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Abstract. We study bridge number and tunnel number of tangles and
knots, and also study their behavior under tangle decomposition of knots.

1. Introduction.

Let K be a knot, i.e., a simple closed curve embedded in the 3-sphere S3 or in a
more general 3-manifold. One of the classical and standard splittings of K ⊂ S3 is a
bridge splitting introduced by Schubert [9]. An n-bridge splitting of (S3,K) is a splitting
of a pair of S3 and the knot K into two pairs of a 3-ball and n mutually trivial arcs.
We denote such a bridge splitting by (S3,K) = (B1,K1) ∪S (B2,K2), where each Bi is
a 3-ball with S = ∂B1 = ∂B2 and each Ki = Bi ∩K consists of n mutually trivial arcs
in Bi. The bridge number brg0(K) of K ⊂ S3 is defined to be the minimal integer b for
which (S3,K) admits a b-bridge splitting. The bridge number is a knot invariant, and
the following is well-known Schubert’s equality on bridge number:

brg0(K#K ′) = brg0(K) + brg0(K
′)− 1,

where K#K ′ means the connected sum of two knots K and K ′ in S3.
The tunnel number is another knot invariant introduced by Clark [1]. Let K be

a knot in a closed connected orientable 3-manifold M . The tunnel number tnl(K) of
K ⊂ M is the minimal number of mutually disjoint arcs τ properly embedded in the
knot exterior Ext(K;M) such that the exterior of τ in Ext(K;M) is homeomorphic to a
handlebody. The following is also well-known Clark’s inequality on tunnel number:

tnl(K#K ′) ≤ tnl(K) + tnl(K ′) + 1.

It is shown by Morimoto, Sakuma and Yokota [6] and independently Moriah and Rubin-
stein [4] that there exist infinitely many pairs of knots K, K ′ ⊂ S3 satisfying the equality.
If K and K ′ are so-called (1, 1)-knots, we see that tnl(K#K ′) = tnl(K) + tnl(K ′). It
is also proved by Kobayashi [3], by taking connected sum of examples due to Morimoto
[5], that for any positive integer n, there are infinitely many pairs of knots K and K ′

with tnl(K#K ′) < tnl(K) + tnl(K ′)− n.
In 1970, Conway [2] introduced tangle decomposition of knots which is a generaliza-
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tion of connected sum decomposition of knots. Let K be a knot in a closed connected
orientable 3-manifold M and P a separating 2-sphere in M which intersects K trans-
versely in 2n points for a positive integer n. Then P cuts M into two 3-manifolds M1 and
M2 and each Ti := Mi ∩K (i = 1, 2) consists of n mutually disjoint simple arcs properly
embedded in Mi. Such a pair (Mi, Ti) is called an n-tangle, and (M1, T1) ∪P (M2, T2)
is called an n-tangle decomposition of (M, K). We notice that a 1-tangle decomposition
corresponds to connected sum decomposition. In this paper, we study bridge number
and tunnel number of tangles (see Section 3 for definitions and details). The following is
obtained as corollaries of Theorem 4.1.

Corollary 1.1. Let K be a knot in S3 and (B1, T1) ∪P (B2, T2) an n-tangle
decomposition of (S3,K). Then

brg0(K) ≤ brg0(T1) + brg0(T2)− n.

Corollary 1.2. Let K be a knot in a closed connected orientable 3-manifold M

and (M1, T1) ∪P (M2, T2) an n-tangle decomposition of (M, K). Then

tnl(K) ≤ tnl(T1) + tnl(T2) + 2n− 1.

For example, Morimoto’s knot KM (l, m, n) ⊂ S3 admits a 2-tangle decomposi-
tion (B1, T1) ∪P (B2, T2) illustrated in Figure 1. It follows from Ozawa’s result [7]
that this is a unique essential 2-tangle decomposition. We obtain in Section 3 that
each 2-tangle (Bi, Ti) satisfies brg0(Ti) = 3. Hence we see brg0(KM (l, m, n)) ≤ 4 by
Corollary 1.1 (or by deforming the diagram in Figure 1 directly). It follows from [8]
that brg0(KM (2, 1, 1)) > 3 and hence brg0(KM (2, 1, 1)) = 4 which implies the equal-
ity holds for K = KM (2, 1, 1) and its essential tangle decomposition. We notice that
each 2-tangle (Bi, Ti) in Figure 1 also satisfies tnl(Ti) = 0. Hence Corollary 1.2 implies
tnl(KM (l, m, n)) ≤ 3. We, however, have already known that KM (l, m, n) is of tunnel
number two. We give in Section 5 a sufficient condition not to satisfy the equality in
Corollary 1.2.

