
c©2014 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 66, No. 1 (2014) pp. 223–245
doi: 10.2969/jmsj/06610223

Feynman-Kac penalization problem for additive functionals

with jumping functions

By Masakuni Matsuura

(Received Mar. 17, 2012)
(Revised Apr. 24, 2012)

Abstract. Takeda ([30]) solved the Feynman-Kac penalization problem
for positive continuous additive functionals. We extend his result to additive
functionals with jumps. We further give concrete examples of jumping func-
tions.

1. Introduction.

Let X := (Ω,M,Mt,Px, {Xt}t≥0)x∈Rn be a symmetric α-stable process (0 < α < 2)
and let At be an additive functional of X. We call the next problems the Feynman-Kac
penalization problem.

( i ) Does there exist a probability measure P̃x such that

lim
t→∞

Ex[eAtS]
Ex[eAt ]

=
∫

SdP̃x

for every x ∈ Rn, every s ≥ 0, and every bounded S ∈Ms?
( ii ) Does there exist a martingale M by which the limit distribution P̃x is determined:

dP̃x = MsdPx?

Roynette, Vallois, and Yor considered the Feynman-Kac penalization problem of one
or two dimensional Brownian motions ([22], [23], and [25]). K. Yano, Y. Yano, and Yor
solved that of one dimensional recurrent symmetric α-stable processes ([35]) (1 < α ≤ 2).
Though the previous results treated the case that Feynman-Kac functionals are killing,
we deal with Feynman-Kac functionals with creation.

Takeda solved the Feynman-Kac penalization problem for eAµ
t ([30]), where Aµ

t is a
positive continuous additive functional (PCAF, as an abbreviation) with Revuz measure
µ which is Green-tight. We consider this problem in the case that symmetric jumps are
added to Aµ

t :

Aµ,F
t := Aµ

t +
∑

0<u≤t

F (Xu−, Xu),
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where F is a bounded measurable positive symmetric function.
The Feynman-Kac multiplicative functional (MF, as abbreviation) eAµ,F

t is non-local.
We decompose this non-local Feynman-Kac MF as the product of an exponential type

martingale Lt and the local Feynman-Kac MF eA
µ+µF1
t :

eAµ,F
t = Lte

A
µ+µF1
t . (1)

Here,

Lt := exp
( ∑

0<s≤t

F (Xs−, Xs)− cα,n

∫ t

0

∫
F1(Xs, y)|Xs − y|−(α+n)dyds

)
,

µF1(dx) := cα,n

{ ∫

Rn

F1(x, y)|x− y|−(n+α)dy

}
dx,

F1 := eF − 1 and cα,n is a positive constant. We assume that µF1 is a Green-tight Kato
measure. We then transform the symmetric α-stable process X by the martingale MF Lt

and denote by Y the transformed process. The Dirichlet form of the transformed process
Y is given by

EY (u, u) =
cα,n

2

∫

dc

(u(x)− u(y))2eF (x,y)|x− y|−(α+n)dxdy,

where d is the diagonal set, that is, d := {(x, x);x ∈ Rn}. We then see that the Lévy
kernel of the transformed process is equivalent to that of the symmetric stable process:
it holds

c−1|x− y|−(α+n) ≤ eF (x,y)|x− y|−(α+n) ≤ c|x− y|−(α+n)

for some c > 1. This implies the equivalence of transition probabilities (Bass and Levin
([3])). Thus Kato classes are invariant under the transform by Lt.

We define the function λ(θ) for θ ≥ 0 by

λ(θ) := inf
{
EY

θ (u, u);
∫

u(x)2d(µ + µF1) = 1
}

.

We see by the definition that λ(θ) is increasing and concave and satisfies limθ→∞ λ(θ) =
∞. We denote the generator of the transformed process Y by LY : let

LY u(x) := lim
t→0

EL
x [u(Yt)]− u(x)

t
, (2)

where dPL
x := LtdPx. Note that EY (u, u) = (−LY u, u). We divide cases in terms of the

value of λ(0): if λ(0) > 1, λ(0) < 1, and λ(0) = 1, then LY + µ + µF1 is said to be
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subcritical, supercritical, and critical respectively.

(a) λ(0) > 1: We define

h(x) := EL
x

[
eA

µ+µF1∞
]
.

Z.-Q. Chen proved that the boundedness of h(x) is equivalent to λ(0) > 1. We change
his proof by using the equivalence of β-resolvent kernel of X and Y . The weight process
Ms is identified with

Ms :=
h(Xs)
h(x)

eAµ,F
s .

We treat this case in Section 4.

(b) λ(0) < 1: Since there exists θ0 > 0 such that λ(θ0) = 1 and µ and µF1 are in the
Green-tight Kato class, the embedding of D[EY ](= D[E ]) into L2(µ + µF1) is compact
so that we can take a positive function h in D[E ] such that EY

θ0
(h, h) = 1. We use the

limit theorem of Feynman-Kac MFs like [30, Theorem 4.1] in the supercritical case. The
weight process is then given by

Ms := e−θ0s h(Xs)
h(x)

eAµ,F
s .

We treat this case in Section 5.

(c) λ(0) = 1: We use the compact embedding theorem of the extended Dirichlet
form De[EY ] into L2(µ+µF1) by Takeda and Tsuchida ([33, Theorem 10]). This implies
the existence of a positive function h in De[EY ](= De[E ]) such that EY (h, h) = 1. We
then obtain a h-transformed process (PL,h

x , Yt, h
2dx)x∈Rn and see that the semigroup of

this process becomes recurrent. The function

ψ(t) := EL,h
x

[ ∫ t

0

k(Yu)du

]
, k ∈ C+

0 (Rn)

diverges to infinity as t →∞ and EL,h
x [eA

µ+µF1
t S]/ψ(t) and EL,h

x [eA
µ+µF1
t ]/ψ(t) converge

only if µ and µF1 are in the special Kato class. Then the problem is solved for a restricted
class of Feynman-Kac MFs. The weight process of the critical case is given by

Ms :=
h(Xs)
h(x)

eAµ,F
s .

