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Abstract. In this paper we classify the elliptic fibrations on K3 surfaces
which are the double cover of a blow up of P2 branched along rational curves
and we give equations for many of these elliptic fibrations. Thus we obtain a
classification of the van Geemen-Sarti involutions (which are symplectic invo-
lutions induced by a translation by a 2-torsion section on an elliptic fibration)
on such a surface. Each van Geemen-Sarti involution induces a 2-isogeny be-
tween two K3 surfaces, which is described in this paper.

1. Introduction.

An involution on a complex K3 surface is called symplectic if it acts trivially on the
second cohomology group, otherwise it is called non-symplectic. The quotient of a K3
surface by a non-symplectic involution is a smooth surface (it is either an Enriques
surface or a surface with Kodaira dimension −∞). The quotient of a K3 surface by a
symplectic involution is a singular surface whose desingularization is a K3 surface. Thus
a symplectic involution on a K3 surface induces a 2-isogeny between two K3 surfaces (a
very explicit description of certain isogenies between K3 surfaces induced by symplectic
involutions can be found, for example, in [vGT]). If a K3 surface admits a symplectic
involution, then its Picard number is at least 9 (cf. [vGS]). Let X be a K3 surface with
a sufficiently large Picard number, then one can ask if X admits at least one symplectic
involution and, if yes, how many symplectic involutions it admits. To positively answer
to the first question it suffices to show that there is a primitive embedding of a certain
lattice, E8(−2), in the Néron-Severi group of the surface (cf. [N3], [vGS]). To answer to
the second question one has to analyze the number of primitive embeddings of E8(−2)
in the Néron-Severi of the surface. In general this is a difficult problem. On the other
hand it is of a certain interest to analyze different symplectic involutions on the same
K3 surface, because each of them gives a different 2-isogeny with another K3 surface. In
this paper we restrict our attention to particular symplectic involutions, the so called van
Geemen-Sarti involutions, which are the translation by a 2-torsion section on an elliptic
fibration on the K3 surface. Our purpose is in fact to classify all the van Geemen-Sarti
involutions and the associated 2-isogenies on certain K3 surfaces, X(r,22−r,δ), which are
double cover of a blow up of P2 branched along rational curves. Since the presence
of a van Geemen-Sarti involution on a K3 surface assumes the presence of an elliptic
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fibration on it, our strategy consists in the classification of all the elliptic fibrations on
the surfaces X(r,22−r,δ) and then in the analysis of those admitting at least a 2-torsion
section. We underline that the classification of the elliptic fibrations on a family of K3
surfaces is the object of study of several papers (cf. [O], [Kl], [SZ]), some of them very
recent (cf. [BL], [Ku]). To classify the elliptic fibrations on the K3 surfaces X(r,22−r,δ),
we use techniques which go back to [O] and [Kl], where the elliptic fibrations on a K3
surface X are classified if X is respectively the Kummer surface of the product of two
non-isogenous elliptic curves or the double cover of P2 branched along the union of 6 lines
in general position. In both these papers one of the main properties of X is that it admits
a non-symplectic involution acting trivially on the Néron-Severi group. In particular in
[Kl] the author suggests that his results can be generalized to K3 surfaces with such an
involution and other particular properties. Here we do exactly this generalization: the
K3 surfaces considered are double covers of P2 branched over singular (and reducible)
sextics. The choice of the branch sextic is not unique, and we use this property in order to
give a geometric description and an equation for several elliptic fibrations on X(r,22−r,δ).
Indeed, we associate to certain elliptic fibrations on X(r,22−r,δ) a pencil of rational curves
in P2 whose general member meets the branch sextic in 4 smooth points. Thus the
equation of the elliptic fibration can be deduced by the equation of the branching sextic
and of the pencil. In several cases an appropriate choice of the branch sextic makes
it possible to choose the pencil of rational curves to be a pencil of lines and thus to
obtain a very easy and clear geometrical description of the elliptic fibration. Moreover,
this technique allow us to show explicitly how certain elliptic fibrations on the surface
X(r,22−r,δ) specialize to elliptic fibrations on X(r+1,21−r,δ) (this kind of problem was
analyzed for a particular elliptic fibration on X(16,6,1) in [CD]). Neither in [O] nor [Kl]
the equations of the classified elliptic fibrations are found. More recently the equations of
the elliptic fibrations classified in [O] were given in [KS] and the equations of the elliptic
fibrations classified in [Kl] were given in [U].

In Section 2.4 we introduce the K3 surfaces X(r,22−r,δ) and in Section 3 we describe
them as double covers of P2 branched over sextics. We denote by ι the cover involution.
In Section 4 we give a list of the possible elliptic fibrations on the K3 surfaces X(r,22−r,δ).
From a geometrical point of view there are essentially two possibilities: ι acts only on
the basis of the elliptic fibrations (i.e. it is induced by an involution of P1, base of the
elliptic fibration, see Example 2.5) or ι acts only on the fibers of the elliptic fibration (as
the hyperelliptic involution, see Example 2.6). In the first case (analyzed in Section 5)
the elliptic fibrations admit sections of infinite order (if r 6= 20), they are obtained from
a rational elliptic fibration by a base change and they are not associated to a pencil of
rational curves on P2 as described before. Moreover, there are few elliptic fibrations of
this type admitting a van Geemen-Sarti involution. On the contrary, in the second case,
the elliptic fibrations have no sections of infinite order and are always associated to a
pencil of rational curves in P2: in Section 6 we describe this pencil for each admissible
elliptic fibration of this type. In this case there are several elliptic fibrations admitting a
2-torsion section and we observe that the choice of the reducible fibers of the fibrations
does not determine the intersection properties of the torsion section: for example, in [Kl]
the author proves that there exists an elliptic fibration on X(16,6,1) with reducible fibers
I∗4 +6I2 and a 2-torsion section by giving explicitly the nef divisor F defining this elliptic
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fibration. Thus the intersection properties of the 2-torsion section are determined. In
[CD] an elliptic fibration on X(16,6,1) with the same reducible fibers is considered: the 2-
torsion section does not meet the reducible fibers in the same components as the elliptic
fibration considered in [Kl]. Thus these two elliptic fibrations on X(16,6,1) define two
different van Geemen-Sarti involutions. In Section 6 we give a complete classification of
the van Geemen-Sarti involutions considering also this type of situation, i.e. we do not
classify only the type of reducible fibers of an elliptic fibration but also the intersections
of the torsion sections with such reducible fibers. The main ingredient to describe the
intersection properties of the torsion section with the reducible fiber is the height formula.

In Section 7 we return to one of our original problems: describe the 2-isogenies
between K3 surfaces which are induced by the quotient map of a van Geemen-Sarti
involution. Thus we describe the quotients of the elliptic fibrations classified in the
previous sections: we recover and describe in a slightly different way some known 2-
isogenies (for example the ones analyzed in [vGT] and in [CD]) and we obtain many
other isogenies. It is of a certain interest that there exist some isogenies among surfaces
X(r,22−r,δ) and surfaces X(r,a,δ), where a 6= 22− r. The K3 surfaces X(r,a,δ) are surfaces
admitting a non-symplectic involution acting trivially on the Néron-Severi group. They
are the object of study for several reasons, one of them is that they are involved in the
Borcea-Voisin construction, which allows one to obtain Calabi-Yau 3-folds from these K3
surfaces. If a 6= 22 − r and (r, a, δ) 6= (14, 6, 0) both the family of K3 surfaces X(r,a,δ)

and the associated Calabi-Yau 3-folds admit a known mirror family. This is not the case
if a = 22− r, thus we are considering an isogeny between K3 surfaces (and Calabi-Yau
3-folds) with a known mirror family and K3 surfaces (and Calabi-Yau 3-folds) for which
the mirror is not known.

Acknowledgments. We warmly thank Bert van Geemen and Alessandra Sarti
for interesting discussions and useful suggestions.

2. Background materials.

Definition 2.1. Let X be a compact complex surface. It is called K3 surface if
its canonical bundle is trivial and h1,0(X) = 0.

The space H2,0(X) is 1-dimensional and we choose a basis ωX , which we call the
period of X.

We will always assume that X is projective.
Let α be an automorphism of X. Then α∗ preserves the Hodge structure of H2(X).

Thus α(ωX) = λα(ωX), with λα ∈ C∗. Moreover, if α has finite order m then λm
α = 1.

Definition 2.2. Let X be a K3 surface. An involution ι ∈ Aut(X) is called
symplectic if λι = 1, non-symplectic if λι = −1.

2.1. Lattices.
A lattice (L, b) is a free Z-module of finite rank with a Z-valued symmetric bilinear

form b : L× L −→ Z. When it is clear that the bilinear form is b, we denote the lattice
(L, b) only by L. A lattice L is said to be even if the quadratic form associated to b
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takes only even values, otherwise it is called odd. The discriminant d(L) of L is the
determinant of a matrix which represent b with respect to a certain basis, L is said to
be unimodular if d(L) = ±1. If L is non-degenerate, i.e. d(L) 6= 0, then the signature
of L is the signature of the R-linear extension of b to L ⊗ R. A lattice with signature
(1, rank(L)− 1) is called hyperbolic.

The dual of the lattice L is L∨ = HomZ(L,Z) = {v ∈ L ⊗Z Q | b(v, x) ∈ Z for all
x ∈ L}. There is a natural embedding of L in L∨ via c 7→ b(c,−). The quotient L∨/L

is called the discriminant group of L and is denoted by AL. The minimal number of
generators of the group AL is called length of L and is indicated by l(L).

The bilinear form b on L induces a bilinear form L∨ × L∨ → Q on L∨ and thus a
bilinear form bAL

: AL × AL → Q/Z defined over AL = L∨/L. The bilinear form bAL
is

called discriminant form of L.
A lattice L is called 2-elementary if AL ' (Z/2Z)a. A 2-elementary lattice is uniquely

determined by three invariants: r, which is the rank of L, a which is the length of L and
δ which takes values either 0, if the discriminant form takes value in Z, or 1 otherwise
(cf. [N1]).

We denote by U the unique (up to isometries) even unimodular hyperbolic lattice of
rank 2. It is associated to the matrix

(
0 1
1 0

)
. We denote by E8 the unique even unimodular

positive definite lattice of rank eight (it is associated to the Dynkin diagram E8).
Let X be a K3 surface. Then H2(X,Z) with the cup product is an even unimodular

lattice with signature (3, 19). Up to isometries there exists only one lattice with these
properties, which is U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1). This lattice is denoted by ΛK3.

The Néron-Severi group of X, defined as NS(X) := H1,1(X) ∩H2(X,Z), is a sub-
lattice of ΛK3. Since we consider algebraic K3 surfaces, the Néron-Severi group is an
hyperbolic lattice, by the Hodge index theorem. We denote by ρ(X) the Picard number
of X, i.e. the rank of its Néron-Severi group. The transcendental lattice TX is the
orthogonal of NS(X) in H2(X,Z), thus its signature is (2, 20− ρ(X)).

2.2. Elliptic fibrations.
We recall some known facts on elliptic fibrations, which are very important in the

following. A good and recent reference for these results is [SS].

Definition 2.3. Let S be a surface and D a curve. An elliptic fibration E : S → D

on the surface S is a surjective morphism such that the generic fiber is a smooth curve
of genus one and such that a section s : D → S is given. We call this section the zero
section.

Every elliptic fibration can be regarded as an elliptic curve over the function field
of the basis. We will assume D ' P1 with homogeneous coordinate (τ : σ). Under this
assumption each elliptic fibration admits a minimal Weierstrass equation of the form

y2 = x3 + A(τ : σ)x + B(τ : σ), A(τ : σ), B(τ : σ) ∈ C[τ : σ]hom,

deg A(τ : σ) = 4m, deg B(τ : σ) = 6m

for a certain m ∈ N>0 and where there exists no polynomials C(τ : σ) such that
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C(τ : σ)4|A(τ : σ) and C(τ : σ)6|B(τ : σ). If S is a K3 surface, then m = 2, i.e.,
deg(A(τ : σ)) = 8, deg(B(τ : σ)) = 12. We use the notation A(τ) and B(τ) to indicate
the polynomials A(τ : 1) and B(τ : 1).

There are a finite number of singular fibers, which are the fibers over the points
τ ∈ P1 where ∆(τ) = −16(4A3(τ) + 27B2(τ)) is zero. For each singular fiber Fτ of the
fibration we will denote by δ(Fτ ) the multiplicity of zero of ∆ in τ . The possible singular
fibers on an elliptic fibration are described by Kodaira: their components are rational
curves. One of these components meets the zero section, the other ones meet each other
with the configuration of a Dynkin diagram. For each singular fibers F we denote by r(F )
the number of components of F and by d(F ) the discriminant of the lattice associated to
the Dynkin diagram of F . A simple component of a fiber is a component with multiplicity
1.

In the following table we describe the singular fibers of an elliptic fibration. We
denote by Θ0 the component of a fiber meeting the zero section. The first column
contains the name of the reducible fiber according to Kodaira classification, the second
the Dynkin diagram associated to the fiber, the third column contains the description of
the intersections among the components of the fibers, the last column components which
are simple.

II one cuspidal rational curve Θ0 Θ0

III A1 two tangent rational curves Θ0,Θ1 Θ0,Θ1

IV A2 three lines meeting in a point Θ0,Θ1,Θ2 Θi, i = 0, 1, 2
I1 one nodal rational curve Θ0 Θ0

I2 A1 Θ0 =Θ1 Θ0,Θ1

In An−1

Θ0 − Θ1 − · · · Θi

| |
Θn−1−Θn−2− · · · Θi+1

Θi, i =
0, . . . , n− 1

I∗n Dn+4

Θ0 Θn+3

� �
Θ2 · · · Θi −Θi+1 · · · Θn+2

� �
Θ1 Θn+4

Θi,

i = 0, 1,

n + 3, n + 4

IV ∗ E6

Θ0−Θ1−Θ2−Θ3−Θ4

|
Θ5

|
Θ6

Θi,

i = 0, 4, 6

III ∗ E7

Θ0−Θ2−Θ3−Θ4−Θ5−Θ6−Θ7

|
Θ1

Θi,

i = 0, 7

II ∗ E8

Θ0−Θ1−Θ2−Θ3−Θ4−Θ5−Θ6−Θ7

|
Θ8

Θ0
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The set of the sections of an elliptic fibration E form a group, MW(E) (the Mordell-
Weil group), with the group law which is induced by the one on the smooth fibers. Let
E be an elliptic fibration on the surface S and let Red = {v ∈ P1 | Fv is reducible}. We
recall the Shioda-Tate formula: ρ(S) = rank(MW(E)) + 2 +

∑
v∈Red(r(Fv)− 1).

The trivial lattice TrS of an elliptic fibration on a surface S is the lattice generated
by the class of the fiber, the class of the zero section and the classes of the irreducible
components of the reducible fibers which do not intersect the zero section. Its rank is
ρ(S)− rank(MW(E)).

One can define a quadratic form on MW(E), which takes value in Q, by the height
formula: let P be a section of an elliptic fibration E , then we set: 〈P, P 〉 = 2χ+2(P ·s)−∑

v∈Red contrv(P ), where contrv(P ) depends on the component of the reducible fibers
which meets P . The main property of this pairing is that 〈P, P 〉 = 0 if and only if P

is a torsion section. If P meets the component Θ0, then contrv(P ) = 0, otherwise, if P

meets the component Θi, i 6= 0 the value of contrv(P ) is listed in the following table:

fiber In, n ≥ 2 (III , IV ) I∗n IV ∗ III ∗

Dynkin diagram An−1 (A1, A2) Dn+4 E6 E7

contrv(P ) i(n− i)/n

{
1 if i = 1
1 + n/4 if i = n + 3, n + 4

4/3 3/2

The Mordell-Weil group equipped with this bilinear form is called Mordell-Weil lattice
and is denoted by MWL.

2.3. Symplectic involutions on K3 surfaces.
Let X be a K3 surfaces admitting a symplectic involution σ. Then the anti-invariant

lattice (H2(X,Z)σ)⊥ is isometric to E8(−2) and it is primitively embedded in NS(X).
Since E8(−2) is a negative definite lattice and the Néron-Severi group of a projective K3
surface is an hyperbolic lattice, the lattice orthogonal to E8(−2) in NS(X) has rank at
least 1. Thus the Picard number of a K3 surface with a symplectic involution is at least
9 and the moduli of K3 surfaces with a symplectic involution are 11.

The fixed locus Fixσ(X) := {x ∈ X | σ(x) = x} consists of eight isolated points, thus
the quotient X/σ is a singular surface with 8 singularities of type A1. The desingular-
ization Y := X̃/σ is a K3 surface, in general not isomorphic to X. The 8 rational curves
on Y introduced by the blow up which resolve the singularities of X/σ define classes
in NS(Y ). The minimal primitive sub-lattice of NS(Y ) containing these classes is the
unique even 2-elementary lattice with signature (0, 8) and discriminant group (Z/2Z)6.
It is called Nikulin lattice and is denoted by N .

A symplectic involution can be realized in several ways, according to the particular
projective model considered for a K3 surface. In [vGS] symplectic involutions acting on
K3 surfaces realized as quartics in P3, complete intersections in P4 and P5, double covers
of P2 are described. Another way to construct symplectic involutions is to consider K3
surfaces with an elliptic fibration: the translation σt by a section t on an elliptic K3
surface is a symplectic automorphism, and if the section has order n in the Mordell-Weil
group then σt is a symplectic automorphisms of order n. The case n = 2 is presented in
[vGS], the cases n > 2 are analyzed in [GS1], [GS2]. As in [CD] we give the following
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definition:

Definition 2.4. The symplectic involutions on an elliptic K3 surface X which are
translations by a section of order 2 of an elliptic fibration on X are called van Geemen-
Sarti involutions.

The family of K3 surfaces admitting a van Geemen-Sarti involution is presented in
[vGS, Proposition 4.2]: it is the family of the (U ⊕N)-polarized K3 surfaces and it has
dimension 10.

