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Abstract. In this paper, we first use the method of Colding and Mini-
cozzi II [7] to show that K. Smoczyk’s classification theorem [25] for complete
self-shrinkers in higher codimension also holds under a weaker condition. Then
as an application, we give some rigidity results for self-shrinkers in arbitrary
codimension.

1. Introduction.

An immersion x : Mn → Rn+p of a smooth n-dimensional manifold M into the
Euclidean space is called a self-shrinker if it satisfies the quasilinear elliptic system:

H = −x⊥, (1.1)

where H denotes the mean curvature vector of the immersion and ⊥ is the projection
onto the normal bundle of M .

Self-shrinkers play an important role in the study of the mean curvature flow. Not
only they correspond to self-shrinking solutions to the mean curvature flow, but also they
describe all possible blow ups at a given singularity of the mean curvature flow. We refer
the readers to [7], [11], [12], [13], [26] and references therein for more information on
self-shrinkers and singularities of mean curvature flow.

There are many results about the classification of self-shrinkers. In the curve case,
U. Abresch and J. Langer [1] gave a complete classification of all solutions to (1.1). These
curves are now called Abresch-Langer curves, and the only simple closed one is the circle.

In higher dimension and codimension one, Huisken [11], [12] (see also [28]) proved a
classification theorem for smooth mean convex self-shrinkers Mn in Rn+1 with polynomial
volume growth. Suppose further in the noncompact case |(∇)kA| are uniformly bounded
for k = 0, 1, 2, as well as |A|2 ≤ CH2 everywhere on M . Then M are isometric to
Γ×Rn−1 or Sk(

√
k)×Rn−k (0 < k ≤ n). Here, Γ is a Abresch-Langer curve and Sk(

√
k)

is a k-dimensional sphere. Recently, Colding and Minicozzi II [7] generalized this result
and showed that Huisken’s classification theorem still holds without the assumption on
the bounds for derivatives of the second fundamental form. Moreover, they showed that
the only smooth embedded entropy stable self-shrinkers with polynomial volume growth
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in Rn+1 are hyperplanes, n-spheres, and cylinders. By imposing symmetries, Kleene and
Møller [16] classified the complete n-dimensional embedded self-shrinkers of revolution
in Rn+1.

In arbitrary codimension, the situation becomes more complicated. K. Smoczyk [25]
proved the following results:

Theorem A (Theorem 1.1 in [25]). Let x : Mn → Rn+p be a closed self-shrinker,
then M is a minimal submanifold of the sphere Sn+p−1(

√
n) if and only if H 6= 0 and

∇⊥ν = 0, where ν = H/|H| is the principal normal.

Theorem B (Theorem 1.2 in [25]). Let0 x : Mn → Rn+p be a complete non-
compact connected self-shrinker with H 6= 0 and ∇⊥ν = 0. Suppose further that M has
uniformly bounded geometry, that is, there exists constants ck such that |(∇)kA| ≤ ck for
any k ≥ 0. Then M must belong to one of the followings:

Γ× Rn−1, M̃r × Rn−r.

Here, Γ is one of the Abresch-Langer curves and M̃r is a complete minimal submanifold
of the sphere Sr+p−1(

√
r) ⊂ Rp+r, where 0 < r = rank(Aν) ≤ n denotes the rank of the

principal second fundamental form Aν = 〈ν,A〉.

Note that any blowup of a Type-I singularity of the mean curvature flow forming on a
compact submanifold will automatically be complete with uniformly bounded geometry,
therefore Theorem B may be applied to those blowup limits. In Smoczyk’s proof of
Theorem B, the uniformly bounded geometry is needed in the integrating by parts with
respect to the Gauss kernel ρ(x) = e−|x|

2/2. In the first part of this paper, we will use
the method of Colding and Minicozzi II [7] to show that Theorem B also holds under a
weaker condition:

Theorem 1.1. Let x : Mn → Rn+p be a complete non-compact connected self-
shrinker with H 6= 0 and ∇⊥ν = 0. Suppose further that M has polynomial volume
growth and satisfies |A|2 − |Aν |2 ≤ c for some constant c, where Aν = 〈ν,A〉 is the
principal second fundamental form. Then M must belong to one of the followings:

Γ× Rn−1, M̃r × Rn−r. (1.2)

Here, Γ is one of the Abresch-Langer curves and M̃r is a complete minimal submanifold
of the sphere Sp+r−1(

√
r) ⊂ Rp+r, where 0 < r = rank(Aν) ≤ n denotes the rank of Aν .

Remark 1.1. In the recent paper [2], Ben Andrews and the authors considered the
F-stability of self-shrinkers in arbitrary codimension, where Theorem A and Theorem
1.1 applied.

When p = 1 and the self-shrinker is embedded, Theorem A and Theorem 1.1 reduce
to Colding-Minicozzi II’s result (Theorem 0.17 in [7]):

Corollary 1.2. Sk(
√

k) × Rn−k are the only complete embedded self-shrinkers
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without boundary, with polynomial volume growth, and H ≥ 0 in Rn+1.

In the statement of Theorem 1.1, We say that a submanifold Mn in Rn+p has
polynomial volume growth if there exists constants C and d such that for all r ≥ 1, there
holds

Vol(B(r) ∩M) ≤ Crd,

where Br denotes an Euclidean ball with radius r. By using Huisken’s monotonicity
formula [11], Colding-Minicozzi II [7] proved that any self-shrinker which arises as the
blow up at a given singularity in the mean curvature flow must have polynomial volume
growth. Their result is proved for self-shrinkers in the hypersurface case, but it also holds
for arbitrary codimension.

In the second part of this paper, we shall apply Theorem 1.1 to give some rigidity
properties of self-shrinkers with higher codimension. Recall that the first gap theorem for
self-shrinkers was proved by N. Q. Le and N. Sesum [18] for hypersurface case. Later this
was generalized by H.-D. Cao and H. Li [4] to self-shrinkers with arbitrary codimension,
they showed that

Theorem C (Cao-Li [4]). Let x : Mn → Rn+p be an n-dimensional complete
self-shrinker without boundary and with polynomial volume growth, if

0 ≤ |A|2 ≤ 1, (1.3)

then either (i) |A|2 ≡ 0 and M is the hyperplane, or (ii) |A|2 ≡ 1 and M is Sm(
√

m) ×
Rn−m in Rn+1 with 1 ≤ m ≤ n.

Remark 1.2. We remark that Theorem C is independent of the dimension and
codimension of the self-shrinker. In [5], the authors got a related result without condition
“polynomial volume growth”.

Although classifying the self-shrinker with higher codimension is complicated, we can
also apply Theorem A and Theorem 1.1 to give some results for self-shrinkers in some
special situations. In the following we will consider the self-shrinkers with codimension
2, 2-dimension and with flat normal bundle respectively.

Theorem 1.3. Let X : Mn → Rn+2 be a complete embedded self-shrinker without
boundary and with polynomial volume growth. If H 6= 0, ∇⊥ν = 0, where ν is the
principal normal, and

1 ≤ |A|2 ≤ 2, (1.4)

then there are two possibilities:

( i ) |A|2 ≡ 1 and M is Sm(
√

m)× Rn−m in Rn+1 with 1 ≤ m ≤ n.
( ii ) |A|2 ≡ 2 and M is one of the self-shrinkers in Example 1.1 below.
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Theorem 1.4. Let X : Mn → Rn+2 be a complete embedded self-shrinker without
boundary and with polynomial volume growth. If H 6= 0, ∇⊥ν = 0, where ν is the
principal normal. Then there exists a constant δ > 0 such that if

2 ≤ |A|2 ≤ 2 + δ, (1.5)

then |A|2 ≡ 2 and M is one of the self-shrinkers in Example 1.1 below.