We treat this case in Section 6.
Let A (resp. As) be the set of jumping functions such that µF is in the Green-tight

Kato class (resp. the special Kato class). The conditions that F ∈ A or F ∈ As are then
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analytically characterized. We have used the equivalence of transition probabilities of
X and Y instead of the conditional gaugeability to solve the Feynman-Kac penalization
problem. Since the condition F ∈ A2 (see [7, Definition 2.3] for the definition of A2) is
needed for the conditional gaugeability, we then see A ⊃ A2. Furthermore, there exists a
jumping function with a full support in A. For example, F ∈ A and F has a full support
if the jumping function is

F (x, y) := (1 ∧ |x− y|p)〈x〉−q〈y〉−q for p > α and q > n, (3)

where 〈·〉 :=
√

1 + | · |2. If we further assume q > 2n− α in this example, then F ∈ As.
In Section 2, we prepare for fundamental notations related to Green functions and

Kato classes to describe our main results. In Section 3, we show the decomposition (1)
of eAµ,F

t , the equivalence of transition probabilities of X and Y , and the invariance of
Kato classes under the transform by Lt. We solve our problem in Sections 4, 5, and 6 in
the subcritical, supercritical, and critical case respectively. In Section 7, we check that
F ∈ A or F ∈ As for the functions F described by (3).

2. Preliminaries.

Let X be a symmetric α-stable process (0 < α < 2). The Dirichlet form of X is
given by

E(u, u) :=
cα,n

2

∫

dc

|u(x)− u(y)|2
|x− y|α+n

dxdy,

D[E ] :=
{

u ∈ L2(Rn, dx);
∫

dc

|u(x)− u(y)|2
|x− y|α+n

dxdy < ∞
}

,

where cα,n is given by

cα,n :=
α2n−1Γ((α + n)/2)
πn/2Γ(1− (α/2))

. (4)

It is well known that Lévy system of the symmetric stable process Xt is (cα,n|x −
y|−(n+α), t). Note that the Revuz measure of t is the Lebesgue measure (see [7, Example
2.1] for further details). Let Aµ

t be a PCAF with the corresponding Revuz measure µ

and let F be a bounded measurable positive symmetric function vanishing on diago-
nal set throughout this paper. We consider following additive functionals (AFs, as an
abbreviation) with symmetric jumps

Aµ,F
t := Aµ

t +
∑

0<s≤t

F (Xs−, Xs).

We define (β-)resolvent kernels, (β-)potentials, and Kato classes.
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Definition 2.1. Let p(t, x, y) be the transition probability of the symmetric α-
stable process X. The following function Gβ(x, y) is said to be β-resolvent kernel.

Gβ(x, y) :=
∫ ∞

0

e−βtp(t, x, y)dt for β ≥ 0.

We write

G(x, y) := G0(x, y)

if the process X is transient. Let µ be a positive Radon measure. We denote the β-
potential of µ by Gβµ, that is,

Gβµ(x) :=
∫

Rn

Gβ(x, y)µ(dy) for β ≥ 0.

Definition 2.2. A positive Radon measure µ on Rn is said to be in the Kato class
K if it satisfies

lim
β→∞

‖Gβµ‖∞ = 0.

Given β ≥ 0, a measure µ ∈ K is said to be in β-Green-tight Kato class if

lim
R→∞,r→0

‖Gβ(1B(0,R)c∪B(x,r)µ)‖∞ = 0.

We denote by K∞,β the set of β-Green-tight measures. We write K∞ for K∞,0 simply
and call this Green-tight Kato class.

It follows from the definition of K∞,β that K∞ ⊂ K∞,1 and K∞, β = K∞,1 for all
β > 0.

We define a measure

µF (dx) := cα,n

{ ∫

Rn

F (x, y)|x− y|−(α+n)dy

}
dx. (5)

We define the class A of jumping functions. This class plays an important role in our
results.

Definition 2.3. The function F is said to be in the class A if µF ∈ K∞ (resp.
µF ∈ K∞,1) for n > α (resp. n ≤ α).

Our goal is to obtain the next theorem.

Theorem 2.4. Assume that the Revuz measure µ is in Kato class K∞ (resp. K∞,1)
for n > α (resp. n ≤ α) and that the function F1 := eF − 1 belongs to the class A. Then
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there exists a probability measure PM
x such that it holds

lim
t→∞

Ex[eAµ,F
t S]

Ex[eAµ,F
t ]

= EM
x [S]

for every s ≥ 0, every bounded Ms-measurable random variable S, and every x ∈ Rn.
Moreover, the limit distribution PM

x is characterized as

PM
x [A] :=

∫

A

MsdPx for A ∈Ms,

where Ms is a martingale MF defined in (9), (12), and (15) below.

Here and in what follows, we let F1 = eF − 1 without mentioning.

3. Decomposition of non-local Feynman-Kac MF.

In this section, to employ the result for local Feynman-Kac functionals we decom-
pose a non-local Feynman-Kac MF as the product of a local Feynman-Kac MF and an
exponential martingale.

We define an exponential martingale Lt by

Lt = exp
( ∑

0<u≤t

F (Xu−, Xu)− cα,n

∫ t

0

∫

Rn

F1(Xu, y)|Xu − y|−(n+α)dydu

)
.