Let E be an elliptic fibration on a K3 surface X with a 2-torsion section t. The van
Geemen-Sarti involution σt is trivial on the base of the fibration and acts only on the
fiber. Thus it sends a fiber to itself. This implies that the elliptic fibration is preserved
by the van Geemen-Sarti involution and that the elliptic fibration E induces an elliptic
fibration, denoted by E/σt, over X̃/σt.

It is well known (cf. [ST, p. 79]) that an elliptic curve with a 2-torsion rational point
admits an equation of the form y2 = x(x2 +ax+b) and that the elliptic curve which is its
quotient by the translation by the point of order 2 has equation y2 = x(x2−2ax+a2−4b).
In particular let E be an elliptic fibration on a K3 surface with a 2-torsion section t, then
E and E/σt admit the following equations:

E : y2 = x(x2 + a(τ)x + b(τ)), E/σt : y2 = x(x2 − 2a(τ)x + a(τ)2 − 4b(τ)) (2.1)

where a(τ : σ) and b(τ : σ) are polynomials of degree 4 and 8 respectively.

2.4. Non-symplectic involutions on K3 surfaces.
In [N1] Nikulin classified the non-symplectic involutions on K3 surfaces. If ι is a

non-symplectic involution on a K3 surface X, the lattice H2(X,Z)ι is hyperbolic and
2-elementary, thus it is uniquely determined by the invariants (r, a, δ). We will denote by
N(r,a,δ) the unique (up to isometries) even hyperbolic 2-elementary lattice with invariant
(r, a, δ).

If ι is a non-symplectic involution of a K3 surface, the fixed locus Fixι(X) is smooth
and is one of the following: 1) empty; 2) made up of two elliptic curves; 3) made up
of k rational curves and one curve of genus g ≥ 0. The fixed locus is associated to the
invariant lattice H2(X,Z)ι: the lattice H2(X,Z)ι determines the fixed locus uniquely;
given a fixed locus it determines uniquely the values r, a and thus a particular fixed locus
is associated at most to two lattices (the ones with the same values of r and a but with
a different value of δ). More precisely:

1) if Fixι(X) is empty then the lattice H2(X,Z)ι is N(10,10,0);
2) if Fixι(X) is the disjoint union of two elliptic curves then H2(X,Z)ι is N(10,8,0);
3) if Fixι(X) is the disjoint union of k rational curves and a curve of genus g then

H2(X,Z)ι is N(r,a,δ) where

g =
22− r − a

2
, k =

r − a

2
. (2.2)

If X admits a non-symplectic involution ι, then H2(X,Z)ι is primitively embedded
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in NS(X). The K3 surfaces admitting a non-symplectic involution with a given fixed
locus appear in families: they are the N(r,a,δ)-polarized K3 surfaces (where N(r,a,δ) is
the lattice associated to the chosen fixed locus). The general member in this family has
Néron-Severi group isometric to N(r,a,δ) and will be denoted by X(r,a,δ).

In Section 2.3 we saw an example of symplectic involution (the van Geemen-Sarti
involution) preserving an elliptic fibration on a K3 surface. Here we consider three
examples of non-symplectic involutions preserving an elliptic fibration on a K3 surface.

Example 2.5. Let ϕ : S → P1 be an elliptic fibration on a rational surface S with
Weierstrass equation y2 = x3 + A(τ)x + B(τ). Let α : P1 → P1 be a double cover. Up to
a projectivity, we can assume that α : τ 7→ τ2. We assume that the fibers of ϕ over τ = 0
and τ = ∞ are reduced. After pulling back ϕ via α, we obtain an elliptic fibration on a
K3 surface X with Weierstrass equation y2 = x3 +A(τ2)x+B(τ2). It is clear that there
exists an involution i : (x, y, τ) 7→ (x, y,−τ) on X (we will refer to this involution as
“involution of type a)”). It acts only on the basis of the fibration and is non-symplectic.
It sends a fiber to another one and thus the class of the fiber is preserved by i. There
are two fibers which are fixed, the ones over τ = 0, τ = ∞. Since i does not act on the
fibers, all the sections of the fibration are preserved by i. We observe that S = X/i, by
construction.

Example 2.6. An elliptic curve is a 2 : 1 cover of a rational curve branched
over 4 points, thus on each elliptic curve there exists an involution which is the cover
involution and which fixes the four points p such that 2p = 0. This involution extends
to an involution, i, of any elliptic fibration (we will refer to this involution as “the
hyperelliptic involution” or as “involution of type b)”). If one consider the equation
y2 = x3 + A(τ)x + B(τ) of the elliptic fibration, then i is (x, y, τ) 7→ (x,−y, τ). The
involution i fixes the basis of the fibration, thus sends a fiber to itself. The zero section
is fixed by i. Moreover, the 2-torsion points are fixed on every fiber. Generically the
points of order 2 lie on an irreducible curve, which is a trisection, fixed by i. However,
for certain elliptic fibrations the trisection splits in a section and a bisection or into three
sections.

Example 2.7. Let E be an elliptic fibration on a K3 surface. For each section
P ∈ MW(E) there exists a non-symplectic involution βP . Indeed a rational point P on
an elliptic curve E defines the involution βP : Q 7→ P − Q, Q ∈ E. In particular, such
an involution extends to an involution of the fibration if P is a section. This involution
is non-symplectic because it is the composition of the hyperelliptic involution (which is
non-symplectic) and a translation (which is symplectic). The involution βP preserves the
fibers. If P is the zero of the Mordell-Weil group, then βP is the hyperelliptic involution.

3. Double cover of P2.

Let us consider double covers of P2 branched over a sextic C6. This gives a (singular)
model of a K3 surface. The cover involution is a non-symplectic involution with fixed
locus the ramification locus. In this way we obtain a pair (X, i) where X is a K3 surface
and i a non-symplectic involution on it and thus generically a pair (X(r,a,δ), ι), with the
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notation of the previous section. The aim of this Section is to describe more precisely the
relation among the geometric properties of C6 and the numbers (r, a, δ) which describe
the K3 surface X. The main results are stated in Corollary 3.3 and Corollary 3.6.

The following proposition resumes some well known results on K3 surfaces which
are double covers of P2 branched over a (possibly singular and reducible) sextic.

Proposition 3.1. Let C6 be a sextic with singular points which are either ordinary
double points or ordinary triple points. Assume that C6 has α components b1, . . . , bα, γ

double points P1, . . . , Pγ and ν triple points Q1, . . . , Qν . Let X be the K3 surface obtained
as desingularization of the double cover of P2 branched over C6. Let ι be the involution
induced on X by the cover involution. Then the Picard number of X is ρ(X) ≥ 1+γ+4ν

and ι fixes s := α + ν curves. The involution ι acts as the identity on NS(X) if and only
if ρ(X) = 1 + γ + 4ν.

Proof. We first consider the case ν = 0. The double cover S of P2 branched
along C6 is singular over the singular points of C6. To resolve these singularities one
blows up the double cover. Equivalently one can blow up P2 in the singular points of C6

and then consider the double cover of this blow up. More precisely there is the following
commutative diagram:

S

2:1

²²

Xoo

2:1π

²²
P2 P̃2

βoo

where β : P̃2 → P2 is the blow up of P2 in Pi, i = 1, . . . , γ. Let b̃i ⊂ P̃2 be the strict
transform of bi. Let h be the class of a line in P2 and ei be the exceptional divisor over
Pi, i = 1, . . . , γ. One finds β−1(C6) =

⋃α
i=1 b̃i

⋃γ
j=1 ej and the divisors ej appear with

multiplicity 2 because Pj are double points. Thus the branch locus of the double cover
π : X → P̃2 consists of the disjoint union of b̃i, i = 1, . . . , α. The classes h, ei, i = 1, . . . , γ

generate NS(P̃2)⊗Q.
Since (NS(X)⊗Q)ι = π∗(NS(P̃2)⊗Q) one obtains rank((NS(X)⊗Q)ι) = ρ(P̃2) =

1 + γ. It is clear that (NS(X)⊗Q)ι is embedded in NS(X)⊗Q, and thus ρ(X) ≥ 1 + γ.
Moreover, ι acts as the identity on NS(X) if and only if (NS(X) ⊗ Q)ι = NS(X) ⊗ Q,
thus if and only if ρ(X) = 1 + γ.

Let us now consider the case ν > 0. Let Qj be a triple point on C6. The blow
up of Qj introduces an exceptional divisor fj with multiplicity 3. Since it has an odd
multiplicity, fj is a class in the branch locus of the double cover π : X → P̃2. The curve
fj meets the strict transform of C6 in 3 points (because Q is a triple point). To obtain
a smooth branch locus one has to blow up these three points, introducing the classes
fj,1, fj,2, fj,3. Each of them has multiplicity 2 and thus is not contained in the branch
locus. Hence over the triple points we found four curves with the following intersection
properties: f2

j = −4, f2
j,h = −1, fjfj,h = 1, fj,ifj,h = 0, i, h = 1, 2, 3, i 6= h. Thus a

triple point introduces 4 exceptional divisors in NS(P̃2) (the curves fj ,fj,1,fj,2,fj,3) and
one curve (fj) in the fixed locus. One concludes the proof as in case ν = 0. ¤



488 P. Comparin and A. Garbagnati

Definition 3.2. We will say that the components bi, i = 1, . . . , α are in general
position if ρ(X) = 1 + γ + 4ν.

If the components bi are in general position then NS(X) ⊗ Q = π∗(NS(P̃2)) ⊗ Q,
thus π∗(h), π∗(ei), i = 1, . . . γ, π∗(fj), j = 1, . . . ν, π∗(fj,h) j = 1, . . . , ν, h = 1, 2, 3 form
a Q-basis of NS(X).

The following corollary follows immediately by Proposition 3.1 and by the classifi-
cation of the non-symplectic involutions on K3 surfaces (see Section 2.4).

Corollary 3.3. Let C6 and bi be as in Proposition 3.1 and let bi be in general
position. Let gi = g(bi) be the genus of bi and gi ≥ gi+1. Then:

i) if g2 6= 0 then g1 = g2 = 1, α = 2, γ = 9, ν = 0;
ii) if g2 = 0 then g = g1, k = α + ν − 1, r = 1 + γ + 4ν, a = 21− γ − 4ν − 2g1, and thus

γ = α− 3ν + 9− g1 (with the notation of (2.2)).

Assumption 3.4. From now on we always assume that the curves bi are in general
position and rational.

Notation 3.5. We number the components of the branching sextic; if a double
point is the intersection between the i-th and the j-th components, it is denoted by Pi,j

(resp. P k
i,j , k = 1, . . . , h if the intersection consists of h distinct points), the exceptional

curve in P̃2 of the point Pi,j (resp. P k
i,j) will be denoted by ePi,j

(resp. eP k
i,j

) and its
pull-back on the K3 surface X(r,a,δ) is denoted by EPi,j

(resp. EP k
i,j

). If A is a triple
point, intersection of the i-th, the j-th and the k-th components, then we will call eA,
eA,i, eA,j and eA,k the exceptional curves over A. The intersection properties of these
curves are eAeA,i = eAeA,j = eAeA,k = 1, eA,ieA,j = eA,ieA,k = eA,jeA,k = 0, {i, j, k} =
{1, 2, 3}. We denote by EA,i := π∗(eA,i), i = 1, 2, 3. The pull back on X(r,a,δ) of the
strict transform of components bi (resp. li, ci when they are lines or conics) and the pull
back on X(r,a,δ) of eA are curves with multiplicity 2 (because of β∗(bi), β∗(li), β∗(ci) and
eA are in the branch locus). We denote by Bi (resp. Li, Ci, EA) the curves on X such
that π∗(β∗(bi)) = 2Bi (resp. π∗(β∗(li)) = 2Li, π∗(β∗(ci)) = 2Ci, π∗(eA) = 2EA).

Corollary 3.6. Under the Assumption 3.4 the double cover of P2 branched over
C6 is X(r,a,δ) with

a = 22− r, r = 1 + γ + 4ν,

and the cover involution is ι. The fixed locus of ι on X(r,a,δ) consists of k + 1 = α + ν

rational curves (this implies γ = α− 3ν + 9).
Moreover, if δ = 0 then (r, a) = (18, 4) and X(18,4,0) is the Kummer surface Km(E×

E′) where E and E′ are two non-isogenous elliptic curves.
The double cover of P2 branched along six lines with two triple points A, B is either

X(18,4,1) or X(18,4,0). In the first case the line through A and B is in the branch locus,
in the second case the line through A and B is not in the branch locus.

Proof. The conditions on a, k, r and γ depend on (2.2) and on Corollary 3.3.
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From the classification of non-symplectic involutions, it follows that the surface
X(r,22−r,0) has r = 18. In particular the K3 surface X(18,4,0) is the Kummer of the
product of two non-isogenous elliptic curves. Indeed the transcendental lattice of the
Kummer surface Km(E × E′) is isometric to U(2) ⊕ U(2) (cf. [O]). This lattice is a
2-elementary lattice with invariant a = 4, δ = 0 and thus the Néron-Severi group of
Km(E × E′) is a 2-elementary lattice with invariants (18, 4, 0).

We first consider the sextic which consists of the 6 lines li, i = 1, . . . , 6, with the 2
triple points A := l1∩l2∩l3, B := l4∩l5∩l6 and 9 double points P1,4, P1,5, P1,6, P2,4, P2,5,
P2,6, P3,4, P3,5, P3,6. In this case the line through A and B is not in the branch locus. The
invariants associated to this configuration of lines are α = 6, ν = 2, γ = 9. By Corollary
3.3 one obtains r = 18, a = 4. Hence the double cover of P2 branched over this sextic is
either X(18,4,0) or X(18,4,1). The classes Li, i = 1, . . . 6, EA, EB , EA,i, i = 1, 2, 3, EB,j ,
j = 4, 5, 6, EPh,k

, (h, k) = (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6) form
a particular lattice, called double Kummer (cf. [O]), which is typical of the Kummer
surface of the product of two elliptic curves (in particular the last 16 classes form a
Kummer lattice). Thus, the double cover of P2 branched over this configuration of 6
lines is Km(E × E′) and hence X(18,4,0).

Now we consider the sextic which consists of 6 lines li, i = 1, . . . , 6, with 2 triple
points A := l1 ∩ l2 ∩ l3, B := l1 ∩ l5 ∩ l6 and 9 double points P1,4, P2,4, P2,5, P2,6, P3,4,
P3,5, P3,6, P4,5, P4,6. The line through A and B is l1 and is contained in the branch
locus. The invariants associated to this configuration of lines are α = 6, ν = 2, γ = 9.
By Corollary 3.3 one obtains r = 18, a = 4. Thus, the double cover of P2 branched over
this sextic is either X(18,4,0) or X(18,4,1). The class F := L1 + EP1,4 +L4 + EP4,6 +L6 +
EB,6 + EB + EB,5 +L5 + EP2,5 +L2 + EA,2 + EA + EA,1 gives an elliptic fibration with
section s := EA,3 and with a fiber of type I14. By [O], there is not an elliptic fibration
with such a fiber on X(18,4,0). Hence this configuration of lines on P2 corresponds to the
K3 surface X(18,4,1). ¤

In Corollary 3.3 we proved that gi, α, γ, ν determine r and a. However there are
several different choices for α, γ, ν, and thus for the sextic C6, which are related to the
same choice of the invariant (r, a), as shown in the following example.

Example 3.7. Let X be the K3 surface which is the desingularization of the
double cover of P2 branched along six lines in general position. Then α = 6, γ = 15,
ν = 0. These numbers determine the invariant (r, a) = (16, 6), thus X is X(16,6,1). The
surface X is associated also to other sextics. The possible choices for the sextic C6 are:

i) 1 rational quartic, 2 lines and 3 triple points: α = 3, γ = 3, ν = 3;
ii) 1 rational cubic, 1 conic, 1 line and 3 triple points: α = 3, γ = 3, ν = 3;
iii) 1 rational cubic, 3 lines and 2 triple points: α = 4, γ = 7, ν = 2;
iv) 3 conics and 3 triple points: α = 3, γ = 3, ν = 3;
v) 2 conics, 2 lines and 2 triple points: α = 4, γ = 7, ν = 2;
vi) 1 conic, 4 lines and 1 triple point: α = 5, γ = 11, ν = 1;
vii) 6 lines: α = 6, γ = 15, ν = 0.

The surface X(r,a,δ)/ι does not depend on the choice of C6 up to birational trans-
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formation. Thus there is a birational map of P2 to itself which transforms one of the
sextics of the previous list to another one. To transform the sextic vii) to the sextic vi)
(resp. v), iv)) one considers the Cremona transformation centered in three double points
of C6 contracting 1 (resp. 2, 3) lines of the branch locus. To transform the sextic vi) to
the sextic iii) (resp. ii), i)) one considers the Cremona transformation centered in three
double points of C6, one (resp. one, zero) of them lying on the conic, and contracting 1
line (resp. 2 lines, 2 lines).

In case r = 18, different choices of C6 associated to the same α, γ, ν are not necessary
birational: in Corollary 3.6 we show that different configuration of 6 lines with two triple
points are associated to different K3 surfaces (X(18,4,0) and X(18,4,1)). We analyze the
similar situation for other choices of C6:

Example 3.8. Let us fix (r, a) = (18, 4). The possible choices for the components
of C6 are:

1) 2 conics, 2 lines and 4 triple points: α = 4, γ = 1, ν = 4;
2) 1 conic, 4 lines and 3 triple points: α = 5, γ = 5, ν = 3;
3) 6 lines and 2 triple points: α = 6, γ = 9, ν = 2.

