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Abstract. In this article we prove resolvent estimates for the Laplace-
Beltrami operator or more general elliptic Fourier multipliers on symmet-
ric spaces of noncompact type. Then the Kato theory implies time-global
smoothing estimates for corresponding dispersive equations, especially the
Schrödinger evolution equation. For low-frequency estimates, a pseudo-
dimension appears as an upper bound of the order of elliptic Fourier multipli-
ers. A key of the proof is to show a weighted L2-continuity of the modified
Radon transform and fractional integral operators.

1. Introduction.

The purpose of this paper is to study resolvent estimates for elliptic Fourier multipli-
ers and smoothing effects for corresponding dispersive equations on symmetric spaces of
noncompact type. A typical example of dispersive equations is the Schrödinger evolution
equation. It is known that singularities of the solution of the Schrödinger evolution equa-
tion propagate along geodesics at infinite speed, since dispersive equations do not have
the finite propagation property. Moreover, if each geodesic goes to “infinity”, then the
solution gains extra smoothness in comparison with the initial data and the forcing term.
This phenomenon is called the (local) smoothing effect. In the general case, singularities
of a solution of a dispersive equation propagate along the Hamilton flow generated by
the principal symbol. For time local smoothing estimates, the main interest is a rela-
tionship between the global behavior of classical flows and high-frequency estimates of
the solution. However if we consider time global smoothing estimates, careful arguments
are required for low-frequency estimates as well as high-frequency estimates. On the Eu-
clidean space it is known that a certain difference appears in time global low-frequency
estimates for the solutions of the dispersive equations in connection with the space di-
mension. The difference is caused by a singularity of the resolvent near the bottom of the
continuous spectrum. On symmetric spaces of noncompact type the pseudo-dimension
(which will be defined by (1.9) or (2.6)) plays a similar role to the dimension for low-
frequency estimates in the Euclidean case.

First let us recall some known results for dispersive equations on Euclidean spaces.
For x = (x1, . . . , xn) ∈ Rn and ξ = (ξ1, . . . , ξn) ∈ Rn, set x · ξ = x1ξ1 + · · · + xnξn,
|x| = √

x · x. We consider the Cauchy problem of the Schrödinger evolution equation:
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Dtu + ∆u = f(t, x) in R1+n, (1.1)

u(0, x) = φ(x) in Rn, (1.2)

where i =
√−1, ∂t = ∂/∂t, Dt = −i∂t, ∂j = ∂/∂xj , ∆ =

∑n
j=1 ∂2

j . The above Cauchy
problem is L2-well-posed, that is, for any φ ∈ L2(Rn) and for any f ∈ L1

loc(R;L2(Rn)),
(1.1)–(1.2) possess a unique solution u ∈ C(R;L2(Rn)). Moreover, the solution u(t, x) is
explicitly given by

u(t, x) = e−it∆φ(x) + i

∫ t

0

e−i(t−s)∆f(s, x)ds,

e−it∆φ(x) = (2π)−n

∫

R2n

ei(x−y)·ξeit|ξ|2φ(y)dydξ.

In addition, we introduce two operators |Dx|s := F−1|ξ|sF and 〈Dx〉s := F−1〈ξ〉sF
for s ∈ R, where 〈ξ〉 := (1 + |ξ|2)1/2 and F denotes the Fourier transform defined by
Fv(ξ) = (2π)−n/2

∫
Rn e−ix·ξv(x)dx. Then we have the following two types of smooth-

ing estimates for the Schrödinger evolution equation (throughout this paper, different
positive constants are denoted by the same letter C).

Type-I: Let n ≥ 2 and δ > 1/2. Then

∥∥〈x〉−δ|Dx|1/2e−it∆φ
∥∥

L2(R1+n)
≤ C‖φ‖L2(Rn), (1.3)

∥∥∥∥〈x〉−δ|Dx|
∫ t

0

e−i(t−s)∆f(s, ·)ds

∥∥∥∥
L2(R1+n)

≤ C‖〈x〉δf‖L2(R1+n). (1.4)

Type-II: Let n ≥ 3 and δ ≥ 1. Then

∥∥〈x〉−δ〈Dx〉1/2e−it∆φ
∥∥

L2(R1+n)
≤ C‖φ‖L2(Rn), (1.5)

∥∥∥∥〈x〉−δ〈Dx〉
∫ t

0

e−i(t−s)∆f(s, ·)ds

∥∥∥∥
L2(R1+n)

≤ C‖〈x〉δf‖L2(R1+n). (1.6)

Note that for Type-I estimates the symbols |ξ|1/2 and |ξ| vanish at the origin, but for
Type-II estimates the symbols 〈ξ〉1/2 and 〈ξ〉 never vanish on Rn. Hence the difference
between Type-I and Type-II lies in the estimates for low-frequency part of the solutions.
TYPE-I estimates (1.3) and (1.4) were studied by many authors (see e.g. [2]). TYPE-II
estimates (1.5) and (1.6) were first studied by Kato and Yajima [23]. We obtain these
estimates from uniform resolvent estimates for −∆ by using the Kato theory. In the lower
dimensional case, it is known that careful treatments are needed for the low-frequency
part of the solution: On R1, (1.3) is valid, but we have to replace |Dx| by Dx in (1.4). In
addition, TYPE-II estimates (1.5)–(1.6) do not hold for any δ > 0. On R2, the inequality
(1.5) holds if and only if δ > 1 (cf. [32]), while (1.6) does not hold for any δ > 0. The
invalidity is caused by the singularity of the resolvent (−∆− ζ)−1 at ζ = 0, namely, the
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zero-resonance of −∆.
The above estimates were generalized to Fourier multipliers of homogeneous real-

principal type by Chihara in [6], [7]. In [6], Type-I estimates were generalized to Fourier
multipliers defined by homogeneous symbols of real-principal type. Also, in [7] Chi-
hara obtained Type-I and Type-II estimates for Fourier multipliers with the real-valued
homogeneous elliptic symbol by using uniform resolvent estimates (see Theorem 2.1).
For recent developments of smoothing estimates for Fourier multipliers, see e.g. M.
Ruzhansky and M. Sugimoto [26], [27], [28]. In [27], they deal with the critical case for
smoothing estimates and resolvent estimates by using specific smoothing symbols which
vanish on the set generated by classical orbits. In [26] and [28], they established a new
method for smoothing estimates in terms of canonical transformations. In those papers,
Chihara’s results in [6] and [7] for homogeneous equations were generalized to the much
larger class of symbols, e.g. symbols with lower order terms, non-elliptic symbols. In
addition, we note that detail results in smoothing estimates are given by [28].

Recently, uniform resolvent estimates for the Laplace-Beltrami operator and some
kinds of time-global smoothing estimates for the Schrödinger evolution equation have
been studied for noncompact complete Reimannian manifolds with several types of end
structures, e.g. perturbation of the Euclidean spaces, asymptotically conic manifolds,
and asymptotically hyperbolic spaces (cf. [3], [4], [5], [25], [30], [31]). In this paper, we
study resolvent estimates and smoothing estimates for symmetric spaces of noncompact
type. The class of symmetric spaces of noncompact type contains hyperbolic spaces,
which are the most interesting examples of negatively curved Riemannian manifolds. We
also deal with higher rank symmetric spaces which are not covered by the above papers.
Symmetric spaces of noncompact type are regarded as a generalization of the Euclidean
space in the sense that horocycles correspond to planes in the Euclidean space and the
Fourier transform is defined through horocycle waves. On these spaces harmonic analysis
have been developed and is a powerful tool to investigate invariant differential operators,
or more general Fourier multipliers. Therefore it is natural to study resolvent estimates
on symmetric spaces of noncompact type. In the estimates of low-frequency part on the
Fourier space, the pseudo-dimension necessarily appears. The main results show that
the class of symmetric spaces of noncompact type provides a rich amount of examples
for the study of low-frequency resolvent estimates.

Let us state our main results. Let X = G/K be a symmetric space of noncompact
type. Let ∆X be the Laplace-Beltrami operator on X with respect to the G-invariant
metric. Then the operator ∆X |C∞0 (X) has an essential selfadjoint extension on L2(X)
which is denoted by the same symbol. It is known that the spectrum of −∆X , σ(−∆X)
consists of absolutely continuous spectrum and that σ(−∆X) = [|ρ|2,∞) for some positive
constant |ρ|2 (ρ is explicitly given in Subsection 2.2). Let g = k ⊕ p be the Cartan
decomposition of the Lie algebra g of G. Let a be a maximal abelian subspace of p and
a∗ its dual space. Let a(λ) ∈ C(a∗)∩C∞(a∗ \{0}) be a positively homogeneous function
of order one which is invariant under the Weyl group action. Suppose that a(λ) > 0 for
λ 6= 0 and set p(λ) = a(λ)m for m > 1. In the real rank one case, p(λ) is of the form
c|λ|m for some positive constant c due to the assumption on a(λ). Let p(D) = F−1pF
be the Fourier multiplier with the symbol p defined by the Fourier transform F on X

(for the details see Subsection 2.2). We consider the Cauchy problem of the form
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Dtu− p(D)u = f(t, x) in R×X, (1.7)

u(0, x) = φ(x) in X. (1.8)

In the case p(λ) = |λ|2, then p(D) = −∆X − |ρ|2, so (1.7) becomes the (modified)
Schrödinger evolution equation. Since p(λ) is real-valued, the above Cauchy problem is
L2-well-posed, that is, for any φ ∈ L2(X) and for any f ∈ L1

loc(R;L2(X)), the Cauchy
problem (1.7)–(1.8) possess a unique solution u ∈ C(R;L2(X)). Now we put

|D| = (−∆X − |ρ|2)1/2, 〈D〉 = (1−∆X − |ρ|2)1/2,

|x| = d(x, o)1/2, 〈x〉 = (1 + d(x, o)2)1/2, x ∈ X,

where d(x, o) is the Riemannian distance between x ∈ X and the origin o = eK. Let
l ∈ Z>0 be the rank of the symmetric space X, Σ+

0 be the set of indivisible positive
roots of the Lie algebra g of G and |Σ+

0 | be the its cardinality. Let us define the pseudo-
dimension of X by

ν = l + 2|Σ+
0 |. (1.9)

The above positive integer ν is called the pseudo-dimension of X in [10] (ν appears as an
upper bound of the exponent in Lp-Lq estimates of the complex power of the resolvent
operator, cf. [10, Theorem 6.1]).

