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Abstract. In this article we deal with a class of degenerate parabolic
systems that encompasses two different effects: porous medium and chemo-
taxis. Such classes of equations arise in the mesoscale level modeling of biomass
spreading mechanisms via chemotaxis. We prove estimates related to the ex-
istence of the global attractor under certain ‘balance conditions’ on the order
of the porous medium degeneracy and the growth of the chemotactic function.

1. Introduction.

This study aims to consider the following model

Ṁ = ∇ · (|M |α∇M)−∇ · (|M |γ∇ρ) + f(M, ρ) in (0,∞)× Ω, (1.1)

ρ̇ = ∆ρ− g(M, ρ) in (0,∞)× Ω, (1.2)

M = 0, ρ = 1 in (0,∞)× ∂Ω, (1.3)

M(0, ·) = M0, ρ(0, ·) = ρ0 in Ω, (1.4)

where α and γ are given positive constants satisfying (α/2) + 1 ≤ γ < α (we call these
conditions the balance conditions). Moreover, Ω ⊂ RN is a smooth bounded domain
(N = 1, 2, 3) and M0 ∈ L∞(Ω), ρ0 ∈ W 1,∞(Ω). We assume that the functions f and g

satisfy the following assumptions:
for all M, ρ ∈ R let

|f(M, ρ)| ≤ F1(1 + |M |ξ)1/2 for some ξ ∈ [0, α− γ + 2), F1 ∈ R+
0 , (1.5)

f(M, ρ)M ≤ −F2M
2 + F3|M | for some F2 ∈ R+, F3 ∈ R+

0 , (1.6)

g(M, ρ) = G1ρ + g2(ρ)M for some G1 ∈ R+
0 , (1.7)

|g2(ρ)| ≤ G3 for some G3 ∈ R+
0 (1.8)

and, in order to ensure the uniqueness and the non-negativity of solutions for non-negative
initial data, let
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f̃(M, ρ) := f
(
M |M |(2/(2+α))−1, ρ

)− F4M |M |(2/(2+α))−1,

∂f̃

∂M
∈ L∞loc(R× R) for some F4 ∈ R, (1.9)

f ∈ W 1,∞
loc (R× R), g2 ∈ W 1,∞

loc (R), f(0, ρ) = 0, g2(0) = 0, (1.10)

where

R+ = (0,+∞), R+
0 = [0,+∞),

Lp
loc(Q) = {u : Q → R : u ∈ Lp(K) for all compact sets K ⊂ Q},

W 1,p
loc (Q) = {u : Q → R : u ∈ W 1,p(K) for all compact sets K ⊂ Q}

for p ∈ [1,∞], Q ⊂ Rm. The following example of functions f and g satisfies the
conditions (1.5)–(1.10):

Example 1.

f(M, ρ) = −M +
M

(2+α)/2
+

M
(2+α)/2
+ + 1

arctan ρ,

g(M, ρ) = ρ + M
ρ

ρ + 1
,

where M+ = max{M, 0}.

In the present paper, we treat weak solutions of the system (1.1)–(1.4). The defini-
tion is as follows:

Definition 1. For T > 0, α > 1 and γ > 1, a pair of functions (M, ρ) defined in
[0, T ]×Ω is said to be a weak solution of (1.1)–(1.4) for M0 ∈ L∞(Ω), ρ0 ∈ W 1,∞(Ω), if

( i ) M ∈ L∞([0, T ]× Ω), |M |α/2M ∈ L2([0, T ];H1
0 (Ω)), Ṁ ∈ L2([0, T ];H−1(Ω)),

( ii ) ρ− 1 ∈ C([0, T ];H1
0 (Ω)),

(iii) (M, ρ) satisfies the equation in the following sense:

∫ T

0

(M, v)ϕ̇− (|M |α∇M − |M |γ∇ρ,∇v)ϕ + (f(M, ρ), v)ϕds = 0

for any v ∈ H1
0 (Ω), ϕ ∈ C∞0 [0, T ],

(ρ(t, x)− 1) =
∫

Ω

G(t, x, y)(ρ0(y)− 1)dy

−
∫ t

0

∫

Ω

G(t− s, x, y)g(M(s, y), ρ(s, y))dyds
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for a.e. (t, x) ∈ [0, T ]×Ω, where G is a heat kernel in Ω with the homogeneous Dirichlet
boundary condition and the initial conditions hold: ρ(0) = ρ0 and, in Cw([0, T ];L2(Ω))-
sense, M(0) = M0.

Notation 1. For p ∈ [1,∞]\{2}, we write ‖ · ‖p in place of the ‖ · ‖Lp(Ω)-norm.
‖ · ‖ stands for ‖ · ‖L2(Ω)-norm and (u, v) for

∫
Ω

u(x)v(x) dx or, more generally (in the
case of distributional derivatives for instance), for 〈u, v〉.

Remark 1. From M ∈ L∞([0, T ];L2(Ω)) and Ṁ ∈ L2([0, T ];H−1(Ω)) it follows
(see [2]), that M ∈ Cw([0, T ];L2(Ω)) Recall that Cw([0, T ];L2(Ω)) denotes the space of
functions u : [0, T ] → L2(Ω) which are continuous with respect to the weak topology of
L2(Ω), therefore the initial condition for M makes sense.

Remark 2. Note: we do not actually need the condition γ ≥ (α/2) + 1 for the
dissipative estimate we want to obtain, but it was crucial for uniqueness of solutions (see
[4], [5]).

This system of partial differential equations, models, for example, a population de-
scribed in terms of its density M , which grows depending on a substrate with concen-
tration ρ. The substrate is degraded by the abiotic decay. The spatial movement of the
population is caused by two different effects. Firstly, the model includes a density depen-
dent diffusion term. This non-linear diffusion effect becomes stronger as the population
grows larger locally, following a power law as in the case of the porous medium equation.
Secondly, the population moves towards regions with increased substrate availability, i.e.
follows the chemical signal ρ. This effect is also controlled by the population density and
its intensity increases as the local population density grows. Both effects of population
mobility increase/diminish with the population, each following a power law. Thus, the
model degenerates for M = 0. Finally, our model includes a ‘source term’: a non-linear
reaction-interaction term f . As usual, it stays for the sink/source density (net number
of particles created per unit time and per unit volume). At a high level of population
density M the depth rate (caused by the exterior forces such as predation or intoxication)
is no less than F2.