We denote by 3a) the case associated to X(18,4,1) (the line through the triple points is in
the branch locus), and by 3b) the other one. Let us denote by li, i = 1, . . . , 6 the 6 lines
of the branch locus. In case 3a), we put A = l1∩ l2∩ l3 and B = l3∩ l4∩ l5. The Cremona
transformation centered in A, B and P2,4 gives a sextic of type 2) such that every triple
point is the intersection of two lines and the conic and every line passes through a triple
point. In case 3b), we put A = l1 ∩ l2 ∩ l3, B = l4 ∩ l5 ∩ l6. The Cremona transformation
centered in A, P1,4 and P2,5 gives a sextic of type 2) such that every triple point is the
intersection of two line and the conic and there is a line which does not pass through a
triple point. The Cremona transformation centered in B, P2,4, P2,6 gives a sextic of type
1).

4. Elliptic fibration on X(r,22−r,δ): possibilities.

In this section we use the results given in [O] and [Kl] and conditions coming from
the lattice properties of the Néron-Severi group in order to find a list of the admissible
elliptic fibrations on the surfaces X(r,22−r,δ). This is done in Propositions 4.5 and 4.8.

Definition 4.1. A rational curve in X which is in the branch locus (i.e. which
is among b̃i or fj with the notations of the previous section) is called special curve; a
rational curve which is not in the branch locus is called ordinary rational curve.

Lemma 4.2 ([Kl, Lemma 5.11]). Let V be the branch locus, i.e. V =
⋃

i b̃i

⋃
j fj.

Let D be an ordinary curve. Then D · V = 2.

Lemma 4.3 ([O, Lemma 1.6], [Kl, Lemma 5.12]). Let D1 and D2 be two ordinary
curves. Then D1D2 ≡ 0 mod 2.

Proposition 4.4 (cf. [Kl, Proposition 7.4]). Let E : X(r,22−r,δ) → P1 be an elliptic
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fibration. We recall that s = r− 10 is the number of curves fixed by the cover involution,
i.e. the number of special curves. Then the Kodaira type of the reducible fibers of E is
contained in the following list :

fiber Fi ri si special simple components δi |di|
III 2 1, 0 1, 0 3 2
I2 2 0 0 2 2

I2k, k ≥ 1 2k k k 2k 2k

k ≤ r − 10, k ≤ (r − 1)/2
I∗2h, h ≥ 0 2h + 5 h + 1 0 2h + 6 4

h ≤ r − 11, h ≤ r/2− 3
IV ∗ 7 4 3 8 3
III ∗ 8 3 0 9 2
II ∗ 9 4 0 10 1

(4.1)

where ri (resp. di, δi) is r(Fi) (resp. d(Fi), δ(Fi)) and si = s(Fi) is the number of
special curves contained in the fiber Fi.

Proof. Here we sketch the proof, which is similar to the one of [Kl, Proposition
7.2]. There are no fibers of type IV , I2k+1 and I∗2h+1 (see [Kl, Proposition 7.4]), es-
sentially because Lemmas 4.2 and 4.3 imply an alternation among ordinary and special
curves in the components of a reducible fiber. Analogously one obtains the number of
special curves and of simple special curves given in (4.1) for the fibers III , I2k, I∗2h, IV ∗,
III ∗, II ∗. Clearly the number of special curves contained in a fiber can not be greater
then the number of special curves s = r− 10 on the surface. Analogously the number of
components of a reducible fiber can not be greater then r− 2 = ρ(X(r,22−r,δ))− 2. These
two conditions give the restrictions on k and h in (4.1). The others columns of Table
(4.1) are standard in theory of the elliptic fibrations (cf. Section 2.2 and [SS]). ¤

Proposition 4.5 (cf. [Kl, Proposition 8.1]). Let Er : X(r,22−r,δ) → P1 be an
elliptic fibration. Let us assume that all the special curves are contained in the reducible
fibers of the fibration. Then Er is one of the following fibrations:

r reducible fibers singular irreducible fibers rank(MW(Er))
12 ≤ r ≤ 20 I2k1 + I2k2 mI1 + nII 20− r

k1 + k2 = r − 10, 1 ≤ k1 ≤ k2 m + 2n = 44− 2r

15 ≤ r ≤ 20 IV ∗ + I2k mI1 + nII 21− r

k = r − 14 m + 2n = 16− 2k

r = 18 2IV ∗ mI1 + (4−m/2)II 4

(4.2)

Proof. If all the special curves are contained in the reducible fibers of the fibra-
tion, the zero section is an ordinary curve. This implies (cf. [Kl, Proposition 8.1]) that
the elliptic fibration Er has only 2 reducible fibers and the zero section meets these fibers
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in a special curve. Thus there are no fibers of type I∗2h, III ∗, II ∗, because the simple
components of these fibers are all ordinary curves.

We number the 2 reducible fibers and we denote by si, ri, δi the invariants defined
in Proposition 4.4. Since all the special curves are contained in the reducible fibers, the
condition s1 +s2 = s = r−10 holds. Moreover, s1, s2 > 1 because the zero section meets
a special curve in each reducible fiber. If the first fiber is of type IV ∗, s1 = 4 and thus
if this fiber occurs then s ≥ 5 hence r ≥ 15. If both the reducible fibers are of type I2k,
then s1 + s2 = k1 + k2; if one of them is IV ∗ then s1 + s2 = 4 + s2. These equalities
together with the condition s1 + s2 = s = r − 10 give the condition on k1, k2.

Since X(r,22−r,δ) has Euler characteristic 24,
∑

i δi = 24. Since δ(I1) = 1, δ(II ) = 2,
we have

∑
i δi = δ1 + δ2 + m + 2n which implies the condition on m + 2n.

The Picard number of an elliptic surface is the sum of the rank of the trivial lattice
and the one of the Mordell-Weil group, thus rank(MW(Er)) = r − (r1 + r2). If both the
fibers are of type I2k, r1 + r2 = 2r − 20, if one of them is of type IV ∗ then r1 + r2 =
7 + 2k2 = 7 + 2(r − 14). ¤

Lemma 4.6 ([O, Lemma 2.4], [Kl, Lemma 9.1], [Kl, Lemma 9.2]). Let Er :
X(r,22−r,δ) → P1 be an elliptic fibration on X(r,22−r,δ). Let us assume that there is
at least a special curve not contained in the reducible fibers. Then MW(Er) is finite, the
only fibers of type I2k are of type I2 and both the fibers of type I2 and III do not contain
special curves.

Lemma 4.7. Let Er : X(r,22−r,δ) → P1 be an elliptic fibration on X(r,22−r,δ). Let
us assume that there is a special curve which is not contained in the reducible fibers.
Then there are no fibers of type IV ∗. The discriminant of the trivial lattice of Er is 2c

and the possible choices for c are: i) c = a = 22 − r, in this case MW(Er) = {1}; ii)
c = a + 2 = 24 − r, in this case MW(Er) = Z/2Z; iii) c = a + 4 = 26 − r, in this case
MW(Er) = (Z/2Z)2.

Proof. If the Mordell-Weil group is finite, the discriminant of the Néron-Severi
group is d(TrEr

)/|MW(Er)|2. We recall that d(NS(X(r,22−r,δ))) = 222−r. Let d(TrEr
) =

2c
∏

i phi
i , with pi prime numbers. We obtain

|MW(Er)|2 = d(TrEr
)/d(NS(X(r,22−r,δ))) = 2c−(22−r)

∏

i

phi
i , (4.3)

thus hi and c− (22− r) are non-negative and even for each i. We recall that d(TrEr ) =∏
i d(Fi) where Fi are the reducible fibers of Er. By Proposition 4.4 and Lemma 4.6

the only reducible fiber on Er with discriminant which is not a power of 2 is IV ∗ and
d(IV ∗) = 3, thus the only odd prime in (4.3) is 3. Hence, if there is a fiber of type
IV ∗ then there are an even number 2x of fibers of type IV ∗, |MW(Er)|2 = 32x2c−(22−r)

and there are x independent 3-torsion sections. By the height formula, if there is a
3-torsion section then there are at least 3 fibers of type IV ∗. Since r(IV ∗) = 6 and∑

i r(Fi) + 2 = rank(TrEr
) ≤ 20, there are at most 3 fibers of type IV ∗. Thus, if there

is a fiber of type IV ∗ then there are exactly 3 fibers of type IV ∗, but this is impossible,
since 3 is not even. So there are no fibers of type IV ∗. Hence the reducible fibers are
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of type III , I2, I∗2h, III ∗, II ∗ and this implies that the Mordell-Weil group is trivial, or
Z/2Z or (Z/2Z)2. So |MW(Er)|2 is 1 or 22, 24. By (4.3), according to these possibilities
one finds c− 22 + r = 0, c− 22 + r = 2, c− 22 + r = 4 respectively. ¤

Proposition 4.8 (cf. [Kl, Theorem 1.2]). Let Er : X(r,22−r,δ) → P1 be an elliptic
fibration on X(r,22−r,δ). Let us assume that there is at least one special curve which is not
contained in the reducible fibers of the fibration. Then Er is one of the elliptic fibrations
listed in the tables in Section 8.1 : the singular fibers are m1I2 +m2III +n1I1 +n2II and
the ones listed in the second column, the values of m1,m2, n1, n2 are non-negative and
have the properties listed in the third and fourth column.

In case r = 11, there are no elliptic fibrations such that the special curve is not
contained in a fiber.

Proof. By Lemma 4.6 there are no fibers of type I2ν , ν ≥ 2 and by Lemma 4.7
there are no fibers of type IV ∗. By Lemma 4.6 the rank of the Mordell-Weil is zero,
thus rank(NS(Er)) = rank(TrEr ). Hence the reducible fibers Fi satisfy the condition∑

i(r(Fi)− 1) = r − 2. There is at least one special curve which is not contained in the
reducible fibers, thus

∑
i s(Fi) ≤ s − 1 = r − 11, where s(Fi) = 0 if Fi is of type I2 or

III , by Lemma 4.6, and the values of s(Fi) are listed in Table (4.1) for the other cases.
Let δ be the sum of the Euler characteristics of the reducible fibers. Since X is a K3
surface and the Euler numbers of the I1 and II fiber are 1, respectively 2, we have that
24 − δ = n1 + 2n2. By Lemma 4.6,

∑
i d(Fi) = 2c with c = 22 − r, 24 − r, 26 − r. To

recap the fibrations listed in the statement satisfy the following conditions:

• the reducible fibers are of type II ∗, III ∗, I∗2k, I2, III (by Proposition 4.4 and
Lemma 4.6);

• ∑
i(r(Fi)− 1) = r − 2;

• ∑
i s(Fi) ≤ s− 1 = r − 11 (s(I2) = s(III ) = 0);

• ∑
i δ(Fi) ≤ 24;

• ∑
i d(Fi) = 2c with c = 22− r, 24− r, 26− r.

Moreover, in cases c = 24 − r or c = 26 − r, there is another condition. Indeed, if
c = 24− r (resp. 26− r) then MW = Z/2Z (resp. MW = (Z/2Z)2). The height formula
(cf. Section 2.2) imposes conditions to the reducible fibers to have torsion sections. For
example in case r = 19, the configuration II ∗ + I∗2 + 3I2 satisfies the conditions listed
before with c = 5 = 24−r. By the height formula such an elliptic fibration has no torsion
sections hence we can exclude this case. The height formula implies the properties of
the intersection between the torsion sections and the reducible fibers given in the last
column of the tables. ¤

Remark 4.9. Propositions 4.8, 4.5 imply that there are no elliptic fibrations on
X(11,11,1).

Proposition 4.10. Let Er : X(r,22−r,δ) → P1 be an elliptic fibration on X(r,22−r,δ).
The involution ι acts on Er either as an involution of type a) (cf. Example 2.5) or as an
involution of type b) (cf. Example 2.6). In particular, ι is of type a) if and only if all the
special curves are contained in the reducible fibers and ι is of type b) if and only if there



494 P. Comparin and A. Garbagnati

is a special curve not contained in the reducible fibers.

Proof. Let Er : X(r,22−r,δ) → P1 be the elliptic fibration induced by the divisor F

(i.e. F is the class of the fiber of this fibration or equivalently the map associated to the
nef divisor F is Er : X(r,22−r,δ) → P1). Since the involution ι acts as the identity on the
Néron-Severi group, ι∗(F ) = F . Thus a fiber is sent to a fiber by ι. If each fiber is sent to
itself, the involution ι acts trivially on the base of the elliptic fibration and restricts to an
involution of each fiber. The generic fiber of Er is an elliptic curve, so its automorphisms
are the composition of the translations by rational points and the hyperelliptic involution.
The hyperelliptic involution fixes the zero section, the translations send it to another
section. Since ι acts trivially on the Néron-Severi group, we conclude that ι is the
hyperelliptic involution, i.e. of type b). On the other hand, if the generic fiber is sent to
another fiber then the involution acts on the basis as an involution of P1 (and up to a
projectivity we can assume that it acts on P1 fixing the points 0 and ∞). In particular it
restricts to an automorphism of the two fibers over 0 and∞. On these fibers it acts as the
identity or as a translation by a point of order 2 or as a non-symplectic automorphism
β (like the ones describe in Examples 2.6, 2.7). In the first case, the involution acts only
on the base of the fibration, and is an involution of type a). If it acts as a translation
by a point of order 2 on the fixed fibers, then it sends the zero section to a section of
order 2, but these two sections are different classes in the Néron-Severi group, which is
a contradiction, because ι acts as the identity on the Néron-Severi group. If it acts as a
non-symplectic involution β, then ι is the composition of two commuting non-symplectic
involutions. But the composition of two commuting non-symplectic involutions is a
symplectic involution and ι is non-symplectic.

If ι is of type a), it fixes the fibers over τ = 0, τ = ∞ and switches the fibers over τ

and −τ . The curves which are not contained in an invariant fiber are clearly not fixed.
Thus, if ι is of type a) then the special curves are all contained in two fibers, which are
the only reducible fibers of the fibration.

If ι is the hyperelliptic involution (i.e. of type b)) on Er, then the zero section is a
fixed curve. By Definition 4.1 the zero section is a special curve and, since it is a section,
it is not contained in the reducible fibers. Thus, if ι is the hyperelliptic involution on Er

then there is at least one special curve not contained in the reducible fibers. ¤

Remark 4.11. If an elliptic fibration admits an involution of type a) then the
type of the fiber over τ 6= 0,∞ is equal to the type of the fiber over −τ , because they
are exchanged by the involution. In particular this means that the numbers m and n in
Table (4.2) are even.

5. Elliptic fibrations on X(r,22−r,δ): existences in case a).

In Table (4.2) we listed the possible elliptic fibrations on X(r,22−r,δ) such that all the
special curves are contained in reducible fibers. To prove the existence of these elliptic
fibrations it suffices to find a nef class F in NS(X(r,22−r,δ)) such that the induced map,
X(r,22−r,δ) → P(H0(X(r,22−r,δ), F )), is an elliptic fibration with the required properties.
In particular F turns out to be the class of a fiber of the fibration and has a trivial self
intersection. In order to find F , it is necessary to give a description of NS(X(r,22−r,δ)).
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For each r we describe X(r,22−r,δ) as double cover of P2 branched over a chosen particular
sextic and this give a Q-basis of NS(X(r,22−r,δ)). We will identify the nef divisor F as
linear combinations of this Q-basis.

This section is devoted to the proof of the following proposition.

Proposition 5.1. All the elliptic fibrations listed in Table (4.2) appear as elliptic
fibrations on X(r,22−r,δ) except : r = 20 : I14 + I6, I12 + I8, IV ∗ + I12.

The quotient X(r,22−r,δ)/ι is a rational elliptic surface admitting the following elliptic
fibrations:

r reducible fibers singular irreducible fibers rank(MW(Er))
12 ≤ r ≤ 20 Ik1 + Ik2 , (m/2)I1 + (n/2)II 20− r

k1 + k2 = r − 10, 1 ≤ k1 ≤ k2

15 ≤ r ≤ 20 IV + Ik, (m/2)I1 + (n/2)II 21− r

k = r − 14
r = 18 2IV (m/2)I1 + (n/2)II 4

(5.1)

where m and n are the numbers given in Table (4.2).

5.1. r = 20.
In this case, the branch sextic consists of six lines with 4 triple points. Thus the

components of the sextic are li, i = 1, . . . , 6 and we assume that the triple points are
A := l1 ∩ l2 ∩ l3, B := l1 ∩ l5 ∩ l6, C := l3 ∩ l4 ∩ l5, D := l2 ∩ l4 ∩ l6. The double points
are P1,4, P2,5, P3,6. The Néron-Severi group is generated by Li, i = 1, . . . , 6, EA, EA,1,
EA,2, EA,3, EB , EB,1, EB,5, EB,6, EC , EC,3, EC,4, EC,5, ED, ED,2, ED,4, ED,6, EPh,k

,
(h, k) = {(1, 4), (2, 5), (3, 6)}.

An elliptic fibration with a fiber of type I18 is associated to the divisor F := L1 +
EA1 + EA + EA,2 + L2 + ED,2 + ED + ED,6 + L6 + EB,6 + EB + EB,5 + L5 + EC,5 +
EC + EC,4 + L4 + EP1,4 . The classes EA,3, EC,3, EP3,6 are the classes of sections. The
fibration φF : X(20,2,1) → P1 has a fiber of type I18 (whose components are the summands
L1, EA1 , . . . , EP1,4) and a fiber of type I2 (because we already proved that the unique
admissible elliptic fibration on X(20,2,1) with a fiber of type I18 has I18 + I2 as reducible
fibers). The Mordell-Weil group of this elliptic fibration is Z/3Z, indeed we proved that
the rank of the Mordell-Weil is 0, thus 4 = d(NS(X(22,2,1))) = (18 · 2)/|MW |2 hence
|MW | = 3.

Similarly, we prove that there exist the elliptic fibrations:

I16 +I4, given by the divisor F := L1 +EP1,4 +L4 +EC,4 +EC +EC,5 +L5 +EB,5 +EB +
EB,6 + L6 + EP3,6 + L3 + EA,3 + EA + EA,1, zero section s := EP2,5 and Mordell-Weil
group Z/4Z, generated by EA,2;

2I10, given by the divisor F := L1+EA,1+EA+EA,2+L2+EP2,5 +L5+EB,5+EB +EB,1,
zero section s := EA,3 and Mordell-Weil group Z/5Z, generated by ED,2.