Then our main results are stated as follows.

Theorem 1.1. ( i ) Suppose m > 1 and δ > 1/2. Then

sup
ζ∈C\R

∣∣(|D|m−1(p(D)− ζ)−1f, g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X). (1.10)

( ii ) Suppose 1 < m < ν and δ > m/2. Then

sup
ζ∈C\R

∣∣(〈D〉m−1(p(D)− ζ)−1f, g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X). (1.11)

Moreover, if l ≥ 2 and m < l, we can take δ = m/2 in (1.11). Here ν is the
pseudo-dimension of X defined by (2.6).

Theorem 1.1 yields the following time global smoothing estimates.

Theorem 1.2. ( i ) Suppose m > 1 and δ > 1/2. Then

∥∥〈x〉−δ|D|(m−1)/2eitp(D)φ
∥∥

L2(R×X)
≤ C‖φ‖L2(X),

∥∥∥∥〈x〉−δ|D|(m−1)

∫ t

0

ei(t−s)p(D)f(s, ·)ds

∥∥∥∥
L2(R×X)

≤ C‖〈x〉δf‖L2(R×X).
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( ii ) Suppose 1 < m < ν and δ > m/2. Then

∥∥〈x〉−δ〈D〉(m−1)/2eitp(D)φ
∥∥

L2(R×X)
≤ C‖φ‖L2(X), (1.12)

∥∥∥∥〈x〉−δ〈D〉(m−1)

∫ t

0

ei(t−s)p(D)f(s, ·)ds

∥∥∥∥
L2(R×X)

≤ C‖〈x〉δf‖L2(R×X). (1.13)

Moreover, if l ≥ 2 and m < l, we can take δ = m/2 in (1.12)–(1.13).

In the estimates (1.11) and (1.13), the upper bound ν for the order m of the elliptic
Fourier multiplier p(D) is sharp in the sense that if m ≥ ν then (1.11) and (1.13) do not
hold for any δ > 0. On the other hand, the estimate (1.12) still holds in the critical case
m = ν for δ > m/2 (Theorem 6.2). However in the case m > ν, (1.12) does not hold for
any δ > 0. These properties immediately follow from the fact that the vanishing order
of the Plancherel measure at the origin is precisely ν (see Section 6).

In the case of dispersive equations on Rn, there are several results on resolvent
estimates for low-frequency part. For example, see [3], [4], [5], [7]. In these results,
the order m satisfies the condition 1 < m < n. On the other hand, in the case of
corresponding dispersive equations on symmetric spaces of noncompact type nothing is
known about the resolvent estimates for low-frequency part. Therefore, we stress here
that in Theorem 1.1 and 1.2 m has to satisfy the condition 1 < m < ν. Namely, the
condition on the order of Fourier multiplier is given by the pseudo-dimension ν instead of
the dimension of X. The dimension n and pseudo-dimension ν is given by the following
(see Subsection 2.2):

n = l +
∑

α∈Σ+

mα,

ν = l + 2|Σ+
0 |.

In the general case, the pseudo-dimension does not coincide with the dimension (see
Remark 1.1). In this sense, the above two theorems show that there is a big difference
between the Euclidean case and the case of symmetric spaces of noncompact type.

Remark 1.1. We make some remarks on the properties of the pseudo-dimension
ν of X.

( i ) Since ν ≥ 3 for all symmetric spaces, the above estimates (1.10)–(1.11) are valid
for m = 2, especially in the case p(D) = −∆X − |ρ|2. Note that the resolvent
estimate (1.11) for the Laplace-Beltrami operator are valid on the real hyperbolic
plane H2(R), but not on R2 for any δ > 0. In fact, in the case n = 1 or 2,
the kernel of (−∆Rn − ζ)−1 has singularities at ζ = 0 on the other hand that of
(−∆H2(R) − 1/4− ζ)−1 has no singularity at ζ = 0.

( ii ) In some special cases, relations between n and ν are as follows:
(a) If X is of rank one, then ν = 3 irrespective of the dimension.
(b) If g is a normal real form of gC, i.e. mα = 1 for all α ∈ Σ, then ν−n = n−l ≥ 1,
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so ν > n.
(c) If X satisfies the even multiplicity condition, then ν ≤ n, where the equality

holds if and only if G is complex.
The following is the list of irreducible symmetric spaces of noncompact type which
satisfy the above conditions respectively (cf. Helgason [16, Chapter X, Section 6]):
(a) SO0(p, 1)/SO(p) × SO(1) (n = p), SU(p, 1)/S(U(p) × U(1)) (n = 2p),

Sp(p, 1)/Sp(p) × Sp(1) (n = 4p), and F4(−20)/Spin(9) (n = 16). These are
real, complex, quaternion hyperbolic space, and the Cayley hyperbolic plane.

(b) SL(m,R)/SO(m), Sp(m,R)/U(m), SO0(p, p − 1)/SO(p) × SO(p − 1),
SO0(p, p)/SO(p)×SO(p) (p ≥ 2), and five exceptional spaces EI, EV , EV III,
FI, G. The first four examples have (n, ν) = ((m − 1)(m + 2)/2,m2 − 1),
(m(m + 1),m(2m + 1)), (p(p− 1), (2p− 1)(p− 1)), and (p2, (2p− 1)p), respec-
tively.

(c) SO0(p, 1)/SO(p)×SO(1) (p is odd), SU∗(2m)/Sp(m), E6(−26)/F4, and KC/K,
where K is a simple compact Lie group. The first three examples have (n, ν) =
(p, 3), ((m− 1)(2m + 1), (m2 − 1)), and (26, 8), respectively.

In the Euclidean case, the Plancherel measure on the Fourier space is also the Eu-
clidean measure. In the case of symmetric spaces, the Plancherel measure is given by
|c(λ)|−2dλdb, where c(λ) is Harish-Chandra’s c-function, dλ the Euclidean measure on
a∗ and db the normalized invariant measure on a compact Riemannian manifold B. Simi-
larly as in the case of Rn, a sort of Fourier transformation is defined on symmetric spaces
of noncompact type. The corresponding Fourier inversion formula is given as follows (we
will give the detail in Section 2).

f(x) = |W |−1

∫

a∗

∫

B

e(iλ+ρ)(A(x,b))Ff(λ, b)|c(λ)|−2dλdb.

The pseudo-dimension relates to the order of the zero of the spectral measure |c(λ)|−2dλ

at the origin. As in [10] we can write

|c(λ)|−2dλ = rν−1c(r, ω)drdσ(ω),

where λ = rω ∈ a∗+, r = |λ| ∈ (0,∞), ω = λ/|λ| and c(r, ω) satisfies 0 < c(r, ω) ≤
C〈r〉n−ν , 0 < c(0, ω). Let kζ,σ(x) be the Schwartz kernel of the Bessel-Green-Riesz
operator (−∆X − |ρ|2 + ζ2)−σ/2 with ζ ∈ C, Im ζ > 0 and σ ∈ R. The kernel kζ,σ(x) is
expressed by the Plancherel measure and the spherical function ϕλ(x) (for the definition
see (2.9)) as follows.

kζ,σ(x) = |W |−1

∫

a∗
ϕλ(x)(|λ|2 + ζ2)−σ/2|c(λ)|−2dλ.

If we take the limit ζ → 0, we see that the limit of the Riesz kernel limζ→0 kζ,σ(x) exists
if and only if σ < ν. In other words, let V ∗(r) be the volume of the ball with respect to
the measure |c(λ)|−2dλ with radius r centered at the origin. Then we have V ∗(r) ∼ rν
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as r ↓ 0 and V ∗(r) ∼ rn as r →∞. Therefore we expect that the pseudo-dimension plays
a role of dimension in low-frequency estimates on the Fourier space. We also note that
the pseudo-dimension ν = l + 2|Σ+

0 | often appears in certain critical cases of estimates
on symmetric spaces of noncompact type (see e.g. [1], [10], [21]).

We turn to some related results for dispersive equations with variable coefficients.
There are a lot of results concerning smoothing effects and resolvent estimates for dis-
persive equations, we only refer a small part of related results. In [11], [12], [13], Doi
gave a deep result on the relationship between microlocal smoothing effects and global
behavior of geodesic flows (or Hamilton flows). Rodnianski and Tao [25] deals with the
Schrödinger evolution equation on a three-dimensional Riemannian manifold which is
a compact smooth perturbation of the Euclidean space and satisfies the non-trapping
condition. They obtained a certain type of time-global smoothing estimates for homoge-
neous solutions. In [31], Vodev proved uniform high-frequency resolvent estimates for the
Laplace-Beltrami operator on a large class of noncompact Riemannian manifolds with
elliptic ends. The above class of Riemannian manifolds contains long-range perturbation
of the Euclidean spaces, asymptotically conic manifolds, and asymptotically hyperbolic
spaces. Their estimates with the non-trapping assumption yield high-frequency time
global smoothing estimates for solutions of the Schrödinger evolution equation. On the
other hand, for low-frequency estimates we refer to [3], [4], [5], [30]. In [3], [4], [5], low-
frequency resolvent estimates for long range perturbations of the Euclidean Laplacian
were obtained. In [30], Vasy and Wunsch generalized the results by Bony and Häfner [3]
to the scattering manifolds.

