dδeλ(ρ(t)−ρ(s))+a|ρ(s)|‖V ‖
∫ t

−∞
e2λ(ρ(τ)−ρ(t))ρ′(τ) dτ

≤ D

2λ
δeλ(ρ(t)−ρ(s))+a|ρ(s)|‖V ‖.

Therefore, (MV )(t, s) is well defined, and

‖(MV )(t, s)‖ ≤ ‖T (t, s)Q(s)‖+
∫ t

−∞
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ, s)‖ dτ

+
∫ s

t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖V (τ, s)‖ dτ
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≤ Deλ(ρ(t)−ρ(s))+a|ρ(s)|

+ Dδeλ(ρ(t)−ρ(s))+a|ρ(s)|‖V ‖
∫ t

−∞
e2λ(ρ(τ)−ρ(t))ρ′(τ) dτ

+ Dδeλ(ρ(t)−ρ(s))+a|ρ(s)|‖V ‖
∫ s

t

e−aρ(τ)ρ′(τ) dτ

≤ Deλ(ρ(t)−ρ(s))+a|ρ(s)| +
D

2λ
δeλ(ρ(t)−ρ(s))+aρ(s)‖V ‖

+
D

a
δeλ(ρ(t)−ρ(s))+a|ρ(s)|‖V ‖. (12)

This implies that

‖MV ‖ ≤ D + δD

(
1
2λ

+
1
a

)
‖V ‖ < +∞, (13)

and we thus have a well-defined operator M : D → D. Using (11) and proceeding in a
similar manner to that in (12) we obtain

‖MV1 −MV2‖ ≤ δD

(
1
2λ

+
1
a

)
‖V1 − V2‖

for every V1, V2 ∈ D. Therefore, for any sufficiently small δ the operator M is a contrac-
tion, and there is a unique V ∈ D such that MV = V .

Moreover, we have

V (s, s)− T (s, t)V (t, s)

= Q(s) +
∫ s

−∞
T (s, τ)P (τ)B(τ)V (τ, s) dτ − T (s, t)T (t, s)Q(s)

− T (s, t)
( ∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ, s) dτ +

∫ s

t

T (t, τ)Q(τ)B(τ)V (τ, s) dτ

)

= Q(s) +
∫ t

−∞
T (s, τ)P (τ)B(τ)V (τ, s) dτ +

∫ s

t

T (s, τ)P (τ)B(τ)V (τ, s) dτ

−Q(s)−
∫ t

−∞
T (s, τ)P (τ)B(τ)V (τ, s) dτ +

∫ s

t

T (s, τ)Q(τ)B(τ)V (τ, s) dτ

=
∫ s

t

T (s, τ)P (τ)B(τ)V (τ, s) dτ +
∫ s

t

T (s, τ)Q(τ)B(τ)V (τ, s) dτ

=
∫ s

t

T (s, τ)B(τ)V (τ, s) dτ

for each t ≤ s. This completes the proof of the lemma. ¤
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Similarly, we establish a corresponding invariance property for the solutions con-
structed in Lemma 3.

Lemma 4. If δ is sufficiently small, then

V (t, τ)V (τ, s) = V (t, s), t ≤ τ ≤ s.

Proof of the lemma. The argument is analogous to that in the proof of Lemma
2. We have

V (t, τ)V (τ, s) = T (t, s)Q(s)−
∫ s

τ

T (t, σ)Q(σ)B(σ)V (σ, s) dσ

+
∫ t

−∞
T (t, σ)P (σ)B(σ)V (σ, τ)V (τ, s) dσ

−
∫ τ

t

T (t, σ)Q(σ)B(σ)V (σ, τ)V (τ, s) dσ.

Given s ∈ R, we set

Js =
{
(t, τ) ∈ R× R : t ≤ τ ≤ s

}
,

and we consider the Banach space

Ds =
{
H̄ : Js → B(X) : H̄ is continuous and ‖H̄‖s < +∞}

with the norm

‖H̄‖s = sup
{‖H̄(t, τ)‖e−2a|ρ(t)| : (t, τ) ∈ Js

}
.