There is no elliptic fibration with fibers configuration I14 + I6, since if it exists then
|MW |2 = (14 · 6)/d(NS(X20,2,1)) = 21, which is a contradiction, because 21 is not a
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square. Similarly, there are no elliptic fibrations with fibers I12 + I8, IV ∗ + I12.

5.2. r = 19.
The sextic we consider consists of six lines li, i = 1, . . . , 6 with 3 triple points

A := l1 ∩ l2 ∩ l3, B := l1 ∩ l5 ∩ l6, C := l3 ∩ l4 ∩ l5. The double points are P1,4, P2,4, P2,5,
P2,6, P3,6, P4,6. On X(19,3,1) there exist the following elliptic fibrations:

reducible fibers F s

I16 + I2 L1 + EP1,4 + L4 + EC,4 + EC + EC,5 + L5 + EB,5 EP2,5

+EB + EB,6 + L6 + EP3,6 + L3 + EA,3 + EA + EA,1

I14 + I4 L1 + EP1,4 + L4 + EP4,6 + L6 + EB,6 + EB EA3

+EB,5 + L5 + EP2,5 + L2 + EA,2 + EA + EA,1

I12 + I6 L1 + EP1,4 + L4 + EP2,4 + L2 + EP2,6 EC,4

+L6 + EP3,6 + L3 + EA,3 + EA + EA,1

I10 + I8 L1 + EP1,4 + L4 + E2,4 + L2 + EA,2 + EA + EA,1 EA,3

IV ∗ + I10 L1 + L3 + L2 + 2(EA,1 + EA2 + EA,3) + 3EA EP2,4

In case I10 + I8, the fiber associated to F is I8 and in case IV ∗ + I10, it is IV ∗.

5.3. r = 18.
In case r = 18 the invariants (r, a) do not identify uniquely the lattice N(18,4,δ),

indeed there are two possible values for δ (cf. Corollary 3.6).
In [O] it is proved that there exist the elliptic fibrations with reducible fibers I12+I4,

2I8, 2IV ∗ on X(18,4,0).
By Corollary 3.6, we can associate the K3 surface X(18,4,1) to the sextic B(18,4,1)

which consists of the lines li, i = 1, . . . , 6, with triple points A := l1∩l2∩l3, B := l1∩l5∩l6
and double points P1,4, P2,4, P2,5, P2,6, P3,4, P3,5, P3,6, P4,5, P4,6. On X(18,4,1) there
exist the following elliptic fibrations:

reducible fibers F s

I14 + I2 L1 + EP1,4 + L4 + EP4,6 + L6 + EB,6 + EB EA3

+EB,5 + L5 + EP2,5 + L2 + EA,2 + EA + EA,1

I12 + I4 L1 + EP1,4 + L4 + EP2,4 + L2 + EP2,6 EP4,5

+L6 + EP3,6 + L3 + EA,3 + EA + EA,1

I10 + I6 L1 + EA,1 + EA + EA,2 + L2 + EP2,5 + L5 + EB,5 + EB + EB,1 EA,3

2I8 L1 + EP1,4 + L4 + EP2,4 + L2 + EA,2 + EA + EA,1 EA,3

IV ∗ + I8 L1 + L2 + L3 + 2(EA,1 + EA2 + EA,3) + 3EA EP2,4

2IV ∗ EA + EB + L4 + 2(EA,1 + EB,1 + EP1,4) + 3L1 EA,3

In case 2I8, the fiber associated to F is one of the fiber of type I8. To prove that it gives
the fibrations with fibers 2I8 and not IV ∗ + I8 it is necessary to identify also the classes
which form the second fiber of type I8 (they are Li, i = 3, 5, 6, EP3,5 , EB,5, EB , EB,6).
Analogously for the fibration IV ∗ + I8 (resp. 2IV ∗) one has to check directly that the
orthogonal to the fiber associated to F is of type I8 (resp. IV ∗).
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5.4. r = 17.
The sextic we consider consists of six lines li, i = 1, . . . 6 with a triple point A :=

l1 ∩ l2 ∩ l3. There are 12 double points: P1,4, P1,5, P1,6, P2,4, P2,5, P2,6, P3,4, P3,5, P3,6,
P4,5,P4,6, P5,6. On X(17,5,1) there exist the following elliptic fibrations:

reducible fibers F s

I12 + I2 L1 + EP1,4 + L4 + EP2,4 + L2 + EP2,6 EP4,5

+L6 + EP3,6 + L3 + EA,3 + EA + EA,1

I10 + I4 L1 + EA,1 + EA + EA,2 + L2 + EP2,5 + L5 + EP5,6 + L6 + EP1,6 EA,3

I8 + I6 L1 + EP1,4 + L4 + EP2,4 + L2 + EA,2 + EA + EA,1 EA,3

IV ∗ + I6 L1 + L2 + L3 + 2(EP1,4 + EP2,4 + EP3,4) + 3L4 EA,1

5.5. r = 16.
This case was already analyzed in [Kl], where the sextic considered consists of 6

lines. Here we report the fibers given in [Kl]:

reducible fibers F s

I10 + I2 L1 + EP1,2 + L2 + EP2,3 + L3 + EP3,4 + L4 + EP4,5 + L5 + EP1,5 EP1,6

I8 + I4 L1 + EP1,2 + L2 + EP2,3 + L3 + EP3,4 + L4 + EP1,4 EP1,6

2I6 L1 + EP1,2 + L2 + EP2,3 + L3 + EP1,3 EP1,6

IV ∗ + I4 L1 + L3 + L4 + 2(EP1,2 + EP2,3 + EP2,4) + 3L2 EP1,6

5.6. r = 15.
Here we consider a sextic which consists of 4 lines li, i = 1, 2, 3, 4 and 1 conic

c5, without triple points. The double points are {R1
j,5, R

2
j,5} = lj ∩ c5, j = 1, 2, 3, 4,

Ph,k = lh ∩ lk, h, k = 1, 2, 3, 4, h 6= k. On X(15,7,1) there exist the following elliptic
fibrations:

reducible fibers F s

I8 + I2 L1 + EP1,2 + L2 + EP2,3 + L3 + EP3,4 + L4 + EP1,4 ER1
1,5

I6 + I4 L1 + EP1,2 + L2 + EP2,3 + L3 + EP1,3 ER1
1,5

IV ∗ + I2 L1 + L3 + L4 + 2(EP1,2 + EP2,3 + EP2,4) + 3L2 ER1
1,5

5.7. r = 14.
Here we consider a sextic made up of 2 lines li, i = 1, 2 and 2 conics cj , j = 3, 4,

without triple points. The double points are {R1
j,i, R

2
j,i} = lj ∩ ci, j = 1, 2, i = 3, 4, P1,2,

{Q1
3,4, Q

2
3,4, Q

3
3,4, Q

4
3,4} = c3∩ c4. On X(14,8,1) there exist the following elliptic fibrations:

reducible fibers F s

I6 + I2 L1 + EP1,2 + L2 + ER1
2,3

+ C3 + ER1
1,3

ER1
1,4

2I4 L1 + ER1
1,3

+ C3 + ER2
1,3

E1
R1,4
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5.8. r = 13.
We consider a sextic which consists of 3 conics ci, i = 1, 2, 3, without triple points.

We put {Q1
i,j , Q

2
i,j , Q

3
i,j , Q

4
i,j} = ci ∩ cj , i 6= j, i, j = 1, 2, 3. There is an elliptic fibration

with reducible fibers I4 + I2 associated to the divisor F := C1 + EQ1
1,2

+ C2 + EQ2
1,2

.

5.9. r = 12.
We consider a sextic made up of a quartic q with 3 singular points A, B, C and a

conic c. There is an elliptic fibration with reducible fibers 2I2 associated to the divisor
F := Q+ EA.

5.10. Quotients by ι.
We proved in Proposition 4.10 that the involution ι acts on the elliptic fibrations of

Table 4.2 as an involution on the base of the fibration. As in Example 2.5, in this case
the elliptic fibration, EXr

, on X(r,22−r,δ) can be obtained by an elliptic fibration ERr
on

a rational elliptic surface Rr, by a base change of order 2:

Rr

²²

X(r,22−r,δ)oo

²²
P1

t P1
τ

oo

where t = τ2. The fiber over t = 0 (resp. t = ∞) corresponds to the fiber over τ = 0
(resp. τ = ∞). If the fiber over t = 0,∞ is of type Ih or IV the fiber over τ = 0,∞ is of
type I2h or IV ∗ respectively. Each fiber over t 6= 0,∞ corresponds to two fibers of the
same type over τ . The quotient X(r,22−r,δ)/ι is Rr and this implies the description of the
reducible fibers on Rr given in the statement of Proposition 5.1. Since the sections of ERr

lift to sections of EXr
generically the Mordell-Weil group of the two elliptic fibrations is

the same. In our case one can explicitly verify that the rank of the Mordell-Weil group
of ERr and EXr are the same recalling that the Picard number of ERr is 10 and thus
rank(MW(ERr

)) = 10− k1 − k2, (resp. 10− 3− k, 10− 6) if the reducible fibers of EXr

are I2k1 + I2k2 (resp. IV ∗ + I2k, 2IV ∗).
For certain values of r (12 ≤ r ≤ 15) the Mordell-Weil group of ERr

is known as
well as a geometrical construction for the pencil of cubics in P2 associated to this elliptic
fibration ([Shio, Theorem 10.4], [F], [FT], [Sa]). Thus the K3 surface X(r,22−r,δ) is
obtained from a known elliptic fibration by a base change of order 2. In particular, if r =
12 then ER12 is an elliptic fibration without reducible fibers. In this case MWL(ER12) ' E8

and the pencil of cubics associated to this elliptic fibration is the generic one. If r = 13,
MWL(ER13) ' E∗

7 ;

if r = 14 and the reducible fibers of EX14 are I6 + I2 then MWL(ER14) = E∗
6 ;

if r = 14 and the reducible fibers of EX14 are I4 + I4 then MWL(ER14) = D∗
6 ;

if r = 15 and the reducible fibers of EX15 are I8 + I2 then MWL(ER14) = D∗
5 ;

if r = 15 and the reducible fibers of EX15 are I6 + I4 then MWL(ER14) = A∗5.
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6. Elliptic fibrations on X(r,22−r,δ): existence and equations in case b).

In this section we prove the existence of the elliptic fibrations listed in Proposition
4.8 (these are the elliptic fibrations with at least one special curve not contained in the
reducible fibers). As in case a) (Section 5), to prove the existence of these fibrations,
it suffices to find a nef divisor F in NS(X(r,22−r,δ)) whose associated map is an elliptic
fibration with the required properties. The class F is obtained in a very geometrical
way from the properties of the double cover X(r,22−r,δ) → P2 (see Construction 6.1
and Examples 6.2, 6.3). The geometrical construction of F allows us to write explicit
equations for the classified elliptic fibrations (see Example 6.5).

Construction 6.1. Let us denote by C6 the branch sextic of the double cover
X(r,22−r,δ) → P2. Let us consider a rational curve γ ⊂ P2 such that the intersection of
γ with C6 consists of exactly four smooth points of C6 and a certain numbers of double
points of C6. The pull-back of γ to X(r,22−r,δ) is a double cover of P1 ' γ branched over
4 points, i.e. an elliptic curve. Let P be a pencil of rational curves in P2 whose general
member intersects C6 in the base locus of the pencil and in other 4 smooth points. It
gives an elliptic fibration on X(r,22−r,δ). Indeed P is a 1-dimensional family of curves,
parametrized by P1, and it is associated to a map EP : X → P1 such that the general
fiber is an elliptic curve. Reducible fibers of the fibration correspond to curves in P
through singular points of the sextic or to reducible members of P.

Particular choices for P are the pencils of lines: let P be a double point of C6 and
let P be the pencil of lines of P2 through P . A generic line l of P intersects C6 in P and
in 4 smooth points. In order to construct a smooth model of X(r,22−r,δ) we blow up P2

in the singular points of C6 as described in Proposition 3.1. Let l̃ be the strict transform
of l and C̃6 be the strict transform of C6. Let L be the pull-back of l̃ on X(r,22−r,δ).
The curve L is a smooth fiber of the fibration EP . The curve EP (with the notation of
Section 3) is a bisection of the fibration EP , indeed l̃ meets eP in a point Q ∈ P̃2 that
is not in the branch locus, hence it corresponds to 2 points Q1, Q2 in X(r,22−r,δ) and
L ∩ EP = {Q1, Q2}.

Let us now assume that P is a triple point of C6 and P is again the pencil of lines of
P2 through P . Let l be a generic line of the pencil P: l intersects C6 in P and in three
smooth points. In order to construct a smooth model of X(r,22−r,δ) we blow up P2 in the
singular points of C6 and in particular we introduce four rational curves on P . One of the
exceptional curves on P , eP , is in the branch locus of the double cover X(r,22−r,δ) → P̃2.
The intersection of l̃ with the branch locus of the double cover X(r,22−r,δ) → P̃2 consists
of four points, three of them are the intersection of l̃ with C̃6 and the other one is the
intersection of l̃ with eP . Thus, for a generic line l ∈ P, l̃ intersects the branch locus of
the double cover X(r,22−r,δ) → P̃2 in four points. Hence, the pencil P induces an elliptic
fibration EP on X(r,22−r,δ). The curve EP is a section of the fibration EP . Indeed, l̃ meets
eP in a point Q which is in the branch locus, since eP is in the branch locus. Thus, on
X(r,22−r,δ), the intersection L ∩ EP consists of a single point.

Our purpose is to find pencils P of rational curves in P2 which correspond to the
elliptic fibrations listed in Proposition 4.8. Once the branch sextic associated to the K3
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surface X(r,22−r,δ) is fixed, one has to find a pencil P such that special members of P give
certain chosen reducible fibers on EP . In the following examples we clarify this strategy
showing how to choose the pencil P in order to obtain particular reducible fibers.

Example 6.2. Let us consider the sextic made up of six lines l1, . . . , l6 with a
triple point A = l1 ∩ l2 ∩ l3 and 12 double points. The K3 surface X obtained as double
cover of P2 branched over this sextic has invariants (r, a, δ) = (17, 5, 1) (see Corollary
3.3), thus X = X(17,5,1).

We consider the pencil of lines P through the double point P5,6: a generic line of
P meets the sextic in 4 points (outside the base point of the pencil P5,6). Hence the
pull-back of the generic line to the double cover X is an elliptic curve and P induces an
elliptic fibration EP on X. The line m through P5,6 and P1,4 is not a component of the
sextic and gives a reducible fiber of type I2, whose components are EP1,4 and the pull
back on X(17,5,1) of the strict transform on P̃2 of the line m. This is easily proved blowing
up P2 in the singular locus of the sextic and constructing explicitly X(17,5,1). Similarly
the lines through P5,6 and P2,4 and through P5,6 and P3,4 correspond to fibers of type I2.
The line l5 is a line of the pencil and a component of the sextic and it passes through P5,6

and other 4 double points of the sextic: P1,5, P2,5, P3,5, P4,5. It gives a reducible fiber of
type I∗0 , whose components are EP1,5 , EP2,5 , L5, EP3,5 , EP4,5 . The same happens for the
line l6. The line m′ through P5,6 and the triple point A is not a component of the sextic
and gives a reducible fiber of type I∗0 whose components are EA1 , EA2 , EA, EA,3, M′,
where M′ is the pull back on X(17,5,1) of the strict transform of m′ on P̃2. Thus, the
pencil of lines through P5,6 gives an elliptic fibration on X(17,5,1) with reducible fibers
3I∗0 + 3I2.

Example 6.3. We consider again the surface X(17,5,1) with the same branch curve
as in the previous example, but different pencil of rational curves, in order to obtain
different reducible fibers. In particular for certain fibers we need to consider a pencil of
rational curves of degree greater than 1.

Let us consider a pencil of conics through the four points P1,4, P2,6, P3,4, P3,6. The
conic of the pencil through P4,6 splits in two lines l4∪ l6. It gives a fiber of type I∗2 whose
components are EP2,4 , EP4,5 , L4, EP4,6 , L6, EP1,6 , EP5,6 .

Let us consider the pencil of conics through P1,4, P1,5, P3,5, P3,6. The conic of the
pencil through A splits in l1∪l3 and corresponds to a fiber of type III ∗, whose components
are EP1,6 , L1, EA,1, EA, EA,2, EA,3, L3, EP3,4 .

Similarly, we can obtain fibers of type II ∗ and I∗i , i = 1, . . . , 14 with a pencil of
rational curves of degree greater than 1.

By the previous examples it is clear that there is not only a choice of the pencil to
obtain a certain type of fiber. Indeed the reducible fibers of type I∗0 are obtained in two
different ways in the example: as pull-back of a line of the pencil which is contained in
the branch locus and as pull-back of a line of the pencil which is not in the branch locus
and passes through a triple point. Moreover, it is clear that one can use different choices
for the branch sextic associated to the surface X(r,22−r,δ) (cf. Section 3) and this gives
more possibilities in the choice of the pencil P. In the following we use pencil of lines,



Van Geemen-Sarti involutions on double covers of P2 501

when this is possible. Sometimes this implies a different choice for the branch sextic.
If P is a pencil of lines, a reducible fiber of the associated fibration corresponds to

a line l of the P through a singular point of the sextic and the type of the fiber is as
follows:

(1) type I2, if l is not a component of the sextic and pass through a double point;
(2) type I∗0 , if l is not a component of the sextic and pass through a triple point;
(3) type I∗0 , if l is a component of the sextic and pass through 4 double points;
(4) type I∗2 , if l is a component of the sextic and pass through a triple point;
(5) type I∗4 , if l is a component of the sextic and pass through 2 triple points.

