
c©2014 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 66, No. 1 (2014) pp. 257–287
doi: 10.2969/jmsj/06610257

Central exact sequences of tensor categories,

equivariantization and applications

By Alain Bruguières and Sonia Natale

(Received Jan. 19, 2012)
(Revised May 15, 2012)

Abstract. We define equivariantization of tensor categories under ten-
sor group scheme actions and give necessary and sufficient conditions for an
exact sequence of tensor categories to be an equivariantization under a finite
group or finite group scheme action. We introduce the notion of central ex-
act sequence of tensor categories and use it in order to present an alternative
formulation of some known characterizations of equivariantizations for fusion
categories, and to extend these characterizations to equivariantizations of fi-
nite tensor categories under finite group scheme actions. In particular, we
obtain a simple characterization of equivariantizations under actions of finite
abelian groups. As an application, we show that if C is a fusion category and
F : C → D is a dominant tensor functor of Frobenius-Perron index p, then F
is an equivariantization if p = 2, or if C is weakly integral and p is the smallest
prime factor of FPdim C.

1. Introduction.

In this paper we pursue the study of exact sequences of tensor categories initiated
in [3]. Exact sequences of tensor categories generalize (strict) exact sequences of Hopf
algebras, due do Schneider, and in particular, exact sequences of groups.

By a tensor category over a field k, we mean a monoidal rigid category (C,⊗,1)
endowed with a k-linear abelian structure such that

• Hom spaces are finite dimensional and all objects have finite length,
• the tensor product ⊗ is k-linear in each variable and the unit object 1 is scalar,

that is, End(1) = k.

A tensor category is finite if it is k-linearly equivalent to the category of finite dimensional
right modules over a finite dimensional k-algebra.

We will mostly work with finite tensor categories, with special attention to fusion
categories. A fusion category is a split semisimple finite tensor category (split semisimple
means semisimple with scalar simple objects).

A tensor functor is a strong monoidal, k-linear exact functor between tensor cate-
gories over k; it is faithful. A tensor functor F : C → D is dominant1 if any object Y of
D is a subobject of F (X) for some object X of C.
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A tensor functor F : C → D is normal if any object X of C admits a subobject
X ′ ⊂ X such that F (X ′) is the largest trivial subobject of F (X). An object is trivial if
it is isomorphic to 1n for some natural integer n.

We denote by KerF ⊂ C the full tensor subcategory of objects X of C such that
F (X) is trivial.

Let C′, C, C′′ be tensor categories over k. A sequence of tensor functors

C′ i−→ C F−→ C′′ (1.1)

is called an exact sequence of tensor categories if

• F is dominant and normal,
• i is a full embedding whose essential image is KerF .

An exact sequence of finite tensor categories C′ −→ C F−→ C′′ is perfect if the left
(or equivalently, the right) adjoint of F is exact. Such is always the case if C′′ is a fusion
category.

The monadic approach.
Let F : C → C′′ be a tensor functor between finite tensor categories. Then F is

monadic, that is, it admits a left adjoint L. The endofunctor T = FL of C′′ is a k-linear
Hopf monad on C′′, and C is tensor equivalent to the category C′′T of T -modules in C′′.
Moreover, F is dominant if and only if T is faithful, and F is normal if and only if T (1)
is trivial, in which case T is said to be normal.

Via this construction, exact sequences of finite tensor categories

C′ i−→ C F−→ C′′

are classified by k-linear right exact faithful normal Hopf monads on C′′ [3, Theorem
5.8].

Examples.
Any (strictly) exact sequence of Hopf algebras H ′ → H → H ′′ over a field k in

the sense of Schneider [16] gives rise to an exact sequence of tensor categories of finite
dimensional comodules:

(ES) comod -H ′ → comod -H → comod -H ′′,

and if H is finite-dimensional we also have an exact sequence of tensor categories of finite
dimensional modules:

mod -H ′′ → mod -H → mod -H ′.

Equivariantization is another source of examples. Let G be a finite group acting on
a tensor category D by tensor autoequivalences. Then the equivariantization DG is a
tensor category and the forgetful functor DG → D gives rise to a (perfect) exact sequence
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of tensor categories

repG → DG → D, (1.2)

see [3, Section 5.3]. This is extended in Section 3.2 to the case where G is a finite group
scheme. If D is a fusion category, k is algebraically closed and the order of G is not a
multiple of char(k), then (1.2) is an exact sequence of fusion categories.

A tensor functor F : C → D is an equivariantization if there is an action of a finite
group scheme G on D and a tensor equivalence C ' DG such that the triangle of tensor
functors

C ' //
%%LLL

L DG

yyrrrD

commutes up to a k-linear monoidal isomorphism.
An exact sequence of tensor categories C′ i−→ C F−→ C′′ is called an equivariantization

exact sequence if it is equivalent to an exact sequence defined by an equivariantization,
or equivalently, if F is an equivariantization.

A braided exact sequence is an exact sequence of tensor categories where all categories
and functors are braided. If C′ → C → C′′ is a braided exact sequence, then C′ is a
subcategory of the category T ⊂ C of transparent objects of C (see [1]). We say that
C′ → C → C′′ is a modularization exact sequence if C′′ is modular, that is, if all transparent
objects of C′′ are trivial. In that case C′ = T . Examples of modularization exact
sequences of fusion categories arise through the modularization procedures introduced in
[1], [10].

Equivariantization criteria.
Generalizing a result of [3], we show that an exact sequence of finite tensor categories

C′ → C → C′′ is an equivariantization exact sequence if and only if the associated normal
Hopf monad is exact and cocommutative in the sense of [3]. If C′ is finite and k is an
algebraically closed field such that char(k) does not divide dim C′, then the corresponding
group scheme is discrete so that we have an equivariantization in the usual sense.

In particular, any perfect braided exact sequence of finite tensor categories is an
equivariantization exact sequence.

On the other hand, [7, Proposition 2.10](i) affirms that a fusion category C is an
equivariantization under the action of a finite group G if there is a full braided embedding
j of the category repG into into the Drinfeld center Z(C) of C, such that Uj : rep G → C
is full, where U denotes the forgetful functor Z(C) → C. See also [5, Theorem 4.18].

In order to unify those two result, we introduce the notion of central exact sequence
of tensor categories. An exact sequence of finite tensor categories

C′ i−→ C F−→ C′′

is central if, denoting by (A, σ) its central commutative algebra, the tensor functor i :
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C′ → C lifts to a tensor functor ĩ : C′ → Z(C) such that ĩ(A) = (A, σ). Such a lift, if it
exists, is essentially unique.

We show that an exact sequence of finite tensor categories is central if and only if
its normal Hopf monad is cocommutative. We give two proofs of this result.

The first one works in the fusion case. In that situation our characterization is a
reformulation in terms of exact sequences of the characterization of equivariantizations
given in [7, Proposition 2.10], [5, Theorem 4.18]. However our proof is organized dif-
ferently, and boils down to showing that a central exact sequence of fusion categories is
‘dominated’ in a canonical way by a modularization exact sequence, thus:

C′ //

=

²²

CZ(C)(C′) //

²²

Z(C′′)

²²
C′ // C // C′′,

where CZ(C)(C′) denotes the centralizer of C′ viewed as a fusion subcategory of Z(C),
and that an exact sequence dominated by an equivariantization exact sequence is itself
an equivariantization exact sequence.

The second one works for finite tensor (not necessarily semisimple) categories and
actions of finite group schemes, and relies on the construction of the double of a Hopf
monad in [4]. It is based on the existence of a commutative diagram of tensor categories

C′ //

=

²²

Z(C) //

²²

ZF (C′′)

²²
C′ // C F // C′′,

whose first line is an exact sequence of tensor categories, ZF (C′′) denoting the center of
C′′ relative to the functor F .

Application.
The Frobenius-Perron index of a dominant tensor functor F : C → D between fusion

categories is defined in [3] to be the ratio

FPind(F ) = FPind(C : D) =
FPdim C
FPdimD .

It is an algebraic integer by [6, Corollary 8.11]. According to [3, Proposition 4.13], a
dominant tensor functor F of Frobenius-Perron index 2 is normal. In this paper we prove
the following refinement of this result:

Theorem 6.1. Let F : C → D be a dominant tensor functor between fusion
categories over a field of characteristic 0. If FPind(C : D) = 2, then F is an equivari-
antization.
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This generalizes the fact that that subgroups of index 2 are normal. An analogue in
the context of finite dimensional semisimple Hopf algebras was proved in [9, Proposition
2], [13, Corollary 1.4.3]. We also generalize the fact that subgroups of a finite group
whose index is the smallest prime factor of the order of the larger group are normal.
Recall that a fusion category is weakly integral if its Frobenius-Perron dimension is a
natural integer.

Theorem 6.2. Let F : C → D be a dominant tensor functor between fusion
categories over a field of characteristic 0. Assume that FPdim C is a natural integer,
and that FPind(C : D) is the smallest prime number dividing FPdim C. Then F is an
equivariantization.

In particular under the hypotheses of Theorem 6.2 the functor F is normal. An
analogue in the context of semisimple Hopf algebras was proved in [9, Proposition 2],
[13, Corollary 1.4.3]. Observe that Theorem 6.2 gives some positive evidence in favor of
the conjecture that every weakly integral fusion category is weakly group-theoretical [7].