Writing

h̄(t, s) = V (t, τ)V (τ, s)− V (t, s)

for t ≤ τ ≤ s (with s fixed), we obtain M1h̄ = h̄, where

(M1H̄)(t, τ) =
∫ t

−∞
T (t, σ)P (σ)B(σ)H̄(σ, τ) dσ −

∫ τ

t

T (t, σ)Q(σ)B(σ)H̄(σ, τ) dσ

for each H̄ ∈ Ds and (t, τ) ∈ Js. Proceeding in a similar manner to that in the proof of
Lemma 2, one can show that 0 is the unique fixed point of M1 in Ds, and since h̄ ∈ Ds

we conclude that h̄ = 0. ¤

Step 3: Characterization of the bounded solutions. In the following two lemmas we show
that all bounded solutions of equation (4) are those constructed in Lemmas 1 and 3.
We emphasize that this holds regardless of any a priori rate assumed for the bounded
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solutions. In other words, any bounded solution in a semi-interval has the exponential
rate already incorporated in the spaces C and D.

We start with the solutions into the future.

Lemma 5. Given s ∈ R, if y : [s,+∞) → X is a bounded solution of equation (4)
with y(s) = ξ, then

y(t) = T (t, s)P (s)ξ +
∫ t

s

T (t, τ)P (τ)B(τ)y(τ) dτ −
∫ ∞

t

T (t, τ)Q(τ)B(τ)y(τ) dτ,

that is, y(t) = U(t, s)ξ for t ≥ s.

Proof of the lemma. For each t ≥ s we have

P (t)y(t) = T (t, s)P (s)ξ +
∫ t

s

T (t, τ)P (τ)B(τ)y(τ) dτ (14)

and

Q(t)y(t) = T (t, s)Q(s)ξ +
∫ t

s

T (t, τ)Q(τ)B(τ)y(τ) dτ.

The last formula can be written in the form

Q(s)ξ = T (s, t)Q(t)y(t)−
∫ t

s

T (s, τ)Q(τ)B(τ)y(τ) dτ, (15)

using the notation in (3). Since y is bounded, we have

‖T (s, t)Q(t)y(t)‖ ≤ CDe−λ(ρ(t)−ρ(s))+a|ρ(t)|,

where

C = sup
{‖y(t)‖ : t ≥ s

}
< +∞.

Therefore, taking limits in (15) when t → +∞ we obtain

Q(s)ξ = −
∫ +∞

s

T (s, τ)Q(τ)B(τ)y(τ) dτ.

In particular, replacing (s, ξ) by (t, y(t)) the identity yields

Q(t)y(t) = −
∫ +∞

t

T (t, τ)Q(τ)B(τ)y(τ) dτ.

Adding this equation to (14) yields the desired statement. ¤
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Now we consider the solutions into the past.

Lemma 6. Given s ∈ R, if y : (−∞, s] → X is a bounded solution of equation (4)
with y(s) = ξ, then

y(t) = T (t, s)Q(s)ξ +
∫ t

−∞
T (t, τ)P (τ)B(τ)y(τ) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)y(τ) dτ,

that is, y(t) = V (t, s)ξ for t ≤ s.

Proof of the lemma. For each t ≤ s we have

P (s)ξ = T (s, t)P (t)y(t) +
∫ s

t

T (s, τ)P (τ)B(τ)y(τ) dτ (16)

and

Q(s)ξ = T (s, t)Q(t)y(t) +
∫ s

t

T (s, τ)Q(τ)B(τ)y(τ) dτ. (17)

Since y is bounded, we have

‖T (s, t)P (t)y(t)‖ ≤ CDe−λ(ρ(s)−ρ(t))+a|ρ(t)|,

where

C = sup
{‖y(t)‖ : t ≤ s

}
< +∞.

Since λ > a, taking limits in (16) when t → −∞ we thus obtain

P (s)ξ =
∫ s

−∞
T (s, τ)P (τ)B(τ)y(τ) dτ.

Replacing (s, ξ) by (t, y(t)) in this identity we obtain

P (t)y(t) =
∫ t

−∞
T (t, τ)P (τ)B(τ)y(τ) dτ. (18)

On the other hand, by (17) we have

Q(t)y(t) = T (t, s)Q(s)ξ −
∫ s

t

T (t, τ)Q(τ)B(τ)y(τ) dτ. (19)

Adding (18) and (19) yields the desired identity. ¤
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Step 4: Construction of invariant subspaces. Now we construct stable and unstable in-
variant subspaces for the perturbed equation. For this we observe that the operators
U(t, t) and V (t, t) are projections (by Lemmas 2 and 4), which motivates the introduc-
tion of the stable and unstable subspaces respectively as their images. Indeed, we know
that the stable and unstable subspaces should correspond to the bounded solutions re-
spectively into the future and into the past. However, since the perturbed dynamics
need not be invertible this requires a special care when establishing the invariance of the
subspaces.