Example 1.1. Let

M̃r = Sk(
√

k)× Sr−k(
√

r − k) ↪→ Sr+1(
√

r), 1 ≤ k ≤ r − 1

be the Clifford minimal hypersurfaces in the sphere Sr+1(
√

r). Then

x : Mn = M̃r × Rn−r ↪→ Rn+2, (2 ≤ r ≤ n)

is a complete embedded self-shrinker without boundary and with polynomial volume
growth, with parallel principal normal and |A|2 ≡ 2.

Example 1.2. Let

M̃r ↪→ Sr+1(
√

r)

be an isoparametric minimal hypersurface, then

x : Mn = M̃r × Rn−r ↪→ Rn+2, (1 ≤ r ≤ n)

is a self-shrinker with |A|2 can only be 1, 2, 3, 4, 6.

For the 2-dimensional self-shrinkers, we have the following two rigidity results.

Theorem 1.5. Let X : M2 → R2+p be a 2-dimensional complete embedded self-
shrinker without boundary and with polynomial volume growth. If H 6= 0, ∇⊥ν = 0,
where ν is the principal normal, and

1 ≤ |A|2 ≤ 5
3
, (1.6)

then there are two possibilities:

( i ) |A|2 ≡ 1 and M = S2(
√

2) or S1(1)× R in R3.
( ii ) |A|2 ≡ 5/3 and M is the self-shrinker in Example 1.3 below.

Theorem 1.6. Let X : M2 → R2+p be a 2-dimensional complete embedded self-
shrinker without boundary and with polynomial volume growth. If H 6= 0, ∇⊥ν = 0,
where ν is the principal normal, and
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5
3
≤ |A|2 ≤ 11

6
, (1.7)

then there are two possibilities:

( i ) |A|2 ≡ 5/3 and M is the self-shrinker in Example 1.3 below.
( ii ) |A|2 ≡ 11/6 and M is the self-shrinker in Example 1.4 below.

Example 1.3. The canonical minimal immersion (see [17], [21])

x : S2(
√

6) → S4(
√

2)

has |Ã|2 ≡ 2/3. x(S2(
√

6)) ⊂ S4(
√

2) is called the Veronse surface. Consider it as a
submanifold in R5,

x : S2(
√

6) → S4(
√

2) ↪→ R5

it is a self-shrinker with |A|2 ≡ 1 + (2/3) = 5/3.

Example 1.4. The canonical minimal immersion (see [17])

x : S2(
√

12) → S6(
√

2)

has |Ã|2 ≡ 5/6, consider it as a submanifold in R7

x : S2(
√

12) → S6(
√

2) ↪→ R7

it is a self-shrinker with |A|2 ≡ 1 + (5/6) = 11/6.

It is an interesting question that whether the condition “with parallel principal
normal” is necessary in Theorems 1.3–1.6.

For self-shrinkers with the higher codimension, the normal bundle is complicated,
which would influence the submanifold properties. Now we consider the simplest case,
i.e., the normal bundle is flat. We will prove the following gap theorem:

Theorem 1.7. Let x : Mn → Rn+p be a complete immersed self-shrinker without
boundary and with polynomial volume growth, assume

( i ) flat normal bundle, that is, Rαβij = 0,
( ii ) σαβ = (1/p)|A|2δαβ, where σαβ =

∑
i,j hα

ijh
β
ij.

If the second fundamental form satisfies

0 ≤ |A|2 ≤ p, (1.8)

then |A|2 ≡ 0 and Mn is the hyperplane, or |A|2 ≡ p and Mn is

x : Mn = Nmp × Rn−mp ↪→ Rn+p,
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where

Nmp = Sm(
√

m)× · · · × Sm(
√

m) ↪→ S(m+1)p−1(
√

mp).

Remark 1.3. As noted in [25], let Γ1,Γ2, . . . ,Γm be the Abresch-Langer curves,
then Γ1 × · · ·Γm in R2m is a self-shrinker with |H| > 0 and flat normal bundle, so the
condition (1.8) of Theorem 1.7 is necessary.

Finally, we consider the closed self-shrinkers with arbitrary codimension. We have
the following simple result.

Proposition 1.8. Let Mn be a closed self-shrinker in Rn+p, if one of the followings
satisfies:

(1) |H| 6= 0, ν = H/|H| is parallel in the normal bundle;
(2) |H|2 = const., or |H|2 ≤ n, or |H|2 ≥ n;
(3) |x|2 = const., or |x|2 ≤ n, or |x|2 ≥ n,

then M is a minimal submanifold in Sn+p−1(
√

n).

Note that the condition (1) and (2) imply the closed self-shrinker to be a minimal
submanifold in sphere have been proved by Smoczyk [25] and Cao-Li [4]. In Section 6, we
will prove that the condition (3) can also imply the self-shrinker is a minimal submanifold
in sphere. Then by applying the well-known theorems on the minimal submanifolds in
sphere by Ejiri [10], H. Li [19], Itoh [14], [15] and Yau [27], Proposition 1.8 will imply
three simple characterizations for closed self-shrinkers, see Theorems 6.1–6.3.

2. Preliminaries.

Let x : M → Rn+p be an n-dimensional submanifold of an (n + p)-dimensional
Euclidean space Rn+p. Let {e1, . . . , en} be a local orthonormal basis of M with respect
to the induced metric, and {θ1, . . . , θn} be their dual 1-forms. Let en+1, . . . , en+p be
the local unit orthonormal normal vector fields. In this paper we make the following
conventions on the range of indices:

1 ≤ i, j, k ≤ n; n + 1 ≤ α, β, γ ≤ n + p.

Then we have the following structure equations (see [3], [4], [20])

dx =
∑

i

θiei,

dei =
∑

j

θijej +
∑

α,j

hα
ijθjeα,

deα = −
∑

i,j

hα
ijθjei +

∑

β

θαβeβ ,
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where hα
ij denote the components of the second fundamental form of M . We denote

|A|2 =
∑

α,i,j(h
α
ij)

2 is the norm square of the second fundamental form, H =
∑

α Hαeα =∑
α(

∑
i hα

ii)eα is the mean curvature vector field, and H = |H| is the mean curvature of
M .

