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A converse theorem for double Dirichlet series

and Shintani zeta functions
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Abstract. A converse theorem for double Dirichlet series is established.
As an application, we show that certain zeta functions introduced by Shintani
are actually Weyl group multiple Dirichlet series associated to metaplectic
Eisenstein series on GL(2).

1. Introduction.

The main aim of this paper is to obtain a converse theorem for double Dirichlet
series and use it to show that the Shintani zeta functions [13] which arise in the theory
of prehomogeneous vector spaces are actually linear combinations of Mellin transforms
of metaplectic Eisenstein series on GL(2). The converse theorem we prove will apply to
a very general family of double Dirichlet series which we now define.

Definition 1.1 (Family FN of double Dirichlet series). Fix a positive integer
N and a weight 1/2 multiplier system v of the congruence subgroup Γ0(4N). Let m∗

denote the number of inequivalent singular cusps of Γ0(4N) in terms of v (see beginning of
Section 2 for definitions of multiplier system and singular cusps). Let aj

n,` (with `, n ∈ Z,
` ≥ 1, j = 1, . . . , m∗) be a sequence of complex numbers which are assumed to have
polynomial growth in |n| and ` as |n|, ` →∞.

For s, w ∈ C (with sufficiently large real parts) and an integer N ≥ 1, we define FN

to be a set (family) of double Dirichlet series

L±j (s, w;χ) =
∑
±n>0

∞∑

`=1

aj
n,` τn(χ)
`w |n|s ,

where j ranges over the set {1, . . . , m∗}, D ranges over the set of integers in {1, . . . , (4N)2}
that are co-prime to N and, for each such D, χ ranges over the Dirichlet characters
(mod D). Here

τn(χ) :=
∑

m(mod D)
(m,D)=1

χ(m)e2πimn/D
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is the Gauss sum.

The converse theorem we prove will be for the family FN provided every L-function
in FN satisfies certain “nice properties,” namely, every L±j (s, w;χ) ∈ FN is holomorphic
and bounded in vertical strips and satisfies certain functional equations. We call such
a family FN a “nice family.” The precise definition is given in Section 3. The converse
theorem (Theorem 3.2) states that a “nice family” FN must be a family of linear combi-
nations of Mellin transforms of metaplectic Eisenstein series. This implies, in particular,
that such a “nice family” is actually a family of WMDS (Weyl group multiple Dirichlet
series) studied in [1]. As such it satisfies additional hidden functional equations which
cannot be seen by the theory of prehomogeneous vector spaces.

The method used to prove our converse theorem is a refinement of that used in [3]
and, as a result, the statement of the theorem is significantly simplified. In particular,
we solve one of the problems we pointed out in [3]. Specifically, it seemed impossible to
eliminate from the assumptions of the converse theorem, an additional set of functional
equations which were quite unnatural. The version of the converse theorem in this paper
avoids the need for these functional equations and, in addition, instead of hypergeometric
functions, it uses Gamma functions which are easier to handle. The key for this sim-
plification is Bykovskii’s technique [2] which allows for the information contained in the
extra functional equations of [3] to be encoded into an auxiliary variable.

The simplification is even more apparent in the scalar version of the converse theorem
(Theorem 5.3) corresponding to the case of Γ0(4). In Section 6, we use this theorem to
prove that Shintani’s zeta function is essentially a Mellin transform of the metaplectic
Eisenstein series for Γ0(4) (Theorem 6.2).

Shintani’s zeta functions [13] have been studied extensively because of their arith-
metic nature and because they are important examples of zeta functions associated to
prehomogeneous vector spaces. While it has long been known that Shintani’s zeta func-
tions should be closely related to the Eisenstein series studied by Siegel [11], there are
technical difficulties in making this relation explicit by direct computation, e.g. because of
the non-square-free integers. We circumvent these problems with the use of our converse
theorem and establish an explicit relation with Mellin transforms of Siegel’s Eisenstein
series.

Acknowledgments. The authors thank the referee for a very careful reading of
the paper and suggestions which substantially improved exposition. They also thank
Gautam Chinta for many helpful comments.

2. Metaplectic Eisenstein series.

We recall the basic terminology and notation for metaplectic Eisenstein series.
Fix a positive integer N . Let Γ = Γ0(4N) denote the group of matrices

(
a b
c d

)
of determinant 1 with a, b, c, d ∈ Z and 4N |c. For γ =

(
a b
c d

)
, define the weight 1/2

multiplier system

v(γ) =
(

c

d

)
ε−1
d ,
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with

εd =

{
1, d ≡ 1(mod 4),

i, d ≡ 3(mod 4),

where ( c
d ) is the usual Kronecker symbol.

Now, we fix a set {ai, i = 1, . . . , m} of inequivalent cusps of Γ0(4N) among which
the first m∗ are singular with respect to v (i.e. v(γa) = 1, if γa is the generator of the
stabilizer Γa of a). We choose the a’s so that a1 = ∞ and am∗ = 0.

For each a we fix a scaling matrix σa such that σa(∞) = a and σ−1
a Γaσa = Γ∞. In

particular, we select σa1 = I, σam∗ = W4N , where I is the identity matrix and W4N is

the Fricke involution
(

0 −1/(2
√

N)

2
√

N 0

)
.

We shall also adopt the notation that we may write M in the form M =
(

a
M

b
M

c
M

d
M

)
.

Further, the arguments of complex numbers are chosen to be in (−π, π]. Then, for
f : H → C and γ ∈ SL2(R), we recall the slash operator: f |γ. It is defined by the
formula

(f |γ)(z) = f(γz)
(cγz + dγ)−1/2

|cγz + dγ |−1/2
,

and satisfies the relation

f |γ|δ = r(γ, δ) · f |(γδ), (γ, δ ∈ SL2(R)),

where

r(M, N) =
(cMNz + dM )1/2(cNz + dN )1/2

(cMNz + dMN )1/2
, (for M, N ∈ SL2(R)).

To compute r(M, N) we will tacitly be using Theorem 16 of [5].

Lemma 2.1. Let M =
( ∗ ∗

m1 m2

)
, S =

(
a b
c d

) ∈ SL2(R) and MS =
( ∗ ∗

m′
1 m′

2

)
. Then

r(M, S) = e(πi/4)w(M,S), with

w(M, S) =





(sgn(c) + sgn(m1)− sgn(m′
1)− sgn(m1cm

′
1)), m1cm

′
1 6= 0,

(sgn(c)− 1)(1− sgn(m1)), m1c 6= 0, m′
1 = 0,

(sgn(c) + 1)(1− sgn(m2)), m′
1c 6= 0, m1 = 0,

(1− sgn(a))(1 + sgn(m1)), m1m
′
1 6= 0, c = 0,

(1− sgn(a))(1− sgn(m2)), m1 = c = m′
1 = 0.

For convenience, for every function f on H we set

f̌ := eπi/4f |W4N .



452 N. Diamantis and D. Goldfeld

Thus, f̌(iy) = f(i/(4Ny)) and ˇ̌f = f .
For each of the cusps ai (i = 1, . . . , m∗) and w ∈ C with Re(w) > 1, we define an

Eisenstein series

Ei(z, w) =
∑

γ∈Γai
\Γ

Im(σ−1
ai

γz)w

r(σ−1
ai , γ)v(γ)

( cσ−1
ai

γz + dσ−1
ai

γ

|cσ−1
ai

γz + dσ−1
ai

γ |
)−1/2

.

This Eisenstein series has a meromorphic continuation to the w-plane ([7, Section 10])
and, for all δ ∈ Γ, it satisfies

Ei(·, w)|δ = v(δ)Ei(·, w).

Next, if T denotes matrix transpose, set

E(z, w) = (E1(z, w), . . . , Em∗(z, w))T

and

Ě(z, w) = (Ě1(z, w), . . . , Ěm∗(z, w))T .