Regarding the ‘dual’ situation, namely, when C is a weakly integral fusion category
and D ⊆ C is a full fusion subcategory such that the quotient FPdim C/FPdimD is the
smallest prime factor of FPdim C, it may be the case that D is not normal in C; we give
an example of this where p = 2 and C is a Tambara-Yamagami category (see Proposition
6.5). This actually provides examples of simple fusion categories of Frobenius-Perron
dimension 2q, where q is an odd prime number.

Organization of the text.
In Section 2 we introduce central exact sequences of tensor categories. We also dis-

cuss dominant tensor functors on weakly integral fusion categories in terms of induced
central algebras and show that this class of fusion categories is closed under extensions;
see Corollary 2.13. We give a general criterion for an exact sequence to be an equivari-
antization exact sequence in Section 3. In order to do so, we generalize the notion of
equivariantization to tensor actions of group schemes on tensor categories in Section 3.2.
The main results, Theorems 3.5 and 3.6, assert that equivariantization exact sequences
coincide with central exact sequences, and also with exact sequences whose Hopf monad
is exact cocommutative. It is proved in Section 5 using the notion of double of a Hopf
monad. We apply this characterization in Section 4 to several special cases: braided exact
sequences of tensor categories, exact sequences of fusion categories, equivariantizations
under the action of abelian groups. Lastly we prove Theorems 6.1 and 6.2 in Section 6.

Conventions and notation.
We retain the conventions and notation of [3].
If C is a monoidal category and A is an algebra in C, we denote by CA the category

of right A-modules in C, and by FA : C → CA the free A-module functor, defined by
X 7→ X ⊗ A. If C is additive, so is CA. In that case, we say that A is self-trivializing if
FA(A) ' FA(1)n for some natural integer n.

Let C be a tensor category over a field k, and let X be an object, or a set of objects
of C. We denote by 〈X 〉 the smallest full replete tensor subcategory of C containing X .
Its objects are the subquotients of finite direct sums of tensor products of elements of X
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and their duals. We denote by 1 the unit object of C. The tensor subcategory 〈1〉 is the
category of trivial objects of C and it is tensor equivalent to vectk.

Given an object X of C, we denote by ∨X and X∨ the left dual and the right dual
of X respectively. An object X of C is called invertible if there exists an object Y of C
such that X ⊗ Y ' 1 ' Y ⊗X. In that case Y ' ∨X ' X∨. Invertible objects of C are
both simple and scalar. We denote by Pic(C) the set of isomorphism classes of invertible
objects of C; it is a group for the tensor product, called the Picard group of C. We set
Cpt = 〈Pic(C)〉 ⊂ C.

Now assume C is a fusion category. The multiplicity of a simple object X in an
object Y of C is defined as mX(Y ) = dim HomC(X, Y ). We have

Y ' ⊕X∈Irr(C)XmX(Y ),

where Irr(C) denotes the set of simple objects of C up to isomorphism. An object X of
C is invertible if and only if its Frobenius-Perron dimension is 1.

2. Central exact sequences of tensor categories.

2.1. Tensor functors.
Let F : C → D be a tensor functor between tensor categories over k. We denote

by KerF ⊂ C the full subcategory of C of objects c such that F (c) is trivial in D. The
category KerF is a tensor category over k, and it is endowed with a fibre functor

ωF

{
KerF → vectk

x 7→Hom(1, F (x)).

By Tannaka reconstruction, this defines a Hopf algebra

H = coend(ωF ) =
∫ x∈KerF

ω(x)∨ ⊗ ω(x)

such that KerF ' comod -H.
The tensor functor F admits a left adjoint L if and only if it admits a right adjoint

R; if they exist, the adjoints of F are related by R(X) = L(∨X)∨. If C is finite, then F

admits adjoints.
If the tensor functor F admits adjoints, we say that F is perfect if its left, or

equivalently, its right adjoint is exact. Such is always the case if D is a fusion category.
The tensor functor F is dominant if for any object d of D, there exists an object c

of C such that d is a subobject of F (c). It is normal if for any object c of C, there exists
a subobject c0 ⊂ c such that F (c0) is the largest trivial subobject of F (c).

If F admits adjoints L and R, then F is dominant if and only if L, or equivalently
R, is faithful, and F is normal if and only if L(1), or equivalently R(1), belongs to KerF .

If F is a normal tensor functor, the Hopf algebra H = coend(ωF ) is called the
induced Hopf algebra of F .
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2.2. Central induced (co)algebras.
Let C and D be finite tensor categories over k and let F : C → D be a dominant

tensor functor. Then F admits a left adjoint L : D → C which is faithful and comonoidal.
Consequently Ĉ = L(1) is a coalgebra in C, called the induced coalgebra of F , with
coproduct L2(1,1) and unit L0, where (L2, L0) denotes the comonoidal structure of L.
We have HomC(Ĉ,1) ' k. In addition, Ĉ is endowed with a canonical half-braiding
σ̂ : Ĉ ⊗ idC → idC ⊗Ĉ, which makes it a cocommutative coalgebra in the center Z(C) of
C; see [2] for details of this construction. The cocommutative coalgebra (Ĉ, σ̂) is called
the induced central coalgebra of F .

Dually, under the same hypotheses the functor F also admits a right adjoint R,
related to L by R(X) = L(∨X)∨. The functor R is faithful and monoidal. As a result,
A = R(1) = Ĉ∨ is an algebra in C, called the induced algebra of F , and it is endowed a
canonical half-braiding σ : A⊗ idC → idC ⊗A, making it a commutative algebra in Z(C).
The commutative algebra (A, σ), which is the right dual of (Ĉ, σ̂), is called the induced
central algebra of F . See [3, Section 6].

The category CA = C(A,σ) of right A-modules in C is an abelian k-linear monoidal
category over k with tensor product induced by ⊗A and the half-braiding σ, and the
functor F(A,σ) : C → CA, F(A,σ)(X) = X ⊗A, is strong monoidal and k-linear.

If F is dominant and perfect (that is, R is faithful exact), then by [3, Proposition
6.1] CA is a tensor category, and there is a tensor equivalence κ : D → CA such that the
following diagram of tensor functors commutes up to tensor isomorphims:

C F //

FA &&LLLLLLLL D
κ

²²
CA.

Note that if F is dominant and D is a fusion category, then R is exact, so CA ' D is a
fusion category and in that case, A is semisimple.

Lemma 2.1. Let F : C → D be a tensor functor between finite tensor categories,
with induced algebra A. The following assertions are equivalent :

( i ) F is normal ;
( ii ) A belongs to KerF ;
(iii) A is a self-trivializing algebra, that is, A⊗A ' An in CA for some integer n.

If these hold, then KerF = 〈A〉. Moreover, the integer n of assertion (iii) is the dimension
of the induced Hopf algebra of F .

Proof. Since A = R(1), we have (i) ⇐⇒ (ii). If A is in KerF , then FA(A) '
κF (A) ' κF (1)n ' FA(1)n, i.e. A is self-trivializing, so (ii) =⇒ (iii). Conversely,
assume A is self-trivializing, that is, A ⊗ A ' An as right A-modules. By adjunction,
HomD(F (A),1) ' HomC(A,R(1)) = HomC(A,A) ' HomCA

(FA(A), FA(1)) ' HomCA

·(FA(1)n, FA(1)) ' HomC(1, A)n ' kn. Thus, there exists an epimorphism s : F (A) →
1n in D. Now s ⊗ F (A) is an epimorphism F (A) ⊗ F (A) → F (A)n, and since those
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two objects are isomorphic and of finite length, s ⊗ F (A) is an isomorphism. Thus
ker(s)⊗ F (A) = 0, so ker(s) = 0 and s is an isomorphism F (A) ∼−→ 1n. This shows (iii)
=⇒ (ii).

If the assertions of the lemma hold, then KerF = 〈A〉, in view of [3, Proposition 6.7].
Moreover, F (A) = FR(1) ' F (L(1)∨) ' F (L(1))∨. Hence ∨F (A) ' H ⊗ 1, and we get
n = dim H. ¤

Remark 2.2. A terminological summary might help: if F : C → D is a tensor
functor between finite tensor categories, the induced central algebra A = (A, σ) of F is
a commutative algebra in Z(C); the induced algebra A of F is an algebra in C. If F is
normal, with induced Hopf algebra H = coend(ωF ), then F (A) ' H ⊗ 1 and, denoting
by T = FL the Hopf monad of F , we have T (1) ' K ⊗ 1 with K = H∗.

2.3. Exact sequences of tensor categories.
In this section we recall some basic facts about exact sequences of tensor categories

which we will use throughout this paper, see [3] for details. Let k be a field.
An exact sequence of tensor categories over k is a diagram of tensor functors

(E) C′ i−→ C F−→ C′′

between tensor categories C′, C, C′′ over k, such that F is normal and dominant, i(C′) ⊂
KerF and i induces a tensor equivalence C′ → KerF .

The induced Hopf algebra H = coend(ωF ) of F is also called the induced Hopf
algebra of (E), and we have an equivalence of tensor categories C′′ ' comod -H. By [3,
Proposition 3.15], the induced Hopf algebra of (E) is finite dimensional if and only if the
tensor functor F has a left adjoint, or equivalently, a right adjoint. In that case, we say
that (E) is perfect if F is perfect, that is, R (or F ) is exact.

If (E1) = (C′1 → C1 → C′′1 ) and (E2) = (C′2 → C2 → C′′2 ) are two exact sequences of
tensor categories over k, a morphism of exact sequences of tensor categories from (E1) to
(E2) is a diagram of tensor functors:

C′1 //

²²

C1
//

²²

C′′1

²²
C′2 // C2

// C′′2

which commutes up to tensor isomorphisms. Such a morphism induces a morphism of
Hopf algebras w : H1 → H2, where H1 and H2 denote the induced Hopf coalgebras of
(E1) and of (E2), respectively.