As motivated above, for each t ∈ R we consider the linear subspaces

Ê(t) = Im U(t, t) and F̂ (t) = Im V (t, t). (20)

Lemma 7. For each t ∈ R we have

Ê(t) = T̂ (t, s)Ê(s) and F̂ (t) = T̂ (t, s)F̂ (s),

provided that δ is sufficiently small.

Proof of the lemma. By Lemma 1, for each ξ ∈ X the function t 7→ U(t, s)ξ,
t ≥ s is a solution of equation (4) with initial condition at time s equal to U(s, s)ξ.
Therefore, U(t, s) = T̂ (t, s)U(s, s), where T̂ (t, s) is the evolution operator associated to
equation (4). Hence, by Lemma 2,

T̂ (t, s)Ê(s) = Im U(t, s)

= Im
(
U(t, t)U(t, s)

)

= U(t, t) Im U(t, s) ⊂ Ê(t)

for each t ≥ s. Similarly, by Lemma 3, the function t 7→ V (t, s)ξ, t ≤ s is a solution of
equation (4), and hence,

V (s, s) = T̂ (s, t)V (t, s). (21)

This implies that

F̂ (s) = T̂ (s, t) Im V (t, s)

= T̂ (s, t) Im
(
V (t, t)V (t, s)

)

⊂ T̂ (s, t)F̂ (t)

for each t ≤ s.
Now we establish the reverse inclusions. For this we use the characterization of

the bounded solutions given in Lemmas 5 and 6. Take x ∈ Ê(t). We must show that
x ∈ T̂ (t, s)Ê(s) for each t ≥ s. Take y ∈ T̂ (t, s)−1x. Then T̂ (τ, s)y = T̂ (τ, t)x for each
τ ≥ t. Since x ∈ Ê(t) = Im U(t, t) we have x ∈ U(t, t)z for some z ∈ X, and hence,
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T̂ (τ, s)y = T̂ (τ, t)U(t, t)z = U(τ, t)z.

In particular, this shows that [s,+∞) 3 τ 7→ T̂ (τ, s)y is bounded. Thus, it follows from
Lemma 5 that T̂ (τ, s)y = U(τ, s)w for some w ∈ X. In particular,

y = T̂ (s, s)y = U(s, s)w ∈ Ê(s).

Therefore, x = T̂ (t, s)y ∈ T̂ (t, s)Ê(s). This establishes the first identity in the lemma.
For the second identity, take x ∈ T̂ (s, t)F̂ (t). We must show that x ∈ F̂ (s) for each
t ≤ s. Take y ∈ T̂ (s, t)−1x. Then τ 7→ V (τ, t)y, τ ≤ t is a bounded solution of equation
(4) and hence,

(−∞, s] 3 τ 7→
{

V (τ, t)y, τ ≤ t,

T̂ (s, t)V (t, t)y, t ≤ τ ≤ s

is also a bounded solution of the equation. Hence, it follows from Lemma 6 that V (τ, t)y =
V (τ, s)z, τ ≤ t for some z ∈ X. In particular, by (21),

x = T̂ (s, t)V (t, t)y = T̂ (s, t)V (t, s)z = V (s, s)z.

This shows that x ∈ F̂ (s), which completes the proof of the lemma. ¤

Step 5: Exponential bounds along Ê(t) and F̂ (t). Here we obtain the required exponential
bounds from the exponential rates incorporated in the spaces C and D.

A technical point is that we first need to show that the dynamics is invertible along
the spaces F̂ (t). Since V (s, s)2 = V (s, s), restricting identity (21) to F̂ (s) yields

IdF̂ (s) = V (s, s)|F̂ (s) = T̂ (s, t)V (t, s)|F̂ (s).

This implies that the operator T̂ (s, t)|F̂ (t) is invertible, with

(
T̂ (s, t)|F̂ (t)

)−1 = V (t, s)|F̂ (s).

Moreover, it follows from Lemma 7 that

T̂ (t, s)|Ê(s) = U(t, s)|Ê(s) : Ê(s) → Ê(t), t ≥ s,

and

(
T̂ (s, t)|F̂ (t)

)−1 = V (t, s)|F̂ (s) : F̂ (s) → F̂ (t), t ≤ s.