Figure 1. Morimoto’s knot KM (l, m, n) ⊂ S3 with l, m, n ∈ Z>0.
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2. Preliminaries.

Throughout this paper, we work in the piecewise linear category. Let B be
a sub-manifold of a manifold A. The notation Nbd(B;A) denotes a (closed) regu-
lar neighborhood of B in A. By Ext(B;A), we mean the exterior of B in A, i.e.,
Ext(B;A) = cl(A \ Nbd(B;A)), where cl(·) means the closure. The notation | · | in-
dicates the number of connected components. Let M be a compact connected orientable
3-manifold with non-empty boundary. Let J be a 1-manifold properly embedded in M

and F a surface properly embedded in M . Here, a surface means a connected compact
2-manifold. We always assume that a surface intersects J transversely. Set M = (M, J)
and F = (F, F ∩ J). For convenience, we also call F a surface. A simple closed curve
properly embedded in F \ J is said to be inessential in F if it bounds a disk in F in-
tersecting J in at most one point. A simple closed curve properly embedded in F \ J is
said to be essential in F if it is not inessential in F . A surface F is compressible in M if
there is a disk D ⊂ M \ J such that D ∩ F = ∂D and ∂D is essential in F . Such a disk
D is called a compressing disk of F . We say that F is incompressible in M if F is not
compressible in M.

A 3-manifold C is called a (genus g) compression body if there exists a closed surface
F of genus g such that C is obtained from F×[0, 1] by attaching 2-handles along mutually
disjoint loops in F×{0} and filling in some resulting 2-sphere boundary components with
3-handles. We denote F × {1} by ∂+C and ∂C \ ∂+C by ∂−C. A compression body C

is called a handlebody if ∂−C = ∅. The triplet (C1, C2;S) is called a (genus g) Heegaard
splitting of M if C1 and C2 are (genus g) compression bodies with C1 ∪ C2 = M and
C1 ∩ C2 = ∂+C1 = ∂+C2 = S. The Heegaard genus hg(M) of M is the minimal integer
g for which M admits a genus g Heegaard splitting.

A simple arc γ properly embedded in a compression body C is said to be vertical
if γ is isotopic to an arc with {a point} × [0, 1] ⊂ ∂−C × [0, 1] relative to boundary. A
simple arc γ properly embedded in C is said to be trivial if there is a disk δ in C with
γ ⊂ ∂δ and ∂δ \ γ ⊂ ∂+C. Such a disk δ is called a bridge disk of γ. A disjoint union of
trivial arcs is said to be mutually trivial if they admit a disjoint union of bridge disks.

2.1. Bridge number and tunnel number of knots.
Let K be a knot, i.e., a closed connected 1-manifold in a compact connected ori-

entable 3-manifold M . We say that K admits a (g, 0)-bridge splitting if there is a genus
g Heegaard splitting (C1, C2;S) of M such that K ⊂ Ci (i = 1 or 2), say i = 2, and that
cl(C2\K) is a compression body. We say that K admits a (g, b)-bridge splitting (b > 0) if
there is a genus g Heegaard splitting (C1, C2;S) of M such that Ci ∩K consists of b arcs
which are mutually trivial for each i = 1, 2. Set Ci = (Ci, Ci∩K) and S = (S, S∩K). We
call the triplet (C1, C2;S) a (g, b)-bridge splitting of (M, K) and S is called a (g, b)-bridge
surface, or a bridge surface for short. The genus g bridge number brgg(K) of K ⊂ M is
defined to be the minimal integer b for which (M, K) admits a (g, b)-bridge splitting. We
notice that brg0(K) is well-defined only if K ⊂ S3 and is the classical bridge number.