Each Ei is an eigenfunction of the weight 1/2 Laplacian

∆1/2 = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iy

2
∂

∂x

with eigenvalue w(w − 1) ([7, (10.10)]). This implies that, if z := x + iy, then, for all
i, j ∈ {1, . . . , m∗}, there are functions aij

n (w), such that

Ei(·, w)|σaj
= δijy

w + pij(w)y1−w +
∑

n 6=0

aij
n (w)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinx,

where δij is the Kronecker delta and pij(w) the ij-th entry of the scattering matrix Φ(w).
Here, W·,· is the classical Whittaker function with integral representation

Wa,b(z) =
e−z/2za

Γ(1/2− a + b)

∫ ∞

0

u−a−1/2+b(1 + z−1u)a−1/2+be−udu

(cf. [14, p. 340]).
If w and 1− w are not poles of any of the Ei (i = 1, . . . , m∗), then, by [7, (10.19)],

E(z, 1− w) = Φ(1− w)E(z, w). (1)
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3. L-functions associated to Ei(z,w).

Fix a positive integer N ≥ 1. For every positive integer D (with (D, 4N) = 1), let χ

be a Dirichlet character modulo D. For every function f : H → C, we define its twist by

f(· ;χ) =
∑

m(mod D)
(m,D)=1

χ(m)f
∣∣∣∣
(

1 m/D
0 1

)
.

We consider functions f(z, w) of two variables z = x + iy ∈ H, w ∈ C, with Fourier
expansions of the form

f(z, w) = a(w)y1−w + b(w)yw +
∑

n 6=0

an(w)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinx.

Then the twisted function f(· ;χ), in terms of z, is

f(z, w;χ) = τ0(χ)
(
a(w)y1−w+b(w)yw

)
+

∑

n 6=0

τn(χ)an(w)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinx,

where

τn(χ) =
∑

m(mod D)
(m,D)=1

χ(m)e2πimn/D, (n ∈ Z).

As shown in [3], we have

f(· ;χ)

∣∣∣∣∣

(
0 −1/(2D

√
N)

2D
√

N 0

)

= e−πi/4χ(−4N)
∑

r(mod D)
(r,D)=1

χ(r)f̌
∣∣∣∣
(

D −r
−4mN t

) ∣∣∣∣
(

1 r/D
0 1

)
. (2)

For future reference we consider the Dirichlet character χ̌ (mod D) given by

χ̌(m) :=
(

m

D

)
χ(m).

Note that χ̌ is a character since (D, 4N) = 1, D is odd and ( ·· ) is the Jacobi symbol. It
satisfies ˇ̌χ = χ.

We are now ready to associate L-functions to metaplectic Eisenstein series.
Let aj

n(w) denote the n-th coefficient of the expansion at ∞ of Ej(z, w). For Re(s)
large enough, define
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L±j (s, w) =
∑
±n>0

aj
n(w)
|n|s .

Generally, for χ a Dirichlet character modulo D ((D, 4N) = 1), set

L±j (s, w;χ) =
∑
±n>0

τn(χ)aj
n(w)

|n|s .

Following [2], we also define the modified “completed” L-functions:

Λj(s, w, u;χ) :=
∫ ∞

0

(
Ej((i + u)y, w;χ)− τ0(χ)

(
δj1y

w + pj1(w)y1−w
))

ys dy

y
.

We also set Ľj and Λ̌j , for the corresponding functions associated to Ě.
Let u ∈ R and s, w ∈ C with Re(s),Re(w) sufficiently large. With [6, (13.23.4)], we

have

Λj(s, w, u;χ) = c(s, w;u)
(
L+

j (s, w;χ), L−j (s, w;χ)
)T

, (3)

where

c(s, w;u) =
Γ(w + s)Γ(s− w + 1)

(4π)s
·
(

F (s + w, 1 + s− w, s + 3/4; (1 + iu)/2)
Γ(s + 3/4)

,

F (s + w, 1 + s− w, s + 5/4; (1− iu)/2)
Γ(s + 5/4)

)
,

with F (a, b, c; d) the Gaussian hypergeometric function.
Further, equation (2) implies that

Ej(·, w;χ)|W4ND2 = e−πi/4χ(−4N)
(

4N

D

)
ε−1
D Ěj(·, w; χ̌), (4)

and thus that the constant term ǎ0(y, w;χ) of the Fourier expansion of Ej(·, w;χ)|W4ND2

is

ǎ0(y, w;χ) = χ(−4N)
(

4N

D

)
ε−1
D τ0(χ̌)

(
δjm∗yw + pjm∗(w)y1−w

)
.

Evaluating at (i− u)/(2
√

ND(u2 + 1)y) and using

(
(u + i)
|u + i|

)1/2

= eπi/4(1 + iu)−1/4(1− iu)1/4, (5)

we obtain
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Ej

(
(i + u)y
2
√

ND
,w;χ

)
= χ(−4N)

(
4N

D

)
ε−1
D

(1 + iu)1/4

(1− iu)1/4
Ěj

(
i− u

2
√

ND(u2 + 1)y
, w, χ̌

)
.

Then the standard Riemann trick gives

(2
√

ND)sΛj(s, w, u;χ)

=
∫ ∞

1/
√

u2+1

(
Ej

(
(i + u)y
2
√

ND
,w;χ

)

− τ0(χ)
(

δj1

(
y

2
√

ND

)w

+ pj1(w)
(

y

2
√

ND

)1−w))
ys dy

y

+
∫ 1/

√
u2+1

0

[
A · Ěj

(
i− u

2
√

ND(u2 + 1)y
, w, χ̌

)

− τ0(χ)
(

δj1

(
y

2
√

ND

)w

+ pj1(w)
(

y

2
√

ND

)1−w)]
ys dy

y

=
∫ ∞

1/
√

u2+1

[(
Ej

(
(i + u)y
2
√

ND
,w;χ

)

− τ0(χ)
(

δj1

(
y

2
√

ND

)w

+ pj1(w)
(

y

2
√

ND

)1−w))
ys

+ A

(
Ěj

(
(i− u)y
2
√

ND
,w, χ̌

)

− eπi/4τ0(χ̌)
(

δjm∗

(
y

2
√

ND

)w

+ pjm∗(w)
(

y

2
√

ND

)1−w))
(y(u2 + 1))−s

]
dy

y

+ (u2 + 1)−s

(
(2
√

ND)−w(u2 + 1)(s−w)/2

(
A · τ0(χ̌)eπi/4 δjm∗

s− w
− τ0(χ)δj1

s + w

)

+ (2
√

ND)w−1(u2 + 1)(s+w−1)/2

×
(

A · τ0(χ̌)eπi/4 pjm∗(w)
w + s− 1

− τ0(χ)pj1(w)
s− w + 1

))
, (6)

where, for convenience, we have set

A =
(1 + iu)1/4

(1− iu)1/4
χ(−4N)

(
4N

D

)
ε−1
D .

By the exponential decay of Wsgn(n)/4,w−(1/2)(iy) as y → ∞, the integral is convergent
giving an entire function of s. This implies that Λj(s, w;u;χ) satisfies the following
properties.

Property (i). The function Λj(s, w;u;χ) is meromorphic on the (s, w)-plane.
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Property (ii). The function

(2
√

ND)sΛj(s, w, u;χ)

− (u2 + 1)−s

(
(2
√

ND)−w(u2 + 1)(s−w)/2

(
A · τ0(χ̌)eπi/4 δjm∗

s− w
− τ0(χ)δj1

s + w

)

+ (2
√

ND)w−1(u2 + 1)(s+w−1)/2

(
A · τ0(χ̌)eπi/4 pjm∗(w)

w + s− 1
− τ0(χ)pj1(w)

s− w + 1

))

is EBV (entire and bounded in vertical strips).

Property (iii). For j = 1, . . . , m∗, we have

(2
√

ND)s(1 + iu)sΛj(s, w, u;χ) = A(2
√

ND)−s(1− iu)−sΛ̌j(−s, w,−u; χ̌).

Property (iv). Define ΛE(s, w, u;χ) := (Λj(s, w;u;χ))T
j=1,...,m∗ . Then if w and

1− w are not poles of Φ(w), we have the functional equation

ΛE(s, 1− w;u;χ) = Φ(1− w)ΛE(s, w;u;χ). (7)

Remark. The functional equations in properties (iii) and (iv) are deduced from
(6) and (1) respectively.

