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Abstract. Takeda ([30]) solved the Feynman-Kac penalization problem
for positive continuous additive functionals. We extend his result to additive
functionals with jumps. We further give concrete examples of jumping func-
tions.

1. Introduction.

Let X := (Q, M, M, P, {X; }+>0)zern be a symmetric a-stable process (0 < a < 2)
and let A; be an additive functional of X. We call the next problems the Feynman-Kac
penalization problem.

(i) Does there exist a probability measure P, such that

A, ~
lim Z2l€705) / SdP,

t—oo K, [eAt]

for every z € R", every s > 0, and every bounded S € M7
(i) Does there exist a martingale M by which the limit distribution P, is determined:

dP, = MdP,?

Roynette, Vallois, and Yor considered the Feynman-Kac penalization problem of one
or two dimensional Brownian motions ([22], 23], and [25]). K. Yano, Y. Yano, and Yor
solved that of one dimensional recurrent symmetric a-stable processes ([35]) (1 < a < 2).
Though the previous results treated the case that Feynman-Kac functionals are killing,
we deal with Feynman-Kac functionals with creation.

Takeda solved the Feynman-Kac penalization problem for e#* ([30]), where A* is a
positive continuous additive functional (PCAF, as an abbreviation) with Revuz measure
1 which is Green-tight. We consider this problem in the case that symmetric jumps are
added to AL:

APT = A+ > F(Xyo, X)),

O0<u<t
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where F' is a bounded measurable positive symmetric function.
The Feynman-Kac multiplicative functional (MF, as abbreviation) e
We decompose this non-local Feynman-Kac MF as the product of an exponential type

wFo
AY is non-local.

HtprEp
martingale L; and the local Feynman-Kac MF e .
F ptpp
A = Lt (1)

Here,

t
L; :=exp < Z F(Xs—aXs) - Ca,n/ /Fl(Xs,y)|Xs — y|(a+")dyds),
0

0<s<t

i (d) = { JRC y|—<”+a>dy}dx,
Rﬂ,

Fi:=e" —1and Ca,n is a positive constant. We assume that pp, is a Green-tight Kato
measure. We then transform the symmetric a-stable process X by the martingale MF L,
and denote by Y the transformed process. The Dirichlet form of the transformed process
Y is given by

£ () = 2 [ (ulz) = u(y)Per D = g+ dady,
where d is the diagonal set, that is, d := {(z,x);x € R"}. We then see that the Lévy
kernel of the transformed process is equivalent to that of the symmetric stable process:
it holds

C_1|3;‘ _ yl—(a+n) < €F(x’y)|$ _ yl—(a+n) < C|.’L‘ _ yl—(a+n)

for some ¢ > 1. This implies the equivalence of transition probabilities (Bass and Levin
([3])). Thus Kato classes are invariant under the transform by L,.
We define the function A\(9) for § > 0 by

A(#) := inf {Egy(u,u); /u(a:)Qd(,u + pp,) = 1}.

We see by the definition that A(f) is increasing and concave and satisfies limg_,o A(0) =
0o. We denote the generator of the transformed process Y by £Y: let

£¥u(z) = lim = [“(Ytl)} —ul@) 2)

t—0

where dPL := L;dP,. Note that €Y (u,u) = (—LY u,u). We divide cases in terms of the
value of A(0): if A(0) > 1, A(0) < 1, and A(0) = 1, then LY + p + pp, is said to be
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subcritical, supercritical, and critical respectively.

(a) A(0) > 1: We define
KRRy
Z.-Q. Chen proved that the boundedness of h(z) is equivalent to A(0) > 1. We change

his proof by using the equivalence of g-resolvent kernel of X and Y. The weight process
M, is identified with

We treat this case in Section 4.

(b) A(0) < 1: Since there exists 6y > 0 such that A\(fy) =1 and p and pup, are in the
Green-tight Kato class, the embedding of D[EY](= DI€]) into L?(u + pur,) is compact
so that we can take a positive function h in D[£] such that Egyo(h, h) = 1. We use the
limit theorem of Feynman-Kac MFs like [30, Theorem 4.1] in the supercritical case. The
weight process is then given by

We treat this case in Section 5.