The Gauss equations are given by

Rijkl =
∑
α

(
hα

ikhα
jl − hα

ilh
α
jk

)
, (2.1)

Rik =
∑
α

Hαhα
ik −

∑

α,j

hα
ijh

α
jk. (2.2)

The Codazzi equations are given by

hα
ij,k = hα

ik,j , (2.3)

where the covariant derivative of hα
ij is defined by

∑

k

hα
ij,kθk = dhα

ij +
∑

k

hα
kjθki +

∑

k

hα
ikθkj +

∑

β

hβ
ijθβα. (2.4)

If we denote by Rαβij the curvature tensor of the normal connection θαβ in the
normal bundle of x : M → Rn+p, then the Ricci equations are

Rαβij =
∑

k

(
hα

ikhβ
kj − hα

jkhβ
ki

)
. (2.5)

By exterior differentiation of (2.4), we have the following Ricci identities:

hα
ij,kl − hα

ij,lk =
∑
m

hα
mjRmikl +

∑
m

hα
imRmjkl +

∑

β

hβ
ijRβαkl. (2.6)

We define the first and second covariant derivatives, and Laplacian of the mean
curvature vector field H =

∑
α Hαeα in the normal bundle N(M) as follows,

∑

i

Hα
,iθi = dHα +

∑

β

Hβθβα, (2.7)

∑

j

Hα
,ijθj = dHα

,i +
∑

j

Hα
,jθji +

∑

β

Hβ
,iθβα, (2.8)

∆⊥Hα =
∑

i

Hα
,ii, Hα =

∑

k

hα
kk. (2.9)

Let f be a smooth function on M , we define the covariant derivatives fi, fij , and
the Laplacian of f as follows
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df =
∑

i

fiθi,
∑

j

fijθj = dfi +
∑

j

fjθji, ∆f =
∑

i

fii.

Now we assume the submanifold Mn satisfies the self-shrinker equation (1.1). The
following equations have been derived in [4].

The self-shrinker equation (1.1) is equivalent to

Hα = −〈x, eα〉, n + 1 ≤ α ≤ n + p. (2.10)

The first and second covariant derivative of H have the following components:

Hα
,i =

∑

j

hα
ij〈x, ej〉, (2.11)

Hα
,ik =

∑

j

hα
ij,k〈x, ej〉+ hα

ik −
∑

β,j

Hβhα
ijh

β
jk, (2.12)

∆Hα =
∑

j

Hα
,j〈x, ej〉+ Hα −

∑

β,i,j

Hβhα
ijh

β
ij . (2.13)

If H 6= 0, we can choose local orthogonal frame {eα} for the normal bundle NM

such that en+p is parallel to the mean curvature vector H, that is,

en+p =
H

|H| = ν, Hn+p = H = |H|, Hα = 0, α 6= n + p.

Lemma 2.1. Let x : Mn → Rn+p be an n-dimensional self-shrinker with H > 0,
∇⊥ν = 0, then

Hα
,i = 0, Hα

,ij = 0, α 6= n + p, and Hn+p
,i = Hi, Hn+p

,ij = Hij .

Proof. Since ∇⊥ν = 0, we have θ(n+p)β = 0, from the definition of Hα
,i in (2.7),

we have Hα
,i = 0. Then Hα

,ij = 0 follows immediately from (2.8).
From H = Hn+pen+p = Hen+p and ∇⊥en+p = 0, we have ∇⊥i H = Hien+p,

therefore Hn+p
,i = Hi.

From (2.8)

Hn+p
,ij θj = dHn+p

,i + Hn+p
,j θji + Hβ

,iθβ(n+p)

= dHi + Hjθji

= Hijθj .

So we have Hn+p
,ij = Hij . ¤

Lemma 2.2. Let x : Mn → Rn+p be an n-dimensional self-shrinker with H > 0,
∇⊥ν = 0, then
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R(n+p)βij = hn+p
ik hβ

kj − hβ
ikhn+p

kj = 0,
∑

i,j

hα
ijh

n+p
ij = 0, α 6= n + p.

Proof. Since∇⊥ν = 0 implies θ(n+p)β = 0, then Rn+pβij = 0 follows immediately
from

dθ(n+p)β − θ(n+p)γ ∧ θγβ = −1
2
R(n+p)βijθi ∧ θj .

If α 6= n + p, then Hα
,ij = 0. From (2.13), we have

0 = −Hα
,j〈x, ej〉 −Hα + Hβhα

ijh
β
ji = H

∑

i,j

hα
ijh

n+p
ij . ¤

Lemma 2.3. Let x : Mn → Rn+p be an n-dimensional self-shrinker with H > 0,
∇⊥ν = 0. Denote |Z|2 =

∑
i,j(h

n+p
ij )2, we have

∆hn+p
ij =

∑

k

hn+p
ij,k 〈x, ek〉+ hn+p

ij − |Z|2hn+p
ij .

Proof. By use of (2.3), (2.6), Lemma 2.2, (2.1) and (2.12), we have the following
calculations:

∆hn+p
ij = hn+p

ij,kk = hn+p
ik,jk

= hn+p
kk,ij + hn+p

mk Rmijk + hn+p
mi Rmkjk + hβ

ikRβ(n+p)jk

= Hn+p
,ij + hn+p

mk

(
hα

mjh
α
ik − hα

mkhα
ij

)
+ hn+p

mi

(
hα

mjH
α − hα

mkhα
kj

)

= Hn+p
,ij − hn+p

mk hα
mkhα

ij + hn+p
mi hn+p

mj Hn+p

= hn+p
ij,k 〈x, ek〉+ hn+p

ij − hn+p
mk hn+p

mk hn+p
ij

= hn+p
ij,k 〈x, ek〉+ hn+p

ij − |Z|2hn+p
ij . ¤

Concerning the term |Z|2, we have the following inequalities which holds for all
submanifolds with parallel principal normal (may not be a self-shrinker).

Lemma 2.4. If we fix a point q and choose a frame ei, i = 1, . . . , n, such that hn+p
ij

is diagonal at q, i.e. hn+p
ij = λiδij, then we have at q that

|∇|Z||2 ≤
∑

i,k

(
hn+p

ii,k

)2 ≤
∑

i,j,k

(
hn+p

ij,k

)2
, (2.14)

(
1 +

2
n + 1

)
|∇|Z||2 ≤

∑

i,j,k

(
hn+p

ij,k

)2 +
2n

n + 1
|∇H|2. (2.15)
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Proof. Since hn+p
ij is symmetric, we can choose ei, i = 1, . . . , n, such that hn+p

ij =
λiδij at the fixed point q. By ∇|Z|2 = 2|Z|∇|Z|, we have at q

4|Z|2|∇|Z||2 =
∑

k

(
2hn+p

ij hn+p
ij,k

)2 = 4
∑

k

( ∑

i

λih
n+p
ii,k

)2

≤ 4|Z|2
∑

i,k

(
hn+p

ii,k

)2
,

where the inequality used the Cauchy-Schwarz inequality, this proves (2.14).
To show (2.15), we have by (2.14)

|∇|Z||2 ≤
∑

i,k

(
hn+p

ii,k

)2

=
∑

i 6=k

(
hn+p

ii,k

)2 +
∑

i

(
hn+p

ii,i

)2

=
∑

i 6=k

(
hn+p

ii,k

)2 +
∑

i

(
Hn+p

,i −
∑

j 6=i

hn+p
jj,i

)2

≤
∑

i 6=k

(
hn+p

ii,k

)2 + n
∑

i

((
Hn+p

,i

)2 +
∑

j 6=i

(
hn+p

jj,i

)2
)

= n|∇H|2 + (n + 1)
∑

i 6=k

(
hn+p

ii,k

)2

= n|∇H|2 +
n + 1

2

( ∑

i 6=k

(
hn+p

ik,i

)2 +
∑

i 6=k

(
hn+p

ki,i

)2
)

,

where we used the algebraic fact (
∑n

i=1 ai)2 ≤ n
∑n

i=1 a2
i in the second inequality, and

Hn+p
,i = Hi, Codazzi equations in the last two equalities. Thus we have

(
1 +

2
n + 1

)
|∇|Z||2 ≤ 2n

n + 1
|∇H|2 +

∑

i,k

(
hn+p

ii,k

)2 +
∑

i 6=k

(
hn+p

ik,i

)2 +
∑

i 6=k

(
hn+p

ki,i

)2

≤ 2n

n + 1
|∇H|2 +

∑

i,j,k

(
hn+p

ij,k

)2
,

which completes the proof. ¤

3. Some integral estimates.

Recall the following operator L which was introduced and studied firstly on self-
shrinkers by Colding and Minicozzi (see (3.7) in [7]):

L = ∆− 〈x,∇(·)〉 = e|x|
2/2 div(e−|x|

2/2∇·),

where ∆, ∇ and div denote the Laplacian, gradient and divergent operator on the self-
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shrinker respectively, 〈·, ·〉 denotes the standard inner product in Rn+p. The operator
L is self-adjoint in a weighted L2 space. The next two results were proved by Colding-
Minicozzi [7] for hypersurface self-shrinkers but can be stated in the same way for self-
shrinkers in arbitrary codimension.

