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Abstract. In this paper, we apply the Hopf’s strong maximum principle
in order to obtain a suitable characterization of the complete linear Weingarten
hypersurfaces immersed in the hyperbolic space Hn+1. Under the assumption
that the mean curvature attains its maximum and supposing an appropriated
restriction on the norm of the second fundamental form, we prove that such
a hypersurface must be either totally umbilical or isometric to a hyperbolic
cylinder of Hn+1.

1. Introduction.

In the seminal paper [4], Cheng and Yau introduced a new self-adjoint differen-
tial operator ¤ acting on smooth functions defined on Riemannian manifolds. As a
by-product of such approach they were able to classify closed hypersurfaces Mn with
constant normalized scalar curvature R satisfying R ≥ c and nonnegative sectional cur-
vature immersed in a real space form Qn+1

c of constant sectional curvature c. Later on,
Li [5] extended the results due to Cheng and Yau [4] in terms of the squared norm of the
second fundamental form of the hypersurface Mn. In [11], Shu have used the so-called
generalized maximum principle of Omori-Yau [9], [13] to prove that a complete hypersur-
face Mn in the hyperbolic space Hn+1 with constant normalized scalar curvature R ≥ −1
and nonnegative sectional curvature must be either totally umbilical or isometric to a
hyperbolic cylinder Sn−1(c1)×H1(c2), where c1 > 0, c2 < 0 and (1/c1) + (1/c2) = −1.

In [6], Li studied the rigidity of compact hypersurfaces with nonnegative sectional
curvature immersed in a unit sphere with scalar curvature proportional to mean cur-
vature. More recently, Li et al. [7] extended the result of [4] and [6] by considering
linear Weingarten hypersurfaces immersed in a unit sphere, that is, hypersurfaces of
Sn+1 whose mean curvature H and normalized scalar curvature R satisfy R = aH + b,
for some a, b ∈ R. In this setting, Li showed that if Mn is a compact linear Wein-
garten hypersurface with nonnegative sectional curvature immersed in Sn+1, such that
R = aH + b with (n − 1)a2 + 4n(b − 1) ≥ 0, then Mn is either totally umbilical or
isometric to Sn−k(c1)× Sk(c2), where 1 ≤ k ≤ n− 1, c1, c2 > 0 and (1/c1) + (1/c2) = 1.
Thereafter, Shu [12] obtained some rigidity theorems concerning to linear Weingarten
hypersurfaces with two distinct principal curvatures immersed in a real space form.
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The aim of our work is to establish a characterization theorem concerning complete
linear Weingarten hypersurfaces immersed in the hyperbolic space. Under the assump-
tion that the mean curvature H attains its maximum along the hypersurface Mn and
supposing an appropriated restriction on the norm of the second fundamental form B of
Mn, the Hopf’s strong maximum principle enable us to prove the following:

Theorem 1.1. Let Mn be a complete linear Weingarten hypersurface immersed
in Hn+1, such that R = aH + b with H2 ≥ 1 and b > −1. If H attains its maximum on
Mn and

|B|2 ≤ nH2 +
(R+

H

)2
,

where

R+
H =

1
2

√
n

n− 1
(√

n2H2 − 4(n− 1)− (n− 2)H
)
,

then Mn is either totally umbilical or isometric to a hyperbolic cylinder Sn−1(c1)×H1(c2),
if R > 0, or S1(c1)×Hn−1(c2), if R < 0, where c1 > 0, c2 < 0 and (1/c1)+ (1/c2) = −1.

The proof of Theorem 1.1 is given in Section 3.

2. Preliminaries.

In this section we will introduce some basic facts and notations that will appear
on the paper. In what follows, we will suppose that all considered hypersurfaces are
orientable and connected.

Let Mn be an n-dimensional hypersurface in Hn+1. We choose a local field of
orthonormal frame {eA}1≤A≤n+1 in Hn+1, with dual coframe {ωA}1≤A≤n+1, such that,
at each point of Mn, e1, . . . , en are tangent to Mn and en+1 is normal to Mn. We will
use the following convention for the indices:

1 ≤ A,B, C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.