The main focus of the present study is to prove a dissipative estimate for the problem
(1.1)–(1.4). We emphasize the fact that the analysis of equations with a chemotaxis-type
term even without degeneracy (α = 0) is quite difficult, (examples, though for somewhat
different biological models, can be found in [7], [8], [10], [11], [12], see also references
therein) and in our degenerate case, we face significant difficulties. In order to overcome
these difficulties we impose so-called ‘balance conditions’ between the order of porous-
medium degeneracy and the growth order of the chemotaxis function: (α/2)+1 ≤ γ < α.
We showed in [5] (see also [4]) that our model is a well-posed one and that it exhibits
no singular behavior. For each pair of starting values the solution is uniformly bounded
in time and space. Recall that this is not the case for the models that contain the
chemotaxis effect alone (the solution may blow up, see [6]). The condition α > γ (an
improvement over the condition α ≥ γ + 1 imposed in [4]) reads: the density-dependent
diffusion coefficient ‘dominates’ the intensity of response to the chemical signal as the
population density grows. This, as we showed in [5], results in the uniform boundedness
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of M and ρ.
On the other hand, we also showed in [5] that even in the areas with low population

density the porous medium effect is due to (α/2) + 1 ≤ γ strong enough to keep the
population spreading without vanishing locally, which means that the support of M(t, ·),
the set {x ∈ Ω | M(t, x) > 0}, is not shrinking in t.

In [5] (see also [4]) we showed the time-global existence and boundedness of solution
to our system. The main result of [5] can be summarized as follows:

Theorem 1. Let the functions f and g satisfy the assumptions (1.5)–(1.10) and
let the given constants α and γ satisfy γ ∈ [(α/2)+1, α). Then the initial boundary-value
problem (1.1)–(1.4) has at most one non-negative solution (in the sense of Definition 1)
for each pair of starting values (M0, ρ0) ∈ L∞(Ω)×W 1,∞(Ω). The solution is uniformly
bounded in time in the phase space L∞(Ω)×W 1,∞(Ω).

However, the estimates derived there were not sufficient to show the existence of the
attractor. In this paper we use the condition α > γ to establish a dissipative estimate
for our model, which will be necessary to show the existence of the attractor.

Our main result reads:

Theorem 2. Let the functions f and g satisfy the assumptions (1.5)–(1.10) and
let the given constants α and γ satisfy γ ∈ [(α/2) + 1, α). Then the following dissipative
estimate holds for the initial boundary-value problem (1.1)–(1.4) :

‖M(t)‖L∞(Ω) + ‖ρ(t)‖W 1,∞(Ω)

≤ C∞
(‖M0‖L∞(Ω) + ‖ρ0‖W 1,∞(Ω)

)r∞ · e−ω∞t + D∞ ∀t ≥ 0, (1.11)

where the positive constants C∞, r∞, ω∞, D∞ depend only on α, γ, f and g and are in-
dependent of M0, ρ0 or t.

We will prove this theorem in Section 2. As a consequence of Theorems 1 and 2 we
obtain the existence of the weak global attractor for (1.1)–(1.4): we prove in Section 3
the following

Theorem 3. Let the functions f and g satisfy the assumptions (1.5)–(1.10) and
let the given constants α and γ satisfy γ ∈ [(α/2)+1, α). Then the solutions of the prob-
lem (1.1)–(1.4) can be described by a semigroup {S(t)}t≥0 that acts on the (Hausdorff )
space L∞w−∗(Ω)×W 1,∞(Ω) (L∞w−∗(Ω) denotes the space L∞(Ω) equipped with the weak−∗
topology of L∞(Ω)) and there exists the global attractor for {S(t)}t≥0.

2. Dissipative estimates (proof of Theorem 2).

In this section we derive several dissipative estimates in various phase spaces for
the solutions of the problem (1.1)–(1.4), which in turn lead to a dissipative estimate in
L∞(Ω) for both M and ρ.

We start with rewriting the equation (1.1) in the following way:
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Ṁ = ∇ ·
(
|M |γ∇

(
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

))
+ f(M, ρ). (2.1)

In order to derive our first a priori estimate, we multiply this equation by (1/(α − γ +
1)M |M |(α−γ+1)−1 − ρ) and integrate (formally) over Ω to get

(
Ṁ,

1
α− γ + 1

M |M |(α−γ+1)−1 − ρ

)

= −
(
|M |γ ,

∣∣∣∣∇
(

1
α− γ + 1

M |M |(α−γ+1)−1 − ρ

)∣∣∣∣
2)

+
(

f(M, ρ),
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)

≤
(

f(M, ρ),
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)

⇔ d

dt

(
1

(α− γ + 1)(α− γ + 2)

∥∥∥∥|M |α−γ+2
2

∥∥∥∥
2

− (M, ρ)
)

≤
(

f(M, ρ),
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)
− (ρ̇,M) (2.2)

and we multiply the equation (1.2) by (ρ̇ + ρ− 1) in the same sense as above to get

‖ρ̇‖2 +
1
2

d

dt
‖ρ− 1‖2 = −1

2
d

dt
‖∇ρ‖2 − ‖∇ρ‖2 − (g(M, ρ), ρ̇ + ρ− 1)

⇔ 1
2

d

dt

(‖∇ρ‖2 + ‖ρ− 1‖2) = −‖∇ρ‖2 − ‖ρ̇‖2 − (g(M, ρ), ρ̇ + ρ− 1). (2.3)

Adding the inequalities (2.2) and (2.3) together, we obtain

d

dt

(
1

(α− γ + 1)(α− γ + 2)

∥∥|M |α−γ+2
2

∥∥2 − (M, ρ) +
1
2
‖∇ρ‖2 +

1
2
‖ρ− 1‖2

)

≤
(

f(M, ρ),
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)
− ‖∇ρ‖2 − (ρ̇,M)− ‖ρ̇‖2

− (g(M, ρ), ρ̇ + ρ− 1). (2.4)

We consider first the term containing g(M, ρ) = G1ρ + g2(ρ)M . It holds:

−(G1ρ, ρ̇ + ρ− 1) = −1
2

d

dt
(G1‖ρ‖2)−G1(‖ρ‖2 − (1, ρ))

≤ −1
2

d

dt
(G1‖ρ‖2)− (1− ε)G1‖ρ‖2 +

1
4ε

G1|Ω| (2.5)
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and

−(g2(ρ)M, ρ̇ + ρ− 1) ≤ ε‖ρ̇‖2 + ε‖ρ− 1‖2 +
1
2ε
‖g2(ρ)M‖2

≤
(1.8)