Remark 6.4. When the reducible fibers are I2, I
∗
0 , I∗2 , I∗4 , we will always use a

pencil of lines, except for case 13) for r = 18. In this case the reducible fibers are 2I∗4
and, for geometric reasons, there is no branch sextic associated to r = 18 such that a
pencil of lines gives this fibration.

Thanks to the construction of the elliptic fibration starting from a pencil of lines
(and more in general from a pencil of rational curves) we can give an explicit equation of
the elliptic fibration. We consider as an example the elliptic fibration on X(13,9,1) with
reducible fibers 11I2 + 2I1.

Example 6.5. The surface X(13,9,1) is obtained as double cover of P2 branched
along the sextic B(13,9,1) which consists of 3 conics. Up to a choice of coordinates of P2

we can assume that

B(13,9,1) = V
(
(xy + axz + (−1− a)yz)(xy + bxz + (−1− b)yz)

× (cx2 + dxy + ey2 + fxz + gyz + z2)
)
, (6.1)

which is a 7-dimensional family of reducible sextics.
We consider the pencil of lines of P2 passing through P = (0 : 0 : 1); the pencil P is

y = τx and the elliptic fibration is

w2 =
(

x +
a

τ
z + (−1− a)z

)(
x +

b

τ
z + (−1− b)z

)

× (cx2 + dτx2 + ex2τ2 + fxz + gτxz + z2) (6.2)

obtained substituting y = τx in (6.1) and considering the change of coordinate w 7→ wτx.
Applying standard transformations to this equation one finds the following “more

canonical” equation w2 = x(x2 + A(τ)x + B(τ)) with:

A(τ) := 2(c + dτ + eτ2)(τ + bτ − b)(τ + aτ − a)

+ τ(f + gτ)(2τ + bτ − b + aτ − a) + 2τ2,

B(τ) :=
(
(c + dτ + eτ2)(τ + bτ − b)2 + τ(f + gτ)(τ + bτ − b) + τ2

)

× (
(c + dτ + eτ2)(τ + aτ − a)2 + τ(f + gτ)(τ + aτ − a) + τ2

)
.
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The values of τ such that ∆(τ) = 0 correspond to the lines of the pencil through the
singular points of the sextic and give the reducible fibers of the fibration. See [Mi, Table
IV.3.1] for the type of fiber in relation to the vanishing of A,B,∆.

Remark 6.6. In [GS3] it is shown that the surface X(r,a,1) specializes to the
surface X(r+1,a−1,1), because the transcendental lattice of X(r,a,1) contains the transcen-
dental lattice of X(r+1,a−1,1) as a primitive sublattice. Thus, a condition on parameters
of the equation of B(13,9,1) specializes it to a sextic with associated invariants (14, 8, 1).
Specializing the sextic B(13,9,1), we automatically specialize the elliptic fibration, thus
we find an elliptic fibration on X(14,8,1). The equation of this elliptic fibration can be
obtained substituting the relations on parameters in the equation of the elliptic fibration
on X(13,9,1). For example, putting c = 0 in Equation (6.1) one obtains a sextic which
splits in three conics with a triple point (1 : 0 : 0). The double cover of P2 branched
over this sextic is X(14,8,1) (cf. Proposition 3.1). Putting c = 0 in Equation (6.2) one
obtains an elliptic fibration with singular fibers I∗0 + 8I2 + 4I1. It is an elliptic fibra-
tion on X(14,8,1) which specializes the elliptic fibration (6.2). Similarly, specializations of
the sextic B(r,22−r,δ) (defined below) to B(r+1,21−r,δ) are associated to specializations of
elliptic fibrations.

The rest of this section is devoted to the proof of the following proposition

Proposition 6.7. The fibrations in tables of Section 8.1 appear as elliptic fibra-
tions on X(r,22−r,δ), in the case m2 = n2 = 0.

Remark 6.8. In the tables of Section 8.1 we allow both the fibers of type I2 and
of type III as fibers with two components and both the fibers of type I1 and of type II
as singular not reducible fibers. However, generically all the reducible fibers with two
components are of type I2 and all the singular not reducible fibers are of type I1. In
the following we give examples of elliptic fibrations on X(r,22−r,δ) without fibers of type
III and II . Of course it is possible that, on the surface X(r,22−r,δ), there exist elliptic
fibrations with fibers of type III and II . More in general, it is clear that in this section
we give explicit examples of an elliptic fibration for each possibility listed in tables of
Section 8.1, but it is possible that there exist more then one (non-isomorphic) elliptic
fibration for each line of these Tables. This surely happens in case on X(18,4,0), indeed
in [O] it is proved, for example, that there exist 9 non-isomorphic elliptic fibrations with
reducible fibers 2I∗2 + 4I2.

6.1. r = 12.
The sextic we consider is made up of a rational quartic q with 3 double points Q,R, T

and a conic c. Up to projective transformation of P2 the equation of the branch sextic is

B(12,10,1) := (Ax2y2 + Bx2yz + Cxy2z + Dx2z2 + (1− 4A− 3B − 2C − 2D)xyz2

+ (A + B + D − 1)y2z2 + (2A + B + C − 1)xz3 + yz3)

× (Ex2 + xy + Fy2 + Gxz + Hyz). (6.3)
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The pencil of lines through P := (0 : 0 : 1) ∈ q ∩ c gives an elliptic fibration on X(12,10,1)

and the reducible fibers are associated to the lines of the pencil through Q,R, T and
through the 7 points in {q ∩ c} − {P}, thus the reducible fibers are 10I2.

In the tables of the following section notations are the same as in tables of Section
8.1, where the reader can find the list of reducible fibers of each fibration. To show the
existence (and the equation) of the fibrations listed in tables of Section 8.1, we consider
pencils of rational curves through the singular points of the branch sextic B(r,22−r,δ)

described below. In the fifth column of the table we list the sections.
In order to use a pencil of lines, sometimes we need to change the branch sextic:

in this case the sextic is obtained as specialization of B(12,10,1) or of B(13,9,1), imposing
conditions on the parameters of the equations of these sextics (Equations (6.1), (6.3)).
Thus the sextic we specialize is indicated in the third column, while in the fourth column
we list the conditions on the parameters. When the base point of the pencil is (0 : 0 : 1)
and the sextic is a specialization of B(13,9,1) then to obtain the equation of the elliptic
fibration it suffices to substitute the conditions on the parameters in the equation of
E(13,9,1). In this case we denote by t the 2-torsion section t : τ 7→ (0, 0; τ).

6.2. r = 13.
In case 1), we consider the sextic obtained as specialization of the sextic B(12,10,1),

while in case 2), we consider the sextic B(13,9,1) (see Example 6.5) made up of 3 conics
without triple points, whose equation is (6.1).

1) |H − E(0:0:1)| B(12,10,1) E = 0
2) |H − E(0:0:1)| B(13,9,1)

6.3. r = 14.
The branch sextics are obtained as specializations of the sextic B(12,10,1) and

B(13,9,1).

1) |H − E(0:0:1)| B(12,10,1) E = G = 0
2) |H − E(0:0:1)| B(12,10,1) E = F = 0
3) |H − E(0:0:1)| B(13,9,1) c = 0
4) |H − E(1:0:0)| B(13,9,1) c = 0

6.4. r = 15.
The sextic B(15,7,1) consists of two lines l1, l2 and two conics c3, c4 with a triple point

A := l1 ∩ c3 ∩ c4. The 10 double points are P1,2, R1,j = l1 ∩ cj , j = 3, 4, {R1
2,j , R

2
2,j} =

l2 ∩ cj , j = 3, 4, {Q1
3,4, Q

2
3,4, Q

3
3,4} ∈ c3 ∩ c4.

In case 1), we consider a pencil of rational cubics that pass through R1,4, R
1
2,3, R

2
2,3,

Q1
3,4, Q

2
3,4 with a double point at R1,3. The only section of the fibration is L2 and the

fiber of type III ∗ corresponds to the cubic that splits in l1 ∪ c3.
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1)
∣∣3H − 2ER1,3 − ER1,4 B(15,7,1) L2

−ER1
2,3
− ER2

2,3
− EQ1

3,4
− EQ2

3,4

∣∣
2) |H − E(C,−B:0)| B(12,10,1) A = F = E = 0
3) |H − E(0:0:1)| B(12,10,1) E = F = G = 0
4a) |H − E(0:0:1)| B(13,9,1) b = 0, f = −1− c

4b) |H − E(1:0:c)| B(13,9,1) b = 0, f = −1− c

5) |H − E(0:0:1)| B(12,10,1) E = F = 0,

H = −1−G

6) |H − E(0:0:1)| B(13,9,1) a = −1, b = 0
7) |H − E(0:1:0)| B(13,9,1) c = e = 0

6.5. r = 16.
We consider the sextic B(16,6,1) made up of four lines l1, . . . , l4 and a conic c5 with

a triple points A = l1 ∩ l2 ∩ c5. The double points are Ph,k, h = 1, 2, k = 3, 4, P3,4, R1,5,
R2,5 and {R1

j,5, R
2
j,5}, j = 3, 4.

1)
∣∣4H − 2EP1,3 − 2EP2,4 − 2ER2,5 B(16,6,1) L4

−ER1,5 − EP1,4 − ER1
3,5
− ER2

3,5

∣∣
2)

∣∣2H − EP1,4 − ER1,5 − EP2,4 − EP2,3

∣∣ B(16,6,1) L3

3)
∣∣4H − 2EP2,3 − 2ER2

3,5
− 2EP1,4 B(16,6,1) L2,

−ER2
4,5
− ER1,5 − 2EA − EA,1 EA

−EA,2 − EA,5 − ER1
4,5

∣∣
4)

∣∣3H − 2EP2,3 − EP1,3 − ER1
4,5

B(16,6,1) L1

−ER2
4,5
− ER2,5 − EP1,4

∣∣
5) |H − E(0:1:1−A−B−D)| B(12,10,1) E = F = G = H = 0
6a) |H − E(0:0:1)| B(13,9,1) c = b = 0, f = −1
6b) |H − E(0:0:1)| B(12,10,1) A = 0, E = F = −1/2,

H = −G

7) |H − E(0:−G,1)| B(12,10,1) A = E = F = H = 0
8) |H − E(0:0:1)| B(12,10,1) E = F = G = 0, H = −1
9a) |H − E(0:0:1)| B(13,9,1) a = c = e = 0
9b) |H − E(1:0:c)| B(13,9,1) b = 0, f = −1− c,

g = −d− e

10) |H − E(0:1:−g)| B(13,9,1) a = e = 0, b = −1
11) |H − E(0:0:1)| B(13,9,1) c = e = 0, g = −d− f − 1
12) |H − E(1:0:0)| B(13,9,1) c = e = 0, g = −d− f − 1

The quartics of case 1) pass through R1,5, P1,4, R
1
3,5, R

2
3,5 and have double points in

P1,3, P2,4, R2,5, so they are rational; the quartic l1 ∪ l2 ∪ l2 ∪ l3 is a quartic of the pencil
and corresponds to the fiber of type II ∗. The pencil of conics in case 2) consists of conics
passing through P1,4, R1,5, P2,4, P2,3. The fiber of type III ∗ comes from the reducible
conic l1 ∪ l2, while the fiber of type I∗0 corresponds to the conic l4 ∪m where m is the
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line through R1,5 and P2,3. The pencils described in the other cases are similar to the
ones already shown.

In cases 1)–4), the branch sextic is the union of 4 lines and 1 conic (cf. Example 3.7,
case vi)). In cases 5)–12), we use a different sextics in order to consider pencil of lines: in
cases 6a), 9a) and 9b), the sextic is the union of 2 conics and 2 lines with 2 triple points
(cf. Example 3.7, case v)); in case 10), the sextic is the union of 1 conic and 4 lines with
1 triple point (cf. Example 3.7, case vi)); in cases 11) and 12), the sextic is the union of
3 conics with 3 triple points (cf. Example 3.7, case iv)); in cases 5) and 8), the sextic is
the union of 1 rational quartic and 2 lines with 3 triple points (cf. Example 3.7, case i));
in cases 6b) and 7), the sextic is the union of 1 rational cubic and 3 lines with 2 triple
points (cf. Example 3.7, case iii)).

Remark 6.9. In [CD], the elliptic fibration 6b) is associated to a certain pencil of
rational quintics in P2 and the branch sextic is the union of six lines in general position.
Here we consider the union of a rational cubic and three lines as branch sextic and thanks
to this choice we obtain the same elliptic fibration from a pencil of lines.

6.6. r = 17.
We consider the sextic B(17,5,1) which consists of six lines l1, . . . , l6 with a triple

point A := l1 ∩ l2 ∩ l3 and 12 double points P1,4, P1,5, P1,6, P2,4, P2,5, P2,6, P3,4, P3,5,
P3,6, P4,5, P4,6, P5,6.

1)
˛̨
6H − 3EP3,5 − 3EP2,4 − 3EP4,6 B(17,5,1) L2

−2EP3,6 − 2EA − 2EA,1 − EA,2

−EA,3 − EP1,5 − EP2,5 − EP5,6

˛̨

2)
˛̨
3H − 2EA − 2EA,2 − EA,1 − EA,3 B(17,5,1) L3

−2EP1,4 − EP2,5 − EP3,5 − EP4,5

˛̨

3)
˛̨
4H − 2EA − EA,1 − EA,2 − EA,3 B(17,5,1) EA

−2EP1,5 − 2EP2,5 − 2EP3,6 − EP3,4

−EP1,6 − EP2,6

˛̨

4)
˛̨
2H − EP1,4 − EP1,5 − EP3,6 − EP3,5

˛̨
B(17,5,1) L4,

L6

5)
˛̨
5H−3EP1,4−2EP1,5−2EP3,6−2EP5,6 B(17,5,1) L3

−EP2,6 − EP2,4 − EP3,4 − EP3,5

˛̨

6)
˛̨
4H − 2EP3,5 − 2EP2,4 − 2EP3,6 B(17,5,1) L2

−EP4,5 − EP1,4 − EP5,6 − EP2,6

˛̨

7)
˛̨
3H − 2EP3,4 − EP3,5 − EP5,6 − EP2,6 B(17,5,1) L1,

−EP1,6 − EP1,4

˛̨
L5

8) |H − E(0:1:1)| B(12,10,1) A = 0, E = 0, G = −1, H = F = 0

9) |H − E(0:0:1)| B(13,9,1) c = b = 0, a = −1, f = −1

10) |H − E(1:1:1)| B(13,9,1) a = e = 0, f = −1− c, d = −cg

11) |H − E(0:0:1)| B(13,9,1) c = e = a = 0, g = −d− f − 1

12) |H − E(0:0:1)| B(13,9,1) c = e = a = d = 0

13) |H − E(0:0:1)| B(13,9,1) c = e = 0, f = −1, g = −d

14a) |H − E(0:0:1)| B(13,9,1) c = b = 0, a = −1, g = −1− e

14b) |H − E(1:0:0)| B(12,10,1) A = 0, E = H = F = 0, G = −1
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In case 1), we consider a pencil of rational sextics through A,P1,5, P2,5, P5,6, with a double
point in P3,6 and triple points in P3,5, P2,4, P4,6 and such that the tangent line to the
sextic at A is l1. The reducible sextic l5 ∪ l3 ∪ l3 ∪ l4 ∪ l4 ∪ l4 corresponds to the singular
fiber of type II ∗. The quintics of the pencil of case 5) pass through P2,6, P2,4, P3,4, P3,5,
have double points in P1,5, P5,6, P3,6 and a triple point in P1,4, so they are rational; the
fiber of type I∗8 is given by the quintic that splits in l1 ∪ l4 ∪ l5 ∪ l6 ∪m, where m is the
line through P1,4 and P3,6. The other cases are similar to the ones analyzed for lower
values of r.

6.7. r = 18.
We consider the two different sextics B(18,4,1), described in Section 5.3, and B(18,4,0)

which consists of the lines li, i = 1, . . . , 6, with triple points A := l1∩l2∩l3, B := l4∩l5∩l6
and double points P1,4, P1,5, P1,6, P2,4, P2,5, P2,6, P3,4, P3,5, P3,6. The values of δ for each
fibration is indicated in the sixth column. The pencils are similar to the ones described
for lower values of r.