In this setting, denoting by {ωAB} the connection forms of Hn+1, we have that the
structure equations of Hn+1 are given by:

dωA =
∑

i

ωAi ∧ ωi + ωAn+1 ∧ ωn+1, ωAB + ωBA = 0, (2.1)

dωAB =
∑

C

εCωAC ∧ ωCB − 1
2

∑

C,D

KABCDωC ∧ ωD, (2.2)

KABCD = −(δACδBD − δADδBC). (2.3)

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on Mn, so
∑

i ωn+1i∧
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ωi = dωn+1 = 0 and by Cartan’s Lemma [3] we can write

ωn+1i =
∑

j

hijωj , hij = hji. (2.4)

This gives the second fundamental form of Mn, B =
∑

ij hijωiωjen+1. Furthermore,
the mean curvature H of Mn is defined by H = (1/n)

∑
i hii.

The structure equations of Mn are given by

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0, (2.5)

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl. (2.6)

Using the structure equations we obtain the Gauss equation

Rijkl = −(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.7)

where Rijkl are the components of the curvature tensor of Mn.
The Ricci curvature and the normalized scalar curvature of Mn are given, respec-

tively, by

Rij = −(n− 1)δij + nHhij −
∑

k

hikhkj (2.8)

and

R =
1

n(n− 1)

∑

i

Rii. (2.9)

From (2.8) and (2.9) we obtain

|B|2 = n2H2 − n(n− 1)(R + 1)

= nH2 + n(n− 1)(H2 −H2), (2.10)

where |B|2 =
∑

i,j h2
ij is the square of the length of the second fundamental form B

of Mn, and H2 = (2/n(n− 1))S2 denotes the mean value of the second elementary
symmetric function S2 on the eigenvalues of B. In particular, since (from the Cauchy-
Schwarz inequality) H2 −H2 ≥ 0, it follows from (2.10) that Mn is totally umbilical if,
and only if, |B|2 = nH2.

The components hijk of the covariant derivative ∇B satisfy
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∑

k

hijkωk = dhij +
∑

k

hikωkj +
∑

k

hjkωki. (2.11)

The Codazzi equation and the Ricci identity are, respectively, given by

hijk = hikj (2.12)

and

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl, (2.13)

where hijk and hijk denote the first and the second covariant derivatives of hij .
The Laplacian ∆hij of hij is defined by ∆hij =

∑
k hijkk. From equations (2.12)

and (2.13), we obtain that

∆hij =
∑

k

hkkij +
∑

k,l

hklRlijk +
∑

k,l

hliRlkjk. (2.14)

Since ∆|B|2 = 2
( ∑

i,j hij∆hij +
∑

i,j,k h2
ijk

)
, from (2.14) we get

1
2
∆|B|2 = |∇B|2 +

∑

i,i,k

hijhkkij +
∑

i,j,k,l

hijhlkRlijk +
∑

i,j,k,l

hijhilRlkjk. (2.15)

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij , from equation (2.15) we obtain the following Simons-type formula

1
2
∆|B|2 = |∇B|2 +

∑

i

λi(nH),ii +
1
2

∑

i,j

Rijij(λi − λj)2. (2.16)

Now, let φ =
∑

i,j φijωiωj be a symmetric tensor on Mn defined by

φij = nHδij − hij .

Following Cheng-Yau [4], we introduce a operator ¤ associated to φ acting on any smooth
function f by

¤f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij . (2.17)

Setting f = nH in (2.17) and taking a local frame field {e1, . . . , en} on Mn such
that hij = λiδij , from equation (2.10) we obtain the following:
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¤(nH) = nH∆(nH)−
∑

i

λi(nH),ii

=
1
2
∆(nH)2 −

∑

i

(nH)2,i −
∑

i

λi(nH),ii

=
n(n− 1)

2
∆R +

1
2
∆|B|2 − n2|∇H|2 −

∑

i

λi(nH),ii.