Therefore, since U ∈ C we obtain

∥∥T̂ (t, s)|Ê(s)
∥∥ ≤ Ke−λ(ρ(t)−ρ(s))+a|ρ(s)|, t ≥ s, (22)
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and since V ∈ D we obtain

∥∥(
T̂ (s, t)|F̂ (t)

)−1∥∥ ≤ Ke−λ(ρ(s)−ρ(t))+a|ρ(s)|, t ≤ s, (23)

for some constant K > 0. Namely, we can take

K = D

/(
1− δD

(
1
a

+
1
2λ

))

Step 6: Construction of projections. Now we use the results in the former lemmas to
show that Ê(t) and F̂ (t) form a direct sum, which automatically allows one to define the
required projections.

We start with an auxiliary statement about the operators

Ss = U(s, s) + V (s, s). (24)

Lemma 8. If δ is sufficiently small, then Ss is invertible for every s ∈ R.

Proof of the lemma. We have

Ss = U(s, s) + V (s, s)

= P (s)−
∫ ∞

s

T (s, τ)Q(τ)B(τ)U(τ, s) + Q(s) +
∫ s

−∞
T (s, τ)P (τ)B(τ)V (τ, s),

and hence,

Ss − Id = −
∫ ∞

s

T (s, τ)Q(τ)B(τ)U(τ, s) dτ +
∫ s

−∞
T (s, τ)P (τ)B(τ)V (τ, s) dτ.

Therefore, using Lemmas 1 and 3 we obtain

‖Ss − Id ‖ ≤
∫ ∞

s

‖T (s, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ

+
∫ s

−∞
‖T (s, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ, s)‖ dτ

≤ Dδ‖U‖
∫ ∞

s

e−2λ(ρ(τ)−ρ(s))ρ′(τ) dτ + Dδ‖V ‖
∫ s

−∞
e2λ(ρ(τ)−ρ(s))ρ′(τ) dτ

≤ δD

2λ

(‖U‖+ ‖V ‖).

Moreover, it follows from (8) and (13) that

‖U‖ ≤ D

/(
1− δD

(
1
a

+
1
2λ

))
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and

‖V ‖ ≤ D

/(
1− δD

(
1
a

+
1
2λ

))
.

This implies that for δ sufficiently small (independently of s), the operator Ss is invertible.
¤

Lemma 9. For each t ∈ R we have Ê(t)⊕ F̂ (t) = X, provided that δ is sufficiently
small.

Proof of the lemma. Let ξ ∈ Ê(t) ∩ F̂ (t). It follows from (22) and (23) that

1
K

eλ(ρ(t)−ρ(s))−a|ρ(t)|‖ξ‖ ≤ ‖T̂ (t, s)ξ‖ ≤ Ke−λ(ρ(t)−ρ(s))+a|ρ(s)|‖ξ‖ (25)

for each t ≥ s. Since a < λ this is only possible if ξ = 0. Therefore, Ê(t) ∩ F̂ (t) = {0}.
Moreover, since the operator St is invertible, we have

X = StX = Im U(t, t) + Im V (t, t) = Ê(t) + F̂ (t).

This concludes the proof of the lemma. ¤

It follows from Lemma 9 that for each t ∈ R any x ∈ X can be written in a unique
form x = yt + zt with yt ∈ Ê(t) and zt ∈ F̂ (t). We can thus define a projection
P̂ (t) : X → X by P̂ (t)x = yt. We also write Q̂(t) = Id−P̂ (t) and thus Q̂(t)x = zt.
Clearly,

Ê(t) = P̂ (t)X and F̂ (t) = Q̂(t)X.

Lemma 10. For each t ≥ s we have P̂ (t)T̂ (t, s) = T̂ (t, s)P̂ (s), provided that δ is
sufficiently small.

Proof of the lemma. The statement follows readily from the definition of P̂ (t)
and Lemmas 7 and 9. ¤

Step 7: Bounds for the norms of the projections. In order to complete the proof of the
theorem we need to given a bound for the norms of the projections P̂ (t) and Q̂(t). We
first establish an auxiliary result. Set

αB
t = inf

{‖x− y‖ : x ∈ Ê(t), y ∈ F̂ (t), ‖x‖ = ‖y‖ = 1
}
. (26)

Lemma 11. It δ is sufficiently small, then there exists a constant c > 0 such that

αB
t ≥ ce−a|ρ(t)| (27)

for each t ∈ R.
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Proof of the lemma. Given x ∈ Ê(t) and y ∈ F̂ (t), there exist x̄ ∈ E(t) and
ȳ ∈ F (t) such that

x = U(t, t)x̄ = (Id +GE(t))x̄ and y = V (t, t)ȳ = (Id +GF (t))ȳ,

where

GE(t) = −
∫ ∞

t

T (t, τ)Q(τ)B(τ)U(τ, t) dτ

and

GF (t) =
∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ, t) dτ.