ε‖ρ̇‖2 + ε‖ρ− 1‖2 +
1
2ε

G2
3‖M‖2, (2.6)

where |Ω| denotes the volume of Ω.
By combining (2.5) and (2.6) with the inequality

−(ρ̇,M)− ‖ρ̇‖2 ≤ 1
2
‖M‖2 − 1

2
‖ρ̇‖2 (2.7)

and by choosing ε ≤ 1/2 we have

− (ρ̇,M)− ‖ρ̇‖2 − (g(M, ρ), ρ̇ + ρ− 1)

≤ −1
2

d

dt

(
G1‖ρ‖2

)− (1− ε)G1‖ρ‖2 + ε‖ρ− 1‖2 +
1
4ε

G1|Ω| −
(

1
2
− ε

)
‖ρ̇‖2

+
(

1
2

+
1
2ε

G2
3

)
‖M‖2

≤
ε≤1/2

−1
2

d

dt

(
G1‖ρ‖2

)− (1− ε)G1‖ρ‖2 + ε‖ρ− 1‖2 +
1
4ε

G1|Ω|

+
(

1
2

+
1
2ε

G2
3

)
‖M‖2. (2.8)

Further, we can estimate the terms with f from (2.4) in the following way:

(
f(M, ρ),M |M |(α−γ+1)−1

) ≤
(1.6)

(− F2M
2 + F3|M |, |M |(α−γ+1)−1

)

= − F2

∥∥|M |α−γ+2
2

∥∥2 + F3

∥∥|M |α−γ+1
2

∥∥2
, (2.9)

−(f(M, ρ), ρ) ≤
(1.5)

ε‖ρ‖2 +
1
4ε

F 2
1

(|Ω|+ ∥∥|M | ξ
2
∥∥2)

≤ 2ε‖ρ− 1‖2 +
(

2ε +
1
4ε

F 2
1

)
|Ω|+ 1

4ε
F 2

1

∥∥|M | ξ
2
∥∥2

. (2.10)

Using the inequalities (2.8)–(2.10) we conclude from (2.4):

d

dt

(
1

(α− γ + 1)(α− γ + 2)

∥∥|M |α−γ+2
2

∥∥2 − (M, ρ)

+
1
2
‖∇ρ‖2 +

1
2
‖ρ− 1‖2 +

1
2
G1‖ρ‖2

)
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≤ −F2

∥∥|M |α−γ+2
2

∥∥2 + F3

∥∥|M |α−γ+1
2

∥∥2 +
1
4ε

F 2
1

∥∥|M | ξ
2
∥∥2 +

(
1
2

+
1
2ε

G2
3

)
‖M‖2

− ‖∇ρ‖2 − (1− ε)G1‖ρ‖2 + 3ε‖ρ− 1‖2 +
(

2ε +
1
4ε

G1 +
1
4ε

F 2
1

)
|Ω|. (2.11)

In order to shorten the formulas, we introduce a new variable:

ϕ :=
1

(α− γ + 1)(α− γ + 2)

∥∥|M |α−γ+2
2

∥∥2 − (M, ρ)

+
1
2
‖∇ρ‖2 +

1
2
‖ρ− 1‖2 +

1
2
G1‖ρ‖2. (2.12)

|M |(α−γ+2)/2 is the leading M -power in the expression (2.12) due to the assumptions
made on α, γ and ξ, and we also have the estimate

(M, ρ) ≤ ε‖ρ‖2 +
1
4ε
‖M‖2 (2.13)

for all ε > 0. Moreover, applying the Poincaré and the Hölder inequalities and adjusting
the constant ε we can deduce from (2.11) the inequality

ϕ̇ ≤ −A1ϕ + A2 (2.14)

for some A1 ∈ R+, A2 ∈ R+
0 and finally obtain our first dissipative estimate: set for short

yδ0 := ‖M‖δ0
δ0

+ 1 + ‖∇ρ‖2, (2.15)

δ0 := α− γ + 2 > 2,

it holds then with (2.14)

yδ0(t) ≤ Cyδ0
yδ0(0)e−ωyδ0

t + Dyδ0
(2.16)

for some Cyδ0
, ωyδ0

, Dyδ0
that dependent only upon the parameters of the problem.

Notation 2. For the sake of convenience, we assume that the constants Bi (will
all appear below) for all indices i are only dependent upon the parameters of the problem
(1.5)–(1.10), that is, upon the constants α, γ, F2, F3, G1, G3 and the domain Ω, and not
upon the initial data M0, ρ0, or t, or (unless stated otherwise) any other parameters.

In what follows we use (2.16) to obtain several intermediate dissipative estimates for
M and ρ, which in turn lead to an L∞-dissipative estimate. The following observation,
which is an implication from the theory of abstract parabolic evolution equations (see
[13]), will be helpful in further.

Having a δ ∈ (2,∞) fixed, consider the unbounded operator
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∆ : Lδ(Ω) → Lδ(Ω)

equipped with the domain

D(∆) :=
{
u ∈ W 1,δ

0 (Ω) ∩W 2,δ(Ω)
}
.

It is known (see [13]) that this operator generates an analytic semigroup et∆ and its
spectrum lies entirely in {λ ∈ R : λ ≤ −β} for some β > 0. As such it has the following
properties:

(−∆)µet∆ = et∆(−∆)µ, (2.17)

‖et∆(−∆)µ‖δ ≤ Aµ,δe−βtt−µ (2.18)

for all t > 0 and µ > 0 for some constants Aµ,δ that depend only on µ, δ and the domain
Ω. Now, the equation (1.2) can be rewritten in the following way:

d

dt
(ρ− 1) = ∆(ρ− 1)− g(M, ρ)

and can thus be regarded as an abstract parabolic evolution equation with respect to
ρ− 1. Therefore for all t > 0 holds:

ρ(t)− 1 = et∆(ρ0 − 1)−
∫ t

0

e(t−s)∆g(M(s), ρ(s))ds (2.19)

and applying the operator ∇ to both sides of (2.19) and making use of the property
(2.17) we obtain

∇ρ(t) = et∆∇ρ0 −
∫ t

0

∇(
e(t−s)∆g(M(s), ρ(s))

)
ds. (2.20)

The initial value ρ0 is assumed to be sufficiently smooth, so that holds

‖∇ρ0‖δ < ∞. (2.21)