Proposition 3.1. (a) Property (iii) above is equivalent to:

Property (iii′). For j = 1, . . . , m∗,

(√
ND

π

)2s

χ(−4N)
(

4N

D

)
εD

(
L+

j (s, w;χ)

L−j (s, w;χ)

)

=




Γ(w − s)Γ(1− s− w)
Γ(s + (1/4))Γ((3/4)− s)

Γ(w − s)Γ(1− s− w)
Γ((1/4) + w)Γ((5/4)− w)

Γ(w − s)Γ(1− s− w)
Γ(w − (1/4))Γ((3/4)− w)

Γ(w − s)Γ(1− s− w)
Γ(s− (1/4))Γ((5/4)− s)




(
Ľ+

j (−s, w;χ)

Ľ−j (−s, w;χ)

)
.

(b) Property (iv) above is equivalent to:

Property (iv′). Define L±E(s, w;χ) := (L±j (s, w;χ))T
j=1,...,m∗ . Then we have the

functional equations:

L+
E(s, 1− w;χ) = Φ(1− w)L+

E(s, w;χ) and

L−E(s, 1− w;χ) = Φ(1− w)L−E(s, w;χ).
(8)
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Proof of (a). Set

a =




F

(
s + 1− w, s + w,

3
4

+ s;
1− iu

2

)

(1− iu)(1/4)−s

(1 + iu)(1/4)+s
F

(
1− s− w, w − s,

5
4
− s;

1− iu

2

)


 ,

b =




F

(
s + 1− w, s + w,

5
4

+ s;
1 + iu

2

)

(1− iu)(1/4)−s

(1 + iu)(1/4)+s
F

(
1− s− w, w − s,

3
4
− s;

1 + iu

2

)




and

G =




Γ((3/4) + s)Γ(−(1/4)− s)
Γ(w − (1/4))Γ((3/4)− w)

4s Γ((3/4) + s)Γ((1/4) + s)
Γ(s + 1− w)Γ(s + w)

4−s Γ((5/4)− s)Γ(−(1/4)− s)
Γ(1− s− w)Γ(w − s)

Γ((5/4)− s)Γ((1/4) + s)
Γ(w + (1/4))Γ((5/4)− w)


 .

With equation (3), Property (iii) can be rewritten for j = 1, . . . , m∗ as:

(
(
√

ND/2π)2sΓ(s + w)Γ(s− w + 1)
χ(−4N)( 4N

D )ε−1
D Γ(w − s)Γ(1− s− w)

L+
j (s, w;χ)

Γ(s + (3/4))
, − Ľ−j (−s, w; χ̌)

Γ((5/4)− s)

)
· a

=
(
− (

√
ND/2π)2sΓ(s + w)Γ(s− w + 1)

χ(−4N)( 4N
D )ε−1

D Γ(w − s)Γ(1− s− w)

L−j (s, w;χ)
Γ(s + (5/4))

,
Ľ+

j (−s, w; χ̌)
Γ((3/4)− s)

)
· b.

On the other hand, Kummer’s relations imply that a = Gb. Since the component
functions of b are linearly independent, this, an elementary computation together with
the identity |G| = (1/4− s)/(1/4 + s) implies the result. ¤

Proof of (b). This is a direct consequence of the linear independence of the
following functions of u:

F

(
s + 1− w, s + w,

3
4

+ s;
1− iu

2

)
and F

(
s + 1− w, s + w,

5
4

+ s;
1 + iu

2

)
. ¤

4. The converse theorem.

This section is devoted to the statement and proof of our main theorem. We begin
by defining a “nice family” of double Dirichlet series.

Definition 4.1. Let N ≥ 1 be an integer and FN := {L±j (s, w;χ)} a family of
double Dirichlet series as in Definition 1.1. We say FN is “nice” if there exists another
family F̌N (called a contragredient family) of double Dirichlet series:
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Ľ±j (s, w;χ) =
∑
±n>0

∞∑

`=1

ǎj
n,` τn(χ)
`w |n|s ,

with j ranging over {1, . . . , m∗}, D over the integers in {1, . . . , (4N)2} that are co-prime
to N and, for each such D, χ ranging over the Dirichlet characters (mod D), such that
the following assumptions are satisfied for all L±j (s, w;χ) ∈ FN .

Assumption (a). The functions Λj(s, w;u;χ) := c(s, w;u)(L+
j (s, w;χ),

L−j (s, w;χ))T have meromorphic continuations to C2. Furthermore, there exist mero-
morphic functions on C, aj(w), bj(w), ǎj(w), b̌j(w), holomorphic for Re(w) À 1, such
that

(2
√

ND)sΛj(s, w, u;χ)

− (u2 + 1)−s

[
(2
√

ND)−w(u2 + 1)(s−w)/2

(
A · τ0(χ̌)

b̌j(w)
s− w

− τ0(χ)bj(w)
s + w

)

+ (2
√

ND)w−1(u2 + 1)(s+w−1)/2

(
A · τ0(χ̌)

ǎj(w)
w + s− 1

− τ0(χ)aj(w)
s− w + 1

)]

are EBV for every w (with Re(w) large enough) and every u ∈ R.

Assumption (b).

(√
ND

π

)2s

χ(−4N)
(

4N

D

)
εD

(
L+

j (s, w;χ)

L−j (s, w;χ)

)

=




Γ(w − s)Γ(1− s− w)
Γ(s + (1/4))Γ((3/4)− s)

Γ(w − s)Γ(1− s− w)
Γ((1/4) + w)Γ((5/4)− w)

Γ(w − s)Γ(1− s− w)
Γ(w − (1/4))Γ((3/4)− w)

Γ(w − s)Γ(1− s− w)
Γ(s− (1/4))Γ((5/4)− s)




(
Ľ+

j (−s, w;χ)

Ľ−j (−s, w;χ)

)
.

Assumption (c). Let L±(s, w;χ) := (L±j (s, w;χ))T
j=1,...,m∗ . We assume the func-

tional equations

L+(s, 1− w;χ) = Φ(1− w)L+(s, w;χ) and

L−(s, 1− w;χ) = Φ(1− w)L−(s, w;χ).

The converse theorem we will prove states that a nice family of double Dirichlet
series must be the family of L-functions arising from the Mellin transforms of metaplectic
Eisenstein series which were introduced in Section 2.

Theorem 4.2 (Converse theorem for double Dirichlet series). Fix an integer N ≥ 1
and let FN denote a “nice family” of double Dirichlet series
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L±j (s, w;χ) =
∑
±n>0

∞∑

`=1

aj
n,` τn(χ)
`w |n|s ,

with j ranging over {1, . . . , m∗}, D over the integers in {1, . . . , (4N)2} that are co-prime
to N and, for each such D, χ ranging over the Dirichlet characters (mod D).

If F̌N denotes the contragredient family of FN , define Dirichlet series

aj
n(w) :=

∞∑
m=1

aj
n,m

mw
, ǎj

n(w) :=
∞∑

m=1

ǎj
n,m

mw
,

and assume that, for each fixed j, w (with Re(w) À 1), |aj
n(w)|, |ǎj

n(w)| = O(|n|C) for
some C > 0, as n → ∞. Also let aj(w), bj(w) be the functions associated to FN by
Assumption (a).

Then, for

f(z, w) = (f1(z, w), . . . , fm∗(z, w))T ,

where

fj(z, w) = aj(w)y1−w + bj(w)yw +
∑

n 6=0

aj
n(w)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinx,

(j = 1, 2, . . . , m∗),

we have

f(z, w) = A(w)E(z, w), (9)

where A(w) is a matrix of functions and E(z, w) is the matrix of Eisenstein series given
in Section 2. If A(w) is meromorphic, then, for each w and 1−w which are not poles of
Φ(w) and A(w), we have

Φ(1− w)A(w)Φ(w) = A(1− w). (10)

Proof. We first prove that, for every w (with Re(w) large enough), fj(·, w) is
invariant under the action | of Γ0(4N).