1) |3H − 2EA − 2EA,3 − EA,2 − EA,1 B(18,4,1) L1 1

−2EP1,4 − EP3,5 − EP2,5 − EP4,5 |
2) |4H − 2EB − EB,4 − EB,5 − EB,6 B(18,4,0) EB 0

−2EP3,4 − 2EP1,5 − 2EP1,6 − EP2,4

−EP3,5 − EP3,6 |
3) |3H − 2EA − 2EA,3 − EA,2 − EA,1 B(18,4,1) L1 1

−2EB − 2EB,5 − EB,1 − EB,6

−2EP2,6 − EP3,5 |
4) |3H − 2EA − 2EA,3 − EA,2 − EA,1 B(18,4,1) L6 1

−2EB − 2EB,1 − EB,6 − EB,5

−2EP2,5 − EP3,6 |
5a) |2H − EP3,6 − EP3,5 − EP2,4 − EP2,6 | B(18,4,1) L4,L5 1

5b) |2H − EP1,4 − EP1,5 − EP3,6 − EP3,4 | B(18,4,0) L5,L6 0

6) |2H − EP3,6 − EP4,6 − EP4,5 − EP2,5 | B(18,4,1) L2,L3 1

7) |5H − 2EB − 2EB,1 − EB,5 − EB,6 B(18,4,1) L1 1

−3EP3,6 − 2EP4,5 − 2EP1,4 − 2EP3,5

−EP2,4 − EP2,6 |
8) |4H − 2EA − 2EA,2 − EA,1 − EA,3 B(18,4,0) L5 0

−2EP3,6 − 2EP1,5 − 2EP2,6 − EP1,4

−EP3,5 |
9) |3H − 2EP2,5 − EP1,4 − EP4,6 − EP2,6 B(18,4,1) L3,L6 1

−EP3,4 − EP3,5 |
10) |3H − 2EB − 2EB,6 − EB,1 − EB,5 B(18,4,1) L3 1

−2EP1,4 − EP3,5 − EP4,5 − EP3,6 |
11) |2H − EP3,6 − EP3,4 − EP4,5 − EP2,5 | B(18,4,1) L2,L6 1

12) |2H − EP3,6 − EP3,4 − EP2,5 − EP1,5 | B(18,4,0) L1,L2, 0

L4,L6

13) |3H − 2EA − 2EA,1 − EA,2 − EA,3 B(18,4,0) L5 0

−2EP2,6 − EP3,5 − EP3,6 − EP1,5 |
14a) |H − E(0:0:1)| B(13,9,1) c = b = 0, a = f = −1, 1

g = −1− e

14b) |H − E(g:1:0)| B(13,9,1) c = e = d = 0, f = −1, a = 0 1
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15) |H − E(0:0:1)| B(13,9,1) a = 0, b = −1, c = 0, f = −1, 0

g = −d− e

16) |H − E(1:0:1)| B(13,9,1) a = 0, c = d = e = 0, f = −1 1

17) |H − E(0:0:1)| B(13,9,1) a = 0, b = −1, d = 1, 1

f = −1− c, g = −1− e

18) |H − E(0:0:1)| B(13,9,1) c = e = 0, g = −d, f = −1, 1

a = −1

19) |H − E(1:0:0)| B(13,9,1) a = 0, b = −1, c = e = 0, d = fg 0

20a) |H − E(0:0:1)| B(13,9,1) a = c = e = 0, b = −1, d = fg 0

20b) |H − E(0:0:1)| B(13,9,1) a = c = d = e = 0, b = −1 1

6.8. r = 19.
The sextic B(19,3,1) consists of six lines l1, . . . , l6 with 3 triple points A := l1∩ l2∩ l3,

B := l1 ∩ l5 ∩ l6, C := l3 ∩ l4 ∩ l5 and 6 double points: P1,4, P2,5, P3,6, P2,4, P2,6, P4,6.

1) |3H − 2EA − 2EA,2 − EA,1 − EA,3 B(19,3,1) L1

−2EB − 2EB,5 − EB,1 − EB,6

−2EP3,6 − EP2,5 |
2) |3H − 2EA − 2EA,1 − EA,2 − EA,3 B(19,3,1) L2

−2EB − 2EB,5 − EB,1 − EB,6

−2EP3,6 − EP2,5 |
3) |2H − 2EA − EA,1 − EA,2 − EA,3 B(19,3,1) L2, EA

−EP1,4 − EP4,6 − EP3,6 |
4) |3H − 2EB − 2EB,5 − EB,1 − EB,6 B(19,3,1) L1

−2EC − 2EC,4 − EC,3 − EC,5

−2EP3,6 − EP1,4 |
5) |2H − 2EA − EA,1 − EA,2 − EA,3 B(19,3,1) L3, EA

−EP1,4 − EP2,6 − EP4,6 |
6) |2H − 2EA − EA,1 − EA,2 − EA,3 B(19,3,1) EA, EB

−2EB − EB,1 − EB,5 − EB,6

−EP3,6 − EP2,5 |
7) |5H − 4EC − 4EC,5 − 2EC,4 − 2EC,3 B(19,3,1) L1

−2EB − 2EB,1 − EB,5 − EB,6

−3EP3,6 − 2EP1,4 − EP2,6 − EP2,4 |
8) |3H − 2EA − 2EA,3 − EA,1 − EA,2 B(19,3,1) L3,L6

−2EB − 2EB,6 − EB,1 − EB,5

−2EP2,5 − EP1,4 |
9) |3H − 2EB − 2EB,5 − EB,1 − EB,6 B(19,3,1) L3,L6

−2EC − 2EC,3 − EC,4 − EC,5

−2EP2,4 − EP2,6 |
10a) |2H − EP1,4 − EP2,5 − EP2,6 − EP4,6 | B(19,3,1) L1,L5

10b) |2H − 2EB − 2EB6 − EB1 − EB5 B(19,3,1) L3, EC

−2EC − EC3 − EC4 − EC5 − EP14 |
11) |H − E(0:0:1)| B(13,9,1) b = −1, a = c = e = 0,

f = −1, g = −1

12) |H − E(0:0:1)| B(13,9,1) a = c = d = e = 0, b = g = −1

13) |H − E(0:0:1)| B(13,9,1) a = c = d = e = 0, b = −1,

g = −1− f
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6.9. r = 20.
We consider the sextic B(20,2,1) made up of 6 lines l1, . . . , l6 with four triple points:

A := l1 ∩ l2 ∩ l3, B := l1 ∩ l5 ∩ l6, C := l3 ∩ l4 ∩ l5, D := l2 ∩ l4 ∩ l6, as in Section 5.1.

1) |3H − 2ED − 2ED,2 − ED,4 − ED,6 − 2EB B(20,2,1) L6

−2EB,5 − EB,1 − EB,6 − 2EP1,4 − EP2,5 |
2) |3H − 2EB − 2EB,5 − EB,1 − EB,6 − 2EC B(20,2,1) L1

−2EC,4 − EC,3 − EC,5 − EP1,4 − 2EP3,6 |
3) |2H − 2EA − EA,1 − EA,2 − EA,3 − 2EB B(20,2,1) EA, EB

−EB,1 − EB,5 − EB,6 − EP2,5 − EP3,6 |
4) |2H − 2EC − 2EC,3 − EC,4 − EC,5 − 2ED B(20,2,1) L2,L5

−2ED,6 − ED,4 − ED,2|
5) |5H − 2EB − 2EB,1 − EB,5 − EB,6 − 4EC B(20,2,1) L1

−4EC,5 − 2EC,3 − 2EC,4 − 2ED − 2ED,2

−ED,4 − ED,6 − 2EP1,4 − 3EP3,6 |
6) |3H − 2EC − 2EC,5 − EC,4 − EC,3 − 2ED B(20,2,1) L2,L5

−2ED,2 − ED,4 − ED,6 − EP1,4 − 2EP3,6 |
7) |2H − 2EC − 2EC,5 − EC,4 − EC,3 − EP1,4 B(20,2,1) L1,L6

−EP3,6 |
8) |H − E(0:0:1)| B(13,9,1) a = c = d = e = 0,

b = g = −1, f = −1

9) |H − E(1:0:0)| B(13,9,1) a = c = d = e = 0,

b = g = −1, f = −1

7. Van Geemen-Sarti involutions and isogenies.

In [GS3, Theorem 3.1] it is proved that all the K3 surfaces of type X(r,22−r,δ) admit
at least a symplectic involution. It is clear that it is not necessarily a van Geemen-Sarti
involution. The aim of this section is to classify all the van Geemen-Sarti involutions
of the K3 surfaces X(r,22−r,δ). Of course this is equivalent to classifying the sections of
order 2 on the elliptic fibrations on such K3 surfaces. Once again we have to distinguish
two cases: the one where the involution ι on X(r,22−r,δ) is of type a) (cf. Example 2.5 and
Section 5) and the one where the involution ι on X(r,22−r,δ) is of type b) (cf. Example
2.6 and Section 6).

We also show that certain van Geemen-Sarti involutions on X(r,22−r,δ) are Morrison-
Nikulin involutions. The Morrison-Nikulin involutions are symplectic involution µ defined
on a K3 surface S such that the desingularization, S̃/µ, of S/µ is a Kummer surface
Km(A) (for a certain Abelian surface A) and TS ' TA. Equivalent conditions to be a
Morrison-Nikulin involutions are: S̃/µ is a Kummer surface Km(A) and TgS/µ

' TA(2)
or µ acts on the Néron-Severi group of S switching two orthogonal copies of the lattice
E8(−1). Morrison-Nikulin involutions induced by translation by section of order 2 (i.e.
Morrison-Nikulin involutions which are also van Geemen-Sarti involutions) are described
for the first time in [vGS]. In [Ko] Morrison-Nikulin involutions which are van Geemen-
Sarti involutions acting on K3 surfaces of Picard number 17 with an elliptic fibration
with a finite Mordell-Weil group are classified. In [Sc] three 3-dimensional families of
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K3 surfaces with a Morrison-Nikulin involution are described. In each of these families
the Morrison-Nikulin involution are van Geemen-Sarti involutions. We observe that for
these families the Mordell-Weil group is not finite.

7.1. van Geemen-Sarti involutions of type a).
The elliptic fibrations on X(r,22−r,δ) with non-symplectic involution ι of type a) are

listed in Proposition 4.5. Until now we did not describe the torsion part of the Mordell-
Weil group, but now we are interested in the elliptic fibrations admitting a section of
order 2, thus we have to consider exactly the torsion part of the Mordell-Weil group.

Proposition 7.1. Among the elliptic fibrations of Table (4.2) the only ones ad-
mitting a section of order 2 are: r = 20 reducible fibers I4 + I16; r = 19, reducible fibers
I2 + I16; r = 18 reducible fibers either I4 + I12 or 2I8.

In cases r = 20 and r = 19, the van Geemen-Sarti involution is also a Morrison-
Nikulin involution, but this is not the case when r = 18 holds.

Proof. A section of order 2 meets a fiber of type I2k either in the component
Θ0 or in the component Θk. Let us analyze elliptic fibrations with two reducible fibers
I2k1 +I2k2 with a section t of order 2. The torsion section has to meet at least one fiber in
a component which is not Θ0 (otherwise the section is not of order 2). If it meets one of
the two reducible fibers (say the fiber I2k1) in the component Θ0, then the height formula
implies that k2 = 8. Thus, one of the two reducible fibers is I16. Among the admissible
elliptic fibrations of Table (4.2), the only possibilities are r = 20 with reducible fibers
I4 + I16 and r = 19 with reducible fibers I2 + I16. If the section of order 2 meets both
the fibers I2k1 + I2k2 in Θi with i 6= 0, then the height formula implies that k1 + k2 = 8.
By Table (4.2) this implies that r = 18. There are no sections of order 2 on the elliptic
fibration with a fiber of type IV ∗ (one can use again the height formula, or consider the
group law on the fibers of such a type).

If t is a section of order 2 of an elliptic fibration Er on X(r,22−r,δ), then t induces
a 2-torsion section t′ on the elliptic fibration E ′r induced by Er on the rational surface
X(r,22−r,δ)/ι. The elliptic fibrations E ′r are listed in Table (5.1): the elliptic fibration with
reducible fibers I2k1 +I2k2 on X(r,22−r,k) induces on X(r,22−r,δ)/ι an elliptic fibration with
reducible fibers Ik1 + Ik2 . If either both k1 and k2 are odd or one of ki, i = 1, 2 is odd
and the other is not 8, then the elliptic fibration with reducible fibers Ik1 + Ik2 does not
admit a section of order 2 (because of the height formula and the fact that a section of
order 2 meets a fiber of type Ik in the component Θ0 if k is odd). Thus, on the rational
elliptic fibrations with reducible fibers I1 + I7 or I3 + I5 there is no section of order 2,
and hence on the elliptic K3 surface with r = 18 and reducible fibers I2 + I14, I6 + I10

there is no section of order 2.
We proved that the only elliptic fibrations among the ones listed in Table (4.2) which

can admit a section of order 2 are the ones listed in the statement. To prove that these
elliptic fibrations admit in fact a section of order 2, it suffices to show that there exists a
rational curve which intersects the reducible fibers as prescribed for a section of order 2
by the height formula. For example, if we consider the case r = 20 and reducible fibers
I4 + I16, the section of order 2 has to meet the fiber of type I4 in Θ0 and the fiber of
type I16 in Θ8. In the proof of Proposition 5.1 we described the fiber of type I16 of the
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fibration with fibers I4 + I16 and we choose the curve EP2,5 as zero section. With respect
to this choice the curve EA,2 is a section of order 2. Analogously, in case r = 19, the
curve EA,2 is a section of order 2. In case r = 18, δ = 0 the presence of a section of order
2 is proved in [O].

If t is a section of order 2 meeting a fiber of type I16 in the component Θ8, the
translation by this torsion section is a Morrison-Nikulin involution (cf. [vGS]), thus in
cases r = 20 and r = 19, the van Geemen-Sarti involution is also a Morrison-Nikulin
involution.

On the surface X(18,4,δ), δ = 0, 1 there is no Morrison-Nikulin involution. Indeed if
the rank of the Picard number of a K3 surface S is 18 then S admits a Morrison-Nikulin
involution if and only if the transcendental lattice TS is isometric to U ⊕T ′ for a certain
lattice T ′ of rank 2 (cf. [Mo, Corollary 6.4]). The length of a lattice isometric to U ⊕T ′

is at most 2 (i.e. at most the maximal length of T ′), but the length of the transcendental
lattice of X(18,4,δ) is 4. ¤

Remark 7.2. If r = 18 and δ = 1 holds then there exists at least one elliptic
fibration with reducible fibers I4 +I12 (resp. 2I8), which is the one described in the proof
of Proposition 5.1. This elliptic fibration does not admit a section of order 2. Indeed a
Z-basis of this K3 surface is made up of L4, EP2,4 , L2, EP2,6 , L6, EP3,6 , L3, EA,3, EA,
EA,1, L1, EP1,4 , L5, EB , EB,5, EP4,5 , EB1 , EB6 and this choice of the basis corresponds
to the components Θi i = 1, . . . 12 of the fiber I12, the components Θj , j = 0, 1, 2 of
the fiber I4, the zero section, and two sections of infinite order. If there was a section
of order 2, then the set consisting of components of reducible fibers, of the zero section
and of the sections of infinite order is a set of generators, but not a Z-basis. Anyway,
it is possible that there exists another elliptic fibration on X(18,4,1) with reducible fibers
I4 + I12 and admitting a section of order 2. Similarly, on the elliptic fibration with fibers
2I8 described in the proof of Proposition 5.1 there is no section of order 2, but it is
possible that there exists another elliptic fibration on X(18,4,1) with the same reducible
fibers but admitting a section of order 2.

Remark 7.3. Let Er be one of the elliptic fibrations of type a) (cf. Proposition
4.5). For each section P ∈ MW(Er) such that the order of P is not 2, there exists a
symplectic involution αP which preserves Er but is not a van Geemen-Sarti involution
of Er. Indeed let αP := ιβP , where βP is the involution defined in Example 2.7. The
involutions ι and βP act respectively on the basis and on the fibers of the fibration,
thus they commute and both are non-symplectic involutions. Hence αP is a symplectic
involution and it preserves Er. Clearly αP is not a translation by a section of order 2
of the elliptic fibration E . It is possible that αP is a van Geemen-Sarti involution with
respect to another elliptic fibration (cf. Remarks 7.4 and 7.9).

Remark 7.4. In [vGT, Section 3.4] a particular Morrison-Nikulin involution i

on the surface X(19,3,1) is analyzed in order to describe explicitly the 2-isogeny (defined
over Q) between X(19,3,1) and the desingularization of X(19,3,1)/i. In [vGT] it is proved
that the Morrison-Nikulin involution i acts on the elliptic fibration with reducible fibers
I10 + I8 as the involution αP described in Remark 7.3 (we will show in Remark 7.9 that
it is a van Geemen-Sarti involution with respect to another fibration).
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7.2. van Geemen-Sarti involutions case b).
The classification of the van Geemen-Sarti involutions on the K3 surface X(r,22−r,δ)

in case b) coincides with the classification of all the sections of order 2 on elliptic fibrations
on such a surface. This classification is contained in Proposition 4.8. Each van Geemen-
Sarti involution induces an isogeny of order 2 between two K3 surfaces: describing the
quotients of the surface X(r,22−r,δ) by these van Geemen-Sarti involutions, we obtain a
lot of isogenies between X(r,22−r,δ) and other K3 surfaces. As an example we prove the
following proposition, then we summarize in tables of Section 8.2 similar results for all
the van Geemen-Sarti involutions on the elliptic fibrations listed in Proposition 4.8. We
observe that if the torsion part of the Mordell-Weil group is (Z/2Z)2 then there are three
sections of order 2, which are denoted by t, u and t + u (where + is the group law in the
Mordell-Weil group) and thus three distinct van Geemen-Sarti involutions, denoted by
σt, σu, σt+u.

Proposition 7.5. The K3 surface X(19,3,1) is 2-isogenous to a K3 surface Y

admitting an elliptic fibration with MW = (Z/2Z)2 and reducible fibers 2I∗2 + I4 + 2I2.
Let t′ and u′ be two sections of order 2 on Y , then t′ and u′ intersect precisely the following
fiber components: t′ · Θ1

1 = t′ · Θ2
1 = t′ · Θ3

2 = t′ · Θ4
1 = t′ · Θ5

1 = 1, u′ · Θ1
5 = u′ · Θ2

5 =
u′ ·Θ3

2 = u′ ·Θ4
0 = u′ ·Θ5

0 = 1. The transcendental lattice of Y is TY ' U(2)⊕ 〈4〉. The
elliptic fibration on Y has equation

w2 = x(x + τ(τ − 1)2)(x + τ(τ2 + 2τ(1− 2d) + 1)).

The desingularization of the quotient Y/σt′ is X(19,3,1) and the 2-isogeny between Y and
X(19,3,1) is: (x,w) 7→

(
(x2 + 2τ(τ2 − 2dτ + 1)x + τ2(τ − 1)2(τ2 + 2τ(1− 2d) + 1))

4x
,

w(x2 − τ2(τ − 1)2(τ2 + 2τ(1− 2d) + 1))
8x2

)
.

The desingularization of the quotient Y/σt′ is X(19,3,1).