Definition 2.1. Let K be a knot in a closed connected orientable 3-manifold M .
A disjoint union of simple arcs τ = τ1∪· · ·∪τn properly embedded in Ext(K;M) is called
an unknotting tunnel system if cl(Ext(K;M) \ Nbd(τ ;M)) is a handlebody. The tunnel
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number tnl(K) of K ⊂ M is the minimal number of components of such unknotting
tunnel systems.

The tunnel number tnl(K) of K ⊂ M is equivalent to the minimal integer t for
which (M, K) admits a (t + 1, 0)-bridge splitting.

2.2. C-compression bodies and c-Heegaard splittings.
We now recall definitions of a c-compression body and a c-Heegaard splitting given

by Tomova [10]. Let J be a 1-manifold properly embedded in a compact connected
orientable 3-manifold M with non-empty boundary. A surface F = (F, F ∩ J) is c-
compressible in M = (M, J) if there is a disk D ⊂ M \ J such that D ∩ F = ∂D, ∂D is
essential in F and D intersects J in at most one point. If |D ∩ J | = 1, then D is called
a cut disk of F . We say that F is c-incompressible in M if F is not c-compressible in
M. A c-disk is a compressing disk or a cut disk.

Let C be a pair of a genus g compression body C and a 1-manifold J properly
embedded in C. Then C = (C, J) is called a (genus g) c-compression body if there is
a disjoint union D of c-disks and bridge disks which cuts C into some 3-balls and a 3-
manifold homeomorphic to ∂−C × [0, 1] with vertical arcs. Then D is called a complete
c-disk system of C. If D contains a compressing disk, then C is said to be compressible.
We set ∂±C = (∂±C, ∂±C ∩ J).

Definition 2.2. Let J be a 1-manifold properly embedded in a compact connected
orientable 3-manifold M . The triplet (C1, C2;S) is a (genus g) c-Heegaard splitting of
M = (M, J) if C1 and C2 are (genus g) c-compression bodies with C1 ∪ C2 = M and
C1 ∩ C2 = ∂+C1 = ∂+C2 = S. The surface S is called a c-Heegaard surface of M.

3. Bridge number and tunnel number of tangles.

Let M be a compact connected orientable 3-manifold with ∂M ∼= S2 and T a 1-
manifold properly embedded in M . We say that (M, T ) is an n-tangle if T consists
of n arcs. An n-tangle (M, T ) is said to be essential if the surface (∂M, ∂M ∩ T )
is incompressible in (M, T ). An n-tangle (M, T ) is said to be free if Ext(T ;M) is a
handlebody. A free n-tangle (M, T ) admits a c-Heegaard splitting (C1, C2;S) such that
Ci is ambient isotopic to Nbd(∂M ∪ T ;M) and that Cj is a genus n handlebody disjoint
from T for (i, j) = (1, 2) or (2, 1).

Definition 3.1. Let (M, T ) be an n-tangle. A disjoint union of simple arcs τ =
τ1 ∪ · · · ∪ τn properly embedded in Ext(T ;M) is called an unknotting tunnel system if
cl(Ext(T ;M) \Nbd(τ ;M)) is a handlebody. The tunnel number tnl(T ) of (M, T ) is the
minimal number of components of such unknotting tunnel systems. In particular, we
define tnl(T ) = 0 if (M, T ) is a free tangle.

Proposition 3.2. Let M be a closed connected orientable 3-manifold and K a knot
in M with tnl(K) = t+1. Then there is an open 3-ball B ⊂ M such that (M \B,K \B)
is a 2-tangle with tnl(T ) = t, where T = K \B.

Proof. Let τ be an unknotting tunnel system of K ⊂ M realizing the tunnel
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number and τ0 a component of τ . We can naturally extend each component τi of τ into
Nbd(K;M) so that τi is a simple arc in M joining K to itself. A small regular neigh-
borhood B0, which is a 3-ball, of τ0 cuts off two sub-arcs γ1 and γ2 from K. Removing
the interior of (B0, γ1 ∪ γ2) from (M, K), we obtain a 2-tangle (M ′, T0). Since K ⊂ M

is of tunnel number t + 1, we see that the 2-tangle (M ′, T0) must be of tunnel number t

and hence we have a desired 2-tangle. ¤

Example 3.3. (1) Let Kl,m ⊂ S3 be the (−2, 2l + 1, 2m + 1)-pretzel knot with
l > 0. It is known that Kl,m is of tunnel number one and that τ illustrated in Figure 2(a)
is an unknotting tunnel of Kl,m. For any integer m, by removing a regular neighborhood
of τ , we get a 2-tangle (B3, Tl) as in Figure 2(a). By Proposition 3.2, we have tnl(Tl) = 0
and hence (B3, Tl) is a free tangle.