For every w with Re(w) large enough, j = 1, . . . , m∗, every character χmod D, every
u ∈ R and every y > 0 define,

Fj(y, w, u;χ) :=
∑

n 6=0

aj
n(w)τn(χ)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinuy,

F̌j(y, w, u;χ) :=
∑

n 6=0

ǎj
n(w)τn(χ)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinuy.

We also set
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Λ̌j(s, w;u;χ) := c(s, w;u)
(
Ľ+

j (s, w;χ), Ľ−j (s, w;χ)
)T

.

Since for every w (Re(w) large enough), |aj
n(w)|, |ǎj

n(w)| = O(|n|C), in the Mellin trans-
forms of Fj(y, w, u;χ) and F̌j(y, w, u;χ) we can interchange summation and integration
as in (3) to get, for Re(s) large enough

∫ ∞

0

Fj(y, w, u;χ)ys dy

y
= Λj(s, w;u;χ),

∫ ∞

0

F̌j(y, w, u;χ)ys dy

y
= Λ̌j(s, w;u;χ).

For each w (with Re(w) large enough) and for Re(s) large enough, the components
of c(s, w;u) decay exponentially in |s| as |s| → ∞ and as u ranges in suitably small
neighborhood of 0. ([2, (1.11)]). So, we can apply Mellin inversion to get

Fj(y, w, u;χ) =
1

2πi

∫ σ0+i∞

σ0−i∞
Λj(s, w;u;χ)y−sds,

F̌j(y, w, u;χ) =
1

2πi

∫ σ0+i∞

σ0−i∞
Λ̌j(s, w;u;χ)y−sds (11)

for σ0 large enough and a line of integration to the right of the poles of Λj and Λ̌j . By
the above estimate for the components of c(s, w;u), the standard Phragmén-Lindelöf
argument applies. We can, therefore, move the line of integration from σ0 to σ1 = −σ0

to get

Fj(y, w;u;χ) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λj(s, w;u;χ)y−sds +

∑

s0 pole

Res
s=s0

Λj(s, w;u;χ)y−s

=
1

2πi

∫ σ1+i∞

σ1−i∞
Λj(s, w;u;χ)y−sds

+ Aτ0(χ̌)
(
b̌j(w)((u2 + 1)4ND2y)−w + ǎj(w)((u2 + 1)4ND2y)w−1

)

− τ0(χ)
(
bj(w)yw + aj(w)y1−w

)
. (12)

The proof of Proposition 3.1 implies that Assumption (b) in the definition of a “nice
family” of double Dirichlet series is equivalent to

Λj(s, w;u;χ) = A(4ND2)−s(1 + u2)−sΛ̌j(−s, w;−u; χ̌). (13)

Therefore the last integral in (12) equals

∫ σ1+i∞

σ1−i∞
A(4ND2)−s(1 + u2)−sΛ̌j(−s, w;−u; χ̌)y−sds

= A

∫ σ0+i∞

σ0−i∞
Λ̌j(s, w;−u; χ̌)(4ND2(1 + u2)y)sds. (14)
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However, if we set

f̌j(z, w; χ̌) := τ0(χ̌)
(
ǎj(w)y1−w + b̌j(w)yw

)

+
∑

n 6=0

ǎj
n(w)τ(χ̌)Wsgn(n)/4, w−(1/2)(4π|n|y)e2πinx,

we have

fj((u + i)y, w;χ) = Fj(y, w;u;χ) + τ0(χ)
(
bj(w)yw + aj(w)y1−w

)
,

f̌j((u + i)y, w; χ̌) = F̌j(y, w;u; χ̌) + τ0(χ̌)
(
b̌j(w)yw + ǎj(w)y1−w

)
.

Therefore, (12), (14) and (11) imply that

fj((u + i)y, w;χ) = Af̌j

(
i− u

4ND2(1 + u2)y
, w; χ̌

)
= Af̌j

( −1
4ND2(u + i)y

, w; χ̌

)

=
(1 + iu)1/4

(1− iu)1/4
χ(−4N)

(
4N

D

)
ε−1
D f̌j

( −1
4ND2(u + i)y

, w; χ̌

)
. (15)

Since this holds for all y > 0, u ∈ R, this and the elementary identity ((u + i)y/|(u +
i)y|)1/2 = eπi/4(1 + iu)−1/4(1− iu)1/4 imply that

fj

( −1
4ND2z

, w; χ

)
= i−1/2χ(−4N)

(
4N

D

)
ε−1
D f̌j(z, w; χ̌)

(
z

|z|
)1/2

. (16)

Together with (2), (16) implies that

∑

r(mod D)
(r,D)=1

χ(r)f̌j

∣∣∣∣
(

D −r
−4mN t

) ∣∣∣∣
(

1 r/D
0 1

)

=
∑

r(mod D)
(r,D)=1

χ(r)
(

4Nr

D

)
ε−1
D f̌j

∣∣∣∣
(

1 r/D
0 1

)
. (17)

Character summation then implies that

f̌j

∣∣∣∣
(

D −r
−4mN t

)
=

(
4Nr

D

)
ε−1
D f̌j , (18)

or, with Lemma 2.1,

fj

∣∣∣∣
(

t m
4Nr D

)
=

(
4Nr

D

)
ε−1
D fj . (19)

However, the matrices on the left-hand side of (19) generate Γ.
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Lemma 4.3 ([8]). Let r ∈ Z+. For D ranging in a set of congruence classes modulo
4Nr ((D, 4Nr) = 1) choose

(
t m

4Nr D

) ∈ Γ. Denote the set of all such matrices by Sr.
Then Γ is generated by

4N⋃
r=1

Sr ∪
{(

1 0
0 1

)}
∪

{(−1 0
0 −1

)}
.

This implies that fi is Γ-invariant.
The rest of the proof is identical to that of Theorem 3.1 of [3]. (But notice that the

functional equations in Assumption (c) are employed in their equivalent form analogous
to (8)). ¤

Remark. For u = 0, Assumption (a) and (13) become the equations (9) and (10)
respectively, of [3].

5. Scalar multiple Dirichlet series.

In this section we prove a scalar converse theorem for the case of Γ0(4). In this case,
the corresponding families of double Dirichlet series collapse to sets of two elements only
and, therefore, we can formulate the result in a much simpler way than Theorem 4.2. As
for the corresponding result in [3] we modify our notation to agree with the formalism
of [11].

Specifically, we set

j1/2(γ, z) = v(γ)(cz + d)1/2.

For every γ, δ ∈ Γ0(4) and z ∈ H we have

j1/2(γδ, z) = j1/2(γ, δz)j1/2(δ, z).

The group Γ0(4) now acts on functions f on H by

(f |1/2γ)(z) := f(γz)j1/2(γ, z)−1, γ ∈ Γ0(4).

Further, we will expand eigenfunctions of ∆1/2 in terms of the functions ysKn(s, y)e2πinx,
where

Kn(s, y) =
∫ ∞

−∞

e−2πinx

(x2 + y2)s(x + iy)1/2
dx.

This is equivalent to the expansions in terms of Wsgn(n)/4,w−(1/2)(4π|n|y)e2πinx because
of

Lemma 5.1. For every n ∈ Z with n 6= 0, y > 0 and Re(s) large enough we have
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Kn(s, y) =
πs+(1/4)|n|s−(3/4)Wsgn(n)/4, s−(1/4)(4π|n|y)

eπi/4y(1/4)+sΓ(s + (1 + sgn(n))/4)
.

Proof. See for instance, [12, pp. 84–85] and [6, 13.10.7]. ¤

The scalar converse theorem is essentially a converse theorem for a family F1 con-
sisting of two double Dirichlet series

L±(s, w) =
∑
±n>0

∞∑

`=1

an,`

`w|n|(s−w+1)/2
. (20)

Note however that, in contrast to Definition 1.1, we do not index F1 by the (two) singular
cusps of Γ0(4) in terms of v, or by characters. The reason we do not need to will become
clear by the converse theorem we will prove. We have also normalized the exponent of
|n| in this way in order to be more consistent with the notation of [11]. We want to show
that if the family F1 has “nice” properties, then L±(s, w) must be a linear combination of
Mellin transforms of metaplectic Eisenstein series for Γ0(4). Accordingly, we now define
the notion of a “nice” family F1 with root number ε = ±1. We remark that the sign of
the root number is independent of the sign in the L-functions L±(s, w).