This is the unique solution of Doléans-Dade equation

Zt = 1 +
∫ t

0

Zu−dKu,

where Kt is a purely discontinuous martingale defined by

Kt :=
∑

0<u≤t

F1(Xu−, Xu)− cα,n

∫ t

0

∫

Rn

F1(Xu, y)|Xu − y|−(n+α)dydu

(see [8, Remark 3.4]). We thus obtain

eAµ,F
t = eAµ

t

∏

0<u≤t

(1 + F1(Xu−, Xu))

= Lt exp
(

Aµ
t + cα,n

∫ t

0

∫

Rn

F1(Xu, y)|Xu − y|−(n+α)dydu

)

= Lte
A

µ+µF1
t .
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Note that t 7→ cα,n

( ∫ t

0

∫
Rn F1(Xu, y)|Xu − y|−(n+α)dydu

)
is a PCAF and its Revuz

measure is µF1 as in the formula (5). We transform the symmetric stable process X by
the martingale MF Lt and denote its law by PL

x , that is, dPL
x := LtdPx. We further

denote the associated symmetric strong Markov process by (PL
x , Yt)x∈Rn . The Dirichlet

form EY of the process Y is identified as follows (see also [7]):

EY (u, u) = E(u, u) +
cα,n

2

∫

dc

(u(x)− u(y))2F1(x, y)|x− y|−(n+α)dydx

=
cα,n

2

∫

dc

(u(x)− u(y))2eF (x,y)|x− y|−(n+α)dydx.

Recall that F is bounded. We then find that the Lévy kernel of Y is equivalent to that
of X, that is,

c−1|x− y|−(n+α) ≤ eF (x,y)|x− y|−(n+α) ≤ c|x− y|−(n+α) (6)

for some c > 1. We then see from Bass and Levin ([3]) that the transition probability of
Y is equivalent to that of X.

Theorem 3.1 ([3]). If the Lévy kernel of Y satisfies (6), then the transition prob-
ability pY is also equivalent to p : it holds

c−1p(t, x, y) ≤ pY (t, x, y) ≤ cp(t, x, y) (7)

for some c > 1, every t ≥ 0, and every x, y ∈ Rn.

In the sequel, we denote positive constants by c or C. They may be different at each
occurrence.

Theorem 3.1 implies the equivalence of the β-resolvent kernel of X and Y .

Corollary 3.2. Let GY (resp. GY
β ) be the Green function (resp. the β-resolvent

kernel) of Y . It then holds

c−1Gβ(x, y) ≤ GY
β (x, y) ≤ cGβ(x, y) for every x, y ∈ Rn and some c > 1.

For the rest part of this section, if the process X is transient (resp. recurrent), then
we assume that µ ∈ K∞ (resp. µ ∈ K∞,1) and F1 ∈ A.

We define the spectral function λ(θ) by the transformed Dirichlet form EY .

λ(θ) := inf
{
EY

θ (u, u);
∫

Rn

u(x)2d(µ + µF1) = 1
}

for θ ≥ 0, (8)

where EY
θ (·, ·) := EY (·, ·) + θ(·, ·)L2(dx). We here summarize some properties of the

spectral function.
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Theorem 3.3. ( i ) λ(θ) is concave (and hence continuous) and increasing.
( ii ) limθ→∞ λ(θ) = ∞.

Proof. (i) follows just as [30, Lemma 3.1]. Note that it holds

∫

Rn

u(x)2d(µ + µF1) ≤ ‖GY
θ (µ + µF1)‖∞EY

θ (u, u)

for all u ∈ D[E ] (see [29, Proposition 2.3]). It then follows that

λ(θ) ≥ 1
‖GY

θ (µ + µF1)‖∞
.

Since GY
θ (µ + µF1) is equivalent to Gθ(µ + µF1) and so ‖GY

θ (µ + µF1)‖∞ → 0 as θ →∞,
we complete the proof of (ii). ¤

Since the transformed Dirichlet form of Y is equivalent to that of X, we obtain
the compact embedding of the domain of Dirichlet forms into L2(µ + µF1) (Takeda and
Tsuchida [33]).

Theorem 3.4. ( i ) If µ ∈ K∞, F1 ∈ A and EY is transient, then the embedding
of De[EY ] into L2(µ+µF1) is compact, where (De[EY ], EY ) is the extended Dirichlet
form.

( ii ) If µ ∈ K∞,1 and F1 ∈ A, then the embedding of D[EY ] into L2(µ+µF1) is compact.

Proof. Note that if EY is transient then (De[EY ], EY ) is a Hilbert space whose
norm is

√
EY (·, ·). One can prove this by imitating the proofs of [33, Theorem 10] and

[31, Theorem 2.7]. ¤

We will divide the following three cases in terms of the value of λ(0). If λ(0) > 1,
λ(0) < 1, and λ(0) = 1, then we call LY + µ + µF1 subcritical, supercritical, and critical
respectively. LY is the generator defined by the formula (2) of the process Y .

Remark 3.5. The formula (8) implies

λ(0)
∫

Rn

u(x)2d(µ + µF1) ≤ EY (u, u)

for all u ∈ D[E ]. The recurrence of the semigroup associated with Y implies the existence
of {un}n≥1(⊂ D[E ]) such that limn→∞ E(un, un) = 0 and limn→∞ un = 1 a.e. by [13,
Theorem 1.6.3 (i)(ii)], that is, 1 ∈ De[E ] from [13, Theorem 1.6.3 (iii)]. [13, Theorem
2.1.7] then yields the last “a.e.” can be replaced by “q.e.” If λ(0) > 0 then the last
inequality causes contradiction as n → ∞. Therefore, we find that if the process Y is
recurrent then λ(0) = 0.
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4. Subcritical cases.

We use the gaugeability of (Y, Aµ+µF1 ) in the subcritical case. One can modify the
proof of ([7, Theorem 3.4]) by using the equivalence of the β-resolvent kernel of X and
Y . This modification is needed for the extension of the class of jumping functions.

Theorem 4.1. Assume that µ ∈ K∞ and F1 ∈ A. The following three conditions
are equivalent.

( i ) λ(0) > 1
( ii ) (X, Aµ,F ) is gaugeable, that is, the function x 7→ Ex[eAµ,F

∞ ] is bounded.

(iii) (Y, Aµ+µF1 ) is gaugeable, that is, the function x 7→ EL
x [eA

µ+µF1∞ ] is bounded.