What remains is to estimate the Lδ-norm of the integral from (2.20) with help of (2.18)
and the assumptions on g. Choosing µ ∈ (1/2, 1) and δ̂ ≥ 1 such that W 2µ,δ̂(Ω) ⊂
W 1,δ(Ω) we arrive at the estimate

∥∥∥∥
∫ t

0

∇(
e(t−s)∆g(M(s), ρ(s))

)
ds

∥∥∥∥
δ

≤
∫ t

0

∥∥(−∆)µ
(
e(t−s)∆g(M(s), ρ(s))

)∥∥
δ̂
ds
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≤ Aµ,δ̂

∫ t

0

e−β(t−s)(t− s)−µ
(
G1‖ρ(s)‖δ̂ + G3‖M(s)‖δ̂

)
ds. (2.22)

Altogether we obtain from (2.20)–(2.22) the following estimate:

‖∇ρ(t)‖δ ≤ e−βt‖∇ρ0‖δ + Aµ,δ̂(G1 + G3)

·
∫ t

0

e−β(t−s)(t− s)−µ
(‖ρ(s)‖δ̂ + ‖M(s)‖δ̂

)
ds. (2.23)

Leaving this result for a moment and returning to the equation (1.1) we multiply
this equation by M |M |δ−1 for an arbitrary δ ≥ α − γ + 1, so that all occurring powers
remain non-negative, and (formally) integrate over Ω:

(
Ṁ,M |M |δ−1

)
=

(∇ · (|M |α∇M)−∇ · (|M |γ∇ρ) + f(M, ρ),M |M |δ−1
)
.

It follows:

1
δ + 1

d

dt

∥∥|M | δ+1
2

∥∥2 = − 4δ

(α + δ + 1)2
∥∥∇|M |α+δ+1

2
∥∥2

+
2δ

α + δ + 1
(∇|M |α+δ+1

2 , |M |γ−α
2 + δ−1

2 ∇ρ
)

+ (f(M, ρ),M |M |δ−1). (2.24)

Denote ϑ(δ) := (γ − (α/2) + ((δ − 1)/2))/((α + δ + 1)/2). Then ϑ(δ) < 1 holds due to
the assumption α > γ we made. Applying Hölder’s inequality we obtain:

(∇|M |α+δ+1
2 , |M |γ−α

2 + δ−1
2 ∇ρ

)
=

(∇|M |α+δ+1
2 , |M |ϑ(δ) α+δ+1

2 ∇ρ
)

≤ ‖1‖ 6
1−θ(δ)

∥∥∇|M |α+δ+1
2

∥∥∥∥|M |α+δ+1
2

∥∥ϑ(δ)

6
‖∇ρ‖3

≤ B1

∥∥∇|M |α+δ+1
2

∥∥1+ϑ(δ)‖∇ρ‖3. (2.25)

For the last inequality the embedding H1(Ω) ↪→ L6(Ω) has been used.
Further, we use once more the Hölder inequality and the assumptions on the function

f and write:

(f(M, ρ),M |M |δ−1) ≤ −F2

∥∥|M | δ+1
2

∥∥2 + F3

∥∥|M | δ
2
∥∥2 (2.26)

≤ −F2

∥∥|M | δ+1
2

∥∥2 + F3‖1‖δ+1

(∥∥|M | δ+1
2

∥∥2
) δ

δ+1
. (2.27)

We can conclude from (2.24) using (2.25) and (2.27) that:
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1
δ + 1

d

dt

∥∥|M | δ+1
2

∥∥2 ≤ − 4δ

(α + δ + 1)2
∥∥∇|M |α+δ+1

2
∥∥2

+
2δ

α + δ + 1
B1

∥∥∇|M |α+δ+1
2

∥∥1+ϑ(δ)‖∇ρ‖3

− F2

∥∥|M | δ+1
2

∥∥2 + F3‖1‖δ+1

(∥∥|M | δ+1
2

∥∥2
) δ

δ+1
.

Since 1 + ϑ(δ) < 2 it follows with the Young inequality:

1
δ + 1

d

dt

∥∥|M | δ+1
2

∥∥2 ≤ − F2

∥∥|M | δ+1
2

∥∥2 + F3‖1‖δ+1

(∥∥|M | δ+1
2

∥∥2
) δ

δ+1

+ B2(δ)‖∇ρ‖
2

1−ϑ(δ)
3 , (2.28)

where

B2(δ) =
1− ϑ(δ)

2

(
2δ

α + δ + 1
B1

) 2
1−ϑ(δ)

(
4δ

(α + δ + 1)2
2

1 + ϑ(δ)

)− 1+ϑ(δ)
1−ϑ(δ)

,

therefore this constant depends only on δ and the parameters of the problem.
Next, we return to the equality (2.24) to repeat the whole procedure once more but

this time being more precise about the estimates being made and using the regularity
achieved up to this point. First, due to (2.26) and two obvious inequalities we have

d

dt

∥∥|M | δ+1
2

∥∥2 = − 4δ(δ + 1)
(α + δ + 1)2

∥∥∇|M |α+δ+1
2

∥∥2

+
2δ(δ + 1)
α + δ + 1

(∇|M |α+δ+1
2 , |M |γ−α

2 + δ−1
2 ∇ρ

)

+ (δ + 1)(f(M, ρ),M |M |δ−1)

≤ −B3

∥∥∇|M |α+δ+1
2

∥∥2

+ (δ + 1)B4‖∇ρ‖∞
∥∥∇|M |α+δ+1

2
∥∥∥∥|M |α+δ+1

2
∥∥ϑ(δ)

− (δ + 1)F2

∥∥|M | δ+1
2

∥∥2 + (δ + 1)B5F3

∥∥|M |α+δ+1
2

∥∥2ζ (2.29)

for δ ≥ α− γ + 1 with ζ = δ/(α + δ + 1).
Taking into account a special case of the interpolation inequality for Sobolev spaces

(see [1]):

‖v‖ ≤ Cκ‖∇v‖3/5‖v‖2/5
1 ,

where the constant Cκ depends only on the domain Ω, we obtain with the help of the
Young inequality
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(δ + 1)‖∇v‖‖v‖ϑ(δ)

≤ (δ + 1)Cϑ(δ)
κ ‖∇v‖1+ϑ(δ)(3/5)‖v‖ϑ(δ)(2/5)

1

≤ Cϑ(δ)
κ

(
ε‖∇v‖2 + B6(ε)(δ + 1)