Lemma 3.1. If x : Mn → Rn+p is a submanifold, u is a C1 function with compact
support, and v is a C2 function, then

∫

M

u(Lv)e−|x|
2/2 = −

∫

M

〈∇v,∇u〉e−|x|2/2. (3.1)

Corollary 3.2. Suppose that x : Mn → Rn+p is a complete submanifold without
boundary, if u, v are C2 functions satisfying

∫

M

(|u∇v|+ |∇u||∇v|+ |uLv|)e−|x|2/2 < +∞,

then we get

∫

M

u(Lv)e−|x|
2/2 = −

∫

M

〈∇v,∇u〉e−|x|2/2. (3.2)

Using the operator L, Lemma 2.3 has the following corollary,

Corollary 3.3. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker
with H > 0, ∇⊥ν = 0, then

1
2
L|Z|2 = |Z|2 − |Z|4 +

∑

i,j,k

(
hn+p

ij,k

)2
,

L|Z| = |Z| − |Z|3 +

∑
i,j,k(hn+p

ij,k )2

|Z| − |∇|Z||2
|Z| .

Remark 3.1. We note that our assumption “H > 0” implies “|Z| > 0” because of
|Z|2 ≥ H2/n.

Lemma 3.4. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker with
H > 0, ∇⊥ν = 0, then

LH = H − |Z|2H,

L log H = 1− |Z|2 − |∇ log H|2.

Proof. The two equations just follow from (2.13) and Lemma 2.1. ¤

Lemma 3.5. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker with
H > 0, ∇⊥ν = 0. If ϕ is in the weighted W 1,2 space, i.e.
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∫

M

(|ϕ|2 + |∇ϕ|2)e−|x|2/2 < +∞,

then

∫

M

ϕ2

(
|Z|2 +

1
2
|∇ log H|2

)
e−|x|

2/2 ≤
∫

M

(2|∇ϕ|2 + ϕ2)e−|x|
2/2. (3.3)

Proof. Suppose that η is a function with compact support, from the self-
adjointness of L and Lemma 3.4 we have

∫

M

〈∇η2,∇ log H〉e−|x|2/2 = −
∫

M

η2(L log H)e−|x|
2/2

=
∫

M

η2(|Z|2 − 1 + |∇ log H|2)e−|x|2/2.

Combining this with the Cauchy-Schwarz inequality

〈∇η2,∇ log H〉 ≤ 2|∇η|2 +
1
2
η2|∇ log H|2

gives that

∫

M

η2

(
|Z|2 +

1
2
|∇ log H|2

)
e−|x|

2/2 ≤
∫

M

(2|∇η|2 + η2)e−|x|
2/2.

Now we choose a sequence of cut-off function ηj which satisfies

ηj =

{
1, in Bj

0, outside Bj+1

, 0 ≤ ηj ≤ 1, |∇ηj | ≤ C,

where Bj = M ∩Bj(0) with Bj(0) is the Euclidean ball of radius j centered at the origin.
Applying the above inequality with η = ηjϕ, letting j → ∞, and using the dominated
convergence theorem, we complete the proof of the Lemma. ¤

The next proposition gives weighted estimates for the principle normal second fun-
damental form and its covariant derivatives.

Proposition 3.6. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker
with H > 0, ∇⊥ν = 0. If Mn has polynomial volume growth, then

∫

M

(
|Z|2 + |Z|4 + |∇|Z||2 +

∑

ijk

(
hn+p

ij,k

)2
)

e−|x|
2/2 < ∞. (3.4)

Proof. For any compactly supported function ϕ, self-adjointness of L and Lemma
3.4 imply
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∫

M

〈∇ϕ2,∇ log H〉e−|x|2/2 = −
∫

M

ϕ2(L log H)e−|x|
2/2

=
∫

M

ϕ2(|Z|2 − 1 + |∇ log H|2)e−|x|2/2.

Combining this with the Cauchy-Schwarz inequality

〈∇ϕ2,∇ log H〉 ≤ |∇ϕ|2 + ϕ2|∇ log H|2

gives the following stability inequality (cf. [23])

∫

M

ϕ2|Z|2e−|x|2/2 ≤
∫

M

(|∇ϕ|2 + ϕ2)e−|x|
2/2.

Let ϕ = η|Z|, where η ≥ 0 has compact support, for ε > 0, we have

∫

M

η2|Z|4e−|x|2/2

≤
∫

M

(η2|∇|Z||2 + 2η|Z||∇η||∇|Z||+ |Z|2|∇η|2 + η2|Z|2)e−|x|2/2

≤ (1 + ε)
∫

M

η2|∇|Z||2e−|x|2/2 +
∫

M

|Z|2
((

1 +
1
ε

)
|∇η|2 + η2

)
e−|x|

2/2. (3.5)

Corollary 3.3 and Lemma 2.4 give the inequality

L|Z|2 ≥ 2
(

1 +
2

n + 1

)
|∇|Z||2 − 4n

n + 1
|∇H|2 + 2|Z|2 − 2|Z|4.

Integrating this with (1/2)η2, it follows from the self-adjointness of L that

− 2
∫

M

η|Z|〈∇η,∇|Z|〉e−|x|2/2

≥
∫

M

(
η2

(
1 +

2
n + 1

)
|∇|Z||2 − 2n

n + 1
η2|∇H|2 − η2|Z|4

)
e−|x|

2/2.

Using the inequality 2ab ≤ εa2 + b2/ε gives

∫

M

(
η2|Z|4 +

2n

n + 1
η2|∇H|2 +

1
ε
|Z|2|∇η|2

)
e−|x|

2/2

≥
∫

M

(
1 +

2
n + 1

− ε

)
η2|∇|Z||2e−|x|2/2. (3.6)

Assume |η| ≤ 1 and |∇η| ≤ 1, combining (3.5) and (3.6) gives
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∫

M

η2|Z|4e−|x|2/2

≤ 1 + ε

1 + (2/(n + 1))− ε

∫

M

η2|Z|4e−|x|2/2 + Cε

∫

M

(|∇H|2 + |Z|2)e−|x|2/2.