Definition 5.2. Let F1 be the family given in (20). We say F1 is a nice family
with root number ε = ±1 if the following assumptions are satisfied.

Assumption (A). The functions

(s + w − 2)(s− w − 1)L±(s, w) (21)

have meromorphic continuations to s, w ∈ C2 which are holomorphic if Re(w) À 1.
For Re(w) À 1, we have the bound (s + w − 2)(s − w − 1)L±(s, w) = O(| Im(s)|b) on
Re(s) = σ0 À 1 with b > 0 depending on σ0. For Re(w) À 1, we have the bound
(s + w − 2)(s− w − 1)L±(s, w) = O(e| Im(s)|a) inside vertical strips in the s-plane.

Assumption (B). For root number ε = ±1, we have the functional equation:

− ε · πs−(1/2)

(
L+(1− s, w)
L−(1− s, w)

)

=




Γ((s + w)/2)Γ((1 + s− w)/2)
Γ((1− s)/2)Γ((1 + s)/2)

Γ((s + w)/2)Γ((1 + s− w)/2)
Γ(w/2)Γ((2− w)/2)

Γ((s + w)/2)Γ((1 + s− w)/2)
Γ((w + 1)/2)Γ((1− w)/2)

Γ((s + w)/2)Γ((1 + s− w)/2)
Γ((s + 2)/2)Γ(−s/2)




(
L+(s, w)
L−(s, w)

)
.

(22)

Assumption (C). Let G(w) = ξ(2w)Γ(w/2)π−w/2 with ξ(w) = ζ(w)Γ(w/2)
·π−w/2. Then we have the functional equation:
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G(1− w)π(1−w)/2

(
L+(s, 1− w)
L−(s, 1− w)

)

= G(w)πw/2




Γ((2− w)/2)
Γ((1 + w)/2)

0

0
Γ((1− w)/2)

Γ(w/2)




(
L+(s, w)
L−(s, w)

)
. (23)

Theorem 5.3. Let F1 be a nice family of double Dirichlet series

L±(s, w) =
∑
±n>0

∞∑

`=1

an,`

`w|n|(s−w+1)/2

with root number ε = ±1. For w ∈ C with Re(w) large enough, define

an(w) :=
∞∑

`=1

an,`

`w
,

and assume that for each fixed w ∈ C (Re(w) À 1) we have the bound an(w) = O(|n|C)
for some fixed C > 0 as n → ±∞.

Then there exists a meromorphic function b : C → C, holomorphic for Re(w) large
enough, satisfying

b(w)ζ(1− w)(21−w − ε) = b(1− w)ζ(w)(2w − ε) (24)

and such that for

f(z, w) = b(w)yw/2 +
b(1− w)G(1− w)

G(w)
y(1−w)/2 +

∑

n 6=0

an(w)yw/2Kn

(
w

2
, y

)
e2πinx,

we have

f(z, w) = b(w)
(
− ε

eπi/4

√
2

z−1/2E

(
− 1

4z
,
w

2

)
+ E

(
z,

w

2

))
(25)

for each w ∈ C for which w, 1− w are not poles of b(w) and E(z, w/2). Here

E(z, s) =
∑

γ∈Γ∞\Γ0(4)

Im(γz)s

j1/2(γ, z)
.

Proof. We shall first introduce some auxiliary functions depending on an addi-
tional real parameter u.

For every w with Re(w) large enough, set
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Λ(s, w;u) =
Γ((s− w + 1)/2)Γ((s + w)/2)

eπi/42s−1/2π(s−w−1)/2

(
G+(s, w;u)L+(s, w) + G−(s, w;u)L−(s, w)

)

for each u ∈ R and each s with Re(s) large enough. Here

G+(s, t;u) :=
F ((s + t)/2, (s− t + 1)/2, (s + 1)/2; (1 + iu)/2)

Γ((t + 1)/2)Γ((s + 1)/2)
(26)

and

G−(s, t;u) :=
F ((s + t)/2, (s− t + 1)/2, (s + 2)/2; (1− iu)/2)

Γ(t/2)Γ((s + 2)/2)
. (27)

Further set

L(s, w;u) := 2s/2(u2 + 1)s/4(s + w − 2)(s− w + 1)(s− w − 1)(w + s)Λ(s, w;u).

In exactly the same way as in Proposition 3.1, we deduce that (22) is equivalent to

2s/2(1− iu)s/2Λ(s, w;u) = −ε 2(1−s)/2(1 + iu)(1−s)/2Λ(1− s, w;−u). (28)

Also, with (28)

(1− iu)1/4L(s, w;u) = −ε (1 + iu)1/4L(1− s, w;−u). (29)

We will need two lemmas in order to state a condition implied by Assumption (A) of
Definition 5.2.

Lemma 5.4. For each fixed u ∈ R, L(s, w;u) is meromorphic in C2 and holomor-
phic if Re(w) À 1.

Proof of Lemma 5.4. Let w ∈ C with Re(w) À 1. Note that for z 6∈ [1,∞), the
function F (a, b, c; z)/Γ(c) is entire in a, b, c, (cf. [6, Section 15.2(ii)]). Therefore, with
Assumption (A), the polar divisors of L(s, w;u) can only occur at the poles of

Γ
(

s− w + 1
2

)
Γ
(

s + w

2

)
,

i.e., s = −w − 2k or s = w − 1 − 2k (k = 0, 1, . . . ). With the functional equation (29),
this implies that any polar divisors must be of the form s = 1+w+2k or s = 2−w+2k.
Upon substituting such values into the two-variable function Γ((s−w+1)/2)Γ((s+w)/2)
we deduce that only isolated points can arise as poles, which is a contradiction. ¤

Lemma 5.5. Let u ∈ R and w ∈ C (with Re(w) À 1) be fixed. Then for every
c > 0, and σ1 < σ2,

L(s, w;u) = O(| Im(s)|−c) (30)
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uniformly in Re(s) for all σ1 ≤ Re(s) ≤ σ2.

Proof of Lemma 5.5. Let s0 = σ0 + iτ0 with σ0 large enough. On the vertical
line Re(s) = σ0, Stirling’s estimate implies that, for Im(s) → ±∞,

∣∣∣∣Γ
(

s− w + 1
2

)
Γ
(

s + w

2

)∣∣∣∣
/∣∣∣∣Γ

(
s + 1

2

)∣∣∣∣

∼
√

2π| Im(s)|αe−(π/2)(| Im((s−w+1)/2)|+| Im((s+w)/2)|−| Im((s+1)/2)|)

=
√

2π| Im(s)|αe−(π/4)| Im(s)|

for an α ∈ R. We have (cf. e.g. [6, (15.8.1)]) the identity

F

(
s + w

2
,
s− w + 1

2
,
s + 1

2
;
1− iu

2

)
=

(
1 + iu

2

)−s/2

F

(
1− w

2
,
w

2
,
s + 1

2
;
1− iu

2

)
.

For a C > 0, F (a, b, c; z) ∼ C as |c| → ∞, with a, b fixed, Re(z) = 1/2 and
|Arg(c)| ≤ π−δ for a δ > 0 ([6, (15.12.2)]). Also, |((1+iu)/2)−s/2| = |(1+iu)/2|−Re(s)/2

·eArg((1+iu)/2) Im(s)/2. Hence the absolute value of the function multiplied to L+(s, w) in
Λ is asymptotic to a constant times

| Im(s)|α|(1 + iu)/2|−σ0/2

2σ0−1/2π(σ0−Re(w)−1)/2
e−(π/2−sgn(Im(s)) Arg((1+iu)/2))| Im(s)|/2

on Re(s) = σ0 as Im(s) → ±∞. Since |Arg((1 + iu)/2)| < π/2, this, together with
Assumption (A) of Definition 5.2, implies (30) on Re(s) = σ0 as Im(s) → ±∞ for the
piece of L corresponding to L+(s, w). The bound for the piece corresponding to L−(s, w)
is verified similarly.