(2) The 2-tangle (B3, T ′n) in Figure 2(b) comes from the knot Kn (n > 0) illustrated
in Figure 2(b). We notice that K1 is the knot 816 in the Rolfsen’s knot table and
that τ1 ∪ τ2 in Figure 2(b) is an unknotting tunnel system of Kn. Since Kn admits an
essential 2-tangle decomposition, we see that Kn is of tunnel number two. This implies
that tnl(T ′n) = 1.

Figure 2. (a) The 2-tangles (B3, Tl) with l > 0 are of tunnel number zero.
(b) The 2-tangles (B3, T ′n) with n > 0 are of tunnel number one.

Let (C1, C2;S) be a c-Heegaard splitting of an n-tangle (M, T ) with ∂M = ∂−Ci for
i = 1 or 2, say i = 2, where Ci = (Ci, Ci∩T ) and S = (S, S∩T ). Then we notice that C1

is a handlebody and C1∩T consists of mutually trivial arcs. Such a c-Heegaard splitting
(C1, C2;S) is called a (g, b, c)-splitting of (M, T ), where g is the genus of the closed surface
S, b is the number of trivial arcs C1∩T and c is the number of the components of T each
of which is contained in C2. For example, a free n-tangle admits an (n, 0, n)-splitting,
and an n-tangle of tunnel number t admits a (t + n, 0, n)-splitting. Using these words,
we can say that the tunnel number tnl(T ) of an n-tangle (M, T ) is the minimal integer
t for which (M, T ) admits a (t + n, 0, n)-splitting. The genus g bridge number brgg(T )
of an n-tangle (M, T ) is defined to be the minimal integer b for which (M, T ) admits a
(g, b, 0)-splitting. We notice that brg0(T ) ≥ n for any n-tangle (B3, T ). Moreover an
n-tangle T with brg0(T ) = n is trivial, i.e., T is n mutually trivial arcs in B3.

Example 3.4. Each of the 2-tangles (B3, Tl) and (B3, T ′n) in Figure 2 admits a
(0, 3, 0)-splitting. The 2-spheres S and S′ in Figure 3 give (0, 3, 0)-splittings. Since both
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Figure 3. Non-trivial 2-tangles each with a (0, 3, 0)-splitting.

tangles are non-trivial, we see that brg0(Tl) = 3 and brg0(T ′n) = 3.

Suppose c > 0 for a (g, b, c)-splitting (C1, C2;S). Then we obtain a (g, b + 1, c − 1)-
splitting of by push-out operation as follows. Since c > 0, there is an arc component γ

of C2 ∩ T which is entirely contained in C2. Let p be a single point in the interior of
γ. Then we can isotope γ (relative to boundary) so that Nbd(p; γ) is out of C2. This
implies that we obtain a (g, b + 1, c− 1)-splitting of (M, T ) from its (g, b, c)-splitting.

Lemma 3.5. Let (C1, C2;S) be a (g, b, c)-splitting of an n-tangle (M, T ) with ∂M =
∂−C2, where Ci = (Ci, Ci ∩ T ) and S = (S, S ∩ T ). Then

1. the number of vertical arc components in C2 ∩ T is 2n− 2c, and
2. the number of trivial arc components in C2 ∩ T is b + c− n.

Proof. We first notice that ∂M ∩T (⊂ ∂−C2) consists of 2n points. Hence 2n−2c

points of them are endpoints of vertical arc components in C2 ∩ T . Since T intersects
S in 2b points, we see that 2b − (2n − 2c) points of them are endpoints of trivial arc
components in C2 ∩ T . ¤

Definition 3.6. Let K be a knot in a closed connected orientable 3-manifold M

and P ⊂ M a separating 2-sphere which intersects K transversely in 2n(> 0) points.
Then P cuts M into two 3-manifolds M1 and M2 so that (Mi, Ti) (i = 1, 2) are n-
tangles, where Ti = Mi ∩ K. The decomposition (M1, T1) ∪P (M2, T2) is called an
n-tangle decomposition, or a tangle decomposition for short. A tangle decomposition
(M1, T1) ∪P (M2, T2) is said to be essential if each tangle (Mi, Ti) is essential.