Choose ε > 0 small, such that (1 + ε)/(1 + (2/(n + 1))− ε) < 1, then we have

∫

M

η2|Z|4e−|x|2/2 ≤ C

∫

M

(|∇H|2 + |Z|2)e−|x|2/2

≤ C

∫

M

|Z|2(1 + |x|2)e−|x|2/2, (3.7)

where the second inequality is due to (2.11) and Lemma 2.1. Since H > 0, Lemma
3.5 and the polynomial volume growth give that

∫
M
|Z|2(1 + |x|2)e−|x|2/2 < ∞, thus

(3.7) and the dominated convergence theorem give that
∫

M
|Z|4e−|x|2/2 < ∞, then∫

M
|∇|Z||2e−|x|2/2 < ∞ follows immediately from (3.6) and the dominated convergence

theorem.
To show

∫
M

∑
i,j,k(hn+p

ij,k )2e−|x|
2/2 < ∞, we integrate the first equation in Corollary

3.3 with η2, the self-adjointness of L implies

∫

M

η2
∑

ijk

(
hn+p

ij,k

)2
e−|x|

2/2 =
∫

M

η2(|Z|4 − |Z|2)e−|x|2/2 −
∫

M

2η|Z|〈∇η,∇|Z|〉e−|x|2/2

≤
∫

M

(η2|Z|4 + |∇η|2|∇|Z||2)e−|x|2/2 < ∞.

The dominated convergence theorem gives that
∫

M

∑
ijk(hn+p

ij,k )2e−|x|
2/2 < ∞, this com-

pletes the proof. ¤

Now we will prove the weighted integral estimates that will be needed in the next
section, to guarantee the self-adjointness of L can apply on complete self-shrinkers.

Proposition 3.7. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker
with H > 0, ∇⊥ν = 0. If Mn has polynomial volume growth, then

∫

M

(|Z|2|∇ log H|+ |∇|Z|2||∇ log H|+ |Z|2|L log H|)e−|x|2/2 < ∞, (3.8)

∫

M

(|Z||∇|Z||+ |∇|Z||2 + |Z||L|Z||)e−|x|2/2 < ∞. (3.9)

Proof. Proposition 3.6 implies that |Z| is in the weighted W 1,2 space, so Lemma
3.5 gives that

∫

M

|Z|2|∇ log H|2e−|x|2/2 < ∞.
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Then
∫

M

|∇|Z|2||∇ log H|e−|x|2/2 ≤
∫

M

(|∇|Z||2 + |Z|2|∇ log H|2)e−|x|2/2 < ∞.

From Lemma 3.4, we have

∫

M

|Z|2|L log H|e−|x|2/2 =
∫

M

|Z|2|1− |Z|2 − |∇ log H|2|e−|x|2/2 < ∞.

This gives the first part of Proposition 3.7. From Corollary 3.3

∫

M

|Z||L|Z||e−|x|2/2 =
∫

M

(
|Z|2 − |Z|4 +

∑

ijk

(
hn+p

ij,k

)2 − |∇|Z||2
)

e−|x|
2/2 < ∞.

So the second part follows from Proposition 3.6. ¤

4. Proof of Theorem 1.1.

In this section, we will give the proof of Theorem 1.1. First we prove two geometric
identities, which is the key for proving the classification.

Lemma 4.1. Let x : Mn → Rn+p be an n-dimensional complete self-shrinker with
H > 0, ∇⊥ν = 0. If Mn has polynomial volume growth, then

|Z| = βH for some positive constant β, (4.1)

|∇|Z||2 =
∑

i,j,k

(hn+p
ij,k )2. (4.2)

Proof. By (3.8), we can apply Corollary 3.2 to |Z|2 and log H to get by use of
Lemma 3.4

∫

M

〈∇|Z|2,∇ log H〉e−|x|2/2 = −
∫

M

|Z|2(L log H)e−|x|
2/2

=
∫

M

|Z|2(|Z|2 − 1 + |∇ log H|2)e−|x|2/2. (4.3)

Similarly, by (3.9), we apply Corollary 3.2 to two copies of |Z| to get by use of Corollary
3.3 and (2.14)

∫

M

|∇|Z||2e−|x|2/2 = −
∫

M

|Z|L|Z|e−|x|2/2

=
∫

M

(
|Z|4 − |Z|2 + |∇|Z||2 −

∑

i,j,k

(
hn+p

ij,k

)2
)

e−|x|
2/2
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≤
∫

M

(|Z|4 − |Z|2)e−|x|2/2. (4.4)

Combining (4.3) and (4.4) give

0 ≥
∫

M

(|∇|Z||2 − 2|Z|〈∇|Z|,∇ log H〉+ |Z|2|∇ log H|2)e−|x|2/2

=
∫

M

|∇|Z| − |Z|∇ log H|2e−|x|2/2.

So we conclude that ∇|Z| ≡ |Z|∇ log H, therefore, |Z| = βH for some constant β > 0.
And the inequality in (4.4) must be equality, so we have |∇|Z||2 =

∑
ijk(hn+p

ij,k )2. ¤

Lemma 4.2. Let x : Mn → Rn+p be an n-dimensional complete connected self-
shrinker with H > 0, ∇⊥ν = 0. If Mn has polynomial volume growth, then one of the
following two cases holds

( i ) ∇⊥H ≡ 0 and hn+p
ij,k ≡ 0,

( ii ) (hn+p
ij ) admits only one nonzero eigenvalue H, in this case, |Z|2 = H2.

Proof. As in Lemma 2.4, we fix a point q and choose a frame ei, i = 1, . . . , n,
such that hn+p

ij is diagonal at q, i.e. hn+p
ij = λiδij then we have at q that

|Z|2|∇|Z||2 =
∑

k

( ∑

i

hn+p
ii,k λi

)2

≤ |Z|2
∑

i,k

(
hn+p

ii,k

)2 ≤ |Z|2
∑

i,j,k

(
hn+p

ij,k

)2
.

By (4.2), the above two inequalities must be equalities, so we have:

( i ) For each k, there exists a constant αk such that hn+p
ii,k = αkλi for every i.

( ii ) If i 6= j, then hn+p
ij,k = 0.

By the Codazzi equation, (ii) implies that

( ii )′ hn+p
ij,k = 0 unless i = j = k.

If λi 6= 0, for j 6= i, 0 = hn+p
ii,j = αjλi so we have αj = 0. If the rank of (hn+p

ij ) is at
least two at q, then αj = 0 for all j ∈ {1, . . . , n}. Thus (i), (ii) imply Hn+p

,k = 0 for all
k ∈ {1, . . . , n} and hn+p

ij,k = 0 for all i, j, k ∈ {1, . . . , n}. If the rank of (hn+p
ij ) is one at q,

then H is the only nonzero eigenvalue of (hn+p
ij ), and then |Z|2 = H2.

Next we will show that if the rank of (hn+p
ij ) is at least two at some q, then the rank

of (hn+p
ij ) is at least two everywhere. For each x ∈ M , let λ1(x) and λ2(x) be the two

eigenvalues of (hn+p
ij (x)) that are largest in absolute value and define the set

Ω = {x ∈ M | λ1(x) = λ1(q), λ2(x) = λ2(q)}.