We have

‖GE(t)‖ea|ρ(t)| ≤
∫ ∞

t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ, t)‖ dτ

≤ Dδ‖U‖
∫ ∞

t

e2(a−λ)(ρ(τ)−ρ(t))ρ′(τ) dτ ≤ µ‖U‖,

where

µ =
δD

2(λ− a)
. (28)

This implies that

‖GE(t)‖ ≤ µ‖U‖e−a|ρ(t)|. (29)

Furthermore,

‖GF (t)‖ea|ρ(t)| ≤
∫ t

−∞
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ, t)‖ dτ

≤ Dδ‖V ‖
∫ t

−∞
e2(a−λ)(ρ(t)−ρ(τ))ρ′(τ) dτ ≤ µ‖V ‖.

This implies that

‖GF (t)‖ ≤ µ‖V ‖e−a|ρ(t)|. (30)

Hence,

(
1− µ‖U‖e−a|ρ(t)|)‖x̄‖ ≤ ‖x‖ ≤ (

1 + µ‖U‖e−a|ρ(t)|)‖x̄‖ (31)
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and

(
1− µ‖V ‖e−a|ρ(t)|)‖ȳ‖ ≤ ‖y‖ ≤ (

1 + µ‖V ‖e−a|ρ(t)|)‖ȳ‖. (32)

On the other hand, setting s = t in (1) and (2) we obtain

‖P (t)‖ ≤ Dea|ρ(t)| and ‖Q(t)‖ ≤ Dea|ρ(t)|.

We recall that (see for example [4])

1
‖P (t)‖ ≤ α0

t ≤
2

‖P (t)‖ and
1

‖Q(t)‖ ≤ α0
t ≤

2
‖Q(t)‖ (33)

for each t ∈ R. Therefore,

α0
t ≥

1
D

e−a|ρ(t)|, t ∈ R.

Now we observe that
∥∥∥∥

x̄

‖x̄‖ −
ȳ

‖ȳ‖

∥∥∥∥ ≤
‖(x̄− ȳ)‖ȳ‖+ ȳ(‖ȳ‖ − ‖x̄‖)‖

‖x̄‖ · ‖ȳ‖ ≤ 2
‖x̄‖‖x̄− ȳ‖.

Therefore, by (31) and (32),

‖x− y‖ = ‖x̄− ȳ + GE(t)x̄−GF (t)ȳ‖
≥ ‖x̄− ȳ‖ − ‖GE(t)‖ · ‖x̄‖ − ‖GF (t)‖ · ‖ȳ‖

≥ ‖x̄‖
2

∥∥∥∥
x̄

‖x̄‖ −
ȳ

‖ȳ‖

∥∥∥∥−
‖GE(t)‖

1− µ‖U‖e−aρ(t)
‖x‖ − ‖GF (t)‖

1− µ‖V ‖e−a|ρ(t)| ‖y‖

≥ ‖x‖
2(1 + µ‖U‖e−a|ρ(t)|)

∥∥∥∥
x̄

‖x̄‖ −
ȳ

‖ȳ‖

∥∥∥∥

− µ‖U‖e−a|ρ(t)|

1− µ‖U‖e−a|ρ(t)| ‖x‖ −
µ‖V ‖e−a|ρ(t)|

1− µ‖V ‖e−a|ρ(t)| ‖y‖.

Taking the infimum over all vectors x, y with ‖x‖ = ‖y‖ = 1 we obtain

αB
t ≥ 1

2(1 + µ‖U‖e−a|ρ(t)|)
α0

t −
µ‖U‖e−a|ρ(t)|

1− µ‖U‖e−a|ρ(t)| ‖x‖ −
µ‖V ‖e−a|ρ(t)|

1− µ‖V ‖e−a|ρ(t)| ‖y‖

≥ e−a|ρ(t)|

4D(1 + µ‖U‖) −
µ‖U‖e−a|ρ(t)|

1− µ‖U‖ − µ‖V ‖e−a|ρ(t)|

1− µ‖V ‖ .