Proof. It is well known (and easy to check directly) that the quotient of a fiber
of type I∗2k by the translation by a section of order 2 is either I∗k , if the section of order
2 meets one of the components Θ2k+3, Θ2k+4, or I∗4k, if the section of order 2 meets
the component Θ1. Similarly, the quotient of a fiber of type I2k by the translation by
a section of order 2 is either Ik, if the section of order 2 meets the component Θk, or
I4k, if the section of order 2 meets the component Θ0; the quotient of a fiber of type I1

by the translation by a section of order 2 is a fiber of type I2. The K3 surface X(19,3,1)

admits an elliptic fibration with reducible fibers 2I∗4 + I2 + 2I1 with a section of order 2
(see Section 8.1, r = 19 case 11)). Since the section t of such an elliptic fibration meets
the components Θ1

7, Θ2
7, Θ3

0 of the reducible fibers, the quotient elliptic fibration has
fibers 2I∗2 + I4 + 2I2. The elliptic fibration on X(19,3,1) has no sections of infinite order
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(see Proposition 4.8). Since the Mordell-Weil rank is invariant under isogeny, also the
quotient elliptic fibration on Y has no sections of infinite order. By [Shim] an elliptic
fibration without sections of infinite order and with reducible fibers 2I∗2 + I4 + 2I2 has
Mordell-Weil group equal to (Z/2Z)2. Let t′ and u′ be two generators of the Mordell-Weil
group. Since the elliptic fibration on Y is the quotient by the translation by a section
of order 2, on Y there exists a section of order 2, say t′, which gives the dual isogeny
(i.e. such that the quotient by σt′ gives the original elliptic fibration). It follows that the
section t′ meets the reducible fibers respectively in Θ1

1, Θ2
1, Θ3

2, Θ4
1, Θ5

1. By the height
formula, it follows that the other two sections of order 2 meet the components in Θ1

5, Θ2
5,

Θ3
2, Θ4

0, Θ5
0, and in Θ1

6, Θ2
6, Θ3

0, Θ4
1, Θ5

1 respectively. Thus one can assume that u′ is as
in the statement.

The classes b1 := (Θ1
5 + Θ1

6 + Θ2
5 + Θ2

6)/2, b2 := (Θ2
1 + Θ2

3 + Θ2
5 + Θ4

1)/2, b3 :=
(Θ1

5+Θ1
6+Θ4

1)/2+(Θ3
1+2Θ3

2+3Θ3
3)/4 generate the discriminant group, (Z/2Z)2×Z/4Z,

of NS(Y ). The discriminant form (computed on these classes) has the property that
b2
i ∈ Z, i = 1, 2, 3 and bibj ∈ (1/2)Z, i, j = 1, 2, 3. The discriminant form of TY is the

opposite of the one of NS(Y ), thus its generators satisfy the same conditions, moreover
rk(TY ) = l(TY ). This suffices to conclude that TY = L(2) for a certain even lattice L.
The lattice L has signature (2, 1) and has discriminant group Z/2Z and thus satisfies
[N2, Corollary 1.13.3]. Hence L is isometric to a unique lattice, which is U ⊕ 〈2〉. Thus
TY ' U(2)⊕ 〈4〉.

Until now we did not use the explicit equation of the elliptic fibration on X(19,3,1),
thus the previous arguments can be applied to any of the elliptic fibrations listed in
Proposition 4.8. Now we observe that in Section 6.8 we proved that the following equation
yields an elliptic fibration on X(19,3,1) with 2I∗4 + I2 + 2I1 as fiber configuration: w2 =
x(x2 − τ(τ2 − 2dτ + 1)x + τ4(d − 1)2). This is the equation of an elliptic curve defined
over C[τ ] and the quotient by σt is the quotient of this elliptic curve by the 2-torsion
point (0; 0). By [ST, p. 79], one immediately obtains the equation of the elliptic fibration
on Y and of the 2-isogeny. ¤

Proposition 7.6. The van Geemen-Sarti involutions on X(r,22−r,δ) in case b) are
the ones associated to the sections of order 2 on the elliptic fibrations listed in Proposition
4.8. The quotient elliptic fibrations are listed in tables of Section 8.2.

Among these van Geemen-Sarti involutions those which are Morrison-Nikulin invo-
lutions are: σt in cases r = 20 cases 4), 6), 8), 9) and r = 19 cases 8), 10b), 12), 13); σu

and σt+u in case r = 20 case 9).
The involution induced by ι on the quotient elliptic fibration acts as the identity on

the Néron-Severi group in the following cases:

r = 20 cases 3), 7) quotient by σt, r = 20 case 8) quotient by σu and σt+u;
r = 18 cases 5b), 6), 14b), 15), 19) quotient by σt, r = 18 cases 12), 16), 18) and 19)
quotient by σu, r = 18 cases 19), 20a) quotient by σt+u;
r = 16 cases 6b), 9b), 11) quotient by σt.

Proof. Proposition 4.8 and Section 6 give a complete classification of the elliptic
fibrations of type b) on the surfaces X(r,22−r,δ). Thus one obtains a complete classification
of the van Geemen-Sarti involutions on these surfaces. The properties of the quotient
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elliptic fibrations can be proved as in Proposition 7.5. In particular one computes the
reducible fibers of the quotient from those of the original elliptic fibration and deduces
the torsion part of the Mordell-Weil group by [Shim] and by the fact that Z/2Z ⊂ MW.
Moreover, as in Proposition 7.5, one proves that the Mordell-Weil rank is 0. In two
cases (r = 18 case 20a), quotient by σt or σu and r = 18 case 20b) quotient by σt) the
information given in [Shim] and the inclusion Z/2Z ⊂ MW do not suffice to find the
Mordell-Weil group: in both the cases it can be either Z/2Z or Z/4Z. In case r = 18
case 20a), an equation of the elliptic fibration on X(18,4,1) is w2 = x(x + τ(gτ + 1)(f +
τ))(x + τ2(g + 1)(f + 1)) (cf. Section 6.7) and thus the equation of the elliptic fibration
which is the quotient by σt is

w2 = x
(
x2 − 2τ(2fgτ + (1 + τ)(gτ + f) + 2τ)x + τ2(1− τ)2(gτ − f)2

)
. (7.1)

In [GS2, Table 1] conditions to the equation of an elliptic fibration to admit a 4-torsion
section are given and thus we conclude that the quotient elliptic fibration (7.1) does not
admit a 4-torsion section. Similarly, one can use the equations of the elliptic fibrations
which are quotient by σu of the case r = 18, 20a) and quotient by σt of the case r = 18,
20b) to prove that in both cases the Mordell-Weil group is Z/2Z.

In the proof of Proposition 7.1 it is proved that there are no Morrison-Nikulin
involutions on the surfaces X(18,4,δ). With the same argument one shows that there are
no Morrison-Nikulin involutions also on the surface X(17,5,1). Since the K3 surfaces with
Picard number less than 17 do not admit Morrison-Nikulin involutions, we conclude
that Morrison-Nikulin involutions can appear only in the cases r = 20 or r = 19. The
discriminant group of the transcendental lattice of X(r,22−r,δ) is (Z/2Z)22−r thus, if σt is
a Morrison-Nikulin involution then the discriminant group of the transcendental lattice
of X(r,22−r,δ)/σt

is (Z/4Z)22−r. This condition is satisfied only in cases r = 20 cases 4),
6), 9) and r = 19 cases 8), 10b), 12), 13), if one considers the quotient by σt, and in
case r = 20 case 8), if one considers the quotient by σu. Now one has to prove that in
all these cases TX(r,22−r,δ)/σv

' TX(r,22−r,δ)(2) where v = t or v = u. One can make this
computation directly (as in Proposition 7.5) or refer to [SZ, Cases 137, 177, 188, 286,
Table 2] if r = 20.

The involution induced by ι on the quotient elliptic fibration is the hyperelliptic
involution (i.e. of type b)). If it acts trivially on the Néron-Severi group, then the
Néron-Severi group is 2-elementary. The unique quotient elliptic fibrations with this
properties are the ones listed in the statement. Let us consider, for example, r = 16
case 6b): the reducible fibers are I∗8 + 2I2 + 6I1 and MW = Z/2Z. The hyperelliptic
involution fixes the zero section and the section t′ of order 2. Moreover, it fixes the
bisection b passing through the other points of order 2. Since the 2-torsion points are
fixed, the curves Θ1

0, Θ1
1, Θ1

11, Θ1
12 are invariant. Thus Θ1

2 is invariant and the points
Θ1

0 ∩Θ1
2 and Θ1

1 ∩Θ1
2 are fixed. But a non-symplectic involution does not admit isolated

fixed points, thus Θ1
2 is a fixed curve (Θ1

0 is not fixed because it meets the zero section,
which is fixed, and the fixed locus is smooth, analogously Θ1

1 meets b, thus it is not
fixed). Similarly, one obtains that Θ1

2i, i = 1, 2, 3, 4, 5 are fixed. Thus the hyperelliptic
involution fixes 7 rational curves (2 sections and 5 components of the fiber of type I∗8 )
and the curve b. This curve passes through two distinct points on each smooth fiber,
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on the fiber I∗8 (it meets both the components Θ1 and Θ11) and on the fibers of type I2

(it meets both the components Θ0 and Θ1). It is tangent to the fibers of type I1 and
thus b is a 2:1 cover of P1 (base of the fibration) branched along 6 points. Hence b is a
curve of genus 2 and the hyperelliptic involution fixes 7 rational curves and 1 curve of
genus 2. Thus it acts as the identity on the Néron-Severi group if and only if the Néron-
Severi group is a 2-elementary lattice with rank 16 and length 2. These are the properties
defining the Néron-Severi group of the quotient elliptic fibration, and this concludes the
proof. ¤

Remark 7.7. The previous proposition gives explicit isogenies among some K3
surfaces admitting a non-symplectic involution acting trivially on the Néron-Severi group,
in particular between X(16,6,1) and X(16,4,1), X(16,6,1) and X(16,2,1), X(18,4,0) and X(18,2,1),
X(18,4,1) and X(18,2,0), X(18,4,0) and X(18,0,0). Moreover, there is an isogeny of order 2
between X(18,4,0) and X(18,4,1) given by the quotient of the elliptic fibration r = 18 case
15) by σt.

Remark 7.8. By the equation (6.3) and the conditions A = 0, E = F = −1/2,
H = −G one finds the equation of the elliptic fibration r = 16 case 6b): it is w2 =
x(x2 + a(τ)x + b(τ)) with

a(τ) := (1− τ)(8τ(B + Cτ) + 2(1− τ)(D + τ(1− 3B − 2C − 2D) + τ2(B + D − 1))),

b(τ) := 4τ(B + Cτ)(1− τ)2(4G2τ(B + Cτ) + 2G(1− τ)(D + τ(1− 3B − 2C − 2D)

+ τ2(B + D − 1)) + (1− τ)2(B + C − 1 + τ)).

From this equation one finds an explicit equation for the isogeny described in [CD], as
in Proposition 7.5.

Remark 7.9. We showed in the previous proposition that σt is a Morrison-Nikulin
involution in case r = 19, 10b). One can easily identify the two copies of E8(−1) which
are switched by this involution: one of them is L1, EA,1, EA, EA,2, EA,3, L3, EP3,6 ,
L6. This shows that the involution σt is the Morrison-Nikulin involution considered in
[vGT] (it suffices to identify L1 with (x = 0), L2 with (x = −tz), L3 with (z = 0), L4

with (z = −1), L5 with l5, L6 with (x = −1), with the notation of [vGT, Section 3.1]).
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8. Appendix: Tables.

8.1. Elliptic fibrations case b): tables.
Case r = 20 (a = 2, s = 10):

singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
1) 2II ∗ 2 0 {1}
2) II ∗ + I∗6 0 2 {1}
3) 2III ∗ + I∗0 0 0 Z/2Z t : Θ1

7, Θ2
7, Θ3

1

4) III ∗ + I∗6 1 3− (2m1 + 3m2) Z/2Z t : Θ1
7, Θ2

9, Θ3
0

5) I∗14 0 4 {1}
6) I∗12 2 6− (2m1 + 3m2) Z/2Z t : Θ1

15, Θ2
0, Θ3

0

7) I∗8 + I∗2 0 2 Z/2Z t : Θ1
11, Θ2

1

8) 2I∗4 2 0 (Z/2Z)2 t : Θ1
7, Θ2

7, Θ3
0, Θ4

0

u : Θ1
8, Θ2

1, Θ3
1, Θ4

1

9) 3I∗2 0 0 (Z/2Z)2 t : Θ1
1, Θ2

5, Θ3
5

u : Θ1
5, Θ2

6, Θ3
1

Case r = 19 (a = 3, s = 9):

singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
1) II ∗ + III ∗ 2 5− (2m1 + 3m2) {1}
2) II ∗ + I∗4 1 4− (2m1 + 3m2) {1}
3) 2III ∗ 3 0 Z/2Z t : Θ1

7, Θ2
7, Θ3

1, Θ4
1, Θ5

0

4) III ∗ + I∗6 0 3 {1}
5) III ∗ + I∗4 2 5− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
7, Θ3

1, Θ4
0

6) III ∗ + I∗2 + I∗0 0 1 Z/2Z t : Θ1
7,Θ

2
5, Θ3

1

7) I∗12 1 6− (2m1 + 3m2) {1}
8) I∗10 3 8− (2m1 + 3m2) Z/2Z t : Θ1

13, Θ2
1, Θi

0, i = 3, 4
9) I∗8 + I∗0 1 4− (2m1 + 3m2) Z/2Z t : Θ1

11, Θ2
1, Θ3

0

10a) I∗6 + I∗2 1 4− (2m1 + 3m2) Z/2Z t : Θ1
9, Θ2

1, Θ3
1

10b) I∗6 + I∗2 1 4− (2m1 + 3m2) Z/2Z t : Θ1
9, Θ2

5, Θ3
0

11) 2I∗4 1 4− (2m1 + 3m2) Z/2Z t : Θ1
7, Θ2

7, Θ3
0

12) I∗4 + I∗2 3 0 (Z/2Z)2 t : Θ1
7, Θ2

5, Θ3
1, Θ4

0, Θ5
0

u : Θ1
1, Θ2

6, Θ3
1, Θ4

1, Θ5
1

13) 2I∗2 + I∗0 1 0 (Z/2Z)2 t : Θ1
5, Θ2

5, Θ3
1, Θ4

0

u : Θ1
1, Θ2

6, Θ3
3, Θ4

1
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Case r = 18 (a = 4, s = 8):

singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
1) II ∗ + I∗2 2 6− (2m1 + 3m2) {1}
2) II ∗ + 2I∗0 0 2 {1}
3) 2III ∗ 2 6− (2m1 + 3m2) {1}
4) III ∗ + I∗4 1 5− (2m1 + 3m2) {1}
5a) III ∗ + I∗2 3 7− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
5, Θ3

1, Θ4
1, Θ5

0

5b) III ∗ + I∗2 3 7− (2m1 + 3m2) Z/2Z t : Θ1
7, Θ2

1, Θ3
1, Θ4

1, Θ5
1

6) III ∗ + 2I∗0 1 3− (2m1 + 3m2) Z/2Z t : Θ1
7,Θ

2
1, Θ3

1, Θ4
1

7) I∗10 2 8− (2m1 + 3m2) {1}
8) I∗8 + I∗0 0 4 {1}
9) I∗8 4 10− (2m1 + 3m2) Z/2Z t : Θ1

11, Θ2
1, Θ3

1, Θ4
0, Θ5

0

10) I∗6 + I∗2 0 4 {1}
11) I∗6 + I∗0 2 6− (2m1 + 3m2) Z/2Z t : Θ1

9, Θ2
1, Θ3

1, Θ4
0

12) I∗6 6 0 (Z/2Z)2 t : Θ1
9,Θ

2
1,Θ

3
1,Θ

4
1,Θ

5
0,Θ

6
0,Θ

7
0

u : Θ1
1,Θ

2
1,Θ

3
1,Θ

4
1,Θ

5
1,Θ

6
1,Θ

7
1

13) 2I∗4 0 4 {1}
14a) I∗4 + I∗2 2 6− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
5, Θ3

1, Θ4
0

14b) I∗4 + I∗2 2 6− (2m1 + 3m2) Z/2Z t : Θ1
7, Θ2

1, Θ3
1, Θ4

1

15) I∗4 + 2I∗0 0 2 Z/2Z t : Θ1
7, Θ2

1, Θ3
1

16) I∗4 + I∗0 4 0 (Z/2Z)2 t : Θ1
7, Θ2

1, Θ3
1, Θ4

1, Θ5
0, Θ6

0

u : Θ1
1, Θ2

3, Θ3
1, Θ4

1, Θ5
1, Θ6

1

17) 2I∗2 + I∗0 0 2 Z/2Z t : Θ1
5, Θ2

5, Θ3
1

18) I∗2 + 2I∗0 2 0 (Z/2Z)2 t : Θ1
5, Θ2

1, Θ3
1, Θ4

1, Θ5
0

u : Θ1
1, Θ2

3, Θ3
3, Θ4

1, Θ5
1

19) 4I∗0 0 0 (Z/2Z)2 t : Θ1
1, Θ2

1, Θ3
1, Θ4

1

u : Θ1
3, Θ2

3, Θ3
3, Θ4

3

20a) 2I∗2 4 0 (Z/2Z)2 t : Θ1
6, Θ2

6, Θ3
1, Θ4

1, Θ5
0, Θ6

0

u : Θ1
5, Θ2

5, Θ3
0, Θ4

0, Θ5
1, Θ6

1

20b) 2I∗2 4 0 (Z/2Z)2 t : Θ1
5, Θ2

5, Θ3
1, Θ4

1, Θ5
0, Θ6

0

u : Θ1
1, Θ2

6, Θ3
0, Θ4

1, Θ5
1, Θ6

1

Case r = 17 (a = 5, s = 7):

singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
1) II ∗ + I∗0 3 8− (2m1 + 3m2) {1}
2) III ∗ + I∗2 2 7− (2m1 + 3m2) {1}
3) III ∗ + 2I∗0 0 3 {1}
4) III ∗ + I∗0 4 9− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
1, Θ3