Then Ω is nonempty since q ∈ Ω. λi(x) are continuous in x, so Ω is closed. For any
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x ∈ Ω, the rank of (hn+p
ij ) is at least two at x, this is an open condition, so there is an

open set U containing x where the rank of (hn+p
ij ) is at least two, then hn+p

ij,k ≡ 0 on
this set U , and the eigenvalues of (hn+p

ij ) are constant on U . This implies U ⊂ Ω, and
therefore Ω is open. Since M is connected, we conclude that Ω = M , therefore the rank
of (hn+p

ij ) is at least two everywhere. This implies the Case (i).
Since H > 0, the remaining case is where the rank of (hn+p

ij ) is exactly one at every
point, this implies Case (ii). This completes the proof of Lemma 4.2. ¤

Proof of Theorem 1.1. We can treat the two cases in Lemma 4.2 separately
by following the argument of K. Smoczyk in [25] to complete the proof. Note that
in Case I, hn+p

ij,k ≡ 0 implies |Aν |2 = |Z|2 ≡ const., combining with the assumption
|A|2 − |Aν |2 ≤ c, we can complete the proof of Case I. While for the Case II, the
assumption |A|2 − |Aν |2 ≤ c is sufficient for us to complete the proof by following the
Smoczyk’s arguments in [25]. ¤

5. Rigidity of self-shrinkers in higher codimension.

5.1. Self-shrinkers with codimension two.
Assume x : Mn → Rn+2 is a complete imbedded self-shrinker without boundary and

with polynomial volume growth in codimension two, we will give the proof of Theorems
1.3 and 1.4.

Proof of Theorem 1.3. Under the condition of the Theorem 1.3, Theorem A
and Theorem 1.1 imply

Mn = Γ× Rn−1, (5.1)

where Γ is one of the Abresch-Langer curves, or

Mn = M̃r × Rn−r ↪→ Sr+1(
√

r)× Rn−r ↪→ Rn+2, 0 < r ≤ n, (5.2)

where M̃r ↪→ Sr+1(
√

r) is a minimal hypersurface. Note that the only simple closed one
of the Abresch-Langer curves is the circle, so the first case (5.1) is Mn = S1(1) × Rn−1

with |A|2 ≡ 1. Then we consider the second case (5.2). Denote A the second fundamental
form of Mn → Rn+2, and Ã the second fundamental form of M̃r ↪→ Sr+1(

√
r). Then

|A|2 = |Ã|2 + 1, (5.3)

1
2
∆̃|Ã|2 = |∇̃Ã|2 + |Ã|2(1− |Ã|2), (5.4)

where ∆̃, ∇̃ denote Laplacian and covariant derivatives with respect to the induced metric
on M̃ . The Simons’ equality (5.4) can be found in Simons’ paper [24]. For convenience of
readers, we give a proof here: Denote h̃ij , R̃ijkl the components of the second fundamental
form and the curvature tensor of M̃r in Sr+1(

√
r). Since the sphere Sr+1(

√
r) has constant

curvature 1/r, the Ricci identities and Gauss-Codazzi equations give that
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∆̃h̃ij = h̃ij,kk = h̃ki,jk

= h̃ki,kj + R̃kjklh̃li + R̃kjilh̃kl

=
(

(r − 1)
1
r
δjl − h̃jkh̃kl

)
h̃li +

(
1
r
(δikδjl − δklδji) + h̃kih̃jl − h̃klh̃ji

)
h̃kl

= (1− |Ã|2)h̃ij ,

where we used that M̃r ↪→ Sr+1(
√

r) is a minimal hypersurface in the last two equalities.
Then it follows that

1
2
∆̃|Ã|2 = h̃ij∆̃h̃ij + |∇̃Ã|2 = |∇̃Ã|2 + |Ã|2(1− |Ã|2).

Since x : Mn → Rn+2 is a embedded self-shrinker without boundary and with
polynomial volume growth, by Cheng-Zhou (see Theorem 4.1 in [6]), x : Mn → Rn+2 is
proper, thus we have that M̃r is closed. Therefore (5.4) implies that if

0 ≤ |Ã|2 ≤ 1, (5.5)

we have either |Ã| ≡ 0 and M̃r is totally geodesic in Sr+1(
√

r), that is M̃r = Sr(
√

r);
or |Ã| ≡ 1 and M̃r is the Clifford minimal hypersurface in Sr+1(

√
r), that is M̃r =

Sk(
√

k)× Sr−k(
√

r − k). From (5.3), the condition (5.5) is equivalent to

1 ≤ |A|2 ≤ 2. (5.6)

So we conclude that if we have (5.6), then there are two possibilities:

(1) |A|2 ≡ 1 and Mn = Sm(
√

m)× Rn−m with 1 ≤ m ≤ n;
(2) |A|2 ≡ 2 and Mn = Sk(

√
k)×Sr−k(

√
r − k)×Rn−r with 2 ≤ r ≤ n and 1 ≤ k ≤ r−1.

¤

Proof of Theorem 1.4. As the proof of Theorem 1.3, Theorem A and Theorem
1.1 imply Mn must be one of the two cases (5.1) and (5.2). Note that the case (5.1) has
|A|2 ≡ 1, which violates with the assumption (1.5), so M must be the case (5.2), that is

Mn = M̃r × Rn−r ↪→ Sr+1(
√

r)× Rn−r ↪→ Rn+2, 0 < r ≤ n,

where M̃r ↪→ Sr+1(
√

r) is a closed minimal hypersurface, then (5.3) holds. Q. Ding and
Y. L. Xin [8] proved that there exists a constant δ > 0 such that if

1 ≤ |Ã|2 ≤ 1 + δ, (5.7)

then |Ã| ≡ 1 and M is the Clifford minimal hypersurface. From (5.3) again, we conclude
that if
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2 ≤ |A|2 ≤ 2 + δ, (5.8)

we have |A|2 ≡ 2 and Mn = Sk(
√

k) × Sr−k(
√

r − k) × Rn−r with 2 ≤ r ≤ n and
1 ≤ k ≤ r − 1. ¤

5.2. Self-shrinkers of two dimension.
In this subsection, we assume x : M2 → R2+p is a 2-dimensional complete embedded

self-shrinker without boundary and with polynomial volume growth, and we will give the
proof of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Theorem A and Theorem 1.1 imply that

M2 = M̃1 × R, or M2 = M̃2,

where M̃1 ↪→ Sp(1) and M̃2 ↪→ Sp+1(
√

2) are minimal submanifolds. Then M̃1 = S1(1)
and M2 = M̃1 × R ↪→ R2+p has |A|2 ≡ 1. Since x : M2 → R2+p is an embedded
self-shrinker without boundary and with polynomial volume growth, M̃2 ↪→ Sp+1(

√
2)

are closed minimal submanifolds. Denote Ã the second fundamental form of M̃2 ↪→
Sp+1(

√
2), then

|A|2 = |Ã|2 + 1,

where A is the second fundamental form of x : M2 → R2+p. Then the condition (1.6) is
equivalent to

0 ≤ |Ã|2 ≤ 2
3
. (5.9)

A well-known theorem (cf. Theorem B in [17]) implies either

(1) |Ã|2 ≡ 0 and M̃2 = S2(
√

2) or
(2) |Ã|2 ≡ 2/3 and M̃2 = S2(

√
6) ↪→ S4(

√
2) is a Veronese surface.

Therefore in terms of |A|2, we have two possibilities:

(1) |A|2 ≡ 1 and M2 = S2(
√

2) in R3.
(2) |A|2 ≡ 5/3 and the self-shrinker has the form x : M2 = S2(

√
6) → S4(

√
2) ↪→ R5.