A morphism of exact sequences of tensor categories is an equivalence of exact se-
quences of tensor categories if the vertical arrows are equivalences.

Lemma 2.3. Consider a morphism of exact sequences of finite tensor categories
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(E1)

²²

C′1
i1 //

U ′

²²

C1
F1 //

U

²²

C′′1
U ′′

²²
(E2) C′2 i2

// C2
F2

// C′′2 .

Denote by H1, H2 the induced Hopf algebras of F1 and F2 respectively.

(1) The morphism of exact sequences induces a Hopf algebra morphism φ : H1 → H2,
and U ′ is dominant (respectively, an equivalence) if and only if φ is a monomorphism
(respectively, and isomorphism);

(2) If U ′ and U ′′ are dominant, then so is U .

Proof. 1) We may assume C′1 = comod -H1, C′2 = comod -H2, U ′ being compatible
with the forgetful functors. Then U ′ is of the form φ∗, for some Hopf algebra morphism
φ : H1 → H2, U ′ is an equivalence if and only if φ is an isomorphism, and by [3, Remark
3.12], U ′ is dominant if and only if φ is surjective.

2) Let X be an object of C2. We are to show that X is a subobject of U(Y ) for some
Y ∈ Ob(C1). Now F2U = U ′′F1 is dominant, so F2(X) ⊂ F2U(Z) for some Z ∈ Ob(C1).
Denote by R2 the right adjoint of F2; being a right adjoint, it preserves monomorphisms so
R2F2(X) ⊂ R2F2U(Z). We have A2 = R2(1), and we have an isomorphism RF2 ' A2⊗?
coming from the fact that the adjunction (F2, R) is a Hopf monoidal adjunction (see [3,
Proof of Proposition 6.1], and [2] for the original statement in terms of Hopf monads).

Thus A2 ⊗X ⊂ A2 ⊗ U(Z). Since we have 1 ⊂ A2, we obtain X ⊂ A2 ⊗ U(Z). On
the other hand, A2 belongs to the essential image of i2 and U ′ is dominant, so there exists
Z ′ ∈ Ob(C′1) such that A2 ⊂ i2U

′(Z ′) ' Ui1(Z ′). Consequently X ⊂ U(i1(Z ′) ⊗ Z),
which shows that U is dominant, as claimed. ¤

2.4. Central exact sequences of finite tensor categories.
If i : C′ → C is a strong monoidal functor between monoidal categories, a central

lifting of i is a strong monoidal functor ĩ : C′ → Z(C) such that U ĩ = i, where U denotes
the forgetful functor Z(C) → C. Note that if i is full, given a central lifting ĩ there exists
a unique braiding on C′ such that ĩ is braided.

An exact sequence of finite tensor categories C′ i−→ C F−→ C′′, with induced central
algebra A = (A, σ), is called central if the restriction of the forgetful functor U : Z(C) → C
induces an equivalence of categories 〈A〉 → 〈A〉.

Theorem 2.4. Consider an exact sequence of finite tensor categories

(E) C′ i−→ C F−→ C′′

with induced central algebra (A, σ) and induced central coalgebra (Ĉ, σ̂). The following
assertions are equivalent :

( i ) The exact sequence (E) is central ;
( ii ) There exists a central lifting ĩ of i such that ĩ(A) = (A, σ);
(iii) There exists a central lifting ĩ of i such that ĩ(Ĉ) = (Ĉ, σ̂).
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Moreover, if these assertions hold, the central liftings ĩ of i appearing in assertions (ii)
and (iii) are essentially unique and they coincide.

The central lifting ĩ is called the canonical central lifting of the central exact sequence
(E).

Proof. Assertions (ii) and (iii) are equivalent because (A, σ) is the right dual of
(Ĉ, σ̂) and strong monoidal functors preserve duals.

Denote by j the tensor functor 〈(A, σ)〉 → 〈A〉 induced by the forgetful functor U .
In particular j(A) = A.

It follows from exactness of the sequence (E) that i : C′ → C induces an equivalence
C′ ' 〈A〉 (see Lemma 2.1).

We have (ii) =⇒ (i) because if ĩ is a central lifting of i such that ĩ(A) = (A, σ),
then ĩ(〈A〉) ⊂ 〈(A, σ)〉 and by definition of a central lifting, jĩ = id〈A〉. This shows that
j is full and essentially surjective; since on the other hand j is faithful, it is therefore an
equivalence, with quasi-inverse ĩ.

We have (i) =⇒ (ii) because if j is an equivalence, then it admits a quasi-inverse
k, which is also a tensor functor. One defines k by picking for each object X of 〈A〉 an
object k(X) in Z(C) such that Uk(X) ' X. One may further impose that Uk(X) = X,
and k(A) = (A, σ). Then ĩ : 〈A〉 → Z(C), X 7→ k(X) is a central lifting of i sending A to
(A, σ), which proves assertion (ii).

If ĩ exists, it is a quasi-inverse of j and as such, it is essentially unique. ¤

Example 2.5. If G is a finite group acting on a tensor category C by tensor
autoequivalences, then the corresponding exact sequence of tensor categories

repG
i−→ CG F−→ C

is central. Indeed, if (V, r) is a representation of G and (X, ρ) an object of CG, one verifies
that the trivial isomorphism V ⊗ X

∼−→ X ⊗ V lifts to an isomorphism σ(V,r),(X,ρ) =
i(V, r)⊗(X, ρ) ' (X, ρ)⊗i(V, r) in CG, and this defines a central lifting ĩ : rep G → Z(CG)
of i, (V, r) 7→ ((V, r), σ(V,r),−). Moreover, the induced central algebra (A, σ) of F is
defined by A = kG, with G-action defined by right translations, and σ = σA,−, hence
centrality of the exact sequence.

If C′ → C → C′′ is a central exact sequence of tensor categories, then C′ is symmetric.
More precisely, we have the following lemma.

Proposition 2.6. Consider a central exact sequence

(E) C′ i−→ C F−→ C′′,

with canonical central lifting ĩ. Then the induced Hopf algebra H of (E) is commutative,
so that C′ ' comod -H is endowed with a symmetry, and with this symmetry on C′,
the tensor functor ĩ : C′ → Z(C) is braided. If in addition H is split semisimple, then
G = Spec H is a discrete finite group and C ' repG.
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Remark 2.7. As a special case of Proposition 2.6, for any finite dimensional Hopf
algebra H the corresponding exact sequence

comod -H → comod -H → vectk

is central if and only if H is commutative.

Remark 2.8. Note that if C′ → C → C′′ is a central exact sequence of fusion
categories over an algebraically closed field of characteristic 0, G = Spec H is a discrete
finite group and we have C′ ' repG.

Proof of Proposition 2.6. Let (A, σ) be the induced central algebra of (E).
We may replace (E) with the equivalent exact sequence

KerF = 〈A〉 −→ C −→ C′′.

Consider the morphism of exact sequences of tensor categories:

〈A〉 //

=

²²

〈A〉 //

incl.

²²

〈1〉
incl.

²²
〈A〉 // C // C′′.

Denote by (E0) the top exact sequence in this diagram. Its induced central algebra is
(A, σ|〈A〉). Moreover it is central, with canonical lifting ĩ0 defined by ĩ0(X) = (X, sX |〈A〉),
where ĩ(X) = (X, sX) denotes the canonical lifting of (E).

Thus, it is enough to prove the theorem for (E0). We may again replace (E0) by the
equivalent exact sequence

comod -H → comod -H → vectk,

where H is the induced Hopf algebra of (E), which is the situation of Remark 2.7.
In that situation, we have A = (H, ∆) and the half-braiding σ is defined by

σV : H ⊗ V → V ⊗H

h⊗ v 7→ v(0) ⊗ S(v(1))hv(2)

(2.1)

in Sweedler’s notation, for any finite dimensional right H-comodule V (see [3, Example
6.3]).

Centrality of the exact sequence means that we have a central lifting of the identity of
comod -H, which is nothing but a braiding c on comod -H, and in addition this braiding
is required to be such that cA,? = σ. What we have to prove is that H is commutative
and c is the standard symmetry.

Let r : H⊗H → k be the coquasitriangular structure corresponding to this braiding,
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so that for any pair of right comodules V and W , we have

cV,W : V ⊗W → W ⊗ V, cV,W (v ⊗ w) = r(v(1), w(1))w(0) ⊗ v(0). (2.2)

Comparing 2.1 and 2.2, we obtain by a straightforward computation that the condition
cA,A = σA implies r = ε⊗ε. That means that the forgetful functor comod -H → vectk is
braided, so H is commutative and c is the standard symmetry. This concludes the proof
of the proposition. ¤

2.5. Normality and centrality criteria.
The following theorem gives a sufficient condition for a dominant tensor functor

between finite tensor categories to be normal in terms of the induced central algebra.

Theorem 2.9. Let F : C → D be a dominant tensor functor between finite tensor
categories C,D, and let (A, σ) be its induced central algebra. Assume that A decomposes
as a direct sum of invertible objects of C. Then:

( i ) The functor F is normal, the isomorphism classes of simple direct summands of
A form a group Γ, and we have an exact sequence of tensor categories

(E) Γ- vect −→ C F−→ D,

where Γ- vect denotes the tensor category of finite dimensional Γ-graded vector
spaces.