2
1−ϑ(δ)(3/5) ‖v‖

2ϑ(δ)(2/5)
1−ϑ(δ)(3/5)
1

)
(2.30)

and

(δ + 1)F3‖v‖2ζ ≤ (δ + 1)F3C
2ζ
κ ‖∇v‖2ζ(3/5)‖v‖2ζ(2/5)

1

≤ C2ζ
κ

(
ε‖∇v‖2 + B7(ε)(F3(δ + 1))

1
1−ζ(3/5) ‖v‖

2ζ(2/5)
1−ζ(3/5)
1

)
, (2.31)

where B6(ε) and B7(ε) depend only on ε and the parameters of the problem. With the
Hölder inequality we also have

∥∥|M |α+δ+1
2

∥∥
1
≤ ∥∥|M |α

2
∥∥

q
q−1

∥∥|M | δ+1
2

∥∥
q

(2.32)

for some q ∈ (1, 2) independent of δ. Combining (2.30)–(2.31) for v := |M |(α+δ+1)/2 with
(2.32) and choosing ε small enough depending only on the parameters of the problem we
can conclude from (2.29):

d

dt

∥∥|M | δ+1
2

∥∥2 ≤ B8(‖∇ρ‖∞(δ + 1))
2

1−ϑ(δ)(3/5)

(∥∥|M |α
2
∥∥

q
q−1

∥∥|M | δ+1
2

∥∥
q

) 2ϑ(δ)(2/5)
1−ϑ(δ)(3/5)

+ B8(F3(δ + 1))
1

1−ζ(3/5)

(∥∥|M |α
2
∥∥

q
q−1

∥∥|M | δ+1
2

∥∥
q

) 2ζ(2/5)
1−ζ(3/5)

− F2(δ + 1)
∥∥|M | δ+1

2
∥∥2

for δ ≥ α− γ + 1. Since ϑ(δ), ζ ∈ (0, 1) it follows for all δ ≥ α− γ + 2:

d

dt

(‖M‖δ
δ + 1

) ≤ B8δ
5(‖∇ρ(s)‖∞ + 1)5‖M‖α

α
2

q
q−1

(‖M‖qδ/2
qδ/2 + 1

)2/q − F2δ
(‖M‖δ

δ + 1
)

and once more we get an integral inequality for ‖M(t)‖δ
δ + 1:

‖M(t)‖δ
δ + 1 ≤ B8

∫ t

0

e−δF2(t−s)δ5(‖∇ρ(s)‖∞ + 1)5‖M(s)‖α
α
2

q
q−1

· (‖M(s)‖qδ/2
qδ/2 + 1

)2/q
ds + e−δF2t

(‖M0‖δ
δ + 1

)
. (2.33)

Now we are ready to derive more dissipative estimates for the problem (1.1)–(1.4). We
will extensively use the following
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Lemma 1. Let z1, z2, z3 : [0,+∞) → [0,+∞) be such functions that

z1(t) ≤ ψ1(z1(0))e−ω1t + D1,

z2(t) ≤ ψ2(z2(0))e−ω2t + D2,

z3(t) ≤ z3(0)e−ω3t +
∫ t

0

e−ω3(t−s)d3(t, s)z1(s) ds, (2.34)

z1(0), z2(0), z3(0) ≥ 1,

for some constants ω1, ω2, ω3 > 0 and D1, D2 ≥ 1, some non-decreasing functions ψ1, ψ2 :
[1,+∞) → [1,+∞) and some d3 ∈ L∞(R+

0 , L1
b(R

+
0 )), where

L1
b(R

+
0 ) =

{
u ∈ L1

loc(R
+
0 ) : ‖u‖L1

b(R+
0 ) := sup

x0∈R+
0

‖u‖L1([x0,x0+1]) < ∞
}

.

It holds:

1. (z1 + z2)(t) ≤ (ψ1 + ψ2)((z1 + z2)(0))e−min{ω1,ω2}t + D1 + D2.
2. z1z2(t) ≤ 3D1D2ψ1ψ2(z1z2(0))e−min{ω1,ω2}t + D1D2.
3. zσ

1 (t) ≤ max{1, 2σ−1}(ψσ
1 (z1(0))e−σω1t + Dσ

1 ) ∀σ > 0.
4. For ω1 6= ω3

z3(t) ≤
(

ψ1(z1(0))
1

1− e−|ω1−ω3| e
−min{ω1,ω3}t + D1

1
1− e−ω3

)

· ‖d3‖L∞(R+
0 ,L1

b(R+
0 )) + z3(0)e−ω3t (2.35)

and for ω3 = ω1

z3(t) ≤
(

ψ1(z1(0))dtee−ω1t + D1
1

1− e−ω1

)
‖d3‖L∞(R+

0 ,L1
b(R+

0 )) + z3(0)e−ω1t,

where dte is the ceiling function. For ω1 < ω3 we also have

z3(t) ≤ z3(0)e−ω3t + z1(t)
∫ t

0

e−(ω3−ω1)(t−s)d3(t, s)ds. (2.36)

(See Appendix A for some details regarding the proof of this lemma.)
Lemma 1 is very useful in our situation. It shows actually that the ‘dissipative

property’ is persevered under standard operations (addition, multiplication, raising to a
power and integration).

To shorten the formulas let us set

h1 := ‖∇ρ‖3 + 1,

h2 := ‖∇ρ‖∞ + 1,
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uδ := ‖M‖δ
δ + 1, δ ∈ [1,∞).

Observe that particular powers of yδ0 and h1, h2 and uδ (for sufficiently large δ), u7 and
h2 can be connected with one another by the inequalities of the type (2.34) in the same
manner as z1 and z3 from Lemma 1 are. From the Lemma 1 we can conclude that all of
them dissipate exponentially with t:

h1(t) ≤ Ch1(h1 + yδ0)
rh1 (0)e−ωh1 t + Dh1 , (2.37)

h2(t) ≤ Ch2(h2 + u7)rh2 (0)e−ωh2 t + Dh2 , (2.38)

uδ(t) ≤ U
(
uδ(0) + Cuδ

(h1 + yδ0)
rδ(0)

)
e−(F2/2)δt + Duδ

=: ũδ(t), (2.39)

where the appearing coefficients depend on the parameters of the problem, and only
the coefficients Cuδ

and Duδ
depend on δ as well. We especially emphasize that r

is independent from δ (it will be crucial for the existence of the uniform dissipative
estimate). Indeed, from (2.23) and the definition of yδ0 (yδ0 > 1, see (2.15)) we obtain:

‖∇ρ(t)‖3 ≤ e−βt‖∇ρ0‖3 + A3/4,2(G1 + G3)

·
∫ t

0

e−β(t−s)(t− s)−3/4(‖ρ(s)‖2 + ‖M(s)‖2)ds

≤ e−βt‖∇ρ0‖3 + C(1,2),2A3/4,2(G1 + G3)

·
∫ t

0

e−β(t−s)(t− s)−3/4yδ0(0)ds (2.40)

since α − γ + 2 > 2, W 2·3/4,2 ⊂ W 1,3 and W 1,2 ⊂ L2(Ω) (with the embedding constant
C(1,2),2). Next, using (2.23) one more time, we obtain

‖∇ρ(t)‖∞ ≤ e−βt‖∇ρ0‖∞ + A3/4,7(G1 + G3)

·
∫ t

0

e−β(t−s)(t− s)−3/4(‖ρ(s)‖7 + ‖M(s)‖7)ds

≤ e−βt‖∇ρ0‖∞ + C(1,3),7A3/4,7(G1 + G3)

·
∫ t

0

e−β(t−s)(t− s)−3/4(‖∇ρ(s)‖3 + 1 + ‖M(s)‖7)ds (2.41)

since W 2·3/4,7 ⊂ W 1,∞ and W 1,3(Ω) ⊂ L7(Ω) (with the embedding constant C(1,3),7).
The estimates for h1 and h2 now follow with (2.40)–(2.41) and Lemma 1 due to the
fact that for the function d(t, s) := (t − s)−3/4

+ the condition ‖d‖L∞(R+
0 ,L1

b(R+
0 )) < ∞ is

satisfied.
Let us now check the dissipative estimate (2.39). With (2.28) we have:
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1
δ
u̇δ ≤ −F2uδ + F3|Ω|u(δ−1)/δ

δ + B2(δ)h
2/(1−ϑ(δ))
1 . (2.42)

Recall that ϑ(δ) = (γ− (α/2)+((δ−2)/2))/((α+ δ)/2) and consequently 2/(1−ϑ(δ)) =
(α + δ)/(α − γ + 1) ≤ B9δ for some B9 and δ ≥ δ∗ sufficiently large. Now, the Young
inequality yields:

u
(δ−1)/δ
δ = (εuδ)(δ−1)/δε−(δ−1)/δ ≤ δ − 1

δ
εuδ +

1
δ
ε−(δ−1),

therefore it follows from (2.42)

u̇δ ≤ −δ

(
F2 − εF3|Ω|δ − 1

δ

)
uδ + ε−(δ−1)F3|Ω|+ δB2(δ)hB9δ

1

≤ −δ
F2

2
uδ + ε−(δ−1)F3|Ω|+ δB2(δ)hB9δ

1

for ε small (depends only on the parameters of the problem). Gronwall’s lemma yields
then

uδ(t) ≤
∫ t

0

e−δ(F2/2)(t−s)
(
ε−(δ−1)F3|Ω|+ δB2(δ)hB9δ

1 (s)
)
ds + e−δ(F2/2)tuδ(0). (2.43)

The dissipate estimate (2.39) follows now with the estimate (2.35) of Lemma 1 and the
dissipate estimate (2.37) for h1.

Now, from the inequality (2.33) we can conclude

uδ(t) ≤ e−δF2tuδ(0) + B8δ
5

∫ t

0

e−δF2(t−s)H1(s)ũ
2/q
(q/2)δ(s)ds, (2.44)

where

H1(t) := h5
2(t)ũ

2(q−1)/q
(α/2)(q/(q−1))(t).

Taking into account that u
2/q
(q/2)δ dissipates with e−δ(F2/2)t and that H1 dissipates with

an exponent independent of δ, we consecutively apply (2.36) to (2.44) and get

uδ(t) ≤ e−δ(F2/2)tuδ(0) + B8ũ
2/q
(q/2)δ(t)

∫ t

0

e−δ(F2/2)(t−s)δ5H1(s)ds

≤ e−δ(F2/2)tuδ(0) +
2
F2

B8δ
4H1(t)ũ

2/q
(q/2)δ(t)

for δ ≥ δ∗ sufficiently large. The bound δ∗ depends only on the parameters of the
problem. Therefore we may assume that
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ũδ(t) = e−δ(F2/2)tuδ(0) + B10δ
4H1(t)ũ

2/q
(q/2)δ(t). (2.45)

Since

uδ(0) = ‖M0‖δ
δ + 1 ≤ ‖M0‖δ

∞|Ω|+ 1

we conclude from (2.45) that for

Aδ(t) := ũδ(t)
(

e(F2/2)t

‖M0‖∞+1

)δ

+ 1 (2.46)

it holds

Aδ(t) ≤ B11δ
4H1(t)A

2/q
(q/2)δ(t).

One can show by induction then that

A
(q/2)n

(2/q)nδ∗
(t) ≤ (

B11δ
4
∗H1(t)

)Pn
k=1(q/2)k

(
q

2

)4
Pn

k=1 k(q/2)k

Aδ∗(t)

−→
n→∞

(
B11δ

4
∗H1(t)

)(q/2)/(1−(q/2))
(

q

2

)2q(1/(1−(q/2)))2

Aδ∗(t)

=: Hδ∗(t)Aδ∗(t).

Therefore we get

lim sup
δ→∞

A
1/δ
δ (t) ≤ H(t)A1/δ∗

δ∗ (t). (2.47)

Combining (2.47) with (2.46) we finally arrive at an estimate for ‖M(t)‖∞:

‖M(t)‖∞ + 1 = lim
δ→∞

u
1/δ
δ (t)

≤ lim sup
δ→∞

ũ
1/δ
δ (t)

≤ H(t)
(
ũ

1/δ∗
δ∗ (t) + (‖M0‖∞ + 1)e−(F2/2)t

)
. (2.48)

Now, since the functions H and ũδ∗ dissipate exponentially (recall (2.38) and (2.39) and
the definition of H and H2), we apply Lemma 1 to (2.48) and conclude that ‖M‖∞
dissipates exponentially as well. Moreover, there exists a dissipative estimate for ‖M‖∞
of the form given in (1.11). This is a consequence of Lemma 1, the estimates (2.38)
and (2.39) and the fact that we only used the initial data norms ‖M0‖∞ and ‖∇ρ0‖∞
thought the proof. All other parameters depended only upon the parameters of the
problem (1.1)–(1.4). The dissipative estimate for ‖∇ρ‖∞ + 1 = h2 is given in (2.38) and
the Theorem 2 is thus proved.
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3. Global attractor (proof of Theorem 3).