Consequently, taking into account equation (2.16), we get

¤(nH) =
n(n− 1)

2
∆R + |∇B|2 − n2|∇H|2 +

1
2

∑

i,j

Rijij(λi − λj)2. (2.18)

3. Proof of Theorem 1.1.

In order to prove our result, it will be necessary some auxiliary lemmas. The first
one is a classic algebraic lemma due to M. Okumura in [8], and completed with the
equality case proved in [2] by H. Alencar and M. do Carmo.

Lemma 3.1. Let µ1, . . . , µn be real numbers such that
∑

iµi = 0 and
∑

iµ
2
i = β2,

where β is constant and β ≥ 0. Then

− (n− 2)√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

(n− 2)√
n(n− 1)

β3, (3.1)

and equality holds if, and only if, either at least (n − 1) of the numbers µi are equal to
β/

√
(n− 1)/n or at least (n− 1) of the numbers µi are equal to −β/

√
(n− 1)/n.

To obtain the second lemma, we will reason as in the proof of Lemma 2.1 of [7].

Lemma 3.2. Let Mn be a linear Weingarten hypersurface in Hn+1, such that R =
aH + b for some a, b ∈ R. Suppose that

(n− 1)a2 + 4n(b + 1) ≥ 0. (3.2)

Then

|∇B|2 ≥ n2|∇H|2. (3.3)

Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on Mn, then H

is constant on Mn.

Proof. Since we are supposing that R = aH + b, from equation (2.10) we get

2
∑

i,j

hijhijk = (2n2H − n(n− 1)a)H,k.
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Thus,

4
∑

k

( ∑

i,j

hijhijk

)2

= (2n2H − n(n− 1)a)2|∇H|2.

Consequently, using Cauchy-Schwartz inequality, we obtain that

4|B|2|∇B|2 = 4
( ∑

i,j

h2
ij

)( ∑

i,j,k

h2
ijk

)

≥ 4
∑

k

( ∑

i,j

hijhijk

)2

= (2n2H − n(n− 1)a)2|∇H|2. (3.4)

On the other hand, since R = aH + b, from equation (2.10) we easily see that

(2n2H − n(n− 1)a)2 = n2(n− 1)((n− 1)a2 + 4n(b + 1)) + 4n2|B|2.

Consequently, from (3.4) we have

|B|2|∇B|2 ≥ n2|B|2|∇H|2.

Therefore, we obtain either |B| = 0 and |∇B|2 = n2|∇H|2 or |∇B|2 ≥ n2|∇H|2.
Moreover, if (n − 1)a2 + 4n(b + 1) > 0, from the previous identity we get that
(2n2H + n(n − 1)a)2 > 4n2|B|2. Consequently, if |∇B|2 = n2|∇H|2 holds on Mn,
from (3.4) we conclude that ∇H = 0 on Mn and, hence, H is constant on Mn. ¤

In what follows, we will consider the Cheng-Yau’s modified operator

L = ¤− n− 1
2

a∆. (3.5)

Related to such operator, we have the following sufficient criteria of ellipticity.

Lemma 3.3. Let Mn be a linear Weingarten hypersurface immersed in Hn+1, such
that R = aH + b with b > −1. Then, L is elliptic.

Proof. From equation (2.10), since R = aH +b with b > −1, we easily see that H

can not vanish on Mn and, by choosing the appropriate Gauss mapping, we may assume
that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b > −1, from equation (2.10) if we
choose a (local) orthonormal frame {e1, . . . , en} on Mn such that hij = λiδij , we have
that

∑
i<j λiλj > 0. Consequently,
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n2H2 =
∑

i

λ2
i + 2

∑

i<j

λiλj > λ2
i

for every i = 1, . . . , n and, hence, we have that nH − λi > 0 for every i. Therefore, in
this case, we conclude that L is elliptic.

Now, suppose that a 6= 0. From equation (2.9) we get that

a = − 1
n(n− 1)H

(S − n2H2 + n(n− 1)(b + 1)).