To establish the corresponding bound on Re(s) = 1 − σ0 we note that, for w and
u assumed fixed, (29) implies that L(1 − s, w;−u) = O(L(s, w;u)) on Re(s) = 1 − σ0.
Equation (30) on Re(s) = σ0 we proved above implies the desired bound for that vertical
line.

Finally we note that Stirling’s estimate and the bound for F (a, b, c; z) are uniform
for s within a vertical strip. With the last part of Assumption (A) of Definition 5.2,
we deduce L(s, w;u) = O(e| Im(s)|a) for some a ∈ R when 1 − σ0 ≤ Re(s) ≤ σ0. By
the Phragmén-Lindelöf principle, this completes the proof of the lemma for all intervals
[1− σ0, σ0] with σ0 large enough and therefore, for all closed intervals. ¤

We are now ready to identify the function b(w) mentioned in the statement of The-
orem 5.3 and to state a holomorphicity and boundedness condition we will use to prove
the theorem.

Let a1(w;u), a2(w;u), a3(w;u) and a4(w;u) be the residues of 2s/2(u2 +
1)s/4Λ(s, w;u) at 2 − w, w − 1, w + 1 and −w respectively. Then, from Lemma 5.4
we deduce that the function
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2s/2(u2 + 1)s/4Λ(s, w;u)− a1(w;u)
s + w − 2

− a2(w;u)
s− w + 1

− a3(w;u)
s− w − 1

− a4(w;u)
s + w

is holomorphic for Re(w) À 1.
By the defining formula for L(s, w;u) we deduce that

a1(w;u) =
L(2− w, w;u)

2(3− 2w)(1− 2w)
, (31)

a2(w;u) = − L(w − 1, w;u)
2(3− 2w)(1− 2w)

, (32)

a3(w;u) =
L(w + 1, w;u)

2(2w − 1)(2w + 1)
, (33)

a4(w;u) = − L(−w, w;u)
2(2w − 1)(2w + 1)

. (34)

Lemma 5.6. The functions

a2(w;u)
(1 + u2)(w−1)/4

and
a4(w;u)

(1 + u2)−w/4

are independent of u. As functions of w, they are meromorphic in C and holomorphic
for Re(w) À 1.

Proof of Lemma 5.6. With the defining formulas for a2 and L(s, w;u) we see
that u appears in

a2(w;u)
(1 + u2)(w−1)/4

only in the hypergeometric functions in (26) and (27). However, for our combination
of arguments we obtain F (a, 0, b; z) for some a, b, z ∈ C, which equals 1. The assertion
about holomorphicity/meromorphicity in w follows from Lemma 5.4.

Similarly for a4(w;u)/(1 + u2)−w/4. ¤

This lemma implies that the following two functions are meromorphic in C and
holomorphic if Re(w) À 1:

a(w) := − a2(w;u)
2(1+w)/2(1 + u2)(w−1)/4

and

b(w) := − a4(w;u)
2(2−w)/2(1 + u2)−w/4

.

Therefore, with the above choice of a, b, we have the following Lemma.
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Lemma 5.7. For every u ∈ R and every w with Re(w) large enough,

Λ(s, w;u) + a(w)2(1−s+w)/2(u2 + 1)(w−s−1)/4

(
(1 + iu)1/2(1 + u2)−1/4

ε · (s + w − 2)
+

1
s− w + 1

)

+ b(w)2(2−s−w)/2(u2 + 1)−(s+w)/4

(
(1 + iu)1/2(1 + u2)−1/4

ε · (s− w − 1)
+

1
w + s

)
(35)

is EBV as a function of s.

Proof of Lemma 5.7. With Lemma 5.6 and (29), we have

a1(w;u) = −ε · (1 + iu)1/4(1− iu)−1/4L(w − 1, w;−u)
2(3− 2w)(1− 2w)

= ε · (1 + iu)1/4

(1− iu)1/4
a2(w;u) = −ε · 2(1+w)/2(1 + u2)(w−2)/4(1 + iu)1/2a(w).

Similarly,

a3(w;u) = −ε · 2(2−w)/2(1 + u2)(−w−1)/4(1 + iu)1/2b(w).

Therefore (35) is entire.
To obtain the boundedness in a vertical strip V we observe that, since (35) is entire,

it will be bounded in the rectangle {s ∈ V ; | Im(s)| ≤ | Im(w)| + 1}. For s ∈ V with
| Im(s)| > | Im(w)|+ 1, we have

|s + w − 2| ≥ | Im(s) + Im(w)| ≥ | Im(s)| − | Im(w)| > 1,

and likewise |s−w + 1|, |s−w− 1|, |s + w| > 1. These inequalities together with Lemma
5.5 imply the boundedness in vertical strips. ¤

Completion of Proof of Theorem 5.3. For every w with Re(w) large
enough and every y > 0, define

F (y, w;u) =
∑

n 6=0

an(w)yw/2Kn

(
w

2
, y

)
e2πinuy.

As in the proof of Theorem 4.2, we see that, for s with Re(s) large enough, we have

∫ ∞

0

ys/2F (y, w;u)
dy

y
= Λ(s, w;u).

Lemma 5.7 allows us to use the Phragmén-Lindelöf argument to see that, in the inverse
Mellin transform of Λ(2s, w;u), we can move the line of integration from σ0 to σ1 =
1/2− σ0 to get
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F (y, w;u) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λ(2s, w;u)y−sds +

∑

s0 pole

Res
s=s0

Λ(2s, w;u)y−s

=
1

2πi

∫ σ1+i∞

σ1−i∞
Λ(2s, w;u)y−sds

− ε · a(w)y(w−2)/22w−3/2(1 + iu)(w−1)/2(1− iu)(w−2)/2

− ε · b(w)y−(w+1)/22−w−1/2(1 + iu)−w/2(1− iu)−(w+1)/2

− a(w)y−(w−1)/2 − b(w)yw/2. (36)

Therefore, with (28), the last integral in (36) equals

− 21/2ε(1 + iu)1/2

∫ σ1+i∞

σ1−i∞
(4(1 + u2))−sΛ(1− 2s, w;−u)y−sds

= −ε · (2y(1− iu))−1/2

∫ σ0+i∞

σ0−i∞
Λ(2s, w;−u)(4(1 + u2)y)sds. (37)

This together with

f(uy + iy, w) = F (y, w;u) + b(w)yw/2 + a(w)y(1−w)/2

implies that

f(uy + iy, w) = −ε · (2y(1− iu))−1/2f

(
i− u

4(1 + u2)y
, w

)
. (38)

With u = x/y, this gives

f(z, w) = −ε · eπi/4

√
2

z−1/2f

(−1
4z

, w

)
. (39)

On the other hand,
(

0 −1
4 0

)(
1 −1
0 1

)(
0 1/4
−1 0

)
=

(
1 0
4 1

)
. Then, a computation implies that,

for all w with Re(w) large enough, f(·, w) is invariant under
(

1 0
4 1

)
, in both cases. Since

Γ0(4) is generated by
(

1 0
4 1

)
and the translations, this proves that, for all w with Re(w)

large enough, f(z, w) satisfies the weight 1/2 transformation law for Γ0(4).
The growth at the cusps can be deduced as in Theorem 3.1 of [3] because that part

does not depend on the Dirichlet series Λ̃ used in [3].
Now, by [7, Satz 10.1 (3)], the Γ0(4)-invariance and the moderate growth at the cusps

we proved, we deduce that, for Re(w) large enough, y1/4f(·, w−1/2) is the sum of a weight
1/2 Maass cusp form g and a linear combination of the weight 1/2 Eisenstein series at
the m∗ = 2 cusps of Γ0(4) that are singular in terms of v: Ej(·, w/2) (j = 1, . . . , m∗) (in
the notation of Section 2). The cusp form g must in fact vanish for Re(w) large enough.
Otherwise, it is an eigenfunction of the Laplacian with eigen-value (w/2)((w/2) − 1)



470 N. Diamantis and D. Goldfeld

because it is a linear combination of y1/4f(·, w − 1/2) and Ej(·, w/2), j = 1, . . . , m∗.
This is a contradiction because the discrete spectrum of ∆1/2 lies in (−∞,−3/16] ([7,
Satz 5.5]), but, for Re(w) large enough, (w/2)((w/2) − 1) cannot be a real number
≤ −3/16.