Finally, this paper is organized as follows. In the former part of Section 2 we give
a summary of the result of [7]. In the latter part, we review some facts related to har-
monic analysis on semi-simple Lie groups and symmetric spaces. In Section 3 we show a
weighted L2-continuity of the modified Radon transform and fractional integral operators.
A decomposition formula of Harish-Chandra’s c-function (Lemma 3.2) and pseudodiffer-
ential calculus on the Euclidean space play an essential role in the proof of continuity of
the modified Radon transform (Proposition 3.1). Next, we use a weighted L2-continuity
for a convolution operator (Corollary 2.6) and integrability of the Riesz kernel (Corollary
2.8) in order to prove a continuity of fractional integral operators (Proposition 3.3). In
Section 4 we show Fourier restriction estimates on symmetric spaces (Lemma 4.1). In
the case of rank one we prove directly by using the L2-continuity of the modified Radon
transform. But in the higher rank case those estimates are derived from Fourier restric-
tion estimates on the Euclidean space (Lemma 2 in [7] , see Lemma 2.3) by using the
modified Radon transform. In Section 5 we prove the first main theorem (Theorem 1.1)
according to [7] by making use of Lemma 5.1 and Lemma 5.2. In Section 6 we derive
a Fourier restriction estimate for low-frequency part in a critical case from a weighted
L2-continuity of a convolution operator (Corollary 2.6). Then this estimate yields time
global smoothing estimates (1.12) for homogeneous solutions in the critical case m = ν.

2. Preliminaries.

In this section we give a brief summary of Chihara’s result on the resolvent estimates
in the Euclidean case. Next we introduce the basic material of harmonic analysis on semi-
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simple Lie groups and symmetric spaces of noncompact type. Moreover, we mention some
key estimates for the convolution operator and the Bessel-Green-Riesz kernel.

2.1. Resolvent estimates on the Euclidean space.
First we recall the resolvent estimates on the Euclidean spaces. Let p(ξ) ∈ C1(Rn)∩

C∞(Rn \ {0}) be a real-valued positively homogeneous symbol of degree m > 1 with
∇p(ξ) 6= 0 for ξ 6= 0. We consider the Cauchy problem of the form

Dtu− p(Dx)u = f(t, x) in R1+n, (2.1)

u(0, x) = φ(x) in Rn,

where p(Dx) = F−1p(ξ)F . In the case p(ξ) = |ξ|2, i.e. p(Dx) = −∆, (2.1) is the
Schrödinger evolution equation.

Since p(ξ) is real-valued, the above Cauchy problem is L2-well-posed. It is known
that the singularities of the solution of a dispersive equation propagate along the Hamil-
ton flow exp(tHp)(x, ξ) = (x + t∇p(ξ), ξ) on T ∗Rn = R2n. In the case p(ξ) = |ξ|2, i.e.
p(Dx) = −∆, the Hamilton flow is a geodesic flow on T ∗Rn. For the symbol p(ξ), the
dispersive condition ∇p(ξ) 6= 0 (ξ 6= 0) corresponds to the non-trapping condition for the
Hamilton orbit, i.e.

∇p(ξ) 6= 0 ⇐⇒ |x + t∇p(ξ)| → ∞ as |t| → ∞

for any (x, ξ) ∈ Rn× (Rn \{0}). Roughly speaking if the dispersive condition is satisfied,
then the singularities of the solutions at any point disperse at infinite speed and the
solutions gain extra smoothness in comparison with the initial value and the forcing
term. In [19] Hoshiro proved that for any real-valued polynomial symbol q(ξ) of order
m > 1, time-local spatially-local smoothing estimates hold for the propagator eitq(Dx) if
and only if its principal symbol qm(ξ) satisfies the dispersive condition.

In [7] Chihara proved the following estimates for homogeneous elliptic Fourier mul-
tipliers.

Theorem 2.1 ([7, Theorem 1]). Suppose n ≥ 2. Let p(ξ) ∈ C1(Rn)∩C∞(Rn\{0})
be a real-valued, elliptic, and positively homogeneous symbol of degree m > 1.

Type-I: Suppose m > 1 and δ > 1/2. Then

∥∥〈x〉−δ|Dx|(m−1)/2eitp(Dx)φ
∥∥

L2(R1+n)
≤ C‖φ‖L2(Rn),

∥∥∥∥〈x〉−δ|Dx|(m−1)

∫ t

0

ei(t−s)p(Dx)f(s, ·)ds

∥∥∥∥
L2(R1+n)

≤ C‖〈x〉δf‖L2(R1+n).

Type-II: Suppose 1 < m < n. Then

∥∥〈x〉−m/2〈Dx〉(m−1)/2eitp(Dx)φ
∥∥

L2(R1+n)
≤ C‖φ‖L2(Rn),
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∥∥∥∥〈x〉−m/2〈Dx〉(m−1)

∫ t

0

ei(t−s)p(Dx)f(s, ·)ds

∥∥∥∥
L2(R1+n)

≤ C‖〈x〉m/2f‖L2(R1+n).

Theorem 2.2 ([7, Theorem 2]). Suppose n ≥ 2. Let p(ξ) ∈ C1(Rn)∩C∞(Rn\{0})
be a real-valued, elliptic, and positively homogeneous symbol of degree m > 1.

Type-I: Suppose m > 1 and δ > 1/2. Then

sup
ζ∈C\R

∣∣(|Dx|m−1(p(Dx)− ζ)−1f, g)L2(Rn)

∣∣ ≤ C‖〈x〉δf‖L2(Rn)‖〈x〉δg‖L2(Rn).

Type-II: Suppose 1 < m < n. Then

sup
ζ∈C\R

∣∣(〈Dx〉m−1(p(Dx)− ζ)−1f, g)L2(Rn)

∣∣ ≤ C‖〈x〉m/2f‖L2(Rn)‖〈x〉m/2g‖L2(Rn).

(2.2)

The key of the proof of Theorem 2.2 is the following Fourier restriction estimates
and L2-continuity of some singular integrals. We use the following two lemmas in the
proof of Lemma 4.1 and Lemma 5.1.

Lemma 2.3 ([7, Lemma 1]). Let n ≥ 2. Let a(ξ) ∈ C(Rn) ∩ C∞(Rn \ {0}) be an
elliptic positively homogeneous symbol of degree 1 with a(ξ) > 0 for ξ 6= 0. Put

Σ(τ) = {ξ ∈ Rn; a(ξ) = τ}, τ ≥ 0.

Then we have the following three estimates:

( i ) (Uniform trace estimates) Suppose θ > 0. Then

‖f̂‖L2(Σ(τ)) ≤ C‖〈x〉1/2+θf‖L2(Rn). (2.3)

( ii ) (Hölder continuity) Suppose 0 < θ ≤ 1/2 for n = 2, and 0 < θ < 1 for n ≥ 3.
Then

∥∥τ (n−1)/2f̂(τ ·)− σ(n−1)/2f̂(σ·)∥∥
L2(Σ(1))

≤ C|τ − σ|θ‖〈x〉1/2+θf‖L2(Rn). (2.4)

(iii) (Low frequency trace estimates) Suppose 0 < θ < (n− 1)/2. Then

‖f̂‖L2(Σ(τ)) ≤ Cτθ‖〈x〉1/2+θf‖L2(Rn). (2.5)

Lemma 2.4 ([7, Lemma 2]). Let δ satisfy 0 < δ ≤ 1 for n ≥ 3 and 0 < δ < 1 for
n = 2. Suppose that q(ξ) ∈ C∞(Rn \ {0}) is homogeneous of degree zero. Then

‖(|x|δq(Dx)− q(Dx)|x|δ)f‖L2(Rn) ≤ C‖|x|δf‖L2(Rn),

‖〈x〉δq(Dx)f‖L2(Rn) ≤ C‖〈x〉δf‖L2(Rn).
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2.2. Harmonic analysis on symmetric spaces.
Notation. Let G be a noncompact, connected, semisimple Lie group with finite

center, K ⊂ G a maximal compact subgroup, and X = G/K the associated symmetric
space. Let θ be the Cartan involution associated with the Cartan decomposition g = k⊕p

at the Lie algebra level. Then the Killing form induces the G-invariant metric on X =
G/K. Let ∆X be the Laplace-Beltrami operator with respect to the G-invariant metric
on X and dx be the corresponding measure. Let a be a maximal abelian subspace of p

and a∗ its dual space. For α ∈ a∗ we put gα = {Y ∈ g; [H, Y ] = α(H)Y for all H ∈ a}.
We set Σ = {α ∈ a∗ \ {0}; gα 6= {0}}, the set of restricted roots of g with respect to a.
Let m be the centralizer of a in k. Then we have the following root space decomposition
of g with respect to a.

g = a⊕m⊕ {⊕α∈Σgα}.

We select a connected component in a such that α 6= 0 for all α ∈ Σ. Let a+ denote the
connected component, called a positive Weyl chamber. Also, define positive roots and
positive indivisible roots by Σ+ = {α ∈ Σ; α > 0 on a+} and Σ+

0 = {α ∈ Σ+;α/2 /∈ Σ+}
respectively. Put the nilpotent subalgebra n = ⊕α∈Σ+gα. Let ρ = 1/2

∑
α∈Σ+ mαα be

the half sum of positive roots, counted with multiplicities mα = dim gα. Let l = dim a

be the rank of X. Let n be the dimension of X and ν the pseudo-dimension of X:

n = l +
∑

α∈Σ+

mα,

ν = l + 2|Σ+
0 |. (2.6)

Set A = exp a, N = exp n and M denotes the centralizer of A in K. Let M ′ be the
normalizer of A in K, and W the factor group M ′/M , called the Weyl group of X. The
group W acts as a group of linear transformations on a∗ by (sλ)(H) = λ(s−1 · H) for
H ∈ a, λ ∈ a∗ and s ∈ W , where g ·X = Ad(g)X for g ∈ G, X ∈ g. Let |W | denote the
order of W .

Then we have the Iwasawa decomposition of G as follows;

G = KAN.

Each g ∈ G is uniquely written as g = k(g) exp(H(g))n(g), where k(g) ∈ K, H(g) ∈ a

and n(g) ∈ N . Those mappings g → k(g), g → H(g), and g → n(g) are smooth. We
have the following integral formula on X.