(¢) A(0) = 1: We use the compact embedding theorem of the extended Dirichlet
form D.[EY] into L?(n+ pur, ) by Takeda and Tsuchida ([33, Theorem 10]). This implies
the existence of a positive function h in D.[EY](= D.[€]) such that £Y (h,h) = 1. We
then obtain a h-transformed process (PL"Y;, h?dz),cgrn and see that the semigroup of
this process becomes recurrent. The function

v =zt [ t K| ke of @)

ptp ptp
diverges to infinity as t — oo and EL-"[e4 " S]/4(t) and EE:P[eA o 1/¥(t) converge
only if p and p, are in the special Kato class. Then the problem is solved for a restricted
class of Feynman-Kac MFs. The weight process of the critical case is given by

M, = h(XS)eAZ'F.
h(z)
We treat this case in Section 6.
Let A (resp. As) be the set of jumping functions such that pp is in the Green-tight
Kato class (resp. the special Kato class). The conditions that F' € A or F € A, are then
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analytically characterized. We have used the equivalence of transition probabilities of
X and Y instead of the conditional gaugeability to solve the Feynman-Kac penalization
problem. Since the condition F' € Ay (see [7, Definition 2.3] for the definition of Ag) is
needed for the conditional gaugeability, we then see A D Ag. Furthermore, there exists a
jumping function with a full support in A. For example, F' € A and F has a full support
if the jumping function is

F(z,y):= (A Az —ylP){x) Y y) 7 for p>aand g >n, (3)

where () := /14| -|2. If we further assume g > 2n — « in this example, then F' € A;.

In Section 2, we prepare for fundamental notations related to Green functions and
Kato classes to describe our main results. In Section 3, we show the decomposition (1)
of eA}tL’F, the equivalence of transition probabilities of X and Y, and the invariance of
Kato classes under the transform by L;. We solve our problem in Sections 4, 5, and 6 in

the subcritical, supercritical, and critical case respectively. In Section 7, we check that
F e Aor F € A, for the functions F' described by (3).

2. Preliminaries.

Let X be a symmetric a-stable process (0 < « < 2). The Dirichlet form of X is
given by
Ca,n |U(I) 7u(y)|2
5 = —_ 761 d
(’U,,U) 2 /’C ‘.’I; _ y|a+n x y7
Ju(z) — u(y)|”

D[€] = {u € LQ(R"@x);/ o — gotn dxdy < oo},

where ¢, is given by

a2 ' ((a+n)/2)
Con = T (1 = (a)2)) @

It is well known that Lévy system of the symmetric stable process X; is (con|z —
y|~("*) 1), Note that the Revuz measure of ¢ is the Lebesgue measure (see [7, Example
2.1] for further details). Let A} be a PCAF with the corresponding Revuz measure
and let F' be a bounded measurable positive symmetric function vanishing on diago-
nal set throughout this paper. We consider following additive functionals (AFs, as an
abbreviation) with symmetric jumps

APT = A+ Y F(X,, X).

0<s<t

We define (8-)resolvent kernels, (3-)potentials, and Kato classes.
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DEFINITION 2.1. Let p(¢,z,y) be the transition probability of the symmetric a-
stable process X. The following function Gg(z,y) is said to be -resolvent kernel.

Gs(x,y) ::/ e Plp(t,x,y)dt for B> 0.
0

We write
G(Jf, y) = Go(l', y)

if the process X is transient. Let p be a positive Radon measure. We denote the (-
potential of u by Ggp, that is,

Gpp(z) = - Gplz,y)u(dy) for 8 > 0.

DEFINITION 2.2. A positive Radon measure p on R" is said to be in the Kato class
K if it satisfies

lim ||G s = 0.
Jim [|Ganl

Given 3 > 0, a measure pu € K is said to be in S-Green-tight Kato class if

lim 0 1G5(1B(0,R)cUB(2,r)1)|loc = 0.

R—o0,r—

We denote by Ko g the set of 3-Green-tight measures. We write Ko for K o simply
and call this Green-tight Kato class.