Taking δ sufficiently small (see (28)) yields inequality (27). This concludes the proof of
the lemma. ¤
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In a similar manner to that in (33), one can also show that

1
‖P̂ (t)‖ ≤ αB

t ≤ 2
‖P̂ (t)‖ and

1
‖Q̂(t)‖ ≤ αB

t ≤ 2
‖Q̂(t)‖ ,

and hence, it follows from Lemma 11 that

‖P̂ (t)‖ ≤ 2
αB

t

≤ 2
c
ea|ρ(t)| (34)

and

‖Q̂(t)‖ ≤ 2
αB

t

≤ 2
c
ea|ρ(t)| (35)

for each t ∈ R. Since

‖T̂ (t, s)P̂ (s)‖ ≤ ‖T̂ (t, s)|Ê(s)‖ · ‖P̂ (s)‖, t ≥ s,

and

‖T̂ (t, s)Q̂(s)‖ ≤ ‖(T̂ (s, t)|F̂ (t)
)−1‖ · ‖Q̂(s)‖, t ≤ s,

the theorem follows now readily from (34) and (35) together with inequalities (22) and
(23). ¤

3. The case of uniform exponential dichotomies.

We consider in this section the particular case of uniform exponential dichotomies.
We emphasize that in Theorem 1 we assume that a > 0. Indeed, some arguments in the
proof of Theorem 1 break down when a = 0 (that is, in the uniform setting). Nevertheless,
with some relatively small modifications the same method applies.

The following is our robustness result for uniform exponential dichotomies.

Theorem 2. Let T (t, s) be an evolution family admitting a ρ-uniform exponential
dichotomy, and let B : R→ B(X) be a continuous function satisfying

‖B(t)‖ ≤ δρ′(t), t ∈ R,

such that equation (4) also defines an evolution family T̂ (t, s). For each ε > 0 sufficiently
small, if δ is sufficiently small, then T̂ (t, s) admits a ρ-uniform exponential dichotomy
with the constant λ replaced by λ− ε.

Proof. The strategy of the proof is the same as in Theorem 1, and thus we only
explain what changes are necessary.

We first construct bounded solutions. Given ε ∈ (0, λ/2), we consider the Banach
space
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C =
{
U : I → B(X) : U is continuous and ‖U‖ < +∞}

with the norm

‖U‖ = sup
{‖U(t, s)‖e(λ−ε)(ρ(t)−ρ(s)) : (t, s) ∈ I

}
,

and with I as in (5).

Lemma 12. If δ is sufficiently small, then there is a unique U ∈ C such that

U(t, s) = T (t, s)P (s) +
∫ t

s

T (t, τ)P (τ)B(τ)U(τ, s) dτ

−
∫ ∞

t

T (t, τ)Q(τ)B(τ)U(τ, s) dτ

for every (t, s) ∈ I. Moreover, for each ξ ∈ X the function u(t) = U(t, s)ξ is a solution
of equation (4).

Proof of the lemma. Again we use (6) to define an operator L for each U ∈ C.
We first note that

∫ ∞

t

‖T (t, τ)Q(τ)B(τ)U(τ, s)‖ dτ

≤ Dδ‖U‖
∫ ∞

t

e−λ(ρ(τ)−ρ(t))+(−λ+ε)(ρ(τ)−ρ(s))ρ′(τ) dτ

= Dδ‖U‖e(−λ+ε)(ρ(t)−ρ(s))

∫ ∞

t

e(−2λ+ε)(ρ(τ)−ρ(t))ρ′(τ) dτ

≤ Dδ

2λ− ε
e(−λ+ε)(ρ(t)−ρ(s))‖U‖ < +∞. (36)

Therefore, (LU)(t, s) is well defined, and

‖(LU)(t, s)‖ ≤ ‖T (t, s)P (s)‖+
∫ t

s

‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ

+
∫ ∞

t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ

≤ De−λ(ρ(t)−ρ(s)) + Dδ‖U‖
∫ t

s

e−λ(ρ(t)−ρ(τ))+(−λ+ε)(ρ(τ)−ρ(s))ρ′(τ) dτ

+
Dδ

2λ− ε
e(−λ+ε)(ρ(t)−ρ(s))‖U‖
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= De(−λ+ε)(ρ(t)−ρ(s)) + Dδ‖U‖e(−λ+ε)(ρ(t)−ρ(s))

∫ t

s

e−ε(ρ(t)−ρ(τ))ρ′(τ) dτ

+
Dδ

2λ− ε
e(−λ+ε)(ρ(t)−ρ(s))‖U‖.