∫

X

f(x)dx =
∫∫

A×N

f(an · o)dadn, (2.7)

where da, dn are the Haar measure on A, N , respectively. Put B = K/M = G/MAN ,
B is the “boundary” of X. Let db be the normalized left K-invariant measure on B. Set
A(x, b) = −H(g−1k) for (x, b) = (gK, kM) ∈ X ×B.
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We define the modified Radon transform R and the Helgason Fourier transform F
for f ∈ C∞0 (X) respectively.

Rf(H, kM) = eρ(H)

∫

N

f(keHn · o)dn, (H, kM) ∈ a×B,

Ff(λ, b) =
∫

X

e(−iλ+ρ)(A(x,b))f(x)dx, (λ, b) ∈ a∗ ×B.

On the other hand, let dH, dλ be normalized Euclidean measure with the constant factor
(2π)−l/2 on a, a∗, respectively. Then the Fourier transform on a and its inverse are given
respectively by

Faφ(λ) =
∫

a

e−iλ(H)φ(H)dH, F−1
a ψ(H) =

∫

a∗
eiλ(H)ψ(λ)dλ.

Then by using (2.7) we have

Ff(λ, b) = Fa[Rf(·, b)](λ).

Namely, the Helgason Fourier transform is expressed as the composition of the modified
Radon transform and the Euclidean Fourier transform on a.

Let c(λ) denote Harish-Chandra’s c-function defined by the integral

c(λ) =
∫

N̄

e−(iλ+ρ)(H(n̄))dn̄,

where N̄ = θN , and dn̄ is the Haar measure on N̄ normalized by
∫

N̄
e−2ρ(H(n̄))dn̄ = 1.

An explicit expression for Harish-Chandra’s c-function was obtained by Gindikin and
Karpelevič as follows (cf. Helgason [14, Chapter IV, Section 6, Theorem 6.14]).

c(λ) = c0

∏

α∈Σ+
o

2−〈iλ,α0〉Γ(〈iλ, α0〉)
Γ((1/2)((1/2)mα + 1 + 〈iλ, α0〉))Γ((1/2)((1/2)mα + m2α + 〈iλ, α0〉)) ,

where α0 = α/〈α, α〉, the constant c0 is given so that c(−iρ) = 1, and Γ(z) is the
gamma function. Also, let L2

W (a∗ × B, |W |−1|c(λ)|−2dλdb) denote the closed subspace
of L2(a∗ ×B, |W |−1|c(λ)|−2dλdb) whose elements satisfy the following condition for the
Weyl group:

∫

B

e(isλ+ρ)(A(x,b))ψ(sλ, b)db =
∫

B

e(iλ+ρ)(A(x,b))ψ(λ, b)db

for all s ∈ W , and a.e. x ∈ X, b ∈ B. Let CW (a∗) denote the set of all continuous
functions on a∗ which are invariant for the Weyl group action. We define function spaces
C∞W (a∗) and C∞W (a∗ \ {0}) in the same manner. For the Helgason Fourier transform the
following are well-known (see for example Helgason [15, Chapter 3, Section 1]):
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( i ) (The inversion formula for F)

f(x) = |W |−1

∫

a∗×B

e(iλ+ρ)(A(x,b))Ff(λ, b)|c(λ)|−2dλdb, f ∈ C∞0 (X).

( ii ) (The Plancherel theorem) We have the following unitary isomorphism

F : L2(X) −→ L2
W (a∗ ×B, |W |−1|c(λ)|−2dλdb).

We remark that zeros of c(λ)−1 on a∗ is precisely the Weyl walls:

⋃

α∈Σ+
0

{λ ∈ a∗; 〈α, λ〉 = 0}.

Here we define three kinds of Fourier multipliers on a, a∗, and X. The Fourier
multiplier p(DH) on a (resp. q(Dλ) on a∗) with the symbol p(λ) (resp. q(H)) is defined
by

p(DH) = F−1
a p(λ)Fa (resp. q(Dλ) = Faq(H)F−1

a ).

In a similar manner, for a W -invariant function p(λ) the Fourier multiplier p(D) with
the symbol p(λ) is defined by

p(D)f(x) = F−1[p(λ)Ff ](x)

= |W |−1

∫

a∗×B

e(iλ+ρ)(A(x,b))p(λ)Ff(λ, b)|c(λ)|−2dλdb.

Then for any Fourier multiplier p(D) with the symbol p(λ) we have

F [p(D)f ](λ, b) = Fa[p(DH)Rf(·, b)](λ).

For the modified Radon transform we have the following:

( i ) (The inversion formula for R) Put J = c−1(DH). Then we have

f = |W |−1R∗J̄JRf, f ∈ C∞0 (X). (2.8)

( ii ) We have an isometric operator

JR : L2(X) −→ L2(a×B, |W |−1dHdb).

2.3. Continuity of convolutions.
In this subsection, we state some results on a convolution operator, in order to prove

a weighted L2-continuity of fractional integral operators.
For two functions f1 and f2 the convolution f1 ∗ f2 is defied by
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f1 ∗ f2(g) =
∫

G

f1(h)f2(h−1g)dh,

if the above integral converges. In [17] Herz proved the following weighted L2-estimate
for the convolution.

Theorem 2.5 ([17, Theorem 1]). Let ϕλ(g) denote the elementary spherical func-
tion defined by

ϕλ(g) =
∫

K

e(iλ−ρ)(H(gk))dk, λ ∈ a∗C. (2.9)

Let w be a positive, continuous, and bi-K-invariant function on G satisfying

( ∫

G

ϕ2
0(g)w−1(g)dg

)1/2

=: N1 < ∞.

Then we have

‖f1 ∗ f2‖L2(G,dg) ≤ N1‖f1‖L2(G,wdg)‖f2‖L2(G,dg).

In particular, for some N2 > 0 we can take w such that

w(g) ≤ C{log(e + Vr)}N2 , d(g · o, o) ≤ r

for some N2 > 0. Here Vr denotes the volume of balls with radius r (with respect to the
pseudo-distance on G) with the Haar measure dg.

Remark 2.1. Theorem 2.5 is related to the Kunze-Stein phenomenon for the con-
volution operator. For the Kunze-Stein phenomenon and Herz majorizing principle refer
[8], [9], [17], [24]. After his result more general and sharp estimates for the convolution
operator have been studied, see [20], [21].

For a function f(x) on X, we define its lift function on G by f̃(g) = f(gK). For two
functions f1, f2 on X set the bilinear operator × as follows (cf. Helgason [15, Chapter
II, Section 3]).

(f1 × f2)(x) = f̃1 ∗ f̃2(g), x = gK.

We put L2,δ(X) = 〈x〉−δL2(X) for δ ∈ R.
For the elementary spherical function we have

ϕ0(expH) ³
{ ∏

α∈Σ+
0

(1 + 〈α, H〉)
}

e−ρ(H)

≤ C〈H〉|Σ+
0 |e−ρ(H)
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for any H ∈ a+ (cf. [1, Proposition 2.2.12]). Here for positive functions f , g, f ³ g

means that C−1g ≤ f ≤ Cg uniformly for some positive constant C. Then we can take
w(g) = 〈g · o〉2δ for any δ > ν/2 in Theorem 2.5 and obtain the following corollary.

Corollary 2.6. For any δ > ν/2 we have

‖f1 × f2‖L2(X) ≤ C‖f1‖L2,δ(X)‖f2‖L2(X).

2.4. The Bessel-Green-Riesz kernel and the fractional integrals.
For ζ ∈ [0,∞), σ ∈ R let kζ,σ(x) be the Schwartz kernel of the operator (−∆X−|ρ|2+

ζ2)−σ/2 if it exists. We call kζ,σ(x) the Bessel-Green-Riesz kernel. In the limiting case
ζ = 0, we call |D|−σ = (−∆X−|ρ|2)−σ/2 and k0,σ(x) the fractional integral operators and
the Riesz kernel respectively. In [1] J. -Ph. Anker and Li. Ji obtained the optimal upper
and lower bounds for the heat kernel, Poisson kernel, and Bessel-Green-Riesz kernels.
We use the estimate for the Riesz kernel to prove a certain weighted L2-continuity of the
fractional integral operator.

The following is due to Anker and Ji [1].

Theorem 2.7 ([1, Theorem 4.2.2]). For the Bessel-Green-Riesz kernel kζ,σ we
have the following.

( i ) The behavior of kζ,σ away from the origin:

kζ,σ(x) ³



|x|(σ−l−1)/2−|Σ+

0 |ϕ0(x)e−ζ|x| if ζ > 0, σ > 0,

|x|σ−l−2|Σ+
0 |ϕ0(x) if ζ = 0, 0 < σ < ν.

( ii ) The behavior of kζ,σ near the origin:

kζ,σ(x) ³





|x|σ−n if 0 < σ < n

log(1/|x|) if σ = n

1 if σ > n

with the restriction 0 < σ < ν if ζ = 0.

As a direct consequence of Theorem 2.7, we have the following corollary for the Riesz
kernel.

Corollary 2.8. ( i ) Let χ0 be the characteristic function of the set {x ∈
X; |x| ≤ 1}. Then for any 0 < σ < ν we have

χ0k0,σ ∈ L1(X).

( ii ) Put χ1 = 1− χ0. Then for any 0 < σ < ν, δ < ν/2− σ we have

〈x〉δχ1k0,σ ∈ L2(X).
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3. Key tools.

In this section we prove a global continuity of the modified Radon transform and
the fractional integral operator on symmetric spaces of noncompact type.

Put L2,δ(a × B) = 〈H〉−δL2(a × B, |W |−1dHdb) for δ ∈ R. Then we have a global
continuity of the modified Radon transform as follows.

Proposition 3.1. For any δ > 0, we have the following continuous map.

JR : L2,δ(X) → L2,δ(a×B).

Here and in the proof of Proposition 3.1, we use the pseudodifferential calculus. For
the details see [18, Chapter XVIII, Section 18.4–18.6].