In the subcritical case, we define the function h by

h(x) := EL
x

[
eA

µ+µF1∞
]
.

We now solve the Feynman-Kac penalization problem in the subcritical case. We have
only to consider the following ratio.

Ex[eAµ,F
t |Ms]

Ex[eAµ,F
t ]

=
Ex[eAµ,F

s · (eAµ,F
t−s ◦ θs)|Ms]

Ex[eAµ,F
t ]

=
eAµ,F

s Ex[eAµ,F
t−s ◦ θs|Ms]

Ex[eAµ,F
t ]

=
eAµ,F

s EXs
[eAµ,F

t−s ]

Ex[eAµ,F
t ]

= Ls

eA
µ+µF1
s EL

Xs
[eA

µ+µF1
t−s ]

EL
x [eA

µ+µF1
t ]

.

Letting t →∞,

lim
t→∞

Ex[eAµ,F
t |Ms]

Ex[eAµ,F
t ]

= Ls
eA

µ+µF1
s h(Xs)

h(x)
.

The problem is solved in this case by setting Ms as follows:

Ms :=
eAµ,F

s h(Xs)
h(x)

. (9)

Remark 4.2. Let P
µ+µF1
t be the Feynman-Kac semigroup.
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P
µ+µF1
t f(x) = EL

x

[
eA

µ+µF1
t f(Yt)

]
. (10)

Let Lµ+µF1 be the generator of P
µ+µF1
t . We may regard the above h as a harmonic

function such that Lµ+µF1 h(x) = 0. Indeed, the Markov property implies

h(x) = EL
x

[
eA

µ+µF1
t EL

x

[
eA

µ+µF1∞ ◦ θt|Mt

]]

= EL
x

[
eA

µ+µF1
t E

µ+µF1
Yt

[
eA

µ+µF1∞
]]

= EL
x

[
eA

µ+µF1
t h(Yt)

]

= P
µ+µF1
t h(x)

so that we obtain

Lµ+µF1 h(x) = lim
t→0

P
µ+µF1
t h(x)− h(x)

t
= 0.

5. Supercritical cases.

If the process X is transient (resp. recurrent) then we assume µ ∈ K∞ (resp.
µ ∈ K∞,1) and F1 ∈ A. Since λ(0) < 1, there exists θ0 > 0 such that λ(θ0) = 1. We then
see the asymptotic behavior of Ex[eAµ,F

t ] by using the next theorem.

Theorem 5.1. Suppose that the process X is transient (resp. recurrent). If µ ∈
K∞ (resp. µ ∈ K∞,1) and F1 ∈ A, then there exists a positive function h ∈ L2(µ + µF1)
and θ0 > 0 such that λ(θ0) = 1, EY

θ0
(h, h) = 1, and

lim
t→∞

e−θ0tEx

[
eAµ,F

t
]

= h(x)
∫

Rn

h(x)dx.

Proof. The existence of θ0 > 0 immediately follows from Theorem 3.3. It is
trivial that if both µ and µF1 are in K∞ (resp. K∞,1) then µ + µF1 is also a member of
K∞ (resp. K∞,1).

The compactness of the embedding from D[E ] into L2(µ + µF1) (see [31, Theorem
2.7]) implies the existence of the function h ∈ L2(µ+µF1). In particular, if X is transient
then the uniform boundedness principle implies the existence of h ∈ L2(µ + µF1) since
(EY

θ0
,D[E ]) is a Hilbert space. Applying Lemma 5.2 stated below with g = 1/h completes

the proof. Note that h is in L1(dx). ¤

Lemma 5.2. (i) Let µ ∈ K∞,1 and let h be the function given in the proof of
Theorem 5.1. Then it holds

∫

Rn

ph(t, x, y)qh(y)2dy < ∞
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for every t ≥ 0, every x ∈ Rn, and all q > 1. Here, ph is the heat kernel given by

ph(t, x, y) = e−θ0t p
µ+µF1 (t, x, y)
h(x)h(y)

(11)

and pµ+µF1 is the heat kernel of the Feynman-Kac semigroup defined in (10).
(ii) Let µ ∈ K∞,1, let h be the function as in (i) and let Ph

t be a semigroup whose
heat kernel is ph. Then it holds

lim
t→∞

Ph
t g(x) =

∫

Rn

g(x)h(x)2dx

for all x ∈ Rn, all g ∈ Lp(h2dx), and all p > 1.

Proof. (i) Note that h is a harmonic function of the equation.

(LY + µ + µF1)h(x) = θ0h(x).

Since µ + µF1 ∈ K∞,1, [31, Lemma 4.1] implies that it holds

c|x|−(n+α) ≤ h(x) ≤ C|x|−(n+α)/q1

for all 1 < q1 < 2 and all |x| > 1. We also find the upper bound of the heat kernel pµ+µF1

off the diagonal set:

pµ+µF1 (t, x, y) ≤ c|x− y|−(n+α)/q2

for all q2 > 1 and every t > 0 from [31, Lemma 4.3]. Combining the last two results,
we find Lq(h2dx)-integrabiilty of the heat kernel ph if we take q1 and q2 close to 1. (ii)
Take g ∈ Lp(h2dx) arbitrarily. The maximal ergodic theorem follows from [31, Lemma
4.5] since µ + µF1 ∈ K∞,1.

∥∥∥∥ sup
t>0

Ph
t g

∥∥∥∥
Lp(h2dx)

≤ Cp‖g‖Lp(h2dx).