It is generally known that the long time behavior of an autonomous dynamical
system can be described in terms of its global attractor A. More precisely, assuming
that the system is well-posed in a topological space T , we can define a family of solving
operators

S(t) : T 7→ T , t ≥ 0

that acts on T mapping the initial data onto the solution at time t:

S(t)(u0) := u(t), t ≥ 0, u0 ∈ T .

This family of operators satisfies

S(0) = idT ,

S(t + s) = S(t) ◦ S(s) ∀t, s ≥ 0,

where idT denotes the identity operator. We say that it forms a semigroup on the phase
space T . Recall now the general definition of the attractor for topological spaces (see
[3]):

Definition 2. A set A is called the attractor for the family B in T if

( i ) A is compact in T and A attracts B, i.e., for every B ∈ B and every neighborhood
V of A there exists a T (B) > 0 such that S(t)B ⊆ V for all t ≥ T (B);

( ii ) A is minimal compact set that attracts B with respect to S(t), i.e., every compact
attracting set of B contains A.

Remark 3.

1. The family B is usually the family of bounded sets of the topological space T . In this
case the attractor A is called the global attractor.

2. The minimality condition can be replaced by the following invariance condition:

S(t)A = A ∀t ≥ 0.

Our goal is now to apply the general theory to the problem (1.1)–(1.4). We showed
in [5] that the problem (1.1)–(1.4) if considered as an equation with respect to (M, ρ)
in the Banach space L∞(Ω) × W 1,∞(Ω) is well-posed: for each pair of initial values
(M0, ρ0) ∈ L∞(Ω)×W 1,∞(Ω) there exist a unique solution (M(t), ρ(t))t∈R0 in terms of
Definition 1. It appears reasonable to consider the space L∞(Ω) × W 1,∞(Ω) equipped
with a weaker topology for the first component. Denote L∞w−∗(Ω) the space L∞(Ω)
equipped with the weak−∗ topology of L∞(Ω). We define the solving semigroup S(t) of
the problem (1.1)–(1.4) on the phase space L∞w−∗(Ω)×W 1,∞(Ω) as follows:

S(t)(M0, ρ0) := (M(t), ρ(t)) for all t ≥ 0.
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The space L∞w−∗(Ω)×W 1,∞(Ω) is not metrizable due to the fact that the space L∞w−∗(Ω)
is not metrizable. It is only a locally convex Hausdorff space. However, the dissipative
estimate (1.11) provides the existence of a ball B∗ := B(0, 2D∞) centered in 0 with
radius 2D∞ which absorbs all bounded sets of the (normed) space L∞(Ω) ×W 1,∞(Ω).
Since there is no difference between the spaces L∞(Ω) and L∞w−∗(Ω) with concern to
boundedness, B∗ remains to be an absorbing set in L∞w−∗(Ω)×W 1,∞(Ω) as well, which
means: for all bounded sets B ⊆ L∞w−∗(Ω)×W 1,∞(Ω) there exists a T (B) > 0 such that
S(t)B ⊆ B∗ for all t ≥ T (B). Consequently, to show the existence of the global attractor
(in the sense of Definition 2 and Remark 3) for the semigroup S(t) it suffers to show the
existence of the minimal compact set A that attracts bounded subsets of B∗.

Recall now a general criteria for existence of the global attractor (see [2], [3]):

Theorem 4. Let S(t) be a continuous semigroup in a complete metric space E
having a compact absorbing set K ⊆ E. Then the semigroup S(t) has a global attractor
A.

Recall that L∞(Ω)-balls are metrizable in L∞w−∗(Ω). Let

{xn}n∈N ⊆ L1(Ω), ‖xn‖1 ≤ 1 ∀n ∈ N (3.1)

be a set of functions that is separating for L∞(Ω). Then the function

d(x∗, y∗) :=
∑

n∈N
2−n|(x∗ − y∗, xn)| ∀f, g ∈ L∞(Ω), ‖x∗‖∞, ‖y∗‖∞ ≤ R

is an example of a suitable metric for a ball of radius R in L∞(Ω) which produces on
it the topology equivalent to the topology of L∞w−∗(Ω) (see [9] for this and more details
on the weak−∗ topology). The relative topology of B∗ is metrizable since L∞(Ω)-balls
are metrizable in the weak−∗ topology, therefore it remains to show the existence of a
compact absorbing set in B∗ and the continuity of the semigroup operators S(t) for all
t > 0. The general criteria Theorem 4 would be then applicable to S(t) in B∗ equipped
with the topology of L∞w−∗(Ω)×W 1,∞(Ω). The projection of B∗ on the first component
is a bounded norm closed set in L∞(Ω), therefore it is compact in L∞w−∗(Ω). Let us now
show the existence of a compact absorbing set for the second component. Applying the
operator ∆ to both sides of the equation (1.2) we obtain

∆ρ(s) = ∆es∆ρ0 −
∫ s

0

∆e(s−ω)∆g(M(ω), ρ(ω)) dω,

so that we get the following estimate in the L6-norm:

‖∆ρ(s)‖6 ≤
∥∥∥∥∆es∆ρ0 −

∫ s

0

∆e(s−ω)∆g(M(ω), ρ(ω))dω

∥∥∥∥
6

≤ C1
1√
s
‖∇ρ0‖6 + C1

∫ s

0

1√
s− ω

∥∥∇g(M(ω), ρ(ω))dω
∥∥

6
.
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Thus due to the assumptions on g there exists a nonnegative function Φρ(s, x, y) which
is nondecreasing with respect to s, x and y, independent of M0 and ρ0 and such that the
following smoothing estimate holds:

√
s‖∆ρ(s)‖6 ≤ Φρ

(
s, ‖M0‖∞, ‖∇ρ0‖∞

)
. (3.2)

With (3.2) and the compact embeddings

L∞(Ω) ⊂⊂ L∞w−∗(Ω),

W 2,6(Ω) ⊂⊂ W 1,∞(Ω)

it follows that the set S(T∗)B∗ for some T∗ > 0 such that S(T∗)B∗ ⊆ B∗ is a relatively
compact absorbing set for the semigroup S(t) in B∗ (T∗ exists due to the fact that B∗ is
an absorbing set). It thus remains to show the continuity of the semigroup operators.