Generally, the inverse of Harish-Chandra’s c-function c−1(λ) vanishes on each Weyl
wall. This fact causes many difficulties in the global analysis on a∗ and a. To avoid these
difficulties and to prove Proposition 3.1 we need the following factorization lemma.

Lemma 3.2. Put

π(λ) = Πα∈Σ+
0
〈λ, α〉,

b(λ) = π(iλ)c(λ),

b0(λ) = Πα∈Σ+
0
(1 + 〈λ, α0〉2)−(mα+m2α−2)/4,

where α0 = α/〈α, α〉. Then we have c−1(λ) = π(iλ)b−1(λ) and b±1(λ) ∈ S(b±1
0 (λ),

〈H〉−2|dH|2 + |dλ|2) (here S(m, g) denotes a symbol class for a slowly varying metric g

and a g-continuous positive function m, see [18, Chapter XVIII, Definitions 18.4.1 and
18.4.2]). In particular, b(λ) has no singularity on each Weyl wall.

Proof. It is sufficient to prove the following properties:

|b(λ)| ³ b0(λ),

|p0(Dλ)b(λ)| ≤ C|b0(λ)|

for any polynomial function p0(H) on a. These estimates are essentially obtained in the
proof of Lemma 3.5 and Lemma 3.6 of [15, Chapter II, Section 3]. ¤

We prove Proposition 3.1 by using Lemma 3.2 and pseudodifferential calculus on a.

Proof of Proposition 3.1. First we take a dyadic decomposition {φ0,j}∞j=0 ⊂
C∞0 (R) such that 0 ≤ φ0,j ≤ 1, φ0,0 = 1 if |t| ≤ 1/2, = 0 if |t| ≥ 1, φ0,1 = 1 if 1 ≤ |t| ≤ 2,
= 0 if |t| ≤ 1/2 or 4 ≤ |t|, and φ0,j(t) = φ0,1(t/2j−1) (j ≥ 1),

∑∞
j=0 φ0,j = 1. Also

put φ1,j(x) = φ0,j(|x|), φ2,j(H) = φ0,j(|H|) for any j ≥ 1. Then we have the following
equivalent norms on L2,δ(X) and L2,δ(a×B).
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‖〈x〉δf‖L2(X) ³
∥∥{2jδ‖φ1,jf‖L2(X)}∞j=0

∥∥
l2

,

‖〈H〉δϕ‖L2(a×B) ³
∥∥{2jδ‖φ2,jϕ‖L2(a×B)}∞j=0

∥∥
l2

.

Here we have put l2 = {{xj}∞j=0 ⊂ C; ‖{xj}∞j=0‖l2 < ∞} and ‖{xj}∞j=0‖l2 =
(
∑∞

j=0 |xj |2)1/2. In this proof we use the latter norm on each space. Take cut-off
functions {χ0,j}∞j=0 ⊂ C∞0 (a) such that χ0,0 = 1 if |H| ≤ 1, = 0 if |H| ≥ 2, and
χ0,j(H) = χ0,0(H/2j) for j ≥ 1. For any f ∈ C∞0 (X) we have f =

∑∞
k=0 φ1,kf and

‖φ2,jJRf‖L2(a×B) ≤
∞∑

k=0

‖φ2,jJR(φ1,kf)‖L2(a×B). (3.1)

Since |H| ≤ |k exp(H)n · o|, we see that

suppR(φ1,kf)(·, b) ⊂ {H ∈ a; |H| ≤ 2k+1}, b ∈ B.

By using the local property of the partial differential operator π(iDH), suppπ(iDH)ϕ ⊂
suppϕ for any ϕ ∈ C∞0 (a), we have

JR(φ1,kf) = b−1(DH)π(iDH)R(φ1,kf)

= b−1(DH)χ0,kπ(iDH)R(φ1,kf)

= b−1(DH)χ0,kb(DH)JR(φ1,kf). (3.2)

Combining (3.1), (3.2) and the equality

‖JR(φ1,kf)‖L2(a×B,|W |−1dHdb) = ‖φ1,kf‖L2(X),

we obtain

2δj‖φ2,jJRf‖L2(a×B,|W |−1dHdb) ≤
∞∑

k=0

ajk(2δk‖φ1,kf‖L2(X)),

where we put

ajk = 2δ(j−k)‖φ2,jb
−1(DH)χ0,kb(DH)‖L(L2(a)).

Here L(L2(a)) denotes the Banach space of all bounded linear operators on L2(a) and
‖ · ‖L(L2(a)) its operator norm. From the Schur lemma for sequences, it suffices to show
that

∑∞
j=0 ajk ≤ C and

∑∞
k=0 ajk ≤ C uniformly in j, k for some positive constant C.

Since the symbols {φ2,j}, {χ0,k} are uniformly bounded in S(1, 〈H〉−2|dH|2 + |dλ|2), the
family of pseudodifferential operators

{φ2,jb
−1(DH)χ0,kb(DH)}j,k
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is uniformly bounded in L(L2(a)) by the L2-boundedness theorem for pseudodifferential
operators (cf. [18, Theorem 18.6.3]). Hence we have

k∑

j=0

ajk ≤ C
k∑

j=0

2δ(j−k) ≤ 2δC

2δ − 1
.

On the other hand, we have the uniformly bounded symbols

2(δ+1)jφ2,j ∈ S(〈H〉δ+1, 〈H〉−2|dH|2 + |dλ|2),
2−(δ+1)kχ0,k ∈ S(〈H〉−(δ+1), 〈H〉−2|dH|2 + |dλ|2).

So the pseudodifferential operators 2(δ+1)(j−k)φ2,jb
−1(DH)χ0,kb(DH) are uniformly

bounded in L(L2(a)). Therefore

∞∑

j=k+1

ajk =
∞∑

j=k+1

2(k−j)2(δ+1)(j−k)‖φ2,jb
−1(DH)χ0,kb(DH)‖L(L2(a))

≤ C
∞∑

j=k+1

2(k−j)

= C.

The uniform boundedness for the sum in j is proved in the same way. ¤

Next, we prove a weighted L2-continuity of the fractional integral operators on X

defined in Subsection 2.4. Here the pseudo-dimension ν introduced in Section 2 (2.6)
appears in upper bounds of the exponent of the fractional integral operator. The following
proposition plays an important role in the estimates for low-frequency part.

Proposition 3.3. For any (σ, δ, δ′) with 0 < σ < ν/2 + min{0, δ, δ′}, δ + δ′ > σ,
we have

∥∥〈x〉−δ|D|−σ〈x〉−δ′f
∥∥

L2(X)
≤ C‖f‖L2(X).

Proof. First, we have

〈x〉−δ|D|−σ〈x〉−δ′f(x) =
∫

X

〈x〉−δk0,σ(x, y)〈y〉−δ′f(y)dy,

where k0,σ(g · o, h · o) = k0,σ(h−1g · o) = k0,σ(g−1h · o). For a positive constant C0 put

X0 = {y ∈ X; d(x, y) ≤ 1},

X1 = {y ∈ X; 〈d(x, y)〉δ ≤ C0〈x〉δ, 〈d(x, y)〉δ′ ≤ C0〈y〉δ
′} \X0,
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X2 = {y ∈ X; 〈d(x, y)〉δ > C0〈x〉δ} \X0,

X3 = {y ∈ X; 〈d(x, y)〉δ′ > C0〈y〉δ
′} \X0.

Then {Xj}3j=0 is a covering of X. Now we set

Ij(x) =
∫

Xj

〈x〉−δk0,σ(x, y)〈y〉−δ′ |f(y)|dy

for j = 0, 1, 2, 3. Clearly we get

|〈x〉−δ|D|−σ〈x〉−δ′f(x)| ≤
3∑

j=0

Ij(x).

On X0 we have 〈x〉−δ〈y〉−δ′ ≤ C. Hence

I0(x) ≤ C(χ0k0,σ)× |f |(x).

By the assumption that 0 < σ < ν and the fact that f1 × f2 ∈ L2(X) for f1 ∈ L1(X)
and for f2 ∈ L2(X), we have

‖I0‖L2(X) ≤ C‖χ0k0,σ‖L1(X)‖f‖L2(X). (3.3)

It suffices to show that in the cases (a) δ, δ′ ≥ 0 and 0 < δ + δ′ ≤ ν/2, (b) 0 ≤ δ ≤ ν/2
and δ′ ≤ 0.

Put δ1 = {ν + (δ + δ′ − σ)}/2, δ2 = {ν − σ − (δ + δ′)}/2 so that δ + δ′ = δ1 − δ2.
We have δ1 > ν/2, δ2 ∈ (0, ν/2− δ) in case (a), and δ1 > ν/2, δ2 ∈ (−δ′, ν/2− δ) in case
(b). On X1 we have 〈x〉−δ〈y〉−δ′ ≤ C2

0 〈d(x, y)〉−δ1+δ2 . Hence

I1(x) ≤ C2
0

(〈x〉−δ1+δ2χ1k0,σ

)× |f |(x).

Since δ1 > ν/2 and δ2 < ν/2− δ, from Corollary 2.6 and Corollary 2.8 we get

‖I1‖L2(X) ≤ C‖〈x〉δ2χ1k0,σ‖L2(X)‖f‖L2(X). (3.4)

On X2 for a sufficiently large C0 we have C−1〈x〉 ≤ 〈y〉 ≤ C〈d(x, y)〉 and thus
〈x〉−δ〈y〉−δ′ ≤ 〈x〉−δ1〈d(x, y)〉δ2 . Hence

I2(x) ≤ C〈x〉−δ1
(〈x〉δ2χ1k0,σ

)× |f |(x).

By Corollary 2.6 and Corollary 2.8 we obtain

‖I2‖L2(X) ≤ C‖〈x〉δ2χ1k0,σ‖L2(X)‖f‖L2(X). (3.5)
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On X3 we have

〈x〉−δ〈y〉−δ′ ≤ C

{〈d(x, y)〉δ2〈y〉−δ1 in case (a),

〈d(x, y)〉−δ1+δ2 in case (b).