This implies supt>0 Ph
t g(x) < ∞. Thus we have the desired result

lim
t→∞

Ph
t g(x) =

∫

Rn

g(x)h(x)2dx

for every x ∈ Rn. ¤

We now solve the Feynman-Kac penalization problem in the supercritical case. Using
Theorem 5.1, we find
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Ex[eAµ,F
t |Ms]

Ex[eAµ,F
t ]

=
Ex[e−θ0teAµ,F

t |Ms]

Ex[e−θ0teAµ,F
t ]

=
e−θ0seAµ,F

s Ex[e−θ0(t−s)eAµ,F
t−s ◦ θs|Ms]

Ex[e−θ0teAµ,F
t ]

=
e−θ0seAµ,F

s {e−θ0(t−s)EXs
[eAµ,F

t−s ]}
e−θ0tEx[eAµ,F

t ]
.

Letting t →∞, we obtain

lim
t→∞

Ex[eAµ,F
t |Ms]

Ex[eAµ,F
t ]

=
e−θ0seAµ,F

s h(Xs)
∫
Rn h(x)dx

h(x)
∫
Rn h(x)dx

=
e−θ0seAµ,F

s h(Xs)
h(x)

.

Scheffe’s lemma implies that the above convergence is in L1(Px). The weight process Ms

is given by

Ms :=
e−θ0seAµ,F

s h(Xs)
h(x)

. (12)

6. Critical cases.

We use Chacon-Ornstein type ergodic theorem to solve the Feynman-Kac penaliza-
tion problem in this case. We have to treat a subclass of the Green-tight Kato class to
use this theorem.

Note that the extended Dirichlet space De[E ] is a Hilbert space (see [13, Lemma
1.5.5]). We further see that the embedding of De[E ] into L2(µ + µF1) is also compact
by [33, Theorem 10]. Then we obtain a harmonic function in De[E ]. We weight the
probability measure by an exponential martingale Lt and the harmonic function h:

dPL,h
x := NtdPL

x , Nt :=
h(Yt)
h(x)

eA
µ+µF1
t .

Hereafter, we consider the Markov process (Ω,M,Mt,PL,h
x , Yt), or ML,h for short.

We define the special Kato class.

Definition 6.1. ( i ) Let µ be a measure of Kato class K. µ is said to be in the
special Kato class if it holds

sup
x∈Rn

|x|n−α

∫

Rn

|x− y|α−nµ(dy) < ∞.

We denote this class by Ks.
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( ii ) A PCAF A is said to be special with respect to ML,h, if it holds

sup
x∈Rn

EL,h
x

[ ∫ ∞

0

exp
(
−

∫ t

0

g(Xu)du

)
dAt

]
< ∞

for any positive Borel function g with
∫

Rn g(x)dx > 0.

Definition 6.2. A bounded measurable symmetric positive function F vanishing
on the diagonal set is said to be in the class As if µF is in Ks.

For the rest part of this section, we assume µ ∈ Ks and F1 ∈ As. One can easily
check the following properties.

Lemma 6.3. ( i ) Ks is the subset of K∞.
( ii ) µ + µF1 is also a member of Ks.

Proof. See [30, Section 4] about (i). Noting G(x, y) = cα,n|x − y|α−n, (ii) also
immediately follows the equivalence of Green function G and the transformed Green
function GY . ¤

One can prove the following lemmas just as in [30, Section 4].

Lemma 6.4. For all PCAFs B, it holds

EL
x

[ ∫ t

0

eA
µ+µF1
u −BudAu

]
= h(x)EL,h

x

[ ∫ t

0

e−Bu
dA

µ+µF1
u

h(Yu)

]

for every x ∈ Rn and t ≥ 0.

Lemma 6.5.
∫ t

0
(1/h(Yu))dA

µ+µF1
u is special with respect to ML,h if F1 ∈ As.

Proof. See the proof of [30, Lemma 4.3] and [30, Lemma 4.4]. ¤

By using Lemma 6.4,

EL
x

[
eA

µ+µF1
t

]
= 1 + EL

x

[ ∫ t

0

eA
µ+µF1
u dA

µ+µF1
u

]
= 1 + h(x)EL,h

x

[ ∫ t

0

dA
µ+µF1
u

h(Yu)

]
.

Integrating by an arbitrary finite positive measure ν, we see

EL
ν

[
eA

µ+µF1
t

]
= ν(Rn) + 〈ν, h〉EL,h

νh

[ ∫ t

0

dA
µ+µF1
u

h(Yu)

]
, (13)

where νh := (h · ν)/〈ν, h〉 and 〈ν, h〉 :=
∫
Rn h(x)dν.

We define a function ψ as follows.
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ψ(t) := EL,h
x

[ ∫ t

0

k(Yu)du

]
, (14)

where k is an arbitrary continuous and positive function with a compact support. We
here give some properties of the function ψ.

Lemma 6.6. Let ψ be as in (14).

( i ) limt→∞ ψ(t) = ∞.
( ii ) For every s > 0 it holds

lim
t→∞

ψ(t + s)
ψ(t)

= 1.

Proof. Let Ghk(y) :=
∫
Rn Gh(y, z)k(z)h2(z)dz and Gh(y, z) :=

∫∞
0

ph(t, y, z)dt

for every y, z ∈ Rn, where ph is the heat kernel given by the formula (11). The recurrence
ofML,h implies Ghk(y) = ∞ h2dy-a.e. We then obtain (i): The Markov property implies

ψ(t) ≥ EL,h
x

[ ∫ t

1

k(Yu)du

]

= EL,h
x

[
EL,h

x

[(∫ t−1

0

k(Yu)du

)
◦ θ1

∣∣∣∣M1

]]

= EL,h
x

[
EL,h

Y1

[ ∫ t−1

0

k(Yu)du

]]

=
∫

Rn

ph(1, x, y)
∫

Rn

∫ t−1

0

ph(u, y, z)duk(z)h2(z)dzh2(y)dy

→
∫

Rn

ph(1, x, y)Ghk(y)h2(y)dy

= ∞

as t →∞. Combining (i) and the boundedness of k, we see that (ii) follows. ¤

We quote Chacon-Ornstein type ergodic theorem.