One easily sees that the singular cusps in terms of v are 0 and ∞. Therefore,
for Re(w) large enough y1/4f(z, w − 1/2) is a linear combination of E1(z, w/2) and
E2(z, w/2). Since a computation implies that these are constant multiples of the functions
y1/4E(z, w/2− 1/4) and y1/4z−1/2E(−1/(4z), w/2− 1/4) respectively, we deduce that

f(z, w) = α(w)z−1/2E

(
− 1

4z
,
w

2

)
+ β(w)E

(
z,

w

2

)
(40)

for some functions α and β.
Upon substituting (40) into (39), and taking into account the linear independence

of the functions z−1/2E(−1/(4z), w/2) and E(z, w/2), we deduce that

α(w) = −ε · eπi/4

√
2

β(w). (41)

However, the constant terms at infinity of E(z, w/2) and z−1/2E(−1/(4z), w/2) are

yw/2 +
2−2w

1− 2−2w

ξ(2w − 1)
ξ(2w)

y1/2−w/2 and
e−πi/4(1− 21−2w)
2w−1/2(1− 2−2w)

ξ(2w − 1)
ξ(2w)

y1/2−w/2, (42)

respectively (cf. [4]). Therefore, upon comparison of the coefficients of yw/2 on both
sides of (40) we deduce that β(w) = b(w) and, with (41), α(w) = −ε · (eπi/4/

√
2)b(w).

This implies equation (25) for Re(w) large enough and such that w, 1 − w are not
poles of a(w), b(w) and E(z, w/2). Then f(z, w) can be extended to a meromorphic
function in w ∈ C by (25).

Finally, (23) implies a functional equation for b(w). A computation implies that (23)
is equivalent to:

G(w)Λ(s, w;u) = G(1− w)Λ(s, 1− w;u) (43)

for all u ∈ R. This, with (35), implies that for Re(w) large enough

2(1+w)/2(u2 + 1)(w−1)/4

(
(1 + iu)1/2(1 + u2)−1/4

s + w − 2
+

1
s− w + 1

)

× (a(w)G(w)− b(1− w)G(1− w))

+ 2(2−w)/2(u2 + 1)−w/4

(
(1 + iu)1/2(1 + u2)−1/4

s− w − 1
+

1
w + s

)

× (b(w)G(w)− a(1− w)G(1− w)) (44)
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must be entire. Therefore, for all w with Re(w) large enough and such that w, 1−w are
not poles of a(w) and of b(w),

a(w)G(w) = b(1− w)G(1− w),

otherwise (44) would have a pole at s = 2− w.
Thus, the constant term of f(z, w) at infinity is

b(w)yw/2 +
b(1− w)G(1− w)

G(w)
y(1−w)/2. (45)

With (40), (41) and (42), we have that the coefficient of y(1−w)/2 is also

b(w)
ξ(2− 2w)(21−w − ε)

ξ(2w)(2w − ε)
.

Therefore, with (45) and ζ(w)/ζ(1− w) = (Γ((1− w)/2)π−(1−w)/2)/(Γ(w/2)π−w/2), we
deduce (24). ¤

Remark. We can compare Theorem 5.3 with Theorem 4.2 (for N = D = 1 and
the trivial character) by making the change of variables (s, w) → (s/2− 1/4, w/2 + 1/2).
However, upon applying this change of variables to (iii′), one notices that some entries
of the 2× 2 matrix involved do not match the corresponding entries of (22).

The reason is that the normalization of the completed L-function used in Theorem
4.2 differs from that of Theorem 5.3: In (3) the denominators in c(s, w;u) contain only
one Gamma function whereas in the analogous normalizer in (26) there are two. This is
because of the different forms of Fourier expansion used. The first uses Whittaker W -
functions but the second uses K-functions which, by Lemma 5.1, has a Gamma function
in the denominator.

The effect this has on the way the transformation works is that we have different
cancellations of the various Gamma functions and this accounts for the different forms
of the functional equations. (But one can pass from one to the other using Lemma 5.1.)

Also, we note that in Proposition 3.1 we have a different L-function in the RHS
of the equation (which we denote by Λ̌) whereas in Theorem 5.3 we do not. This is
because in Γ0(4) (as in SL2(Z)) we can arrange the functional equations so that we have
self-contragredient L-functions (essentially by applying the equation of Proposition 3.1
to Λ(s) + Λ̌(s)).

6. Shintani’s double Dirichlet series.

In [13], four double Dirichlet series are introduced and studied. They are defined
for s1, s2 with Re(si) > 1 by

ξi(s1, s2) = 2−1
∞∑

n,m=1

A(4m, (−1)i−1n)m−s1n−s2
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and

ξ∗i (s1, s2) =
∞∑

n,m=1

A(m, (−1)i−1n)m−s1(4n)−s2 ,

where A(m,n) denotes the number of distinct solutions of the congruence x2 ≡ n mod m.
These series can be viewed as zeta functions associated with prehomogeneous vector

spaces (cf. [10, Section 7.2] for a detailed discussion of this interpretation). Properties of
general zeta functions associated with prehomogeneous vector spaces are proved in [9].

In this section, we will use Theorem 5.3 to prove that these series, appropriately nor-
malized, are essentially Mellin transforms of linear combinations of metaplectic Eisenstein
series. To this end, we first re-state Theorem 1 of [13] (see also [10, Theorem 4]) in a
form which will be more convenient for our purposes.

Theorem 6.1. (i) For i = 1, 2, the series

(s2 − 1)(s1 + s2 − 3/2)ξi(s1, s2) and (s2 − 1)(s1 + s2 − 3/2)ξ∗i (s1, s2)

are absolutely convergent for Re(s1), Re(s2) > 1. They have meromorphic continuations
to C2 that are holomorphic in s1, s2 ∈ C with Re(s1) > 1.

(ii) The following functional equations hold

(
ξ1(s1, 3/2− s1 − s2)
ξ2(s1, 3/2− s1 − s2)

)

= R(s1, s2)
(

sin(π(s1/2 + s2)) sin(πs1/2)
cos(πs1/2) cos(π(s1/2 + s2))

)(
ξ∗1(s1, s2)
ξ∗2(s1, s2)

)
(46)

with R(s1, s2) := 2−1π1/2(2/π)s1+2s2Γ(s2)Γ(s1 + s2 − 1/2), and

ζ(2− 2s1)

(
ξ
(∗)
1 (1− s1, s1 + s2 − 1/2)

ξ
(∗)
2 (1− s1, s1 + s2 − 1/2)

)

=
2
π

(2π)1−2s1 cos
(

πs1

2

)
Γ(s1)2ζ(2s1) ·

(
cos(πs1/2) 0

0 sin(πs1/2)

) (
ξ
(∗)
1 (s1, s2)

ξ
(∗)
2 (s1, s2)

)
.

(47)

Here the superscript (∗) indicates that the equation holds for both ξi and ξ∗i .