4. Amalgamating c-Heegaard splittings of tangle decompositions.

Theorem 4.1. Let K be a knot in a closed connected orientable 3-manifold M and
(M1, T1) ∪P (M2, T2) an n-tangle decomposition of (M, K). If each (Mi, Ti) (i = 1, 2)
admits a (gi, bi, ci)-splitting, then (M, K) admits a (g1+g2, b1+b2+min{c1, c2}−n)-bridge
splitting.

Proof. Without loss of generality, we may assume c1 ≤ c2. We notice that Ti =
Mi∩K (i = 1, 2). Since (M1, T1) admits a (g1, b1, c1)-splitting, we obtain a (g1, b1+c1, 0)-
splitting of (M1, T1) by push-out operation. Let (C11, C12;S1) be a (g1, b1+c1, 0)-splitting
of (M1, T1) such that C11 is a pair of a genus g1 handlebody C11 and C11 ∩K, and that
C12 is a pair of a compression body C12 with ∂−C12 = ∂M1 and C12∩K. We notice that
C11 ∩K consists of b1 + c1 mutually trivial arcs and that C12 ∩K consists of 2n vertical
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arcs and b1 + c1 − n (possibly zero) mutually trivial arcs (cf. Lemma 3.5). Similarly, let
(C21, C22;S2) be a (g2, b2, c2)-splitting of (M2, T2) such that C21 is a pair of a compression
body C21 with ∂−C21 = ∂M2 and C21∩K, and that C22 is a pair of a genus g2 handlebody
C22 and C22∩K. Then C21∩K consists of 2n−2c2 vertical arcs and b2 +c2−n (possibly
zero) mutually trivial arcs, and C22 ∩ K consists of b2 (possibly zero) mutually trivial
arcs (cf. Lemma 3.5). Using these c-Heegaard splittings, we have a decomposition of
(M, K):

(M, K) = (C11 ∪S1 C12) ∪P (C21 ∪S2 C22),

where ∂−C12 = ∂−C21 is a 2-sphere P giving the tangle decomposition (M1, T1) ∪P

(M2, T2) of (M, K).
We now amalgamate these c-Heegaard splittings to obtain the desired splitting of

(M, K). Suppose that C12 is compressible. Then there is a compressing disk D12 of C12

which cuts C12 into V12 and W12, where V12 is a pair of a genus g1 handlebody V12 and
b1 + c1 − n (possibly zero) mutually trivial arcs (cf. Lemma 3.5), and W12 is a pair of a
compression body W12 homeomorphic to S2 × [0, 1] and 2n vertical arcs (cf. Figure 4).
Let α12 be a vertical arc in W12 which is disjoint from K and joins ∂−W12 to the interior
of D12 ⊂ ∂+W12. Set V12 = V12 ∪ Nbd(α12;W12) and W12 = Ext(V12; C12). If C12 is
not compressible, then C12 is homeomorphic to S2 × [0, 1] and C12 ∩K consists only of
vertical arcs. We set V12 = ∅ and W12 = C12 in this case.

Figure 4. An example of (C11, C12;S1) if C12 is compressible.

In summery,

V12 =

{V12 ∪Nbd(α12;W12) (if C12 is compressible)

∅ (otherwise),

W12 =

{
Ext(V12; C12) (if C12 is compressible)

C12 (otherwise).