Theorem 6.7 ([4]). Let ν1 and ν2 be arbitrary probability measures and let Bt and
Ct be special PCAFs with respect to ML,h. Suppose

∫ t

0
f(Yu)dBu and

∫ t

0
g(Yu)dCu are

special PCAFs with respect to ML,h. It then holds

lim
t→∞

EL,h
ν1

[ ∫ t

0
f(Yu)dBu

]

EL,h
ν2

[ ∫ t

0
g(Yu)dCu

] =
〈h2µB , f〉
〈h2µC , g〉

for arbitrary bounded positive Borel-measurable functions f and g. Here, µB and µC are
Revuz measures corresponding to Bt and Ct respectively.
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Now, we solve the Feynman-Kac penalization problem in the critical case. Using
the formula (13), Lemma 6.6, and Theorem 6.7,

lim
t→∞

EL
ν [eA

µ+µF1
t ]

ψ(t)
= lim

t→∞
ν(Rn)
ψ(t)

+ 〈ν, h〉E
L,h
νh

[ ∫ t

0
(1/h(Yu))dA

µ+µF1
u

]

EL,h
x

[ ∫ t

0
k(Yu)du

]

= lim
t→∞

〈ν, h〉E
L,h
νh

[ ∫ t

0
(1/h(Yu))dA

µ+µF1
u

]

EL,h
x

[ ∫ t

0
k(Yu)du

]

= 〈ν, h〉 〈µ + µF1 , h〉
〈h2dx, k〉 .

We set a finite positive measure ν for every B ∈ Bn as follows:

ν(B) := EL
x

[
eA

µ+µF1
s S;Ys ∈ B

]
.

Note that the Markov property implies

EL
x

[
eA

µ+µF1
t S

]
= EL

x

[
eA

µ+µF1
s SEL

x

[
eA

µ+µF1
t−s ◦ θs|Ms

]]

= EL
x

[
eA

µ+µF1
s SEL

Ys

[
eA

µ+µF1
t−s

]]

= EL
ν

[
eA

µ+µF1
t−s

]
.

Lemma 6.6 and Theorem 6.7 yield

lim
t→∞

Ex[eAµ,F
t S]

Ex[eAµ,F
t ]

= lim
t→∞

EL
x [eA

µ+µF1
t S]

EL
x [eA

µ+µF1
t ]

= lim
t→∞

EL
x [eA

µ+µF1
t S]/ψ(t)

EL
x [eA

µ+µF1
t ]/ψ(t)

= lim
t→∞

{EL
ν [eA

µ+µF1
t−s ]/ψ(t− s)} · {ψ(t− s)/ψ(t)}

EL
x [eA

µ+µF1
t ]/ψ(t)

=
{〈ν, h〉〈µ + µF1 , h〉}/〈h2dx, k〉
{〈δx, h〉〈µ + µF1 , h〉}/〈h2dx, k〉

=
〈ν, h〉
h(x)

.

Rewriting the last limit, we completely solve the problem.
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〈ν, h〉
h(x)

=
EL

x [eA
µ+µF1
s h(Ys)S]
h(x)

= Ex

[
Ls

eA
µ+µF1
s h(Xs)

h(x)
S

]

= Ex[MsS]

= EM
x [S].

Here, the weight process Ms is as follows:

Ms :=
eAµ,F

s h(Xs)
h(x)

. (15)

Remark 6.8. SinceML,h is an irreducible recurrent h2dx-symmetric right process,
the ergodic theorem yields

lim
t→∞

ψ(t)
t

=

{〈h2dx, k〉 if h ∈ L2(Rn, dx)

0 if h 6∈ L2(Rn, dx).

We see that h ∈ L2(Rn, dx) (positive critical) if and only if n > 2α and h 6∈ L2(Rn, dx)
(null critical) if and only if α < n ≤ 2α, since c−1|x|α−n ≤ h(x) ≤ c|x|α−n for all |x| > 1.
Consequently, we see the asymptotic behavior of the non-local Feynman-Kac semigroup
Pµ,F

t f(x) := Ex[eAµ,F
t f(Xt)]:

Pµ,F
t 1(x)





∼ Ex[eAµ,F
∞ ] if λ(0) > 1

∼
(

h(x)
∫

Rn

h(x)dx

)
eθ0t if λ(0) < 1

∼
(

h(x)
∫

Rn

h(x)d(µ + µF1)
)

t if λ(0) = 1 and n ≥ 2α

= o(t) if λ(0) = 1 and α < n ≤ 2α

as t →∞. We further see the growth of Lp-spectral bounds for all 1 ≤ p ≤ ∞ (see [32,
Theorem 5.6]). Let lp := − limt→∞(1/t) log ‖Pµ,F

t ‖p,p. Then

lp =

{
0 if λ(0) ≥ 1

−θ0 if λ(0) < 1.

This implies that our definition of (sub-, super-)criticality corresponds to Simon’s defi-
nition (see p. 218 of [26]).
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7. Examples of jumping functions.

We give some concrete examples of jumping functions which belong to the class A
and the class As (see Definition 2.3 and Definition 6.2 for the definitions of them). We
assume n > α in this section. Since the Green function of X is cα,n|x − y|α−n and the
Lévy kernel of X is cα,n|x− y|−α−n, F ∈ A is equivalent to

lim
R→∞, r→0

sup
x∈Rn

∫

B(0,R)c∪B(x,r)

dy |x− y|α−n

∫

Rn

dz |y − z|−α−nF (y, z) = 0 (16)

and F ∈ As is equivalent to

sup
x∈Rn

|x|n−α

∫

Rn

dy |x− y|α−n

∫

Rn

dz |y − z|−α−nF (y, z) < ∞. (17)

We first give a well-known example.

Example 7.1. Let K1 and K2 be two disjoint compact subsets on Rn and let
F (x, y) be as follows:

F (x, y) := 1K1(x)1K2(y) + 1K2(x)1K1(y).