( ii ) If in addition (A, σ) decomposes as a direct sum of invertible objects in Z(C), then
the exact sequence (E) is central.

Proof. An invertible object in a tensor category is both simple and scalar. Let
R denote the right adjoint of F . For any invertible object g of C, we have by adjunction
dimHomC(g, A) = dim HomD(F (g),1), because A = R(1). Now F (g) is invertible in D,
so dim HomC(g, A) = 1 if F (g) ' 1, and dim HomC(g, A) = 0 otherwise.

In other words: (1) the invertible factors of A are exactly the invertible objects of C
which are trivialized by F ; therefore, they form a group for the tensor product; and (2)
their multiplicity in A is exactly one.

In particular if A is the direct sum of its invertible factors, then A itself is trivialized
by F , that is, F is normal. In that case, we have an exact sequence KerF → C → D.
Now KerF is the tensor subcategory of C generated by A; it is a pointed tensor category
whose invertible objects are the invertible factors of A, whose isomorphism classes form
a group Γ. So KerF is a pointed tensor category; in addition, KerF admits a fiber functor,
hence it is tensor equivalent to the category Γ- vect. This proves assertion (i).

Now assume that (A, σ) decomposes as a direct sum of invertible objects of Z(C),
that is, (A, σ) =

⊕n
i=1(gi, σi). Then A =

⊕n
i=1 gi, where the gi’s are invertible in A, so

that the first part of the theorem applies. The category 〈(A, σ)〉 is generated as a tensor
category by the (gi, σi). Let us show that 〈(A, σ)〉 is additively generated by the (gi, σi).
For this it is enough to show that (gi, σi) ⊗ (gj , σj) is a direct factor of (A, σ) for all
i, j ∈ {1, . . . n}. Now the product µ : A ⊗ A → A embeds gi ⊗ gj into A, and lifts to a
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morphism in Z(C), namely the product of (A, σ); consequently it embeds (gi, σi)⊗(gj , σj)
into (A, σ). Thus 〈(A, σ)〉 → 〈A〉 is full, which proves that (E) is central. ¤

2.6. Example: Tambara-Yamagami categories.
A Tambara-Yamagami category is a fusion category having exactly one non-

invertible simple object X, with the additional condition that X is not a factor of
X ⊗ X. These categories, which are in a sense the simplest non-pointed categories,
have been classified in [17].

Let T Y be a Tambara-Yamagami category. Denote by Γ the Picard group of T Y.
It is a finite abelian group. Denote by X a non-invertible simple object. The maximal
pointed fusion subcategory of C, denoted by Cpt, is tensor equivalent to the category
Γ- vect of finite dimensional Γ-graded vector spaces. The following proposition charac-
terizes normal tensor functors on C.

Proposition 2.10. Let T Y be a Tambara-Yamagami category, with Picard group
Γ, and let F : C → D be a dominant tensor functor, with induced central algebra (A, σ).
Then F is normal if and only if F is a fiber functor, or A belongs to Cpt.

In the latter case, we have an exact sequence of tensor categories:

G- vect −→ T Y F−→ D,

where G is a subgroup of Γ.

Proof. The only proper fusion subcategories of C are those contained in Cpt.
This shows the ‘only if’ direction. Conversely, any fiber functor F on C is normal, with
KerF = C. Suppose on the other hand that F is not a fiber functor. Then F is normal
by Theorem 2.9. This finishes the proof of the proposition. ¤

It is known that if a Tambara-Yamagami category T Y admits a fiber functor, so
that T Y ' repH for some semisimple Hopf algebra H, then H fits into an abelian exact
sequence of Hopf algebras kZ2 → H → kΓ [12]. Hence in this case T Y fits into an exact
sequence of fusion categories rep Γ → T Y → repZ2. In particular, T Y is not simple.

2.7. Extensions of weakly integral fusion categories.
Recall that a fusion category is weakly integral if its Frobenius-Perron dimension is

a natural integer. In this section we discuss dominant tensor functors on weakly integral
fusion categories.

Lemma 2.11. Let F : C → D be a dominant tensor functor between fusion cate-
gories, with induced central algebra (A, σ). Then we have:

( i ) FPind(C : D) = FPdimA.
( ii ) If X ∈ Irr(C), then mX(A) ≤ FPdimX.
(iii) F is normal if and only if for all X ∈ Irr(C) we have mX(A) = 0 or mX(A) =

FPdimX.

Proof. By [3, Proposition 4.3], we have FPind(C : D) = FPdimR(1). This
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proves (i) since A = R(1).
By adjunction, we have HomD(F (X),1) ' HomC(X, A), so that mX(A) =

m1(F (X)). This implies (ii) since m1(F (X)) ≤ FPdimF (X) = FPdimX.
We next show (iii). The only if part follows from [3, Proposition 6.9]. Conversely,

suppose that for all X ∈ Irr(C) we have m1(F (X)) = mX(A) ∈ {0,FPdimX}. Let
X ∈ Irr(C) and assume m1(F (X)) 6= 0. Then m1(F (X)) = FPdimX = FPdim(F (X)),
so F (X) is trivial. Thus F is normal, which completes the proof of (iii) and of the lemma.

¤

Proposition 2.12. Let F : C → D be a dominant tensor functor between fusion
categories C and D and let (A, σ) be the induced central algebra of F . Then the following
assertions are equivalent :

( i ) C is weakly integral.
( ii ) D is weakly integral and FPdimA ∈ Z.

Proof. (ii) ⇒ (i) results immediately from Lemma 2.11 (i).
(i) ⇒ (ii). Notice first that since FPdimA FPdimD = FPdim C and FPdimA is an

algebraic integer, it is enough to verify that FPdimD is a natural integer, that is, D is
weakly integral.

Recall that D is tensor equivalent to the fusion category CA of right A-modules in
C. Since A is an indecomposable algebra in C, the category ACA of A-bimodules in C is
a fusion category and it satisfies FPdim ACA = FPdim C [6, Corollary 8.14]. Therefore
ACA is weakly integral. We have a full tensor embedding CA ⊂ ACA.

Now, in a weakly integral fusion category the Frobenius-Perron dimensions of simple
objects are square roots of natural integers [6, Proposition 8.27], and as a result, a full
fusion subcategory of a weakly integral fusion category is weakly integral. So D ' CA is
weakly integral, and we are done. ¤

In the case where the functor F is normal, we have FPdimA = FPdimKerF , and
since KerF admits a fibre functor it is weakly integral. Thus we have:

Corollary 2.13. Let C′ → C → C′′ be an exact sequence of fusion categories.
Then C is weakly integral if and only if C′′ is weakly integral. In particular, the class of
weakly integral fusion categories is closed under extensions. ¤

3. Equivariantization revisited.

The aim of this section is to state and discuss equivariantization criteria. In order
arrive at a synthetic statement, we have to extend the notion of equivariantization to
actions of finite group schemes. Thanks to this generalization, we can state that an
exact sequence of finite tensor categories is central if and only if its Hopf monad is
normal cocommutative, and that it is an equivariantization exact sequence if and only
if it is perfect and central, which extends a result of [3] concerning discrete groups, and
also reformulates and extends a result of [7] concerning fusion categories.
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3.1. Cocommutative normal Hopf monads.
Let C be a tensor category. A k-linear right exact normal Hopf monad T on C is

cocommutative (see [3]) if for any morphism x : T (1) → 1 and any object X of C

(x⊗ TX)T2(1, X) = (TX ⊗ x)T2(X,1).

Note that, if V is a trivial object, and X is an arbitraty object of C, there is a
canonical isomorphism τV,X : V ⊗X

∼−→ X ⊗ V , which is characterized by the fact that
for all x : V → 1, we have (X ⊗ x)τV,X = x ⊗ X. The natural isomorphism τV,− is a
half-braiding, called the trivial half-braiding of V .

We have the following characterizations of normal cocommutative Hopf monads.

Lemma 3.1. Let C be a tensor category and let T be a normal Hopf monad on C,
with induced central coalgebra (Ĉ, σ̂). The following assertions are equivalent :

( i ) T is cocommutative;
( ii ) T2(X,1) = τT1,TXT2(1, X) for X in C;
(iii) σ̂(M,r) = τT1,M for (M, r) in CT , or in short: σ̂ ‘is the trivial half-braiding’.

Proof. Assertion (ii) is just a reformulation of the definition of cocommutativity
in terms of trivial half-braidings, so (i) ⇐⇒ (ii). Let (M, r) be a T -module. Since T is
a Hopf monad, we have fusion isomorphisms

Φr
(M,r) = (T1⊗ r)T2(1,M) : TM

∼−→ T1⊗M,

Φl
(M,r) = (r ⊗ T1)T2(M,1) : TM

∼−→ M ⊗ T1,

and by definition σ̂ = ΦlΦr−1. If (ii) holds, we have Φl
(M,r) = τT1,MΦr

(M,r) by func-
toriality of τ , so σ̂(M,r) = τT1,M , which shows (ii) =⇒ (iii). Conversely, applying
(iii) to (M, r) = (TX, µX) and composing on the right by T (ηX) gives T2(X,1) =
τT1,TXT2(1, X), so (iii) =⇒ (ii). ¤

From [3, Theorem 5.21 and Theorem 5.24], one deduces immediately

Proposition 3.2. A dominant tensor functor F : C −→ D between finite tensor
categories is an equivariantization under the action of a finite group G if and only if the
following two conditions are met :

(1) the Hopf monad T of F is normal and cocommutative;
(2) the induced Hopf algebra H of F is split semisimple.