Therefore we get

‖I3‖L2(X) ≤ C‖〈x〉δ2χ1k0,σ‖L2(X)‖f‖L2(X). (3.6)

By combining (3.3)–(3.6), we complete the proof. ¤

Finally we note that the fractional integral operators on X are different from those
on Rn in the following sense. In [29] Stein and Weiss gave the following estimate.

Theorem 3.4 ([29, Theorem B∗]). Suppose 0 < α < n, β < n/2, γ < n/2 and
α = β + γ. Then

∥∥|x|−β |Dx|−α|x|−γf
∥∥

L2(Rn)
≤ C‖f‖L2(Rn).

Corollary 3.5. Suppose 0 < α < n/2 + min{0, β, γ} and β + γ ≥ α. Then

∥∥〈x〉−β |Dx|−α〈x〉−γf
∥∥

L2(Rn)
≤ C‖f‖L2(Rn).

If we compare the upper bounds of the exponents in Proposition 3.3 and Corol-
lary 3.5, we see that the pseudo-dimension ν corresponds to the dimension n. As a
consequence of Proposition 3.3, if ν ≥ n, then we have a better estimate about the L2-
continuity of the fractional integral operators on X (e.g. if X = H2(R), then n = 2 but
ν = 3).

4. Restriction estimates.

In this section we prove the Fourier restriction estimates by using Proposition 3.1
and Proposition 2.3. For a positively homogeneous function of order one a(λ) with
a ∈ CW (a∗) ∩ C∞W (a∗ \ {0}) and a(λ) > 0 for λ 6= 0, let Σ(τ) be the level set defined by

Σ(τ) = {(λ, b) ∈ a∗ ×B; a(λ) = τ} (4.1)

with the measure 2−1|c(λ)|−2dδ|λ|=τdb for l = 1 (here dδ|λ|=τ denotes the Dirac measure
on the set {|λ| = τ}), and the surface measure induced by |W |−1|c(λ)|−2dλdb for l ≥ 2.
By using the co-area formula for the family of level sets {Σ(τ)}τ∈(0,∞) in a∗ × B, the
L2-norm of Ff on the Fourier space is expressed as

|W |−1

∫∫

a∗×B

|Ff(λ, b)|2|c(λ)|−2dλdb =
∫ ∞

0

∥∥|∇a|−1/2Ff
∥∥2

L2(Σ(τ))
dτ.
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We prove the following Fourier restriction estimates for the Fourier transform on X.

Lemma 4.1. ( i ) (Uniform trace estimates) Suppose θ > 0. Then

‖Ff‖L2(Σ(τ)) ≤ C‖〈x〉1/2+θf‖L2(X), τ > 0.

( ii ) (Hölder continuity) Suppose 0 < θ < 1/2 for l = 2, and 0 < θ < 1 for l = 1, or
l ≥ 3. Then

∥∥s(τ, ·)Ff(τ ·, ·)− s(σ, ·)Ff(σ·, ·)∥∥
L2(Σ(1))

≤ C|τ − σ|θ‖〈x〉1/2+θf‖L2(X) (4.2)

for τ, σ > 0. Here we put s(τ, λ) = τ (l−1)/2c−1(τλ)/c−1(λ) for τ > 0, λ ∈ a∗.
(iii) (Low frequency trace estimates) Suppose 0 < θ < 1 for l = 1, and 0 < θ < (l−1)/2

for l ≥ 2. Then

‖Ff‖L2(Σ(τ)) ≤ Cτθ‖〈x〉1/2+θf‖L2(X), τ > 0.

Remark 4.1. Proposition 3.3 does not cover the critical case σ = δ+δ′. Therefore,
in order to deal with the critical case δ = m/2 in Theorem 1.1 (ii), we take the approach
of translating the result for the Euclidean spaces into symmetric spaces, but this gives
the constraint for the order of p(λ). If the inequality in Proposition 3.3 holds also for
σ = δ + δ′, then it enables us to prove Theorem 1.1 (ii) in the critical case by applying
the lemma above as in [7].

Proof. (i) In the case l = 1, we have

c−1(λ)Ff(λ, b) =
∫

a

e−iλ(H)JRf(H, b)dH.

For any θ > 0, by using Hölder inequality we have

|c−1(λ)Ff(λ, b)| ≤
∫

a

〈H〉−(1/2+θ)〈H〉1/2+θ|JRf(H, b)|dH

≤
( ∫

a

〈H〉−(1+2θ)dH

)1/2

‖〈H〉1/2+θJRf(·, b)‖L2(a).

Hence by using Proposition 3.1 we obtain

( ∫

B

|Ff(λ, b)|2|c−1(λ)|−2db

)1/2

≤ C‖〈H〉1/2+θJRf‖L2(a×B)

≤ C‖〈x〉1/2+θf‖L2(X).

In the case l ≥ 2, from the uniform trace estimate (2.3) and applying Proposition 3.1 we
have
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‖Ff‖L2(Σ(τ)) =
( ∫

B

∫

a(λ)=τ

|Fa[JRf(·, b)](λ)|2dσ(λ)db

)

≤
( ∫

B

C2‖〈H〉1/2+θJRf(·, b)‖2L2(a)db

)

= C‖〈H〉1/2+θJRf‖L2(a×B)

≤ C‖〈x〉1/2+θf‖L2(X). (4.3)

(ii) In the case l = 1, we use the following Hölder estimate on Rn for 0 < γ < 1:

sup
ξ 6=η

|Ff(ξ)−Ff(η)|
|ξ − η|γ ≤ Cγ,n‖|x|n/2+γf‖L2(Rn).

So for any 0 < θ < 1, we have

∣∣c−1(λ1)Ff(λ1, b)− c−1(λ2)Ff(λ2, b)
∣∣ =

∣∣Fa[JRf(·, b)](λ1)−Fa[JRf(·, b)](λ2)
∣∣

≤ C|λ1 − λ2|θ‖〈H〉1/2+θJRf(·, b)‖L2(a).

Therefore by using Proposition 3.1 we obtain

( ∫

B

∣∣c−1(λ1)Ff(λ1, b)− c−1(λ2)Ff(λ2, b)
∣∣2db

)1/2

≤ C|λ1 − λ2|θ‖〈H〉1/2+θJRf‖L2(a×B)

≤ C|λ1 − λ2|θ‖〈x〉1/2+θf‖L2(X). (4.4)

For l ≥ 2, we can prove the inequality (4.2) by using (2.4) in the same way as (4.3) in
(i).

(iii) For l = 1, by taking λ2 = 0 in (4.4) we have

( ∫

B

∣∣c−1(λ)Ff(λ, b)
∣∣2db

)1/2

≤ |λ|θ‖〈x〉1/2+θf‖L2(X).

Since a(λ) = c|λ|, for any 0 < θ < 1 we have

‖Ff‖L2(Σ(τ)) ≤ Cτθ‖〈x〉1/2+θf‖L2(X).

For l ≥ 2, we can prove the assertion by using (2.5) and applying Proposition 3.1 in the
same way as (4.3) in (i). ¤

5. Resolvent estimates.

In this section we prove the resolvent estimates (1.10)–(1.11) in Theorem 1.1. First
we introduce a certain function space. Let B∞W (a∗) denote the Fréchet space defined by
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B∞W (a∗) 3 ψ ⇔ ψ ∈ C∞W (a∗) and sup
λ∈a∗

|p0(Dλ)ψ(λ)| < ∞

for any polynomial function p0(H). (5.1)

We prove the following lemma which is a modification of Theorem 1.1 (i).

Lemma 5.1. Suppose m > 1 and δ > 1/2. Then for any ψ ∈ B∞W (a∗) we have

sup
ζ∈C\R

∣∣(|D|m−1(p(D)− ζ)−1ψ(D)f, ψ(D)g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X), (5.2)

where ψ(D) is the Fourier multiplier with the symbol ψ(λ).

Proof. The following argument is almost the same as in the proof of Lemma 4
in [7]. It suffices to show the estimate (5.2) in the case f = g and 1/2 < δ < 1. We put
ζ = µ± iη, η > 0, µ ∈ R. Using the Plancherel formula and the co-area formula, we have

(|D|(m−1)(p(D)− ζ)−1ψ(D)f, ψ(D)f
)
L2(X)

= |W |−1

∫

a∗×B

|λ|m
p(λ)− ζ

|ψFf(λ, b)|2|c(λ)|−2dλdb

=
∫ ∞

0

(τ − µ)± iη

(τ − µ)2 + η2
‖qψFf‖2L2(Σ(τ1/m))dτ (Σ(τ) is given by (4.1)), (5.3)

where we put q(λ) = |λ|(m−1)/2|∇p(λ)|−1/2. Note that q(λ) is bounded. Applying
Lemma 4.1 (i) to the imaginary part of (5.3), we have

∣∣ Im(|D|m−1(p(D)− ζ)−1ψ(D)f, ψ(D)f)L2(X)

∣∣

=
∫ ∞

0

η

(τ − µ)2 + η2
‖qψFf‖2L2(Σ(τ1/m))dτ

≤ C

∫ ∞

0

η

(τ − µ)2 + η2
‖Ff‖2L2(Σ(τ1/m))dτ

≤ C‖〈x〉δf‖2L2(X)

∫ ∞

0

η

(τ − µ)2 + η2
dτ (by Lemma 4.1 (i))

≤ C‖〈x〉δf‖2L2(X).

For the real part of (5.3), according to τ ∈ R, we consider the following three cases:
(Case I): In the case µ ≤ 0. By Proposition 3.3 we have

∣∣ Re(|D|m−1(p(D)− ζ)−1ψ(D)f, ψ(D)f)L2(X)

∣∣

≤
∫ ∞

0

(τ − λ)
(τ − µ)2 + η2

‖qψFf‖2L2(Σ(τ1/m))dτ
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≤ C

∫ ∞

0

1
τ
‖Ff‖L2(Σ(τ1/m))dτ

= C

∫

a∗×B

|∇p(λ)|
|p(λ)| |Ff(λ, b)|2|c(λ)|−2dλdb

≤ C
∥∥|D|−1/2f

∥∥2

L2(X)

≤ C‖〈x〉δf‖2L2(X).