1, Θ4
1, Θ5

1, Θ6
0

5) I∗8 3 10− (2m1 + 3m2) {1}
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singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
6) I∗6 + I∗0 1 6− (2m1 + 3m2) {1}
7) I∗6 5 12− (2m1 + 3m2) Z/2Z t : Θ1

9,Θ
2
1, Θ3

1, Θ4
1, Θ5

0, Θ6
0

8) I∗4 + I∗2 1 6− (2m1 + 3m2) {1}
9) I∗4 + I∗0 3 8− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
1, Θ3

1, Θ4
1, Θ5

0

10) I∗4 7 0 (Z/2Z)2 t : Θ1
7, Θ2

1, Θ3
1, Θ4

1, Θ5
1, Θ6

0,

Θ7
0,Θ

8
0

u : Θ1
1, Θ2

1, Θ3
0, Θ4

1, Θ5
1, Θ6

1,

Θ7
1, Θ8

1

11) I∗2 + 2I∗0 1 4− (2m1 + 3m2) Z/2Z t : Θ1
5, Θ2

1, Θ3
1, Θ4

1

12) I∗2 + I∗0 5 0 (Z/2Z)2 t : Θ1
5,Θ

2
1,Θ

3
1,Θ

4
1,Θ

5
1,Θ

6
0,Θ

7
0

u : Θ1
1,Θ

2
3,Θ

3
0,Θ

4
1,Θ

5
1,Θ

6
1,Θ

7
1

13) 3I∗0 3 0 (Z/2Z)2 t : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1, Θ6

0

u : Θ1
3, Θ2

3, Θ3
3, Θ4

0, Θ5
1, Θ6

1

14a) 2I∗2 3 8− (2m1 + 3m2) Z/2Z t : Θ1
5, Θ2

5, Θ3
1, Θ4

1, Θ5
0

14b) 2I∗2 3 8− (2m1 + 3m2) Z/2Z t : Θ1
5, Θ2

1, Θ3
1, Θ4

1, Θ5
1

Case r = 16 (a = 6, s = 6):

singular
fibers m1+m2 n1 + 2n2 MW components meeting

the torsion sections
1) II ∗ 6 14− (2m1 + 3m2) {1}
2) III ∗+I∗0 3 9− (2m1 + 3m2) {1}
3) III ∗ 7 15− (2m1 + 3m2) Z/2Z t : Θ1

7,Θ
2
1,Θ

3
1,Θ

4
1,Θ

5
1,Θ

6
1,Θ

7
0,Θ

8
0

4) I∗6 4 12− (2m1 + 3m2) {1}
5) I∗4 + I∗0 2 8− (2m1 + 3m2) {1}
6a) I∗4 6 14− (2m1 + 3m2) Z/2Z t : Θ1

7, Θ2
1, Θ3

1, Θ4
1, Θ5

1, Θ6
0, Θ7

0

6b) I∗4 6 14− (2m1 + 3m2) Z/2Z t : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1, Θ6

1, Θ7
1

7) 2I∗2 2 8− (2m1 + 3m2) {1}
8) I∗2 + 2I∗0 0 4 {1}
9a) I∗2 + I∗0 4 10− (2m1 + 3m2) Z/2Z t : Θ1

5,Θ
2
1, Θ3

1, Θ4
1, Θ5

1, Θ6
0

9b) I∗2 + I∗0 4 10− (2m1 + 3m2) Z/2Z t : Θ1
1,Θ

2
1, Θ3

1, Θ4
1, Θ5

1, Θ6
1

10) I∗2 8 0 (Z/2Z)2 t : Θ1
5,Θ

i
1, i=2, . . . , 6,Θ7

0,Θ
8
0,Θ

9
0

u : Θ1
1,Θ

2
0, Θ3

0, Θi
1, i = 4, . . . , 9

11) 3I∗0 2 6− (2m1 + 3m2) Z/2Z t : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1

12) 2I∗0 6 0 (Z/2Z)2 t : Θ1
1,Θ

2
1,Θ

3
1,Θ

4
1,Θ

5
1,Θ

6
1,Θ

7
0,Θ

8
0

u : Θ1
3,Θ

2
3,Θ

3
0,Θ

4
0,Θ

5
1,Θ

6
1,Θ

7
1,Θ

8
1
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Case r = 15 (a = 7, s = 5):

singular
fibers m1+m2 n1 + 2n2 MW components meeting

the torsion sections
1) III ∗ 6 15− (2m1+3m2) {1}
2) I∗4 5 14− (2m1+3m2) {1}
3) I∗2 + I∗0 3 10− (2m1+3m2) {1}
4a) I∗2 7 16− (2m1+3m2) Z/2Z t : Θ1

5, Θi
1, i = 2, . . . , 6, Θ7

0, Θ8
0

4b) I∗2 7 16− (2m1+3m2) Z/2Z t : Θi
1, i = 1, . . . , 7, Θ8

0

5) 3I∗0 1 6− (2m1+3m2) {1}
6) 2I∗0 5 12− (2m1+3m2) Z/2Z t : Θi

1, i = 1, . . . , 6, Θ7
0

7) I∗0 9 0 (Z/2Z)2 t : Θi
1, i = 1, . . . , 7,Θ8

0,Θ
9
0,Θ

10
0

u : Θ1
3,Θ

2
0,Θ

3
0,Θ

4
0,Θ

i
1, i = 5, . . . , 10

Case r = 14 (a = 8, s = 4):

singular
fibers m1+m2 n1 + 2n2 MW components meeting

the torsion sections
1) I∗2 6 16− (2m1+3m2) {1}
2) 2I∗0 4 12− (2m1+3m2) {1}
3) I∗0 8 18− (2m1+3m2) Z/2Z t : Θi

1, i = 1, . . . , 7, Θ8
0, Θ9

0

4) 12 0 (Z/2Z)2 t : Θi
1, i=1, . . . , 8,Θ9

0,Θ
10
0 ,Θ11

0 ,Θ12
0

u : Θi
0, i=1, . . . , 4,Θj

1, j = 5, . . . , 12

Case r = 13 (a = 9, s = 3):

singular
fibers m1 + m2 n1 + 2n2 MW components meeting

the torsion sections
1) I∗0 7 18− (2m1 + 3m2) {1}
2) 11 24− (2m1 + 3m2) Z/2Z t : Θi

1, i = 1, . . . , 8,Θ9
0,Θ

10
0 ,Θ11

0

Case r = 12 (a = 10, s = 2):

m1I2 + m2III + n1I1 + n2II , m1 + m2 = 10, n1 + 2n2 = 24− (2m1 + 3m2), MW = {1}.

8.2. Quotient of elliptic fibrations case b): tables.
In the following tables we describe the elliptic fibration E/σt. We refer to the exam-

ples given in Section 6, thus we assume m2 = n2 = 0 as in Proposition 6.7. The elliptic
fibrations considered are listed in the first column, using the notation of the tables of
Section 8.1. In the second column we indicate which van Geemen-Sarti involution we
used to obtain the quotient surface: if the quotients by two distinct van Geemen-Sarti
involutions have the same type of reducible fibers and the same torsion sections then
we write them in a unique line, indicating both the van Geemen-Sarti involutions in the
second column. In the third, fourth and fifth columns the quotient elliptic fibration is
described. We denote by t′ the generator of the Z/2Z in MW(E/σt) such that (E/σt)/σt′
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is the original elliptic fibration on X(r,22−r,δ). If (Z/2Z)2 ⊂ MW(E/σt) we denote by
u′ another generator of MW(E/σt). In the fifth column the intersections between the
torsion sections and the components of the reducible fibers are given: the reducible fibers
(not the singular) are numbered according to the order given in the third column. In
the sixth column we give the discriminant group of the Néron-Severi of the quotient
surface. If the Néron-Severi group is 2-elementary, the quotient surface corresponds to
a K3 surface of type X(r,a,δ): in this case in the seventh column we give the invariants
(r, a, δ) and, if a = 22−r, the number of the corresponding elliptic fibration with respect
to the tables of Section 8.1.

Quotients in case r = 20:

singular fibers MW NS∨/ NS (r, a, δ), case

3) σt 2III ∗ + I∗0 Z/2Z t′ : Θ1
7, Θ2

7, Θ3
1 (Z/2Z)2 (20, 2, 1), 3)

4) σt III ∗ + I∗3 + I4 + I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
2 (Z/4Z)2

6) σt I∗6 + 2I4 + 2I2 (Z/2Z)2 t′ : Θ1
1, Θ

2
2, Θ

3
2, Θ

4
1, Θ

5
1 (Z/4Z)2

u′ : Θ7
9, Θ

2
2, Θ

3
0, Θ

4
1, Θ

5
0

7) σt 2I∗4 + 2I2 (Z/2Z)2 t′ : Θ1
1, Θ2

7, Θ3
1, Θ4

1 (Z/2Z)2 (20, 2, 1), 8)

u′ : Θ1
7, Θ2

1, Θ3
1, Θ4

1

8) σt 2I∗2 + 2I4 (Z/2Z)2 t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)2

u′ : Θ1
5, Θ2

5, Θ3
2, Θ4

0

8) σu, σt+u I∗8 + I∗2 + 2I1 Z/2Z t′ : Θ1
11, Θ2

1 (Z/2Z)2 (20, 2, 1), 7)

9) σt, σu, σt+u I∗4 + 2I∗1 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
1 (Z/4Z)2

Quotients in case r = 19:

singular fibers MW NS∨ / NS

3) σt 2III ∗ + 2I1 + I4 Z/2Z t′ : Θ1
7, Θ2

7, Θ3
2 Z/4Z× (Z/2Z)2

5) σt III ∗+ I∗2 +I4+I2+I1 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
2, Θ4

1 Z/4Z× (Z/2Z)2

6) σt III ∗ + I∗1 + I∗0 + I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
1, Θ4

1 Z/4Z× (Z/2Z)2

8) σt I∗5 + 2I4 + 2I2 + I1 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)3

9) σt I∗4 + I∗0 + I4 + 2I2 (Z/2Z)2 t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)× (Z/2Z)2

u′ : Θ1
7, Θ2

3, Θ3
2, Θ4

0, Θ5
0

10a) σt I∗3 + I∗4 + 2I2 + I1 Z/2Z t′ : Θ1
1, Θ2

7, Θ3
1, Θ4

1 Z/4Z× (Z/2Z)2

10b) σt I∗3 + I∗1 + I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)3

11) σt 2I∗2 + I4 + 2I2 (Z/2Z)2 t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 Z/4Z

u′ : Θ1
5, Θ2

5, Θ3
2, Θ4

0, Θ5
0

12) σt I∗2 + I∗1 + 2I4 + I1 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)3

12) σu I∗8 + I∗1 + 3I1 Z/2Z t′ : Θ1
11, Θ2

1 Z/4Z
12) σt+u I∗2 + I∗4 + 2I1 + I4 Z/2Z t′ : Θ1

1, Θ2
7, Θ3

2 Z/4Z× (Z/2Z)2

13) σt 2I∗1 + I∗0 + I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

2 (Z/4Z)3

13) σu, σt+u I∗1 + I∗4 + I∗0 + I1 Z/2Z t′ : Θ1
1, Θ2

7, Θ3
1 Z/4Z× (Z/2Z)2
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Quotients of case r = 18 (in case 12) we indicate with v′ the 4-torsion section; in
this case the section t′ is 2 times v′):

singular fibers MW NS∨ / NS (r, a, δ), case

5a) σt III∗+I∗1 +2I1+I4+I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
2, Θ4

1 (Z/4Z)2

5b) σt III∗ + I∗4 + 3I1 + I2 Z/2Z t′ : Θ1
7, Θ2

7, Θ3
1 (Z/2Z)2 (18, 2, 1)

6) σt III∗ + 2I∗0 + I1 + I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
1, Θ4

1 (Z/2Z)4 (18, 4, 1), 6)

9) σt I∗4 + 2I1 + 2I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

11) σt I∗3 +I∗0 +I1+I4+2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

12) σt, σt+u I∗3 + 3I1 + 3I4 Z/4Z v′ : Θ1
6, Θ2

1, Θ3
1, Θ4

1 (Z/4Z)2

12) σu I∗12 + 6I1 Z/2Z t′ : Θ1
15 (18, 0, 0)

14a) σt I∗2 +I∗1 +I1+I4+2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

14b) σt I∗2 + I∗4 + 2I1 + 2I2 Z/2Z t′ : Θ1
1, Θ2

7, Θ3
1, Θ4

1 (Z/2Z)4 (18, 4, 1), 14b)

15) σt I∗2 + 2I∗0 + 2I2 (Z/2Z)2 t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1 (Z/2Z)4 (18, 4, 1), 18)

u′ : Θ1
5, Θ2

3, Θ3
3, Θ3

1, Θ4
0

16) σt, σt+u I∗2 + I∗0 + 2I1 + 2I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)4×(Z/2Z)2

16) σu I∗8 + I∗0 + 4I1 Z/2Z t′ : Θ1
11, Θ1

1 (Z/2Z)2 (18, 2, 0)

17) σt 2I∗1 + I∗0 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

18) σt, σt+u I∗1 + 2I∗0 + I1 + I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

2 (Z/4Z)2×(Z/2Z)2

18) σu I∗4 + 2I∗0 + 2I1 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
1 (Z/2Z)4 (18, 4, 0), 15)

19) σt, σu, 4I∗0 (Z/2Z)2 t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

1 (Z/2Z)4 (18, 4, 0), 19)

σt+u u′ : Θ1
3, Θ2

3, Θ3
3, Θ4

3

20a) σt, σu 2I∗1 + 2I1 + 2I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)2×(Z/2Z)2

20a) σt+u 2I∗4 + 4I1 Z/2Z t′ : Θ1
7, Θ2

7 (Z/2Z)2 (18, 2, 0)

20b) σt 2I∗1 + 2I4 + 2I1 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)2×(Z/2Z)2

20b) σu, σt+u I∗1 + I∗4 + 3I1 + I4 Z/2Z t′ : Θ1
1, Θ2

7, Θ3
2 (Z/4Z)2

Quotients in case r = 17:

singular fibers MW NS∨ / NS

4) σt III ∗ + I∗0 + 3I1 + I4 + I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
2, Θ4

1 Z/4Z× (Z/2Z)2

7) σt I∗3 + 3I1 + 2I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)3

9) σt I∗2 + I∗0 + 2I1 + I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 Z/4Z× (Z/2Z)4

10) σt I∗2 + 4I1 + 3I4 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

2 (Z/4Z)3

10) σu I∗8 + 6I1 + I4 Z/2Z t′ : Θ1
11, Θ2

2 Z/4Z
11) σt I∗1 + 2I∗0 + I1 + 2I2 Z/2Z t′ : Θ1

1, Θ2
1, Θ3

1, Θ4
1, Θ5

1 Z/4Z× (Z/2Z)4

12) σt, σt+u I∗1 + I∗0 + 3I1 + 2I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)3

12) σu I∗4 + I∗0 + I4 + 4I1 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
2 Z/4Z× (Z/2Z)2

13) σt, σu, σt+u 3I∗0 + 2I1 + I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

2 Z/4Z× (Z/2Z)4

14a) σt 2I∗1 + 2I1 + I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)3

14b) σt I∗1 + I∗4 + 3I1 + 2I2 Z/2Z t′ : Θ1
1, Θ2

7, Θ3
1, Θ4

1 Z/4Z× (Z/2Z)2
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Quotients in case r = 16:

singular fibers MW NS∨ / NS (r, a, δ), case

3) σt III∗ + 5I1 + 2I4 + I2 Z/2Z t′ : Θ1
7, Θ2

2, Θ3
2, Θ4

1 (Z/4Z)2

6a) σt I∗2 + 4I1 + 2I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

6b) σt I∗8 + 6I1 + 2I2 Z/2Z t′ : Θ1
11, Θ2

1, Θ3
1 (Z/2Z)2 (16, 2, 1)

9a) σt I∗1 +I∗0 +3I1+I4+2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2×(Z/2Z)2

9b) σt I∗4 + I∗0 + 4I1 + 2I2 Z/2Z t′ : Θ1
7, Θ2

1, Θ3
1, Θ4

1 (Z/2Z)4 (16, 4, 1)

10) σt, σt+u I∗1 + 5I1 + 3I4 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

2 (Z/4Z)3

10) σu I∗4 + 2I4 + 6I1 Z/2Z t′ : Θ1
7, Θ2

2, Θ3
2 (Z/4Z)2

11) σt 3I∗0 + 2I1 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
1, Θ4

1, Θ5
1 (Z/2Z)6 (16, 6, 1), 11)

12) σt, σu, σt+u 2I∗0 + 4I1 + 2I4 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

2 (Z/4Z)2×(Z/2Z)2

Quotients in case r = 15:

singular fibers MW NS∨ / NS

4a) σt I∗1 + 5I1 + 2I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)3

4b) σt I∗4 + 6I1 + I4 + 2I2 Z/2Z t′ : Θ1
7, Θ2

2, Θ3
1, Θ4

1 Z/4Z× (Z/2Z)2

6) σt 2I∗0 + 4I1 + I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

1, Θ3
2, Θ4

1, Θ2
1 Z/4Z× (Z/2Z)4

7) σt, σu, σt+u I∗0 + 6I1 + 3I4 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

2 (Z/4Z)3

Quotients in case r = 14:

singular fibers MW NS∨ / NS

3) σt I∗0 + 6I1 + 2I4 + 2I2 Z/2Z t′ : Θ1
1, Θ2

2, Θ3
2, Θ4

1, Θ5
1 (Z/4Z)2 × (Z/2Z)2

4) σt, σu, σt+u 8I1 + 4I4 Z/2Z t′ : Θ1
2, Θ2

2, Θ3
2, Θ4

2 (Z/4Z)3

Quotient in case r = 13:

singular fibers MW NS∨ / NS
2) σt 8I1 + 3I4 + 2I2 Z/2Z t′ : Θ1

2, Θ2
2, Θ3

2, Θ4
1, Θ5

1 (Z/4Z)3
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