If these conditions hold, then F is perfect, that is T is exact, and G = Spec(H).

This suggests that a (perfect) dominant tensor functor between finite tensor cate-
gories is an equivariantization under the action of a finite group scheme if and only if
its Hopf monad is normal cocommutative; the group scheme being the spectrum of the
induced Hopf algebra of T - which, in this case, is a finite dimensional commutative Hopf
algebra.
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We will now define group scheme actions in order to give a mathematical meaning
to this claim, and then prove it.

3.2. Group scheme actions.
Let A be a monoidal category and let M be a category. An action of A on M is a

strong monoidal functor ρ : A → End(M), where End(M) denotes the strict monoidal
category of endofunctors of M. Given such an action ρ, we say that M is an A-module
category, and we usually write ρ(a,m) = a¯m. Let M, M′ be two A-module categories.
A functor of A-module categories M →M′ is a pair (F, F2), where F : M →M′ is a
functor and F2 is a natural isomorphism F2(a,m) : a¯ F (m) ∼−→ F (a¯m), a ∈ A,m ∈
M, such that the following diagrams commute:

F ((a⊗ b)¯m) ' //

F2(a⊗b,m)

²²

F (a¯ (b¯m))
F2(a,b¯m)

²²
a¯ F (b¯m)

a¯F2(b,m)
²²

(a⊗ b)¯ F (m) '
// a¯ (b¯ F (m))

F (1¯m)
'

%%JJJJJJ

F2(1,m)

²²

F (m)

1¯ F (m)
'

99tttttt

where the unlabeled isomorphisms come from the monoidal structure of the action.
Now assume A is endowed with a strong monoidal functor ω : A → vectk, M is a k-

category, and ρ is an action of A on M by k-linear endofunctors. The equivariantization
of M under the action ρ is the category Mρ, also denoted by MA, defined as follows.
Objects of Mρ are data (m,α) where m is an object of M and α = (αλ

c )c∈Ob(A),λ∈ω(c)∗

is a family of morphisms αλ
c : c¯m → m satisfying the following conditions:

(1) functoriality : αλ
c is linear in λ, and if f : c → c′ is a morphism in A and λ ∈ ω(c′)∗,

then αλ
c′(f ¯m) = αf∗λ

c , where f∗λ = λω(f);
(2) ρ-compatibility : we have commutative diagrams

(a⊗ b)¯m

'
²²

αλ⊗µ
a⊗b // m 1⊗m

α
ω0
1 //

'
""DD

DD
DD

DD
D m

a¯ (b¯m)
a¯αµ

b

// a¯m

αλ
a

OO

m

=

OO

with a, b objects of A and λ ∈ ω(a)∗, µ ∈ ω(b)∗.

Morphisms in MA from (m,α) to (n, β) are morphisms f : m → n in M satisfying
fα = β(a¯ f).

Note that if G is a discrete group, viewed as a monoidal category G whose objects
are the elements of the group, and equipped with the trivial strict monoidal functor
ω : G → k, g 7→ k, then a G-action is the same thing as a G-action in the usual sense,
and in the case of a k-linear action on a k-category M, MG is isomorphic to the usual
equivariantization MG.
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Proposition 3.3. Let T be a k-linear faithful exact normal Hopf monad on a
tensor category C, with induced Hopf algebra H. Let K = H∗ and L = comod -K. Then
there is a natural action of L on C by k-linear endofunctors, defined by

V ¯X = V ¤KT (X),

and CL is canonically isomorphic to CT as a k-linear category.

Proof. For simplicity, we identify a finite dimensional vector space E with the
trivial object E ⊗ 1 in C. Then T1 = H and the comonoidal structure of T defines a
structure of H-bicomodule on T (X). This enables us to define V ¯X = V ¤KT (X) for
V a finite-dimensional right K-comodule and X in C. From the fact that T is a faithful
exact Hopf monad, one deduces natural isomorphisms (V ⊗W )¯X ' V ¯ (W ¯X) and
(k, ε) ¯X ' X which make ¯ an action of L on C. Let A = (H, ∆) be the trivializing
algebra of L. Then A generates L. An object (m,α) of CL is entirely determined by
αε

A : A¯X ' T (X) → X, which can be interpreted as a T -action on X because we have
a canonical isomorphism A¯X ' T (X). This defines a k-linear isomorphism CL ∼−→ CT .

¤

Note that the action of Proposition 3.3 is not compatible in any clear way with
the tensor product of C. In order to take care of the monoidal structure of C, we now
introduce the notion of L-module tensor category.

Denote by abk the 2-category of abelian k-linear categories having finite dimensional
Hom spaces and objects of finite length, 1-morphisms being k-linear left exact functors,
and 2-morphisms being natural transformations. We equip abk with a tensor product á
la Deligne, denoted by £, and characterized by the fact that given three objects M, M′,
M′′ in abk, the category of k-linear left exact functors M£M′ →M′′ is equivalent to
the category of functors M×M′ →M′′ which are k-linear left exact in each variable.
This tensor product makes abk a monoidal 2-category with unit object vectk, with a
symmetry τM,M′ : M£M′ ∼−→M′ £M defined by m £ m′ 7→ m′ £ m.

Now if A is a tensor category over k, define an A-module category to be an object C
of abk endowed with a k-linear action of A such that the functor ¯ : A×C → C is k-linear
right exact in the first variable (it is automatically exact in the second variable because
A is autonomous). Thus we may view ¯ as a k-linear right exact functor A£ C → C.

Let L be a finite dimensional cocommutative Hopf algebra. The tensor category
L = comod -L is tannakian; it is endowed with a strong monoidal symmetric functor
∆∗ : L → L£ L, which is coassociative, and the symmetric fiber functor ε∗ : L → vectk

is a counit for ∆∗. Thus L is a bialgebra in the monoidal 2-category abk.
If (M, ρ) and (M′, ρ′) are two L-module categories then one defines a new L-module

category (M, ρ) £ (M′, ρ′) = (M£M′, ρ′′), where

ρ′′ = (ρ £ ρ′)(L£ τL,M £M′)(∆∗ £M£M′), (3.1)

and this tensor product defines a monoidal structure on the 2-category of L-module
categories.
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An L-module tensor category is a tensor category C over k, endowed with

• a structure of L-module ¯ : L£ C → C of L on C;
• natural isomorphisms

αV,X,Y : V ¯ (X ⊗ Y ) ∼−→ ⊗(V ¯ (X £ Y ))

β : V ¯ 1 ∼−→ ε∗(V )⊗ 1

making the tensor product ⊗ = ⊗C : C£C → C and the unit functor u : vectk → C,
k 7→ 1, morphisms of L-module categories, where the L-module category structure
¯ : L£ C £ C → C £ C is the one defined by (3.1).

If C is an L-module tensor category, then CL is monoidal.

Proposition 3.4. Let C be a tensor category over k.

(1) Let L be a finite dimensional cocommutative Hopf algebra, L = comod -L. Then
a structure of L-module tensor category on C defines a k-linear faithful exact Hopf
monad T = A¯? on C, where A = (H, ∆);

(2) If T is a normal cocommutative k-linear faithful exact Hopf monad on C, the action
of L = comod -L on C defined in Proposition 3.3 makes C a L-module tensor category.

Moreover, these construction are essentially mutually inverse. Given a Hopf monad as
in Assertion (2) and the corresponding structure of L-module tensor category on C, the
canonical isomorphism CL ' CT is a tensor isomorphism.

Proof. Assume we have a structure of L-module tensor category on C, with action
ρ : L → End(C), and set T = ρ(A) = A¯?. Then T is a monad on C, that is, an algebra
in End(C), because A = (H, ∆) is an algebra in C and ρ is strong monoidal. Moreover T

is k-linear exact, and it is faithful because ρ is right exact and 1 is a subobject of A, so
X = 1 ¯ X is a subobject of A ¯ X = T (X). Moreover the L-module tensor category
structure defines isomorphisms T (X ⊗ Y ) ' T (X)¤KT (Y ) and T (1) = A¯ 1 ' K ⊗ 1,
which define a Hopf monad structure on T , which is normal and clearly cocommutative.

Conversely, if T is a normal cocommutative k-linear faithful exact Hopf monad on
C, consider the action ρ of L on C defined by V ¯ X = V ¤KT (X). Then X 7→ ρ(X)
is k-linear left exact, so the action may be viewed as a k-linear exact functor L £ C →
C. The structure of Hopf monad, cocommutativity and normality define isomorphisms
A ¯ (X ⊗ Y ) ' (A ¯ X)¤K(A ¯ Y ) and A ¯ 1 ' L, which give rise to structures of
morphisms of L-module morphisms on the tensor product C£C → C and the unit functor
vectk → C, making ρ a structure of L-module tensor category on C. ¤

3.3. Equivariantization and centrality criteria.
Let G be a finite group scheme over k. A tensor action of G on a tensor category C

is a structure of L-module tensor category on C, where L = comod -k[G] = O(G)-mod,
where O(G) is the Hopf algebra of regular functions on G. The equivariantization of C
under a tensor action of a finite group scheme G is the tensor category CG = CL.

From the results of the previous section, we deduce:
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Theorem 3.5. Let F : C −→ D be a normal dominant tensor functor between
finite tensor categories, and let T be its Hopf monad and H its induced Hopf algebra.
The following assertions are equivalent :

( i ) The tensor functor F is an equivariantization under the tensor action of a finite
group scheme on D;

( ii ) The normal Hopf monad T is exact and cocommutative.