Consequently, for every i = 1, . . . , n, with a straightforward algebraic computation we
verify that

nH − λi − n− 1
2

a = nH − λi +
1

2nH
(S − n2H2 + n(n− 1)(b + 1))

=
1

2nH

( ∑

j 6=i

λ2
j +

( ∑

j 6=i

λj

)2

+ n(n− 1)(b + 1)
)

.

Therefore, since b > −1, we also conclude in this case that L is elliptic. ¤

Now, we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let us choose a (local) orthonormal frame {e1, . . . , en}
on Mn such that hij = λiδij . Since R = aH + b, from (2.18) and (3.5) we have that

L(nH) = |∇B|2 − n2|∇H|2 +
1
2

∑

i,j

Rijij(λi − λj)2. (3.6)

Thus, since from (2.7) we have that Rijij = λiλj − 1, from (3.6) we get

L(nH) = |∇B|2 − n2|∇H|2 + n2H2 − n|B|2 − |B|4 + nH
∑

i

λ3
i . (3.7)

Now, set Φij = hij −Hδij . We will consider the following symmetric tensor

Φ =
∑

i,j

Φijωiωj .

Let |Φ|2 =
∑

i,jΦ
2
ij be the square of the length of Φ. It is easy to check that Φ is traceless

and

|Φ|2 = |B|2 − nH2. (3.8)

With respect the frame field {e1, . . . , en} on Mn, we have that Φij = µiδij and, with a
straightforward computation, we verify that
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∑

i

µi = 0,
∑

i

µ2
i = |Φ|2 and

∑

i

µ3
i =

∑

i

λ3
i − 3H|Φ|2 − nH3. (3.9)

Thus, using Gauss equation (2.7) jointly with (3.9) into (3.7), we get

L(nH) = |∇B|2 − n2|∇H|2 + nH
∑

i

µ3
i + |Φ|2(−|Φ|2 + nH2 − n). (3.10)

By applying Lemmas 3.1 and 3.2, from (3.10) we have

L(nH) ≥ |Φ|2
(
− |Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ nH2 − n

)

= |Φ|2PH(|Φ|), (3.11)

where

PH(|Φ|) = −|Φ|2 − n(n− 2)√
n(n− 1)

H|Φ|+ nH2 − n. (3.12)

Since we are supposing that H2 ≥ 1, from (3.12) it is easy to verify that PH(|Φ|)
has two real roots R−H and R+

H given by

R−H = −1
2

√
n

n− 1
(√

n2H2 − 4(n− 1) + (n− 2)H
)

and

R+
H =

1
2

√
n

n− 1
(√

n2H2 − 4(n− 1)− (n− 2)H
)
.

Consequently, we have that

PH(|Φ|) = (|Φ| − R−H)(R+
H − |Φ|). (3.13)

Thus, since our restriction on |B|2 guarantees that |Φ| ≤ R+
H , from (3.13) we conclude

that PH(|Φ|) ≥ 0. Hence, from (3.11) we get

L(nH) ≥ |Φ|2PH(|Φ|) ≥ 0. (3.14)

Since Lemma 3.3 guarantees that L is elliptic and as we are supposing that H attains
its maximum on Mn, from (3.14) we conclude that H is constant on Mn. Thus, taking
into account equation (3.6), we get

|∇B|2 = n2|∇H|2 = 0,
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and it follows that λi is constant for every i = 1, . . . , n.
If |Φ| < R+

H , then from (3.14) we have that |Φ| = 0 and, hence, Mn is totally
umbilical. If |Φ| = R+

H , since the equality holds in (3.1) of Lemma 3.1, we conclude that
Mn is either totally umbilical or an isoparametric hypersurface with two distinct principal
curvatures one of which is simple. Therefore, from the classification of the complete
isoparametric hypersurfaces having at most two distinct principal curvatures due to Ryan
[10] (see also [1, Theorem 5.1]), we conclude that Mn is either totally umbilical or
isometric to a hyperbolic cylinder Sn−1(c1) × H1(c2), if R > 0, or S1(c1) × Hn−1(c2), if
R < 0, where c1 > 0, c2 < 0 and (1/c1) + (1/c2) = −1. ¤
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