In [5] we derived local Lipschitz continuity for the solutions of (1.1)–(1.4) in the
following sense: for all T, R > 0 it holds

∥∥S(t)
(
M

(1)
0 , ρ

(1)
0

)− S(t)
(
M

(2)
0 , ρ

(2)
0

)∥∥
H−1(Ω)×L2(Ω)

≤ L(t, R)
∥∥(

M
(1)
0 , ρ

(1)
0

)− (
M

(2)
0 , ρ

(2)
0

)∥∥
H−1(Ω)×L2(Ω)

(3.3)

for all
∥∥(M (i)

0 , ρ
(i)
0 )

∥∥
L∞(Ω)×W 1,∞(Ω)

≤ R, i = 1, 2 and some non-negative non-decreasing
in both t and R function L(t, R) independent of M, ρ and 0.

Recall that due to embedding theorems for Sobolev spaces we have

L∞(Ω)×W 1,∞(Ω) ⊂ H−1(Ω)× L2(Ω). (3.4)

The property (3.4) allows the interpretation

L∞w−∗(Ω)×W 1,∞(Ω) ⊂ H−1(Ω)× L2(Ω). (3.5)

Let (M (n)
0 , ρ

(n)
0 ) be a sequence of initial data convergent to some (M0, ρ0) in L∞w−∗(Ω)×

W 1,∞(Ω). This sequence converges in H−1(Ω) × L2(Ω) to the same limit (M0, ρ0) due
to the continuous embedding (3.5). From the property (3.3) we deduce that the se-
quences

(
S(t)(M (n)

0 , ρ
(n)
0 )

)
converge to S(t)(M0, ρ0) in H−1(Ω) × L2(Ω) for all t ≥ 0.

Let us further assume that for some t ≥ 0 the sequence
(
S(t)(M (n)

0 , ρ
(n)
0 )

)
is conver-

gent in L∞w−∗(Ω) ×W 1,∞(Ω). Due to the continuity of the embedding (3.5) the limit is
S(t)(M0, ρ0). Therefore we can conclude that the operators S(t) if considered as mapping
in L∞w−∗(Ω)×W 1,∞(Ω) are closed operators. Since any (non-linear) closed compact op-
erator is completely continuous (that is, continuous and compact) we get the continuity
of the operators S(t) in L∞w−∗(Ω)×W 1,∞(Ω).

Applying the general Theorem 4 to E := B∗ equipped with the topology of L∞w−∗(Ω)×
W 1,∞(Ω) and K := S(T∗)B∗ we deduce the existence of the global attractor A for the
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semigroup {S(t)}t≥0 and the Theorem 3 is thus proved.

Appendix A. Proof of the auxiliary Lemma 1.

Consider first the differential inequality

ẏ ≤ −ωyy + dyyζy (A.1)

assuming that y ≥ 1, ζy ∈ (0, 1), dy ∈ L1
b(R) so that with some computation the estimate

(y(t))1−ζy ≤ (y(0))1−ζye−ωy(1−ζy)t + (1− ζy)
∫ t

0

e−ωy(1−ζy)(t−s)dy(s)ds

follows.

Lemma 1. Let z1, z2, z3 : [0,+∞) → [0,+∞) be such functions that

z1(t) ≤ ψ1(z1(0))e−ω1t + D1,

z2(t) ≤ ψ2(z2(0))e−ω2t + D2,

z3(t) ≤ z3(0)e−ω3t +
∫ t

0

e−ω3(t−s)d3(t, s)z1(s)ds, (A.2)

z1(0), z2(0), z3(0) ≥ 1,

for some constants ω1, ω2, ω3 > 0 and D1, D2 ≥ 1, some non-decreasing functions ψ1, ψ2 :
[1,+∞) → [1,+∞) and some d3 ∈ L∞(R+

0 , L1
b(R

+
0 )), where

L1
b(R

+
0 ) =

{
u ∈ L1

loc(R
+
0 ) : ‖u‖L1

b(R+
0 ) := sup

x0∈R+
0

‖u‖L1([x0,x0+1]) < ∞
}

.

It holds:

1. (z1 + z2)(t) ≤ (ψ1 + ψ2)((z1 + z2)(0))e−min{ω1,ω2}t + D1 + D2.
2. z1z2(t) ≤ 3D1D2ψ1ψ2(z1z2(0))e−min{ω1,ω2}t + D1D2.
3. zσ

1 (t) ≤ max{1, 2σ−1}(ψσ
1 (z1(0))e−σω1t + Dσ

1 ) ∀σ > 0.
4. For ω1 6= ω3

z3(t) ≤
(

ψ1(z1(0))
1

1− e−|ω1−ω3| e
−min{ω1,ω3}t + D1

1
1− e−ω3

)

· ‖d3‖L∞(R+
0 ,L1

b(R+
0 )) + z3(0)e−ω3t (A.3)

and for ω3 = ω1

z3(t) ≤
(

ψ1(z1(0))dtee−ω1t + D1
1

1− e−ω1

)
‖d3‖L∞(R+

0 ,L1
b(R+

0 )) + z3(0)e−ω1t.
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For ω1 < ω3 we also have

z3(t) ≤ z3(0)e−ω3t + z1(t)
∫ t

0

e−(ω3−ω1)(t−s)d3(t, s)ds. (A.4)

Proof. We show only 4 for ω1 6= ω3. Since

∫ t

0

e−ω3(t−s)e−ω1sd3(t, s)ds

= e−min{ω1,ω3}t
{∫ t

0
e−|ω1−ω3|(t−s)d3(t, s)ds if ω1 < ω3

∫ t

0
e−|ω1−ω3|sd3(t, s)ds if ω1 > ω3

≤ 1
1− e−|ω1−ω3| e

−min{ω1,ω3}t‖d3‖L∞(R+
0 ,L1

b(R+
0 )) (A.5)

we conclude from (A.2)

∫ t

0

e−ω3(t−s)d3(t, s)z1(s)ds

≤
∫ t

0

e−ω3(t−s)d3(t, s)
(
ψ1(z1(s))e−ω1(t−s) + D1

)
ds

≤
(

ψ1(z1(0))
1

1− e−|ω1−ω3| e
−min{ω1,ω3}t + D1

1
1− e−ω3

)
‖d3‖L∞(R+

0 ,L1
b(R+

0 ))

and the statement follows. ¤
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