If these assertions hold then the induced Hopf algebra H of F is commutative and the
group scheme of assertion (i) is G = Spec H.

Theorem 3.6. Let C′ → C → C′′ be an exact sequence of finite tensor categories,
and let T be the associated normal Hopf monad on C′′. Then the following assertions are
equivalent :

( i ) The exact sequence C′ → C → C′′ is central ;
( ii ) The normal Hopf monad T is cocommutative.

Theorem 3.6 will be proved in Section 5.3.

Corollary 3.7. Consider a morphism of exact sequences of finite tensor cate-
gories

(E0)

²²

C′0 //

W

²²

C0
//

U

²²

C′′0
V

²²
(E) C′ // C // C′′

such that the vertical arrows are dominant tensor functors. Then

(1) if (E0) is central, so is (E).
(2) If (E0) is an equivariantization exact sequence for a finite group scheme G, with

G discrete or (E) perfect, then (E) is an equivariantization exact sequence for a
subgroup G′ ⊂ G acting on C′′ in a manner compatible with V . Moreover if W is an
equivalence, then G′ = G.

Proof. Let T0, T be the normal Hopf monads, and H0, H the induced Hopf
algebras of the exact sequences (E0) and (E) respectively. Then we may assume that
(E0) and (E) are of the form comod -H0 → C′′0 T0 → C′′0 and comod -H → C′′T → C′′
respectively, and we have a diagram of tensor functors:

comod -H0
//

W

²²

C′′0 T0
UT0 //

U

²²

C′′0
V

²²
comod -H // C′′T UT

// C′′
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with U ′, U , U ′′ dominant, which commutes up to tensor isomorphisms. By transport of
structure, we may assume that UT U = V UT0 as tensor functors.

Let us assume (E0) is central, and let us show that (E) is central. By Theorem 3.6,
T0 is cocommutative, and we are to prove that T is cocommutative too.

If (X, r) is an object of C′′0 T0 then U(X, r) = (V (X), λ(X, r)), so that we have a
natural transformation λ : TV UT0 → V UT0 , which by adjunction can be encoded as a
natural transformation Λ : TV → V T0 such that

U(X, r) = (V X, V r ΛX), for any (X, r) in C′′0 T0 .

The transformation Λ is compatible with the monad structures of T0 and T , and it is
comonoidal because UT U = V UT0 as tensor functors.

The tensor functor W is induced by a morphism of Hopf algebras φ : H0 → H, which
is surjective because W is dominant (see Lemma 2.3). In particular H is commutative,
and the group scheme G = Spec H is a subgroup of the group scheme G0 = Spec(H0)
associated with the central exact sequence (E0).

On the other hand, we have TV (1) = H∗ ⊗ 1 and V T0(1) = H∗
0 ⊗ 1, and via these

isomorphisms Λ1 is the transpose of φ; therefore Λ1 is a monomorphism (in fact, one can
show that Λ is monomorphism, a fact we will not use). Denote by (Ĉ0, σ̂0) and (Ĉ, σ̂)
the induced central coalgebras of T0 and T respectively. Let (M, r) be a T0-module. One
deduces easily from the comonoidality of Λ that the following diagram commutes:

T1⊗ V M

σ̂U(M,r)

²²

Λ1⊗V M // V T01⊗ V M
' // V (T01⊗M)

V ((σ̂0)(M,r))

²²

TV (M)

'

ffLLLLLLLLLLL

'

xxrrrrrrrrrrr

ΛM // V T0(M)

'

77nnnnnnnnnnnn

'

''PPPPPPPPPPPP

V M ⊗ T1
V M⊗Λ1

// V M ⊗ V T01 '
// V (M ⊗ T01)

where the slanted arrows are the fusion isomorphisms. Since Λ1 is a monomorphism
and, by assumption, σ̂0 is the trivial half-braiding, we see that σ̂U(M,r) is the trivial
half-braiding. The tensor functor U being dominant, σ̂ is the trivial half-braiding, that
is, T is cocommutative.

In particular if (E0) is an equivariantization under the action of a group scheme G,
it is central so T is cocommutative. If G is discrete or (E) is perfect (hence T is exact),
then by Proposition 3.2 or Theorem 3.5 (E) is an equivariantization exact sequence,
corresponding with a tensor action of G ⊂ G0 on C′′, which by construction is compatible
with the tensor action of G0 on C′′0 via V . If W is an equivalence, φ is an isomorphism
so G = G0. ¤
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4. Equivariantization: special cases.

4.1. The braided case.
A braided exact sequence of tensor categories is an exact sequence of tensor categories

C′ i−→ C F−→ C′′

such that the tensor categories C, C′′ and the tensor functor F are braided. This implies
that C′ admits a unique braiding such that i is braided, too.

Proposition 4.1. A braided exact sequence of finite tensor categories is central.
In particular, if it is perfect, it is an equivariantization exact sequence.

Proof. Let C′ i−→ C F−→ C′′ be a braided exact sequence of tensor categories.
Then the Hopf monad of F is braided by [3, Proposition 5.29], and it is k-linear, right
exact, and normal, so it is cocommutative by [3, Proposition 5.30]. Therefore, the exact
sequence is central by Theorem 3.6 and, if it is perfect, it is equivariantization exact
sequence by Theorem 3.5. ¤

4.2. The fusion case.
Recall that if B is a braided category with braiding c, and A ⊂ B is a set of objects,

or a full subcategory of B, then the centralizer of A in B, denoted by CB(A), is the full
monoidal subcategory of B of objects b satisfying cb,aca,b = ida⊗b for any object a in A.
If B is a fusion braided category, then CB(A) is a full fusion subcategory of B (see [11]).

Proposition 4.2. Let k be an algebraically closed field of characteristic 0. Con-
sider a central exact sequence of fusion categories

(E) C′ −→ C −→ C′′

with canonical lifting ĩ : C′ → Z(C), and set A = ĩ(C′). Let CZ(C)(A) denote the
centralizer of A in Z(C). Then the following holds:

(1) we have a braided exact sequence of fusion categories (in fact a modularization exact
sequence)

(E0) A −→ CZ(C)(A) −→ Z(C′′);

(2) we have a morphism (E0) → (E) of exact sequences of fusion categories:

A
'

²²

// CZ(C)(A)

²²

// Z(C′′)

²²
C′ // C // C′′,

where the vertical arrows are dominant forgetful functors;
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(3) there is a finite group G acting on Z(C′′) and on C′′ by tensor autoequivalences
in a compatible way, in such a way that E0 and E are the equivariantization exact
sequences relative to these actions.

Remark 4.3. This proposition says essentially the same thing as [7, Proposition
2.10](i), with a different viewpoint. Indeed [7, Proposition 2.10](i) asserts that if C is
a fusion category over C and A ⊂ Z(C) is a full tannakian subcategory such that the
forgetful functor U : Z(C) → C induces an equivalence of A with a tensor subcategory
of C, then A encodes a de-equivariantization of C, that is, a tensor action of a finite
group G (such that A ' repG) on a category D such that C ' DG. This can be
deduced from Proposition 4.2, as follows. Assume A ⊂ Z(C) is as above. Since A is
tannakian, it contains a self-trivializing semisimple commutative algebra A = (A, σ)
such that Hom(1,A) = k. The forgetful functor U induces by assumption a full tensor
embedding i : A → C. Moreover, we have a tensor functor FA : C → CA and an exact
sequence of fusion categories

(E) A i−→ C FA−→ CA.

The inclusion A ⊂ Z(C) is a central lifting of i which makes (E) a central exact sequence,
hence the tensor functor C → CA is an equivariantization.

Proof. Notice first that assertion (3) derives immediately from assertions (1) and
(2) and previous results: if (1) and (2) hold, then by Proposition 4.1 (E0) is an equivari-
antization exact sequence for the action of a finite group G on Z(C′′). By Corollary 3.7,
(E) is also an equivariantization exact sequence for an action of the same group G.

So the whole point is to construct the exact sequence (E0) of assertion (1) and the
morphism of exact sequences of assertion (2). This is based on the following lemma.
Let us say that an object X of a braided category B with braiding c is symmetric if
c2
X,X = idX⊗X .

Lemma 4.4. Let C be a fusion category, let A = (A, σ) be a semisimple, symmetric,
self-trivializing commutative algebra in Z(C) such that Hom(1, A) = k, and let A = 〈A〉
be the fusion subcategory of Z(C) generated by A. Then

CZ(C)(A)A = dysZ(C)A ' Z(CA),

where dysZ(C)A denotes the category of dyslectic A-modules in Z(C).

Proof. Recall that if B is a braided category, with braiding c, and A is a commu-
tative algebra in B, then a dyslectic A-module ([14, Definition 2.1]) is a right A-module
(M, r : M ⊗ A → M) in B satisfying rcA,McM,A = r. The category dysBA of dyslectic
A-modules is a full monoidal subcategory of BA and it is braided with braiding induced
by c.

In the situation of the lemma, Z(C)A is a fusion category (because A is semisimple
and Hom(1,A) = k), and dysZ(C)A is a full fusion category of Z(C)A.
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On the other hand, the fact that A is symmetric means that it belongs to CZ(C)(A),
and the category CZ(C)(A)A is also a full fusion subcategory of Z(C)A. Moreover, we
have

CZ(C)(A)A ⊂ dysZ(C)A

because a A-module (M, r) such that M belongs to the centralizer of A is dyslectic.
Now it follows from [15, Corollary 4.5] that there is a natural equivalence of braided

tensor categories dysZ(C)A ' Z(CA) which is compatible with the forgetful functors to
C.