This implies that

‖LU‖ ≤ D + δD

(
1
ε

+
1

2λ− ε

)
‖U‖ < +∞,

and thus we have a well-defined operator L : C → C. We show in a similar manner that

‖LU1 − LU2‖ ≤ D + δD

(
1
ε

+
1

2λ− ε

)
‖U1 − U2‖

for every U1, U2 ∈ C. Therefore, for any sufficiently small δ the operator L is a contrac-
tion, and there exists a unique U ∈ C such that LU = U . The last property in the lemma
can be obtained as in (9). ¤

Similarly, we consider the Banach space

D =
{
U : J → B(X) : V is continuous and ‖V ‖ < +∞}

with the norm

‖V ‖ = sup
{‖V (t, s)‖e(−λ+ε)(ρ(t)−ρ(s)) : (t, s) ∈ J

}
,

and with J as in (10). We can then make appropriate modifications in the proof of
Lemma 3 to obtain the following.

Lemma 13. If δ is sufficiently small, then there is a unique V ∈ D such that

V (t, s) = T (t, s)Q(s) +
∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ, s) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)V (τ, s) dτ.

for every (t, s) ∈ J . Moreover, for each ξ ∈ X the function t 7→ V (t, s)ξ is a solution of
equation (4).

Moreover, repeating arguments in the proofs of Lemmas 2 and 4 (with a = 0) we
also obtain the following.

Lemma 14. If δ is sufficiently small, then

U(t, τ)U(τ, s) = U(t, s), t ≥ τ ≥ s,



Robustness of noninvertible dichotomies 315

and

V (t, τ)V (τ, s) = V (t, s), t ≤ τ ≤ s.

The remaining arguments in Steps 3–5 require no change, and thus we also obtain
the characterization of the bounded solutions given by Lemmas 5 and 6, as well as the
candidates for the stable and unstable subspaces Ê(t) and F̂ (t) in (20). Moreover, we
also have the estimates in (22) and (23) with a = 0.

To construct projections we first establish the invertibility of the operators Ss in
(24).

Lemma 15. If δ is sufficiently small, then Ss is invertible for every s ∈ R.

Proof of the lemma. It follows from (36) and the corresponding inequality for
V (t, s) that

‖Ss − Id ‖ ≤
∫ ∞

s

‖T (s, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖ dτ

+
∫ s

−∞
‖T (s, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ, s)‖ dτ

≤ δD

2λ− ε

(‖U‖+ ‖V ‖).

Since

‖U‖ ≤ D

/(
1− δD

(
1
ε

+
1

2λ− ε

))

and

‖V ‖ ≤ D

/(
1− δD

(
1
ε

+
1

2λ− ε

))
,

we conclude that for δ sufficiently small (independently of s), the operator Ss is invertible.
¤

Lemma 16. For each t ∈ R we have Ê(t)⊕F̂ (t) = X, provided that δ is sufficiently
small.

Proof of the lemma. Inequality (25) holds with a = 0, and thus we have again
Ê(t) ∩ F̂ (t) = {0}. The remaining argument is also identical. ¤

One can now repeat arguments in the proof of Lemma 11 to obtain the following
lower bound for αB

t in (26).

Lemma 17. If δ is sufficiently small, then there exists a constant c > 0 such that
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αB
t ≥ c for t ∈ R. (37)

Proof of the lemma. It is sufficient to observe that inequalities (29) and (30)
are replaced by

‖GE(t)‖ ≤ Dδ

2λ− ε
‖U‖

(set t = s in (36)), and

‖GF (t)‖ ≤ Dδ

2λ− ε
‖V ‖.

Proceeding as in the proof of Lemma 11 we then obtain

αB
t ≥ 1

4D(1 + Dδ‖U‖/(2λ− ε))
− Dδ‖U‖/(2λ− ε)

1−Dδ‖U‖/(2λ− ε)
− Dδ‖V ‖/(2λ− ε)

1−Dδ‖V ‖/(2λ− ε)
.

Taking δ sufficiently small yields inequality (37). ¤

The statement in Theorem 2 follows now from combining the above lemmas. ¤
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