We here check that this satisfies the conditions (16) and (17). It suffices to estimate
the integral

I(x) :=
∫

B(0,R)c∪B(x,r)

dy|x− y|α−n

∫

Rn

dz|y − z|−α−n(1K1(y)1K2(z) + 1K2(y)1K1(z)).

sup{|y − z|−α−n; y ∈ K1 and z ∈ K2} is bounded so that the integral I(x) can be
estimated:

I(x) ≤ c

∫

B(0,R)c∪B(x,r)

dy |x− y|α−n

∫

Rn

dz (1K1(y)1K2(z) + 1K2(y)1K1(z))

≤ c

∫

B(0,R)c∪B(x,r)

dy |x− y|α−n (|K2|1K1(y) + |K1|1K2(y))

≤ c

∫

(B(0,R)c∪B(x,r))∩(K1∪K2)

dy |x− y|α−n

≤ c

∫

B(x,r)

dy |y − x|α−n,

where |Kj | is the Lebesgue measure of Kj (j = 1, 2). We take R > 0 such that B(0, R) ⊃
K1 ∪K2 in the fourth line. We then see that
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sup
x∈Rn

I(x) ≤ c

∫

B(0,r)

dy |y|α−n

≤ c

∫ r

0

ρα−1dρ

≤ crα.

We have used the polar coordinates transform in the second line. Since the constant c is
independent of x, letting r → 0 completes the check. One can also check the condition
(17).

We give another example. Thus far, it has been unknown whether there exists a
jumping function of the class A that has a full support. We provide such a function in
the following example.

Example 7.2.

F (x, y) = (1 ∧ |x− y|p)〈x〉−q〈y〉−q for p > α and q > n.

Here, 〈x〉 :=
√

1 + |x|2. We check the condition (16). Note that 〈x + y〉 ≤ √
2〈x〉〈y〉

for all x, y ∈ Rn. We take x arbitrarily.

∫

B(0,R)c∪B(x,r)

dy

∫

Rn

dz|x− y|α−n|y − z|−α−n(1 ∧ |y − z|p)〈y〉−q〈z〉−q

≤
∫

B(x,R)c∪−B(x,r)+x

dy

∫

Rn

dz|y|α−n|z|−α−n(1 ∧ |z|p)〈x− y〉−q〈x− y − z〉−q

≤ c

∫

B(x,R)c∪−B(x,r)+x

dy

∫

Rn

dz|y|α−n|z|−α−n(1 ∧ |z|p)〈x− y〉−q〈x〉δq〈y〉δq〈z〉−δq

≤ c

(
〈x〉δq

∫

B(x,R)c∪−B(x,r)+x

dy|y|α−n〈x− y〉−q〈y〉δq

)

×
( ∫

Rn

dz|z|−α−n(1 ∧ |z|p)〈z〉−δq

)
.

Here, −B(x, r) + x := {x− y; y ∈ B(x, r)} and δ > 0 is so close to 0. We have replaced
x− y and y − z by y and z in the second line respectively. We have used two estimates:
〈y − z〉−q ≤ c〈y − z〉−δq and 〈y − z〉−1 ≤ √

2〈y〉〈z〉−1 in the third line. It is easy to see
that the second factor of the fourth line is dominated by a constant independent of x.
Note that the condition p > α is needed for this estimate.

The first factor of the fourth line is estimated as follows.

〈x〉δq

∫

−B(x,r)+x∪B(x,R)c

|y|α−n〈y − x〉−q〈y〉δqdy

≤ c〈x〉δq

∫

B(x,r)∪B(0,R)c

|x− w|α−n〈x− w〉δq〈x〉−δq〈w〉−(1−δ)q〈x− w〉δqdw
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= c

∫

B(x,r)∪B(0,R)c

|x− w|α−n〈x− w〉2δq〈w〉−(1−δ)qdw (=: I(x)).

Here, w := x−y. We consider two cases: one is x ∈ B(0, R) and the other is x ∈ B(0, R)c.

sup
x∈B(0,R)

I(x) ≤ sup
x∈B(0,R)

( ∫

B(x,r)

+
∫

B(0,R)c

)
|x− w|α−n〈x− w〉2δq〈w〉−(1−δ)qdw

≤ c sup
x∈B(0,R)

∫ r

0

ρα−n · ρn−1dρ + rα−n

∫ ∞

R

ρ−(1−δ)q+n−1dρ

≤ c(rα + rα−nRn−q+δq).

sup
x∈B(0,R)c

I(x) ≤ sup
x∈B(0,R)c

( ∫

B(x,r)∩B(0,R)c

+
∫

B(x,r)c∩B(0,R)c

)
|x− w|α−n

× 〈x− w〉2δq〈w〉−(1−δ)qdw

≤ crα + crα−nRn−q+δq

≤ c(rα + rα−nRn−q+δq).

Here, |B(0, r)| is the volume of B(0, r). If for an arbitrary ε > 0 we take r,R > 0 such
that rα < ε and rα−nRn−q+δq < ε then F ∈ A.

We see that some jumping functions of A have full support and are in L1(Rn×Rn).
We also give a concrete example of jumping functions in the class As.

Example 7.3.

F (x, y) = (1 ∧ |x− y|p)〈x〉−q〈y〉−q for p > α and q > 2n− α.

We check that this function satisfies the condition (17).

|x|n−α

∫

Rn

dy

∫

Rn

dz|x− y|α−n|y − z|−α−n(1 ∧ |y − z|p)〈y〉−q〈z〉−q

≤ |x|n−α

∫

Rn

dy

∫

Rn

dz|y|α−n|z|−α−n(1 ∧ |z|p)〈x− y〉−q〈x− y − z〉−q

≤ c|x|n−α

∫

Rn

dy

∫

Rn

dz|y|α−n|z|−α−n(1 ∧ |z|p)〈x− y〉−q〈x〉δq〈y〉δq〈z〉−δq

≤ c

(
|x|n−α〈x〉δq

∫

Rn

dy|y|α−n〈x− y〉−q〈y〉δq

)
·
( ∫

Rn

dz|z|−α−n(1 ∧ |z|p)〈z〉−δq

)
.