All that remains to do is to show that the full, replete inclusion of CZ(C)(A)A in
dysZ(C)A is an equality, which we do by showing that those two fusion categories have
the same Frobenius-Perron dimension. Now CA is a fusion category and FPdim CA =
FPdim C/ FPdimA by Lemma 2.11(i). Since dysZ(C)A ' Z(CA), we have

FPdimdysZ(C)A = FPdimZ(CA) =
(

FPdim C
FPdimA

)2

by [6, Proposition 8.12]. On the other hand,

FPdimCZ(C)(A) =
FPdimZ(C)
FPdimA

by [5, Theorem 3.14], since Z(C) is a nondegenerate fusion category. We have
FPdimZ(C) = FPdim(C)2 again by [6, Proposition 8.12], and since A is self-trivializing,
FPdim(A) = FPdim(A) = FPdimA, because the forgetful functor Z(C) → C preserves
Frobenisus-Perron dimensions. So

FPdimCZ(C)(A)A =
FPdim(C)2
FPdim(A)2

= FPdim dysZ(C)A,

and we are done. This finishes the proof of the lemma. ¤

Now we apply the lemma. Let F̃ = FA : CZ(C)(A) → CZ(C)(A)A ' Z(CA) be
the functor ‘free A-module’ X 7→ X ⊗A. Then F̃ is a braided dominant normal fusion
functor because A is semisimple and self-trivializing, so we have a braided exact sequence
of fusion categories

(E0) A → CZ(C)(A) → Z(CA),

which is an equivariantization exact sequence by Proposition 4.1, for an action of a certain
finite group G on Z(C). All our constructions are compatible with the forgetful functors,
hence we get a morphism of exact sequences of fusion categories (E0) → (E):
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A
'

²²

// CZ(C)(A)

²²

// Z(C′′)

²²
C′ // C // C′′.

The vertical arrow on the right is an equivalence because (E) is central and C′ ' 〈A〉,
and the left vertical arrow is dominant because it is the forgetful functor of the center.
The middle vertical arrow is therefore dominant by virtue of Lemma 2.3, so assertion
(2) holds. By Corollary 3.7, (E) is an equivariantization exact sequence, for an action
of G on C which is compatible with the action of G on Z(C) and the forgetful functor
Z(C) → C. ¤

4.3. The abelian case.
Let k be a field. We say that a finite abelian group G has the Kummer property

(w.r.t. k) if k contains e distincts e-th roots of 1, where e is the exponent of G. If such is
the case, the group of characters Γ̂k of G is isomorphic to G. If k is algebraically closed
of characteristic 0, all finite abelian groups have the Kummer property.

Proposition 4.5. Let F : C → D be a dominant tensor functor between finite
tensor categories over field k, and denote by A = (A, σ) its induced central algebra. The
following assertions are equivalent :

( i ) The functor F is an equivariantization associated with an action of a finite abelian
group G having the Kummer property ;

( ii ) The induced central algebra A of F is a direct sum of invertible objects of Z(C),
and the finite abelian group Γ formed by the isomorphism classes of these invertible
objets has the Kummer property ;

If these equivalent assertion hold, the groups G of assertion (i) and Γ of assertion (ii)
are in duality, that is G = Γ̂k.

Proof. (i) =⇒ (ii). Assume that F is an equivariantization under a finite abelian
group G having the Kummer property. We have a tensor action of G on D, and we may
assume that C = DG. The exact sequence

repG
i−→ C −→ D

is central, that is, i admits a central lifting ĩ : rep G → Z(C) such that ĩ(A) = (A, σ) = A

(see Example 2.5). Now, since G is abelian and has the Kummer property, mod -G '
Γ- vect is pointed, so A splits as a sum of invertible objects, and so does A = ĩ(A), so
(ii) holds.

(ii) =⇒ (i). Assume that A splits as a direct sum of invertible objects of Z(C).
Then by Theorem 2.9, F is normal and fits into a central exact sequence

C′ −→ C −→ D.
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Denote by H the induced Hopf algebra of this exact sequence, which is commutative
by Proposition 2.6. The tensor category C′ is pointed with Picard group Γ because it
is tensor equivalent to 〈A〉 via the canonical lifting ĩ, and since C′ = comod -H, we see
that H is cocommutative and split cosemisimple. Thus G = Spec H = Γ̂k is a discrete
abelian group, so H is split semisimple. We conclude by Proposition 3.2 that F is an
equivariantization under the group G. ¤

5. Equivariantization and the double of a Hopf monad.

5.1. Relative centers and centralizers.
Let C, D be monoidal categories, and let F : C → D be a comonoidal functor. Define

a half-braiding relative to F to be a pair (d, σ), where d is an object of D and σ is a
natural transformation d⊗ F → F ⊗ d satisfying:

(F2(c, c′)⊗ d)σc⊗c′ = (F (c)⊗ σc′)(σc ⊗ F (c′))(d⊗ F2(c, c′)),

(F0 ⊗ d)σ1 = d⊗ F0.

Half-braidings relative to F form a category called the center of D relative to F and
denoted by ZF (D), or ZC(D) if the functor F is clear from the context. It is monoidal,
with the tensor product defined by

(d, σ)⊗ (d′, σ′) = (d⊗ d′, (σ ⊗ d′)(d⊗ σ′)),

and the forgetful functor U : ZF (D) → D is monoidal strict.
Now assume F is strong monoidal (in particular, it can be viewed as a comonoidal

functor). Then we have a strong monoidal functor F̃ : Z(C) → ZF (D), defined by
F̃ (c, σ) = (F (c), σ̃), where σ̃ = F (σ) up to the structure isomorphisms of F .

If F is strong monoidal and has a left adjoint L, then T = FL is a bimonad on D
and by adjunction, ZF (D) is isomorphic as a monoidal category to the center ZT (D) of
D relative to the bimonad T defined in [4, Section 5.5].

Let (E) =
(C′ i−→ C F−→ C′′) be an exact sequence of finite tensor categories over a

field k. We will show that, if (E) is central, with canonical central lifting ĩ, then we have
an exact sequence of tensor categories

C′ ĩ−→ Z(C) F̃−→ ZF (C′′)

and a morphism of exact sequences of tensor categories

C′ //

=

²²

Z(C) //

²²

ZF (C′′)

²²
C′ // C // C′′.
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5.2. Quantum double of a Hopf monad.
Let T be a Hopf monad on a rigid monoidal category C. We say that T is centralizable

([4]) if for all objects X in C the coend

ZT (X) =
∫ Y ∈C

∨TY ⊗X ⊗ Y

exists. In that case the assignment X → ZT (X) defines a Hopf monad ZT on C, called
the centralizer of T . Denoting by jX,Y : ∨TY ⊗X ⊗ Y → ZT (X) the universal dinatural
transformation (in Y ) associated with the coend ZT (X), set

∂X,Y = (TX ⊗ jX,Y )(coevTY ⊗X ⊗ Y ) : X ⊗ Y → TY ⊗ ZT (X).

If T is centralizable, we have an isomorphism of tensor categories ZT (C) ∼−→ CZT , and
so, an isomorphism of tensor categories K : ZUT

(C) ∼−→ CZT .
Moreover, if T is centralizable there also exists a canonical comonoidal distributive

law Ω : TZT → ZT T , which is an isomorphism. It is characterized by the following
equation

(µX ⊗ ΩY )T2(TY, ZT (X))T (∂X,Y ) = (µX ⊗ ZT T (Y ))∂TX,TY T2(X, Y ). (5.1)

This invertible distributive law serves two purposes: it defines (via its inverse) a lift T̃ of
the Hopf monad T to CZT , and it also defines a structure of a Hopf monad DT = ZT ◦Ω T

on the endofunctor ZT T of C. The Hopf monad DT is called the double of T ; it is
quasi-triangular, so that CDT is braided, and we have a canonical braided isomorphism
K ′ : CDT

∼−→ Z(CT ).
Lastly, we have a commutative diagram of tensor functors

Z(CT )

ŨT

²²

K′

∼ // CDT

UDT //

Ũ

²²

CT

UT

²²ZŨT
(C) ∼

K
// CZT

UZT

// C.

If C is a finite tensor category over a field k, and T a k-linear right exact Hopf
monad on C, then CT is a finite tensor category and the forgetful functor UT : CT → C
is a tensor functor. Moreover, T is centralizable and ZT is a k-linear Hopf monad on C,
which is right exact (being an inductive limit of right exact functors) so ZT (C) ' CZT is
a finite tensor category and the forgetful functor ZT (C) → C is a tensor functor.

5.3. Proof of Theorem 3.6.
Let (E) be an exact sequence of finite tensor categories over a field k. Up to equiv-

alence, we may assume that (E) is of the form

〈A〉 −→ CT UT−→ C,
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where C is a finite tensor category, T is a k-linear right exact normal Hopf monad on C,
and A is the induced algebra of UT .

We are to show that the following assertions are equivalent:

( i ) T is cocommutative;
( ii ) (E) is a central exact sequence.

Our proof will rely on the following

Lemma 5.1. Let T be a centralizable Hopf monad on an rigid category C. Then the
induced central algebra (resp. coalgebra) of UT is the induced algebra (resp. coalgebra)
of ŨT .