It follows from the definition of Ko g that Koo C Koo1 and Koo, g = Koo,1 for all
8> 0.
We define a measure

pr(de) = cam{ / F(z,y)|z — y|_(°‘+”)dy}dx. (5)
We define the class A of jumping functions. This class plays an important role in our

results.

DEFINITION 2.3. The function F is said to be in the class A if ur € Koo (resp.
pr € Koo,1) for n > a (resp. n < a).

Our goal is to obtain the next theorem.

THEOREM 2.4.  Assume that the Revuz measure i is in Kato class Koo (resp. Koo 1)
forn > a (resp. n < «) and that the function Fy := ef” —1 belongs to the class A. Then
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there exists a probability measure PM such that it holds

AlF
im w — EM[S]
=00 Eylet ]

x

for every s > 0, every bounded Ms-measurable random variable S, and every x € R™.
Moreover, the limit distribution PM is characterized as

PM[A] ::/ M,dP, for A€ M,
A

where M is a martingale MF defined in (9), (12), and (15) below.

Here and in what follows, we let F;, = ef’ — 1 without mentioning.

3. Decomposition of non-local Feynman-Kac MF.

In this section, to employ the result for local Feynman-Kac functionals we decom-
pose a non-local Feynman-Kac MF as the product of a local Feynman-Kac MF and an
exponential martingale.

We define an exponential martingale L; by

t
E F(Xu—aXu) - Ca,n/ Fl(Xuvy)IXu - yl_(n+a)dydu>-
0 Jre

O<u<t

L; = exp (
This is the unique solution of Doléans-Dade equation

t
Zt:1+/ Zu_dKy,
0

where K} is a purely discontinuous martingale defined by
t
Kt = Z Fl(Xufu Xu) - coz,n/ / F1(Xu,y)\Xu — y|_(n+a)d/ydu
o<u<t 0 "

(see [8, Remark 3.4]). We thus obtain

QAT Ay H (14 Fi(Xy_, X))

O<u<t

t
= L;exp (Aé‘ + Camn / / Fi(Xu, y)| Xu — y<"+a>dydu)
0 n

pt
= LteAt f
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Note that t — com(f(;5 Jon F1(Xu,y)| X0 — y|_("+o‘)dydu) is a PCAF and its Revuz
measure is g, as in the formula (5). We transform the symmetric stable process X by
the martingale MF L; and denote its law by P%, that is, dPL := L;dP,. We further
denote the associated symmetric strong Markov process by (PZ,Y;),crn. The Dirichlet
form EY of the process Y is identified as follows (see also [7]):

¥ (u,u) = E(u,u) + CQT" / (u(@) = u(y))*Fi(a, y)le -y~ "+ dyde

Ca»n T —(n+a
=S [ uta) = ) PeF o - gy

Recall that F' is bounded. We then find that the Lévy kernel of Y is equivalent to that
of X, that is,

¢ = gl T < PRy g ) < el y ) (6

for some ¢ > 1. We then see from Bass and Levin ([3]) that the transition probability of
Y is equivalent to that of X.

THEOREM 3.1 ([3]). If the Lévy kernel of Y satisfies (6), then the transition prob-
ability p¥ is also equivalent to p : it holds

¢ Iplt,z,y) <p¥(tz,y) < oplt,z,y) (7)
for some ¢ > 1, every t > 0, and every x,y € R™.

In the sequel, we denote positive constants by ¢ or C. They may be different at each
occurrence.
Theorem 3.1 implies the equivalence of the S-resolvent kernel of X and Y.

COROLLARY 3.2. Let G (resp. Gg) be the Green function (resp. the B-resolvent
kernel) of Y. It then holds

c1Gp(z,y) < Gg(z,y) < cGg(z,y) for every x,y € R" and some ¢ > 1.

For the rest part of this section, if the process X is transient (resp. recurrent), then
we assume that p € Ko (resp. 1 € Koo,1) and Fy € A.
We define the spectral function A(f) by the transformed Dirichlet form &Y.