Here, δ > 0 is so close to 0. It is easy to see that the second factor of the fourth line is
dominated by a constant independent of x. The condition p > α is then needed.

Consequently, we have only to prove that
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|x|n−α〈x〉δq

∫

Rn

|y|α−n〈y − x〉−q〈y〉δqdy

is uniformly dominated by a constant independent of x. We divide the last integral into
three parts:

∫

Rn

=
∫

{|y|≤1}
+

∫

{|y|>1 and |y−x|≤|x|/2

+
∫

{|y|>1 and |y−x|>|x|/2}
(=: I + II + III).

Noting 〈y − x〉−q ≤ 2q/2〈x〉−q〈y〉q, 〈x〉(δ−1)q ≤ 1, and 〈y〉(1+δ)q ≤ 22q for all x ∈ Rn

and |y| ≤ 1,

I ≤ c|x|n−α〈x〉δq

∫

{|y|≤1}
|y|α−n〈x〉−q〈y〉q〈y〉(1+δ)qdy

≤ c|x|n−α〈x〉(δ−1)q

∫ 1

0

ρα−nρn−1dρ

≤ c
(|x|n−α ∧ |x|n−α+(δ−1)q

)
.

We use the polar coordinates transform in the second line. Thus I is dominated by a
constant independent of x. The estimate of II is tricky. Note that if |x| < 2/3 then II
= 0 since the subset {|y| ≥ 1 and |y − x| ≤ |x|/2} is empty, that |x− y| ≤ |x|/2 implies
|y|α−n ≤ 2n−α|x|α−n and that 〈y〉δq ≤ 2δq/2〈x〉δq〈y − x〉δq holds. We then see

II ≤ c〈x〉δq

∫

{|y|≥1 and |y−x|≤|x|/2}
〈y − x〉−q〈y〉δqdy

≤ c〈x〉2δq

∫

{|y|≥1 and |y−x|≤|x|/2}
〈y − x〉(δ−1)qdy

≤ c|x|2δq

∫ |x|/2

0

ρn−1(1 + ρ2)(δ−1)q/2dρ

≤ c|x|2δq · |x|n+(δ−1)q

≤ c|x|n+(3δ−1)q

for |x| ≥ 2/3. Since n + (3δ− 1)q < 0, II is also dominated by a constant independent of
x. The estimate of III is also tricky.

III ≤ c|x|n−α〈x〉δq

∫

{|y|≥1 and |y−x|≥|x|/2}
|y|α−n〈y − x〉(δ−1)q〈y〉δqdy

≤ c|x|n−α〈x〉δq

∫

{|y|≥1 and |y−x|≥|x|/2}
〈y〉α−n+δq〈y − x〉(δ−1)qdy
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≤ c|x|n−α〈x〉δq

∫

{|y|≥1 and |y−x|≥|x|/2}
〈x− y〉α−n+δq〈x〉n−α−δq〈y − x〉(δ−1)qdy

≤ c|x|n−α〈x〉n−α

∫

{|y−x|≥|x|/2}
〈x− y〉α−n+(δ−1)qdy

≤ c|x|n−α〈x〉n−α

∫ ∞

|x|/2

(1 + ρ2)(α−n+(δ−1)q)/2ρn−1dρ

≤ c|x|n−α〈x〉n−α(|x|n ∧ |x|α+(δ−1)q)

≤ c(|x|2n−α ∧ |x|2n−α+(δ−1)q).

We have used the estimate |y|α−n ≤ 2(n−α)/2〈y〉α−n for all |y| ≥ 1 in the first line. Since
α − n + δq < 0, 〈y〉α−n+δq ≤ 2(n−α−δq)/2〈x − y〉α−n+δq〈x〉n−α−δq. We use this in the
third line. Since 2n − α + (δ − 1)q < 0, III is also uniformly dominated by a constant
independent of x.

Remark 7.4. We further see that the jumping function of Example 7.3 does not
belong to A2 (see also [7, Definition 2.3]), that is, it does not hold

lim
R→∞,r→0

sup
(x,w)∈dc

|x− w|n−α

∫

B(x,r)∪B(0,R)c×B(x,r)∪B(0,R)c

|x− y|α−n

× (1 ∧ |y − z|−(α+n))〈y〉−q〈z〉−q|z − w|α−n|y − z|−(n+α)dydz = 0.

Indeed, we may take a closed ball Bx,w with radius 1 in {(y, z); |y − x| ≤ 1, |z − w| ≤
1, 1 ≤ |y − z| ≤ 5, and |y|, |z| ≥ R} for an arbitrary R > 0. It then follows

|x− w|n−α

∫

B(x,r)∪B(0,R)c×B(x,r)∪B(0,R)c

|x− y|α−n(1 ∧ |y − z|−(α+n))

× 〈y〉−q〈z〉−q|z − w|α−n|y − z|−(n+α)dydz

≥ c|B(0, 1)||x− w|n−α〈x〉−q〈w〉−q.

Here, |B(0, 1)| is the volume of B(0, 1). Therefore we find that A2 6⊃ As and A2 ( A.

Acknowledgements. I would like to thank Professor Masayoshi Takeda, Pro-
fessor Kaneharu Tsuchida, Professor Kim Daehong, and Professor Kazuhiro Kuwae for
kind direction at heart. I also thank the anonymous referee for careful reading of this
paper. Without their heartwarming support I would have failed to complete this paper.

References

[ 1 ] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators,

Comm. Pure. Appl. Math., 35 (1982), 209–273.

[ 2 ] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math.,

29, Academic Press, New York, London, 1968.

http://dx.doi.org/10.1002/cpa.3160350206


244 M. Matsuura

[ 3 ] R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer.

Math. Soc., 354 (2002), 2933–2953.
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