Before we prove this lemma, let us show how it enables us to conclude. Consider
the tensor functor ŨT : Z(C) → ZT (C). It is dominant. Indeed UT is dominant by
assumption, which means that the unit of T is a monomorphism, and so is the unit of T̃

because it is a lift of T .
Moreover, ŨT is normal if and only if T is cocommutative. This can be seen as

follows. Denote by (Ĉ, σ̂) the induced central coalgebra of UT : CT → C, which is
also the induced coalgebra of ŨT by Lemma 5.1. We have T̃ (1) = ŨT (Ĉ, σ̂), and also
T (1) = Ĉ. In particular, ŨT is normal if and only if (Ĉ, σ̂) is trivial in ZT (C), that is
Ĉ is trivial in C (which is true because we have assumed T is normal) and σ̂ coincides
with the trivial half-braiding. The latter condition means that T is cocommutative by
Lemma 3.1.

Denote by A = (A, σ) the induced central algebra of UT , which is the right dual of
(Ĉ, σ̂). It is also the induced algebra of ŨT .

Now assume T is cocommutative. As we have just seen this means that ŨT is normal
and dominant, so we have an exact sequence of tensor categories

(E0) 〈A〉 −→ Z(C) ŨT−→ ZT (C).

Moreover, we have a morphism of exact sequences of tensor categories

〈A〉 //

V

²²

Z(CT ) //

U

²²

ZT (C)
W

²²
〈A〉 // CT // C

where U , V , W denote the forgetful functors. We have U(A) = A, so V is an equivalence
of categories, that is, (E) is central.

Conversely, assume (E) is central. That means that the forgetful functor induces a
tensor equivalence 〈A〉 → 〈A〉. Since A is self-trivializing, so is A. But by Lemma 5.1,
A is also the induced algebra of ŨT , so this tensor functor is normal by Lemma 2.1; and
as we have seen above, this implies that T is cocommutative. Thus, we have shown the
equivalence of (i) and (ii).
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Proof of Lemma 5.1. The induced (central) algebra being the dual of the in-
duced (central) coalgebra, it is enough to prove the assertion for coalgebras. Let L̃ denote
the left adjoint of Ũ . The induced coalgebra C̃ of ŨT is K−1L̃(1).

The functor Ũ is monadic, and its monad T̃ is the lift of T defined by the distributive
law Ω−1. This means that we have L̃(c, r) = (T (c), T (r)Ω−1

c ) for (c, r) in CZT . We also
have K−1(c, ρ) = ((c, r), s), where r = ρηZT Tc and s is the half-braiding defined by
s(x,r) = (r ⊗ ρZT (ηc))∂c,x for (x, r) in CT . As a result, C̃ = ((T1, µ1),Σ), where

Σ(c,r) = (r ⊗ T ((ZT )0)Ω−1
1 )∂T1,c.

On the other hand, we have Ĉ = (T (1), µ1), and the half-braiding σ̃ is characterized by
the fact that the following diagram commutes:

T1⊗ c
σ̂(c,r) // c⊗ T1

T1⊗ Tc

T1⊗r

OO

Tc
T2(c,1)

//

'
::uuuuuuuuu

T2(1,c)
oo

'
ddIIIIIIIII

Tc⊗ T1

r⊗T1

OO

so it is enough to verify: Σ(c,r)(T1⊗ r)T2(1, c) = (r ⊗ T1)T2(1, c). Now we have

Σ(c,r)(T1⊗ r)T2(1, c)

= (r ⊗ T ((ZT )0)Ω−1
1 )∂T1,c(T1⊗ r)T2(1, c)

= (rT (r)⊗ T ((ZT )0)Ω−1
1 )∂T1,T cT2(1, c) by functoriality of ∂

= (rµc ⊗ T ((ZT )0)Ω−1
1 )∂T1,T cT2(1, c)

= (rµc ⊗ T ((ZT )0))T2(Tc, ZT 1)T (∂1,c) by (5.1)

= (rT (r)⊗ T ((ZT )0))T2(Tc, ZT 1)T (∂1,c)

= (r ⊗ T1)T2(c,1)T ((r ⊗ (ZT )0)∂1,c) by functoriality of T2

= (r ⊗ T1)T2(c,1)T (rηc) by construction of (ZT )0

= (r ⊗ T1)T2(c,1).

This concludes the proof of the lemma. ¤

6. Tensor functors of small Frobenius-Perron index.

In this section we prove Theorems 6.1 and 6.2.

6.1. Tensor functors of Frobenius-Perron index 2.
Theorem 6.1. Let F : C → D be a dominant tensor functor between fusion cate-

gories over a field of characteristic 0. If FPind(C : D) = 2, then F is an equivariantiza-
tion associated with an action of Z2 on D.
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Proof. Let F : C → D be a dominant tensor functor of Frobenius-Perron index
2 between fusion categories. By [3, Proposition 4.13], F is normal and so it induces an
exact sequence of fusion categories

repZ2 → C F→ D. (6.1)

Now let A = (A, σ) be the induced central algebra of F . We have FPdimA =
FPdimA = 2 by Lemma 2.11. Since A contains the unit object, we have A = 1 ⊕ S,
with S invertible. By Proposition 4.5, F is an equivariantization relative to an action of
Z2. This concludes the proof of the theorem. ¤

6.2. Tensor functors of small prime Frobenius-Perron index.
Theorem 6.2. Let F : C → D be a dominant tensor functor between fusion cat-

egories over a field of characteristic 0. Assume that FPdim C is a natural integer, and
that FPind(C : D) is the smallest prime number dividing FPdim C. Then F is an equiv-
ariantization associated with an action of Zp on D.

Proof. Assume C is a weakly integral fusion category and let p be the smallest
prime factor of FPdim C. Consider a dominant tensor functor F : C → D, where D is a
fusion category, such that FPind(C : D) = p.

Recall that a fusion category is integral if its objects all have integral Frobenius-
Perron dimension. If C is not integral, then by [8, Theorem 3.10] it is Z2-graded, and so
FPdim C is even. Thus p = 2, and so Theorem 6.1 applies and we are done.

From now on we assume that C is integral. Then Z(C) is also an integral fusion
category. Let A = (A, σ) be the induced central algebra of F . We have FPdimA =
FPdimA = FPind(C : D) = p. Let us decompose A as a direct sum of simple objects of
Z(C):

A = W1 ⊕ · · · ⊕Wr. (6.2)

We have r ≥ 2 because A is not simple (it contains the unit object), so the Frobenius-
Perron dimension of Wi is an integer < p for all i.

The center Z(C) is a non-degenerate braided fusion category. According to [7,
Theorem 2.11] (i), (FPdimWi)2 divides FPdimZ(C) = (FPdim C)2, and so FPdimWi

divides FPdim C. We have FPdimWi = 1, because p is by assumption the smallest prime
divisor of FPdim C, and so Wi is invertible in Z(C).

This implies that A belongs to Z(C)pt. By Theorem 2.9, we have an exact sequence

repZp → C F→ D. (6.3)

which is central, and by Theorem 3.5, it is an equivariantization exact sequence. This
concludes the proof of the theorem. ¤
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6.3. Fusion subcategories of index 2 are not always normal.
Let C be a fusion category. A full fusion subcategory D ⊂ C is normal in C (see [3])

if the inclusion D ⊂ C extends to an exact sequence of fusion categories D → C → C′′. In
that case we have FPdim C′′ = FPdim C/FPdimD.

If D is a full fusion subcategory of C then the ratio FPdim C/FPdimD is an alge-
braic integer (see [6, Proposition 8.15]). If C is weakly integral, so is D, and therefore
FPdim C/FPdimD is a natural integer.

Is it true that if C is weakly integral and FPdim C/FPdimD is the smallest prime
number dividing FPdim C, then D is normal in C? We show that even for p = 2 such
is not the case, by exhibiting counterexamples in Tambara-Yamagami categories (see
Section 2.6).

Proposition 6.3. Let C be a Tambara-Yamagami category. Then we have

FPdim C
FPdim Cpt

= 2,

but Cpt is not normal in C if the order of the Picard group of C is not a square.

Proof. Let Γ = Pic(C) and denote by X the simple non-invertible object of C.
We have X ⊗X ' ∑

g∈Γ g, so FPdimX =
√
|Γ]. We have Cpt = 〈Γ〉, and

FPdim C
FPdim Cpt

=
2|Γ|
|Γ| = 2.

Now assume assume that |Γ| is not a square. Then C is not integral because FPdimX is
not an integer. We conclude by the following lemma.

Lemma 6.4. Let C be a fusion category and let D ⊂ C be a normal fusion subcate-
gory such that FPdim C/FPdimD is prime. Then C is integral.

Proof. Consider the exact sequence of fusion categories D −→ C F−→ C′′ coming
from the fact that D is normal in C. We have FPdim C′′ = p. By [6, Corollary 8.30], C′′
admits a quasi-fiber functor ω : C′′ → vectk. Then C admits a quasi-fiber functor ωK,
and therefore C is integral. ¤

A contrario the lemma shows that Cpt is not normal in C. ¤

Proposition 6.5. Let C be a Tambara-Yamagami category with Picard group of
prime order. Then C is a simple fusion category.

Proof. Assume we have an exact sequence of fusion categories D → C → C′′.
Since C contains a simple object of Frobenius-Perron dimension

√
p, it is not integral.

Consequently C′′ admit no quasi-fiber functor. In particular FPdim(C′′) is neither 1 nor
a prime number. Therefore FPdim(C′′) = 2p, and D is trivial. Hence C is simple. ¤
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Université Montpellier II

Place Eugène Bataillon

34 095 Montpellier, France

E-mail: bruguier@math.univ-montp2.fr

Sonia Natale

Facultad de Matemática
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