(Case II): In the case 0 < µ ≤ 2m. We split the real part into three parts.

Re
(|D|m−1(p(D)− ζ)−1ψ(D)f, ψ(D)f

)
L2(X)

=
∫ ∞

0

(τ − µ)
(τ − µ)2 + η2

‖qψFf‖2L2(Σ(τ1/m))dτ

=
∫ µ/2

0

+
∫ 3µ/2

µ/2

+
∫ ∞

3µ/2

=: I1 + I2 + I3.

For τ ∈ (0,∞) \ (µ/2, 3µ/2) we have

|τ − µ|
(τ − µ)2 + η2

≤ 1
|τ − µ| ≤

3
τ

.

As in the Case I we get

|I1|, |I3| ≤ C
∥∥|D|−1/2f

∥∥2

L2(X)
≤ C

∥∥〈x〉δf∥∥2

L2(X)
.

For τ, µ > 0 we put F (τ, µ) = ‖qψFf‖2
L2(Σ(τ1/m))

− ‖qψFf‖2
L2(Σ(µ1/m))

. Since

∫ 3µ/2

µ/2

(τ − µ)
(τ − µ)2 + η2

dτ = 0,

we have

I2 =
∫ 3µ/2

µ/2

(τ − µ)
(τ − µ)2 + η2

F (τ, µ)dτ.

Here for simplicity we set g = F−1qψFf . Then by Lemma 4.1 (i), we have

|F (τ, µ)| = ∣∣‖Fg‖L2(Σ(τ1/m)) − ‖Fg‖L2(Σ(µ1/m))

∣∣

× (‖Fg‖L2(Σ(τ1/m)) + ‖Fg‖L2(Σ(µ1/m))

)



918 K. Kaizuka

≤ ∥∥s(τ1/m, ·)Fg(τ1/m·, ·)− s(µ1/m, ·)Fg(µ1/m·, ·)∥∥
L2(Σ(1))

× C
(‖Ff‖L2(Σ(τ1/m)) + ‖Ff‖L2(Σ(µ1/m))

)

≤ ∥∥s(τ1/m, ·)Fg(τ1/m·, ·)− s(µ1/m, ·)Fg(µ1/m·, ·)∥∥
L2(Σ(1))

× C‖〈x〉δf‖L2(X). (5.4)

By applying Lemma 2.3 (ii) to JRg(·, b), we have

∥∥s(τ1/m, ·)Fg(τ1/m·, ·)− s(µ1/m, ·)Fg(µ1/m·, ·)∥∥
L2(Σ(1))

=
( ∫

B

∫

a(λ)=1

∣∣τ (l−1)/2mFa[JRg(·, b)](τ1/mλ)

− µ(l−1)/2mFa[JRg(·, b)](µ1/mλ)
∣∣2dσ(λ)db

)1/2

≤ C
∣∣τ1/m − µ1/m

∣∣θ
( ∫

B

‖〈H〉δJRg(·, b)‖2L2(a)db

)1/2

, (5.5)

where we put θ = δ−1/2. By using Lemma 2.4 (note that if l = 1 then q is constant) and
the L2-continuity of the pseudodifferential operator 〈H〉δψ(DH)〈H〉−δ in the integrand
on the right hand side of the inequality (5.5), we get

∥∥〈H〉δJRg(·, b)∥∥2

L2(a)
=

∥∥〈H〉δq(DH)ψ(DH)JRf(·, b)∥∥2

L2(a)

≤ C
∥∥〈H〉δψ(DH)JRf(·, b)∥∥2

L2(a)
(by Lemma 2.4)

≤ C
∥∥〈H〉δJRf(·, b)

∥∥2

L2(a)
.

Then by using the weighted L2-continuity of the modified Radon transform, we have

( ∫

B

∥∥〈H〉δJRg(·, b)∥∥2

L2(a)
db

)1/2

≤ C‖〈H〉δJRf‖L2(a×B)

≤ C‖〈x〉δf‖L2(X). (5.6)

By (5.5) and (5.6), we have

∥∥s(τ1/m, ·)Fg(τ1/m·, ·)− s(µ1/m, ·)Fg(µ1/m·, ·)∥∥
L2(Σ(1))

≤ C|τ1/m − µ1/m|θ‖〈x〉δf‖L2(X). (5.7)

By (5.4) and (5.7), we obtain



Resolvent estimates on symmetric spaces of noncompact type 919

|F (τ, µ)| ≤ C|τ1/m − µ1/m|θ‖〈x〉δf‖2L2(X). (5.8)

Here the mean value theorem shows that for µ/2 ≤ τ ≤ 3µ/2

∣∣τ1/m − µ1/m
∣∣ ≤ Cµ−(m−1)/m|τ − µ|. (5.9)

Substituting (5.9) into (5.8), we have

|F (τ, µ)| ≤ Cµ−θ(m−1)/m|τ − µ|θ‖〈x〉δf‖2L2(X) (5.10)

for µ/2 ≤ τ ≤ 3µ/2. Hence we obtain

|I2| ≤ Cµ−θ(m−1)/m‖〈x〉δf‖2L2(X)

∫ 3µ/2

µ/2

|τ − µ|θ−1dτ

= 2Cµ−θ(m−1)/m‖〈x〉δf‖2L2(X)

∫ µ/2

0

σθ−1dσ

=
2C

θ
µθ/m‖〈x〉δf‖2L2(X)

≤ 21+θC

θ
‖〈x〉δf‖2L2(X).

(Case III): In the case µ > 2m. We split the real part of (5.3) into four parts as
follows.

Re
(|D|m−1(p(D)− ζ)−1ψ(D)f, ψ(D)f

)
L2(X)

=
∫ ∞

0

(τ − µ)
(τ − µ)2 + η2

‖qψFf‖2L2(Σ(τ1/m))dτ

=
∫ µ−µ(m−1)/m

0

+
∫ µ+µ(m−1)/m

µ−µ(m−1)/m

+
∫ 2µ

µ+µ(m−1)/m

+
∫ ∞

2µ

=: I4 + I5 + I6 + I7.

It is easy to estimate I4, I6 and I7. Since µ− τ ≥ τ (m−1)/m for 0 ≤ τ ≤ µ− µ(m−1)/m,
and τ − µ ≤ (τ/2)(m−1)/m for µ + µ(m−1)/m ≤ τ ≤ 2µ,

|τ − µ|
(τ − µ)2 + η2

≤ 1
|τ − µ| ≤

(
2
τ

)(m−1)/m

for 0 ≤ τ ≤ µ− µ(m−1)/m and µ + µ(m−1)/m ≤ τ ≤ 2µ. Hence, we deduce
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|I4|, |I6| ≤ C

∫ ∞

0

τ−(m−1)/m‖Ff‖2L2(Σ(τ1/m))dτ

= C

∫

a∗×B

|p(λ)|−(m−1)/m|∇p(λ)||Ff(λ, b)|2|c(λ)|−2dλdb

≤ C‖f‖2L2(X). (5.11)

Since τ − µ ≥ τ/2 for τ ≥ 2µ, we get

|I7| ≤ C
∥∥|D|−1/2f

∥∥2

L2(X)
≤ C

∥∥〈x〉δf
∥∥2

L2(X)
. (5.12)

As in the Case II, since

∫ µ+µ(m−1)/m

µ−µ(m−1)/m

(τ − µ)
(τ − µ)2 + η2

dτ = 0,

we have

I5 =
∫ µ+µ(m−1)/m

µ−µ(m−1)/m

(τ − µ)
(τ − µ)2 + η2

F (τ, µ)dτ.

Here we remark that for µ > 2m

(
µ− µ(m−1)/m

)− µ

2
= µ(m−1)/m

(
µ1/m

2
− 1

)
> 0.

Then (5.9) is also valid for µ > 2m and |τ − µ| ≤ µ(m−1)/m, so (5.10) holds for µ > 2m

and |τ − µ| ≤ µ(m−1)/m. Hence we obtain

|I5| ≤ Cµ−θ(m−1)/m
∥∥〈x〉δf

∥∥
L2(X)

∫ µ(m−1)/m

0

σθ−1dσ

=
C

θ

∥∥〈x〉δf
∥∥2

L2(X)
. (5.13)

Combining the inequalities (5.11), (5.12) and (5.13), we obtain the assertion. ¤

Next, in order to control the low-frequency part we need the following lemma.

Lemma 5.2. ( i ) Suppose m > 1 and δ > 1/2. Then for any φ ∈ B∞W (a∗) with
φ(λ) = 0 near 0 in a∗, we have

sup
ζ∈C\R

∣∣(φ(D)〈D〉m−1(p(D)− ζ)−1f, g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X),

(5.14)
where φ(D) is the Fourier multiplier with the symbol φ(λ) on X.
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( ii ) Suppose 1 < m < ν and δ > m/2. Then for any ψ ∈ B∞W (a∗) we have

sup
ζ∈C\R

∣∣((p(D)− ζ)−1ψ(D)f, ψ(D)g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X), (5.15)

where ψ(D) is the Fourier multiplier with the symbol ψ(λ) on X.
Here B∞W (a∗) denotes the Fréchet space defined by (5.1).

Proof. (i) First, a slight modification of the proof of Theorem 2 in [7] gives the
following high-frequency resolvent estimate for any l ≥ 1:

sup
ζ∈C\R

∣∣(φ(DH)〈DH〉m−1(p(DH)− ζ)−1f, g)L2(a)

∣∣ ≤ C‖〈H〉δf‖L2(a)‖〈H〉δg‖L2(a).