A(f) := inf {Eg/(u,u);/n u(z)?d(p+ pr,) = 1} for 6 > 0, (8)

where & (,-) == EY(-,-) + 0(-,")12(az)- We here summarize some properties of the
spectral function.



230 M. MATSUURA

THEOREM 3.3. (1) A(0) is concave (and hence continuous) and increasing.
(i) limp_,o0 A(f) = 0.

PrOOF. (i) follows just as [30, Lemma 3.1]. Note that it holds

[ u@Pdnt nm) < 1GY G+ ) 3 ()

for all u € D[E] (see [29, Proposition 2.3]). It then follows that

||G0 (M + MFl)HOO

A9)

Since G} (i + pr,) is equivalent to Go(p+ pur, ) and so ||GY (+ pry)||eo — 0 as @ — oo,
we complete the proof of (ii). O

Since the transformed Dirichlet form of Y is equivalent to that of X, we obtain
the compact embedding of the domain of Dirichlet forms into L?(u + pp,) (Takeda and
Tsuchida [33]).

THEOREM 3.4. (i) If u € Koo, F1 € A and EY is transient, then the embedding
of D[EY] into L*(u+pr, ) is compact, where (D [EY],EY) is the extended Dirichlet
form.

(i) If 4 € Koop and Fy € A, then the embedding of D[EY ] into L*(u+pur, ) is compact.

PROOF. Note that if £Y is transient then (D.[€Y],EY) is a Hilbert space whose
norm is /€Y (+,-). One can prove this by imitating the proofs of [33, Theorem 10| and
[31, Theorem 2.7]. O

We will divide the following three cases in terms of the value of A(0). If A\(0) > 1,
A(0) < 1, and A(0) = 1, then we call LY + u + pg, subcritical, supercritical, and critical
respectively. £Y is the generator defined by the formula (2) of the process Y.

REMARK 3.5. The formula (8) implies

NO) [ ulaPd(u+ ar,) < ¥ u,u)

for all w € D[E]. The recurrence of the semigroup associated with Y implies the existence
of {up}n>1(C DIE]) such that lim,, o E(un, u,) = 0 and lim,, o u, = 1 a.e. by [13,
Theorem 1.6.3 (i)(ii)], that is, 1 € D,[€] from [13, Theorem 1.6.3 (iii)]. [13, Theorem
2.1.7] then yields the last “a.e.” can be replaced by “q.e.” If A(0) > 0 then the last
inequality causes contradiction as n — oo. Therefore, we find that if the process Y is
recurrent then A(0) = 0.
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4. Subcritical cases.

We use the gaugeability of (Y, A#T#F1) in the subcritical case. One can modify the
proof of ([7, Theorem 3.4]) by using the equivalence of the f-resolvent kernel of X and
Y. This modification is needed for the extension of the class of jumping functions.

THEOREM 4.1.  Assume that u € Koo and Fy € A. The following three conditions
are equivalent.
(i) AM0)>1
(ii) (X, A"F) is gaugeable, that is, the function x — Eg[e?%"] is bounded.

et
(iii) (Y, A*TRF) is gaugeable, that is, the function x — EL[ed> Fl] is bounded.
In the subcritical case, we define the function A by

bt ppy

h(z) :=EL[e?~ 1.

We now solve the Feynman-Kac penalization problem in the subcritical case. We have
only to consider the following ratio.

B M) Eg[e®" - (M5 00,)|M,]

E,[e4""] E.[e4""]

w,F

AL By [es 0 6, M,]

E,[e4""]

eAi'L’FIEXS [eAiLf;]

E,[e4t"]
ptp ptup
i ACa
- L, A _
Effett "]
Letting t — o0,
w,F ntpp.
N G P N B S 10, )
t=oo B, [eA"] Ch(z)

The problem is solved in this case by setting M, as follows:

REMARK 4.2.  Let P/"™"™ be the Feynman-Kac semigroup.
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u+up1

P f(x) = BE[et T F(Y)]. (10)

Let £FTHF1 be the generator of Pt“ﬂLFl. We may regard the above h as a harmonic
function such that LHT#F1 h(x) = 0. Indeed, the Markov property implies

nt iy
t

ha) = BE[eA T RE[eA% T o 0, M,]]

rtpp ntpp

_mwL[ A 1 ;U'+/"F1 A 1

=E; [e ¢ Ey. [e il
u+up1

=E; [’ h(Yy)]

— Pt,lL+HF1 h(x)
so that we obtain

Mty .
Lhte h(z) = %ir% I h(z) — h(x)

=0.