Let T ′2 be a (possibly empty) disjoint union of the components of T2 = M2 ∩ K

which are contained in C21. Set V21 = (Nbd(T ′2;C21), T ′2) and W21 = Ext(V21; C21). We
notice that V21 is a disjoint union of c2 (possibly zero) 3-balls each with a single trivial
arc. Suppose that W21 is compressible. Then there is a compressing disk D21 of W21

which cuts W21 into W ′
21 and W ′′

21, where W ′
21 is a pair of a genus g2 − c2 handlebody

W ′
21 and b2 + c2 − n (possibly zero) mutually trivial arcs (cf. Lemma 3.5), and W ′′

21 is a
pair of a compression body W ′′

21 homeomorphic to {a closed connected orientable surface
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of genus c2} × [0, 1] and 2n − 2c2 vertical arcs (cf. Figure 5). Let α21 be a vertical arc
in W ′′

21 which is disjoint from K and joins ∂−W ′′
21 to the interior of D21 ⊂ ∂+W ′′

21. We,
if necessary, move an endpoint of α21 slightly so that α21 does not share an endpoint
with α12. Set V21 = V21 ∪ W ′

21 ∪ Nbd(α21;W ′′
21) and W21 = Ext(V21; C21). If W21 is

not compressible, then W21 is homeomorphic to {a closed connected orientable surface
of genus c2} × [0, 1] and W21 ∩K consists only of vertical arcs. We set V21 = V21 and
W21 = W21 in this case.

Figure 5. An example of (C21, C22;S2) if W21 is compressible.

In summery,

V21 =

{V21 ∪W ′
21 ∪Nbd(α21;W ′′

21) (if W21 is compressible)

V21 (otherwise),

W21 =

{
Ext(V21; C21) (if W21 is compressible)

W21 (otherwise).

Set C1 = C11 ∪W12 ∪V21 and C2 = V12 ∪W21 ∪C22. Since K is a knot in M , i.e., K

is a connected simple closed curve, we see that C1 is a pair of a genus g1 + g2 handlebody
and (b1 + c1) − c2 + (b2 + c2 − n) = b1 + b2 + c1 − n mutually trivial arcs. We also see
that C2 is a pair of a genus g1 + g2 handlebody and (b1 + c1 − n) + b2 = b1 + b2 + c1 − n

mutually trivial arcs. Hence {C1, C2} gives a (g1 + g2, b1 + b2 + c1−n)-bridge splitting of
(M, K). ¤

Let K be a knot in a closed connected orientable 3-manifold M and (M1, T1) ∪P

(M2, T2) an n-tangle decomposition of (M, K). We recall that each n-tangle (Mi, Ti)
(i = 1, 2) admits a (gi,brggi

(Ti), 0)-splitting. It follows from Theorem 4.1 that (M, K)
admits a (g1 + g2,brgg1

(T1) + brgg2
(T2)− n)-bridge splitting. Hence we have:

Corollary 4.2. Let K be a knot in a closed connected orientable 3-manifold M

and (M1, T1) ∪P (M2, T2) an n-tangle decomposition of (M, K). Then

brgg1+g2
(K) ≤ brgg1

(T1) + brgg2
(T2)− n.
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We notice that Corollary 1.1 is a special case of the above. Similarly, each n-
tangle (Mi, Ti) (i = 1, 2) admits a (tnl(Ti) + n, 0, n)-splitting. Hence (M, K) admits a
(tnl(T1)+tnl(T2)+2n, 0)-bridge splitting. Hence we have the inequality in Corollary 1.2.

5. Meridional destabilizing number of tangles.

Let (C1, C2;S) be a c-Heegaard splitting of an n-tangle (M, T ) with ∂M = ∂−Ci

for i = 1 or 2, say i = 2, where Ci = (Ci, Ci ∩ T ) and S = (S, S ∩ T ). Let T ′ be a
(possibly empty) disjoint union of the components of T which are contained in C2. We
say that (C1, C2;S) is meridionally stabilized if there are a compressing disk D1 of C1 and
a cut disk D2 of C2 such that |D2 ∩ T ′| = 1 and |∂D1 ∩ ∂D2| = 1. Such a pair of disks
(D1, D2) is called a meridional cancelling pair. Suppose that (C1, C2;S) is a meridionally
stabilized (g, b, c)-splitting of an n-tangle (M, T ) with ∂M = ∂−C2. Then we can obtain
(g−1, b+1, c−1)-splitting of (C1, C2;S) as follows. Let (D1, D2) be a meridional cancelling
pair. We recall that D2 is a cut disk of C2 which intersects a single component, say γ, of T ′