To state our theorem we introduce some notation. For i = 1, 2 set

ψi(s1, s2) =
∞∑

n,m=1

A(4m, (−1)i−1n)(2m)−s1n−s2 = 21−s1ξi(s1, s2), (48)
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ψ∗i (s1, s2) =
∞∑

n,m=1

A(m, (−1)i−1n)m−s1n−s2 = 4s2ξ∗i (s1, s2). (49)

Further let cn(w) (resp. c∗n(w)) denote the numerator of n(s−w+1)/2 in the series expan-
sion of

ψ1

(
w,

s− w + 1
2

) (
resp. ψ∗1

(
w,

s− w + 1
2

))
,

if n > 0 and of (−n)(s−w+1)/2 in the series expansion of

ψ2

(
w,

s− w + 1
2

) (
resp. ψ∗2

(
w,

s− w + 1
2

))
,

when n < 0.
With this notation we have

Theorem 6.2. There are meromorphic functions b1(w), b2(w) on C which are
holomorphic for Re(w) large enough such that

2
∑

n 6=0

cn(w)yw/2Kn

(
w

2
, y

)
e2πinx

+
G(1− w)

G(w)
(b1(1− w) + b2(1− w))y(1−w)/2 + (b1(w) + b2(w))yw/2

= (b1(w) + b2(w))E
(

z,
w

2

)
+

eπi/4

√
2

(b1(w)− b2(w))z−1/2E

(
− 1

4z
,
w

2

)

for all w that are not poles of bi(w), bi(1−w) and G(w), G(1−w). Further, b1(w), b2(w)
satisfy

ζ(1− w)(21−w − (−1)i)bi(w) = ζ(w)(2w − (−1)i)bi(1− w), i = 1, 2.

Proof. We will apply Theorem 5.3 to

L1(s, w) :=

(
L+

1 (s, w)

L−1 (s, w)

)
:=




ψ1

(
w,

s− w + 1
2

)
+ ψ∗1

(
w,

s− w + 1
2

)

ψ2

(
w,

s− w + 1
2

)
+ ψ∗2

(
w,

s− w + 1
2

)





resp. L2(s, w) :=

(
L+

2 (s, w)

L−2 (s, w)

)
:=




ψ1

(
w,

s− w + 1
2

)
− ψ∗1

(
w,

s− w + 1
2

)

ψ2

(
w,

s− w + 1
2

)
− ψ∗2

(
w,

s− w + 1
2

)





 .
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Firstly, it is clear that, for fixed w with Re(w) large enough and for Re(s) large enough,
L±1 (resp. L±2 ) form a family of double Dirichlet series F1 of the form shown in (20) for
some an,` ∈ C of polynomial growth.

Further, since by Theorem 6.1 (i), ξ
(∗)
i (s1, s2) converge for Re(s1), Re(s2) > 1,

L±1 (s, w) (resp. L±2 (s, w)) converge absolutely as series of the form (20), for fixed w ∈ C
with Re(w) large enough and for s ∈ C with Re(s) large enough. This implies the
required bound for the numerators

cn(w) + c∗n(w)
(
resp. cn(w)− c∗n(w)

)
,

of |n|(s−w+1)/2 in the series expansion of L±1 (s, w) (resp. L±2 (s, w)).
We next show that L±1 (resp. L±2 ) form a “nice” family of root number ε = −1 (resp.

ε = 1). We will first verify Assumptions (B) and (C) of Definition 5.2. With (46) and
the identity Γ(z)Γ(1− z) = π/ sin(πz) we deduce that ψi and ψ∗i satisfy

(
ψ1(s1, 3/2− s1 − s2)
ψ2(s1, 3/2− s1 − s2)

)

= π3/2−s1−2s2




Γ(s2)Γ(s1 + s2 − 1/2)
Γ(s2 + s1/2)Γ(1− s1/2− s2)

Γ(s2)Γ(s1 + s2 − 1/2)
Γ(s1/2)Γ(1− s1/2)

Γ(s2)Γ(s1 + s2 − 1/2)
Γ((1− s1)/2)Γ((1 + s1)/2)

Γ(s2)Γ(s1 + s2 − 1/2)
Γ(1/2− s1/2− s2)Γ(1/2 + s1/2 + s2)




×
(

ψ∗1(s1, s2)

ψ∗2(s1, s2)

)
. (50)

From this and an inversion of the 2 × 2 matrix on the RHS we deduce that the same
functional equation is satisfied with the ψi and ψ∗i interchanged. Therefore, with s1 = w

and s2 = (s − w + 1)/2 we deduce that L1(s, w) (resp. L2(s, w)) satisfies (22) thus
confirming Assumption (B) of Definition 5.2.

Furthermore, multiplying both sides of (47) with Γ(1 − s1) and using the identity
Γ(z)Γ(1− z) = π/ sin(πz), we deduce, for i = 1, 2,

ζ(2− 2s1)Γ(1− s1)

(
ξ
(∗)
1 (1− s1, s1 + s2 − 1/2)

ξ
(∗)
2 (1− s1, s1 + s2 − 1/2)

)

= 22−2s1π−2s1Γ(s1)
π

sin(πs1)
cos

(
πs1

2

)
ζ(2s1)

×
(

sin(π(1− s1)/2) 0
0 sin(πs1/2)

) (
ξ
(∗)
1 (s1, s2)

ξ
(∗)
2 (s1, s2)

)
. (51)

Therefore
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(2π)s1ζ(2− 2s1)Γ(1− s1)Γ
(

1− s1

2

) (
ξ
(∗)
1 (1− s1, s1 + s2 − 1/2)

ξ
(∗)
2 (1− s1, s1 + s2 − 1/2)

)

= (2π)1−s1ζ(2s1)Γ(s1)Γ
(

s1

2

)



Γ(1− s1/2)
Γ((1 + s1)/2)

0

0
Γ((1− s1)/2)

Γ(s1/2)




(
ξ
(∗)
1 (s1, s2)

ξ
(∗)
2 (s1, s2)

)
.

(52)

This implies immediately

πs1ζ(2− 2s1)Γ(1− s1)Γ
(

1− s1

2

)(
ψ1(1− s1, s1 + s2 − 1/2)
ψ2(1− s1, s1 + s2 − 1/2)

)

= π1−s1ζ(2s1)Γ(s1)Γ
(

s1

2

)



Γ(1− s1/2)
Γ((1 + s1)/2)

0

0
Γ((1− s1)/2)

Γ(s1/2)




(
ψ1(s1, s2)
ψ2(s1, s2)

)
. (53)

Further, applying (52) to ξ∗i and multiplying both sides with 2s14s2−1/2 we deduce the
functional equation (53) for ψ∗i . The substitution s1 = w and s2 = (s − w + 1)/2 then
implies (23), confirming Assumption (C) of Definition 5.2.

To verify Assumption (A) we use Theorem 6.1 (i). With the change of variables
s1 = w and s2 = (s−w + 1)/2 we deduce that (s + w − 2)(s−w − 1)L±i (s, w) (i = 1, 2)
are meromorphic in C2 and holomorphic in {(s, w); s ∈ C,Re(w) > 1}.

Next, for fixed w with Re(w) large enough, consider s with Re(s) = σ0 large enough
(e.g. such that Re(s−w+1)/2 > 1). Since, by Theorem 6.1 (i), ξ

(∗)
i (w, (s−w+1)/2) are

absolutely convergent for such s, w, L±i (s, w) are bounded on the vertical line Re(s) = σ0.
This implies the second part of Assumption (A) of Definition 5.2.

Finally, the proof of Theorem 1 of [13] implies that, for Re(w) large enough, ξ
(∗)
i (s, w)

are, for some b, of order e| Im s|b . From this we deduce the last part of Assumption (A)
of Definition 5.2.

Therefore, all conditions of Theorem 5.3 are satisfied for L1 (resp. L2). Hence, if
we set

f1(z, w) =
∑

n 6=0

(cn(w) + c∗n(w))yw/2Kn

(
w

2
, y

)
e2πinx

and

f2(z, w) =
∑

n 6=0

(cn(w)− c∗n(w))yw/2Kn

(
w

2
, y

)
e2πinx,

we deduce that, for some functions b1(w) (resp. b2(w)) satisfying the conditions of the
theorem, we have
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f1(z, w) +
b1(1− w)G(1− w)

G(w)
y(1−w)/2 + b1(w)yw/2

= b1(w)
(

eπi/4

√
2

z−1/2E

(
− 1

4z
,
w

2

)
+ E

(
z,

w

2

))

and

f2(z, w) +
b2(1− w)G(1− w)

G(w)
y(1−w)/2 + b2(w)yw/2

= b2(w)
(
− eπi/4

√
2

z−1/2E

(
− 1

4z
,
w

2

)
+ E

(
z,

w

2

))

for each w ∈ C for which w, 1− w are not poles of bi(w) and G(w).
Adding these two equations we deduce the theorem. ¤
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