Note that M2 = S1(1) × R ↪→ R2+p also has |A|2 ≡ 1, this completes the proof of
Theorem 1.5. ¤

Proof of Theorem 1.6. Theorem A and Theorem 1.1 imply that

M2 = M̃1 × R, or M2 = M̃2,

where M̃1 ↪→ Sp(1) and M̃2 ↪→ Sp+1(
√

2) are minimal submanifolds. Then M̃1 = S1(1)
and M2 = M̃1 × R ↪→ R2+p has |A|2 ≡ 1, this is impossible. So

M2 = M̃2 ↪→ Sp+1(
√

2)
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is a closed minimal submanifold in the sphere Sp+1(
√

2). Denote its second fundamental
form by Ã , then

|A|2 = |Ã|2 + 1,

where A is the second fundamental form of x : M2 → R2+p. Then the condition (1.7) is
equivalent to

2
3
≤ |Ã|2 ≤ 5

6
. (5.10)

A well-known theorem (cf. Theorem C in [17]) implies either

( i ) |Ã|2 ≡ 2/3 and M̃2 = S2(
√

6) ↪→ S4(
√

2) is a Veronese surface.
( ii ) |Ã|2 ≡ 5/6 and M̃2 = S2(

√
12) ↪→ S6(

√
2) is a canonical immersion.

Therefore in terms of |A|2, we have two possibilities:

( i ) |A|2 ≡ 5/3 and the self-shrinker x : M2 = S2(
√

6) → S4(
√

2) ↪→ R5 is a Veronese
surface.

( ii ) |A|2 ≡ 11/6 and the self-shrinker x : M2 = S2(
√

12) → S6(
√

2) ↪→ R7 is a canonical
immersion. ¤

5.3. Self-shrinkers with flat normal bundle.
Proof of Theorem 1.7. From the equation (A.1) in the Appendix, the condi-

tion “flat normal bundle”, i.e., R⊥ = 0 and σαβ = (1/p)|A|2δαβ imply

1
2
L|A|2 = |∇A|2 +

1
p
|A|2(p− |A|2). (5.11)

Since M has bounded |A|2 and polynomial volume growth, from Proposition A.2 in
the Appendix, we have

∫

M

|∇A|2e−|x|2/2 < +∞. (5.12)

By (5.11) and (5.12), L|A|2 has finite weighted integral

∫

M

(L|A|2)e−|x|2/2 < +∞, (5.13)

then the self-adjointness of the operator L (Corollary 3.2) implies

0 =
1
2

∫

M

(L|A|2)e−|x|2/2

=
∫

M

(
|∇A|2 +

1
p
|A|2(p− |A|2)

)
e−|x|

2/2.
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That is
∫

M

|∇A|2e−|x|2/2 =
1
p

∫

M

|A|2(|A|2 − p)e−|x|
2/2. (5.14)

Therefore our assumption (1.8) implies either |A|2 ≡ 0 and Mn is a plane; or |A|2 ≡ p

and |∇A| ≡ 0, noting our assumption σαβ = (1/p)|A|2δαβ , we can conclude that M is

x : Mn = Nmp × Rn−mp ↪→ Rn+p,

where

Nmp = Sm(
√

m)× · · · × Sm(
√

m) ↪→ S(m+1)p−1(
√

mp).

This completes the proof of Theorem 1.7. ¤

6. Further remarks on closed self-shrinkers.

Proof of Proposition 1.8. The conditions (1) and (2) imply the closed self-
shrinker is a minimal submanifold in the sphere Sn+p−1(

√
n) have been proved by

Smoczyk [25] and Cao-Li [4] respectively. Now we only need to prove that the con-
dition (3) can also imply the closed self-shrinker must be the minimal submanifold in the
sphere.

Recall that for self-shrinker, we have the following equations.

1
2
∆|x|2 = n− |x⊥|2 = n− |H|2, (6.1)

1
2
L|x|2 = n− |x|2. (6.2)

Since the self-shrinker is closed, we integrate (6.2) with weighted e−|x|
2/2. By the self-

adjointness the operator L (Lemma 3.1), we have

0 =
1
2

∫

M

L|x|2e−|x|2/2 =
∫

M

(n− |x|2)e−|x|2/2. (6.3)

Then the condition (3) and (6.3) imply |x|2 = n. By using equation (6.1), we obtain

|H|2 = |x⊥|2 = n = |x|2.

Therefore H = −x and Mn is a minimal submanifold in the sphere Sn+p−1(
√

n). ¤

By applying the well-known theorems on the minimal submanifold in sphere by Ejiri
[10], H. Li [19], Itoh [14], [15] and Yau [27], Proposition 1.8 implies the following three
results.
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Theorem 6.1. Let Mn (n ≥ 3) be a closed self-shrinker in Rn+p which satisfies
one of the three conditions in Proposition 1.8. If the Ricci curvature of M satisfies
Ric ≥ (n− 2)/n, then Mn must be one of the followings:

(1) Mn = Sn(
√

n);
(2) Mn = Sk(

√
n/2)× Sk(

√
n/2) ↪→ Sn+1(

√
n), n = 2k, p = 2;

(3) M4 = P 2
c (1/3) ↪→ S7(2), n = 4, p = 4,

where P 2
c (1/3) denotes the complex projective space with sectional curvature smaller than

1/3.

Remark 6.1. We remark that Ejiri’s result [10] holds for n ≥ 4, which was ex-
tended by H. Li [19] to 3-dimensional case.

Theorem 6.2. Let Mn be a closed self-shrinker in Rn+p which satisfies one of
the three conditions in Proposition 1.8. If the sectional curvature of M satisfies K ≥
1/(2(n + 1)), then Mn must be one of the followings:

(1) Mn = Sn(
√

n);
(2) Mn = Sn(

√
2(n + 1)) ↪→ Sn+p−1(

√
n).

Theorem 6.3. Let Mn be a closed self-shrinker in Rn+p which satisfies one of
the three conditions in Proposition 1.8. If the sectional curvature of M satisfies K ≥
(p− 2)/(2p− 3), then Mn must be one of the followings:

(1) Mn = Sk(
√

k)× Sn−k(
√

n− k) ↪→ Sn+p−1(
√

n), 0 ≤ k ≤ n;
(2) M2 = S2(

√
6) ↪→ S4(

√
2), n = 2, p = 3.

Appendix A. Two formulas of Simons’ type and the weighted integral
estimates.

In this appendix, we give two formulas of Simons’ type for self-shrinkers and the
weighted integral estimates of the first and the second covariant derivatives of the second
fundamental form of self-shrinkers, which we used in Subsection 5.3.

Proposition A.1. Let x : Mn → Rn+p be an immersed self-shrinker, then we
have the following Simons’ type formula,

1
2
L|A|2 = |∇A|2 + |A|2 −

∑

α,β

σ2
αβ − |R⊥|2, (A.1)

1
2
L|∇A|2 = |∇2A|2 + 2|∇A|2 + 6Rβαklh

α
ijkhβ

ijl − σαβhα
ijkhβ

ijk

+ 6hα
ijkhα

rjl

(
hβ

rkhβ
il − hβ

rlh
β
ik

)− 3hα
ijkhα

rijh
β
rlh

β
kl, (A.2)

where σαβ =
∑

ij hα
ijh

β
ij, Rβαkl =

∑
i(h

β
kih

α
il − hβ

lih
α
ik) is the curvature of the normal

bundle and |R⊥|2 =
∑

R2
βαkl. In particular, for hypersurface self-shrinkers, that is
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p = 1, we have

1
2
L|A|2 = |∇A|2 + |A|2(1− |A|2), (A.3)

1
2
L|∇A|2 = |∇2A|2 − |∇A|2(|A|2 − 2)− 3

2
|∇|A|2|2 − 3Ξ, (A.4)

where Ξ = hijkhijrhklhlr − 2hikjhjrlhilhkr.