By the Plancherel theorem and the continuity of the modified Radon transform we obtain

sup
ζ∈C\R

∣∣(φ(D)〈D〉m−1(p(D)− ζ)−1f, g)L2(X)

∣∣

= sup
ζ∈C\R

∣∣∣∣
∫

B

(φ(DH)〈DH〉m−1(p(DH)− ζ)−1JRf(·, b), JRg(·, b))L2(a)db

∣∣∣∣

≤ C
∥∥〈H〉δJRf

∥∥
L2(a×B)

∥∥〈H〉δJRg
∥∥

L2(a×B)

≤ C
∥∥〈x〉δf∥∥

L2(X)

∥∥〈x〉δg∥∥
L2(X)

.

(ii) For 1 < m < ν, δ > m/2, we can take δ′ ∈ R+ such that 1/2 < δ′ < min{(ν −
m)/2, δ−m/2}+1/2. Then 〈x〉δ′ |D|−(m−1)/2〈x〉−δ is a bounded linear operator on L2(X)
due to Proposition 3.3. By (i) for δ′ > 1/2, we obtain

sup
ζ∈C\R

∣∣((p(D)− ζ)−1ψ(D)f, ψ(D)g)L2(X)

∣∣

≤ C
∥∥〈x〉δ′ |D|−(m−1)/2f

∥∥
L2(X)

∥∥〈x〉δ′ |D|−(m−1)/2g
∥∥

L2(X)

≤ C
∥∥〈x〉δf∥∥

L2(X)

∥∥〈x〉δg∥∥
L2(X)

. ¤

Now we prove Theorem 1.1.

Proof of Theorem 1.1. (i) Take ψ = 1 on a∗ in Lemma 5.1 (i).
(ii) In the case 1 < m < ν and δ > m/2. Choose ψ0(λ) ∈ B∞W (a∗;R) such that

0 ≤ ψ0(λ) ≤ 1, ψ0(λ) = 1 if |λ| ≤ 1/2, and ψ0(λ) = 〈λ〉−(m−1)/2 if |λ| ≥ 1. Set
ψ(λ) = 〈λ〉(m−1)/2ψ0(λ), φ(λ) = 1− ψ2

0(λ). Then we have

〈D〉(m−1) = φ(D)〈D〉(m−1) + ψ0(D)∗〈D〉(m−1)ψ0(D).

Applying the estimate (5.14) to φ(λ) and (5.15) to ψ(λ) respectively, we have the following
two estimates.
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sup
ζ∈C\R

∣∣((1− ψ0(D)2)〈D〉m−1(p(D)− ζ)−1f, g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X),

sup
ζ∈C\R

∣∣(ψ0(D)2〈D〉m−1(p(D)− ζ)−1f, g)L2(X)

∣∣ ≤ C‖〈x〉δf‖L2(X)‖〈x〉δg‖L2(X).

Combining above two inequalities, we obtain the estimate (1.11). In the case l ≥ 2 and
m < l. Use the following expression for the resolvent operator.

〈D〉m−1(p(D)− ζ)−1 = |W |−1R∗J̄〈DH〉m−1(p(DH)− ζ)−1JR, ζ ∈ C \ R.

By the estimate (2.2) in the Euclidean case and the continuity of the modified Radon
transform we obtain the assertion. ¤

Finally, we show how Theorem 1.1 yields Theorem 1.2. The following is well-known
(see [22]).

Proposition 5.3. Let H be a selfadjoint operator in the Hilbert space H. Suppose
that A is a densely defined, closed operator from H to another Hilbert space H1.

( i ) The following conditions are equivalent :
(i.1)

sup
ζ∈C\R

∣∣ Im((H − ζ)−1A∗v, A∗v)H
∣∣ ≤ C1‖v‖2H1

, v ∈ D(A∗).

(i.2) ∫ ∞

−∞

∥∥Ae−itHu
∥∥2

H1
dt ≤ 2C1‖u‖2H, u ∈ H. (5.16)

( ii ) Assume that there exists C2 > 0 such that

sup
ζ∈C\R

∥∥A(H − ζ)−1A∗v
∥∥
H1
≤ C2‖v‖H1

for v ∈ D(A∗). Then we have

∥∥∥∥
∫ t

0

Ae−i(t−s)HA∗f(s)ds

∥∥∥∥
L2(Rt;H1)

≤ C2‖f‖L2(Rt;H1) (5.17)

for each f(t) ∈ L2(Rt;D(A∗)).

Then time global smoothing estimates in Theorem 1.2 are direct consequence of
the resolvent estimates in Theorem 1.1 and the proposition above. By applying the
inequalities (5.16) and (5.17) to the our case H = H1 = L2(X), H = p(D), A =
〈x〉−δ|D|(m−1)/2 in Theorem 1.1 (i), = 〈x〉−δ〈D〉(m−1)/2 in Theorem 1.1 (ii) respectively,
we obtain the assertion in Theorem 1.2.
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6. Some remarks.

First we remark that the pseudo-dimension ν does not appear for low-frequency
estimates in Lemma 4.1 (iii). But in the case l ≥ 2 for (l − 1)/2 ≤ θ < (ν − 1)/2,
0 < θ′ < 1/2, and σ = θ − θ′ we see easily that

‖Ff‖L2(Σ(τ)) ≤ Cτθ
∥∥〈x〉(1/2+θ′)|D|−σ〈x〉−(1/2+θ)

∥∥
L(L2(X))

∥∥〈x〉1/2+θf
∥∥

L2(X)
.

Hence if ‖〈x〉(1/2+θ′)|D|−σ〈x〉−(1/2+θ)‖L(L2(X)) < ∞ (this corresponds to the critical case
σ = δ + δ′ in Proposition 3.3), then Lemma 4.1 (iii) holds for 0 < θ < (ν − 1)/2.

Here we prove restriction estimates for low-frequency part in the critical case θ =
(ν−1)/2. As in introduced in Section 1, let a(λ) ∈ CW (a∗)∩C∞W (a∗ \{0}) be a positively
homogeneous function of order one and Σ(τ) be the level set of a(λ) defined by (4.1).

Lemma 6.1. Let δ > ν/2. Then we have

‖Ff‖L2(Σ(τ)) ≤ Cτ (ν−1)/2‖〈x〉δf‖L2(X). (6.1)

The above lemma and uniform trace estimates immediately yield the following time
global smoothing estimates for homogeneous solutions.

Theorem 6.2. Let p(λ) = a(λ)ν and δ > ν/2. Then

∥∥〈x〉−δ〈D〉(ν−1)/2eitp(D)φ
∥∥

L2(R×X)
≤ C‖φ‖L2(X).

Proof of Lemma 6.1. It is sufficient to prove the estimate (6.1) for 0 < τ < 1
and f ∈ C∞0 (X). Let χ(τ) ∈ C∞0 (0,∞) and set ψ(λ) = χ(a(λ)) ∈ C∞0,W (a∗ \ {0}) and
f0 = F−1ψ. Since f0 is K-invariant, we have F(f × f0)(λ, b) = Ff(λ, b)ψ(λ). By using
Corollary 2.6 and the Plancherel formula, we get

|W |−1

∫

a∗×B

|Ff(λ, b)|2|ψ(λ)|2|c(λ)|−2dλdb ≤ C‖f‖2L2,δ(X)‖f0‖2L2(X).

Applying the co-area formula to the left hand side of the inequality above, we obtain

|W |−1

∫

a∗×B

|Ff(λ, b)|2|ψ(λ)|2|c(λ)|−2dλdb

=
∫ ∞

0

|χ(τ)|2
∫

Σ(τ)

|Ff(λ, b)|2|c(λ)|−2|∇a(λ)|−1dσ(λ)dbdτ

≥ C−1

∫ ∞

0

|χ(τ)|2‖Ff‖2L2(Σ(τ))dτ.

In a similar way, we have
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‖f0‖2L2(X) = |W |−1

∫

a∗
|ψ(λ)|2|c(λ)|−2dλ

≤ C

∫ ∞

0

|χ(τ)|2‖1‖2L2(Σ(τ))dτ

≤ C

∫ ∞

0

|χ(τ)|2τ (ν−1)〈τ〉(n−ν)dτ.

Therefore, we obtain

∫ ∞

0

|χ(τ)|2‖Ff‖2L2(Σ(τ))dτ ≤ C

∫ ∞

0

|χ(τ)|2τ (ν−1)〈τ〉(n−ν)dτ‖f‖2L2,δ(X).

This inequality implies that

‖Ff‖L2(Σ(τ)) ≤ Cτ (ν−1)/2〈τ〉(n−ν)/2‖f‖L2,δ(X), τ > 0.

We complete the proof. ¤

Next, we briefly show the optimality of the pseudo-dimension ν for the resolvent
estimate and smoothing estimates corresponding to low-frequency part. For any radially
symmetric function ψ(λ) ∈ C∞0 (a∗) with ψ(0) > 0, we put f = F−1〈λ〉−(m−1)/2ψ. Then
we have f ∈ L2,δ(X) for any δ > 0. If (1.11) or (1.13) holds, the following must be finite.

sup
ε>0

∣∣(〈D〉(m−1)(p(D) + ε)−1f, f)
∣∣ =

∫ ∞

0

∥∥|∇p|−1/2ψ
∥∥2

L2(Σ(µ1/m))
µ−1dµ.

By using ‖1‖L2(Σ(µ)) ³ µν−1 as µ ↓ 0, we have

∥∥|∇p|−1/2ψ
∥∥2

L2(Σ(µ1/m))
³ µ(ν−m)/m as µ ↓ 0. (6.2)

Therefore if (1.11) or (1.13) holds, then m must satisfy m < ν. From Proposition 5.3 (i),
if the estimate (1.12) is valid then the following must be finite for any µ > 0.

Im(〈D〉(m−1)(p(D)− (µ + i0))−1f, f) = π
∥∥|∇p|−1/2ψ

∥∥2

L2(Σ(µ1/m))
.

Then from (6.2), m must satisfy m ≤ ν.
Finally, we note that for positively homogeneous (not necessarily elliptic) symbols of

real-principal-type time global smoothing estimates, as in Theorem 1.2, also hold. The
proof is done by combining the Euclidean estimate (Theorem 1.1 in [6]), Proposition 3.1,
and Proposition 3.3 as in the proof of Theorem 1.1 (ii).
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