entirely contained in C2. Set N = (Nbd(D2;C2),Nbd(D2;C2) ∩ T ). Then Nbd(D2;C2)
can be regarded as a 2-handle with Nbd(D2;C2)∩ T its co-core. Set C′1 = C1 ∪N . Since
(D1, D2) is a meridional cancelling pair, we see that C′1 is a c-compression body which is
a pair of a genus g− 1 handlebody and b + 1 mutually trivial arcs. Set C′2 = Ext(N ; C2).
Then C′2 is a c-compression body which is a pair of a genus g − 1 compression body
C ′2 with ∂−C ′2 = ∂M and C ′2 ∩ T . Let T ′′ be a (possibly empty) disjoint union of the
components of T which are contained in C ′2. Since T ′′ = T ′ \ γ, we see that |T ′′| = c− 1.
Hence {C′1, C′2} gives a (g− 1, b+1, c− 1)-splitting of (M, T ). Such an operation is called
meridional destabilization. The meridional destabilizing number is the maximal number
of times of meridional destabilization we can do from minimal genus Heegaard splittings,
i.e., (t(T ) + n, 0, n)-splittings of (M, T ).

Definition 5.1. Let (M, T ) be an n-tangle. The meridional destabilizing number
md(T ) of (M, T ) is defined to be the maximal integer m for which (M, T ) admits a
(tnl(T ) + n−m,m, n−m)-splitting.

Example 5.2. Recall that the 2-tangle (B3, Tl) in Figure 2 is of tunnel number
zero. The torus S illustrated in Figure 6 gives a (1, 1, 1)-splitting of (B3, Tl). This implies
that md(Tl) ≥ 1. Since (B3, Tl) is a non-trivial 2-tangle, we see that md(Tl) < 2 and
hence md(Tl) = 1. It also follows from the lemma below that the 2-tangle (B3, T ′n) in
Figure 2 satisfies md(T ′n) = 2.

Figure 6. The 2-tangle (B3, Tl) satisfies md(Tl) = 1.
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Lemma 5.3. Let (B3, T ) be a 2-tangle which admits a (0, 3, 0)-splitting. Then
(B3, T ) also admits a (1, 2, 0)-splitting.

Proof. Let (C1, C2;S) be a (0, 3, 0)-splitting of (B3, T ), where C1 = (C1, T1) is
a pair of a 3-ball and three trivial arcs, and C2 = (C2, T2) is a pair of a 3-manifold
homeomorphic to S2 × [0, 1] and five arcs such that four of them are vertical and the
other is trivial. Let γ2 be the trivial arc component of T2. Set C ′1 = C1 ∪ Nbd(γ2, C2)
and C ′2 = Ext(C ′1;B

3). Then C ′1 ∩ T consists of two trivial arcs and C ′2 ∩ T consists of
four vertical arcs. This implies that C′i = (C ′i, C

′
i ∩ T ) (i = 1, 2) give a (1, 2, 0)-splitting.

¤

Let K be a knot in a closed connected orientable 3-manifold M and (M1, T1) ∪P

(M2, T2) an n-tangle decomposition of (M, K). Then each (Mi, Ti) (i = 1, 2) ad-
mits a (tnl(Ti) + n − md(Ti),md(Ti), n − md(Ti))-splitting. Hence (M, K) admits a
(tnl(T1) + tnl(T2) + 2n−md(T1)−md(T2),min{md(T1),md(T2)})-splitting by Theorem
4.1. Therefore we have the following which implies that an upper bound of tunnel number
could be improved by meridional destabilizing number of tangles.

Corollary 5.4. Let K be a knot in a closed connected orientable 3-manifold M

and (M1, T1) ∪P (M2, T2) an n-tangle decomposition of (M, K). Then

tnl(K) ≤ tnl(T1) + tnl(T2) + 2n− 1−max{md(T1),md(T2)}.

We notice that Morimoto’s knot KM (l, m, n) and its 2-tangle decomposition
(B1, T1)∪P (B2, T2) in Figure 1 satisfy the equality in Corollary 5.4 because of md(Ti) = 1
for each i = 1, 2 (cf. Example 5.2).

Acknowledgements. The author would like to thank the referee for careful read-
ing and useful comments.
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