Remark A.1. In the hypersurface case, the formulas (A.3) and (A.4) were derived
by Colding-Minicozzi II [7] and Ding-Xin [9] respectively. In arbitrary codimension, the
formula (A.1) was also proved by Ding-Xin [9].

Proof. For an immersion x : Mn → Rn+p, we have the following formulas of
Simons’ type (for example, see [9], [20])

1
2
∆|A|2 = |∇A|2 +

∑

i,k,α

hα
ikHα

,ik +
∑

i,j,k,α,β

Hβhβ
jkhα

kih
α
ij −

∑

α,β

σ2
αβ − |R⊥|2.

So for the self-shrinker, substituting (2.12) into the above equation, we obtain

1
2
L|A|2 =

1
2
(∆|A|2 − 〈x,∇|A|2〉)

= |∇A|2 + |A|2 −
∑

α,β

σ2
αβ − |R⊥|2.

This is (A.1). Now we prove (A.2), recall that for the covariant derivatives of the second
fundamental form, we have the following Ricci identities (see [3], [20])

hα
ijkl − hα

ijlk = hα
rjRrikl + hα

irRrjkl + hβ
ijRβαkl, (A.5)

hα
ijkls − hα

ijksl = hα
rjkRrils + hα

irkRrjls + hα
ijrRrkls + hβ

ijkRβαls. (A.6)

Then

∆hα
ijk = hα

ijkll

=
(
hα

ijlk + hα
rjRrikl + hα

irRrjkl + hβ
ijRβαkl

)
l

= hα
lijlk + hα

rijRrlkl + hα
lrjRrikl + hα

lirRrjkl + hβ
lijRβαkl + hα

rjlRrikl

+ hα
irlRrjkl + hβ

ijlRβαkl + hα
rj(Rrikl)l + hα

ir(Rrjkl)l + hβ
ij(Rβαkl)l

= Hα
,ijk + hα

rikRrj + hα
rijRrk + hα

lrkRrijl + hβ
likRβαjl + 2hα

rjlRrikl

+ 2hα
rilRrjkl + 2hβ

lijRβαkl + hα
rj(Rrikl)l + hα

ir(Rrjkl)l + hβ
ij(Rβαkl)l

+ hα
ri(Rrljl)k + hα

rl(Rrijl)k + hβ
li(Rβαjl)k,
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where we used in last equality

hα
lijlk =

[
hα

lilj + hα
riRrljl + hα

lrRrijl + hβ
liRβαjl

]
k

= Hα
,ijk + hα

rikRrj + hα
lrkRrijl + hα

likRβαjl + hα
ri(Rrj)k + hα

lr(Rrijl)k + hβ
li(Rβαjl)k.

For self-shrinkers, we have by use of (2.10), (2.11) and (2.12)

Hα
,ijk = hα

ijlk〈x, el〉+ 2hα
ijk −Hβ

,khα
ilh

β
lj −Hβ

(
hα

ijlh
β
kl + hα

iklh
β
jl + hα

ilh
β
ljk

)
. (A.7)

Then we obtain

1
2
L|∇A|2 =

1
2
(∆|∇A|2 − 〈x,∇|∇A|2〉)

= |∇2A|2 + hα
ijk∆hα

ijk − 〈x, el〉hα
ijkhα

ijkl

= |∇2A|2 + 2|∇A|2 + 〈x, el〉hα
ijk

(
hα

ijlk − hα
ijkl

)

− hα
ijkHβ

,khα
ilh

β
lj − hα

ijkHβ
(
hα

ijlh
β
kl + hα

iklh
β
jl + hα

ilh
β
ljk

)

+ hα
ijk

(
hα

rikRrj + hα
rijRrk + hα

lrkRrijl + hβ
likRβαjl + 2hα

rjlRrikl + 2hα
rilRrjkl

+ 2hβ
lijRβαkl + hα

rj(Rrikl)l + hα
ir(Rrjkl)l + hβ

ij(Rβαkl)l + hα
ri(Rrljl)k

+ hα
rl(Rrijl)k + hβ

li(Rβαjl)k

)
. (A.8)

By the Ricci identity (A.5), Gauss equation (2.1) and the equation (2.11), a direct cal-
culation to check

〈x, el〉hα
ijk

(
hα

ijlk − hα
ijkl

)
= 3hα

ijkhα
rjh

β
ikHβ

,r − 2hα
ijkhα

rjh
β
rkHβ

,i − hα
ijkhβ

ijh
β
rkHα

,r (A.9)

and the last four lines of (A.8) is equal to

hα
ijk

(
6hα

rjlh
β
rkhβ

il − 6hα
rjlh

β
rlh

β
ik + 2hα

rijh
β
rkHβ − 3hα

rijh
β
rlh

β
kl + 6hβ

lijh
β
krh

α
lr − 6hβ

lijh
β
lrh

α
kr

+ 3hα
rih

β
rjH

β
,k − 3hα

rjh
β
kiH

β
,r + hα

rih
β
rjkHβ − hα

rlh
β
rlh

β
ijk + hβ

ijh
β
krH

α
,r

)
. (A.10)

Put (A.9) and (A.10) into (A.8), we get the formula (A.2). ¤

Proposition A.2. Let x : Mn → Rn+p be a complete immersed self-shrinker and
with polynomial volume growth, if |A|2 is bounded on M , then

∫

M

|∇A|2e−|x|2/2 < +∞, (A.11)

∫

M

|∇2A|2e−|x|2/2 < +∞. (A.12)
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Remark A.2. For the hypersurface case, this weighted integral estimate was
proved by Ding-Xin ([9]).

Proof. Let η be a cut-off function with compact support on M , by the self-
adjointness of L and (A.1), we have

∫

M

|∇A|2η2e−|x|
2/2 =

∫

M

( ∑

α,β

σ2
αβ + |R⊥|2 − |A|2 +

1
2
L|A|2

)
η2e−|x|

2/2

≤ C

∫

M

|A|4η2e−|x|
2/2 − 1

2

∫

M

∇η2∇|A|2e−|x|2/2

≤ C

∫

M

|A|4η2e−|x|
2/2 +

1
2

∫

M

|∇A|2η2e−|x|
2/2

+ 2
∫

M

|A|2|∇η|2e−|x|2/2.

Then
∫

M

|∇A|2η2e−|x|
2/2 ≤ 2C

∫

M

|A|4η2e−|x|
2/2 + 4

∫

M

|A|2|∇η|2e−|x|2/2.

Since M has polynomial volume growth and bounded |A|2, by the dominated convergence
theorem, the above inequality implies

∫

M

|∇A|2e−|x|2/2 < +∞.

Using the formula (A.2) and a similar argument as above, we get

∫

M

|∇2A|2η2e−|x|
2/2 ≤C

∫

M

|A|2|∇A|2e−|x|2/2 + 4
∫

M

|∇A|2|∇η|2e−|x|2/2.

Then by the boundness of |A|2, (A.11), the dominated convergence theorem and the
above equality imply

∫

M

|∇2A|2e−|x|2/2 < +∞. ¤
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