5. Supercritical cases.

If the process X is transient (resp. recurrent) then we assume p € Ko (resp.
1€ Koo 1) and Fy € A. Since A(0) < 1, there exists 6y > 0 such that A(6p) = 1. We then
w, F
o)

see the asymptotic behavior of E,[e4 by using the next theorem.

THEOREM 5.1.  Suppose that the process X is transient (resp. recurrent). If p €
Koo (resp. p € Koo1) and Fy € A, then there exists a positive function h € L*(u + pp,)
and 0o > 0 such that X(0p) = 1, &) (h,h) =1, and

lim e~ %'E, [eA?‘F] = h(x)/ h(x)dx.

t—o0

PrOOF. The existence of y > 0 immediately follows from Theorem 3.3. It is
trivial that if both p and pp, are in Koo (resp. Koo 1) then p+ pp is also a member of
Koo (resp. Koo,1)-

The compactness of the embedding from D[€] into L?(u + pp,) (see [31, Theorem
2.7]) implies the existence of the function h € L?(pu+ pp, ). In particular, if X is transient
then the uniform boundedness principle implies the existence of h € L?(u + pup,) since
(é’eyo, D[€]) is a Hilbert space. Applying Lemma 5.2 stated below with g = 1/h completes
the proof. Note that h is in L!(dz). O

LEMMA 5.2. (i) Let p € Kso,1 and let h be the function given in the proof of
Theorem 5.1. Then it holds

/ Pt (t, 2, y) h(y)?dy < 0o



Feynman-Kac Penalization Problem with Jumping Functions 233

for every t >0, every x € R"™, and all ¢ > 1. Here, p" is the heat kernel given by

SRS i LY )

R(z)h(y) 1D

P (t,x,y) =e

and ptTHFL s the heat kernel of the Feynman-Kac semigroup defined in (10).
(ii) Let p € Koo 1, let b be the function as in (i) and let P! be a semigroup whose
heat kernel is p. Then it holds

lim Plo(z) = [ glo)ha)’ds
for all x € R™, all g € LP(h%dz), and all p > 1.
ProOOF. (i) Note that h is a harmonic function of the equation.
(LY + p+ pr,)h(z) = Ooh(z).
Since p + pp, € Kso,1, [31, Lemma 4.1] implies that it holds
C|z|f(n+a) < h(z) < C’|x\*("+°‘)/‘h

forall 1 < ¢; < 2 and all |z| > 1. We also find the upper bound of the heat kernel p#*#
off the diagonal set:

prrEEL (e, y) < o — y| () e

for all g2 > 1 and every t > 0 from [31, Lemma 4.3]. Combining the last two results,
we find L9(h%dz)-integrabiilty of the heat kernel p” if we take ¢; and gz close to 1. (ii)
Take g € LP(h%dx) arbitrarily. The maximal ergodic theorem follows from [31, Lemma
4.5] since 1+ pp, € Koo,1-

sup Pth g

< Cp||g||LP(h2dz)~
t>0

Lr(h2dx)

This implies sup,~ P/'g(x) < co. Thus we have the desired result

Jim Plo(z) = [ glo)h(a)’ds
for every z € R™. O

We now solve the Feynman-Kac penalization problem in the supercritical case. Using
Theorem 5.1, we find
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E, [ |M,]  Egle %t |M,]

E,[eA""] E,[efoteAl")

F _ _ w, F
efagseA.‘: ]Er[e 0o (t s)eAt75 008|MS]

E, [e*QOteAf’F]

e—GoseA‘;’F{e—Qo(t—s)EXS [eAg;i]}

e=00t R, [eAl "]

Letting t — oo, we obtain

1o Eole® M) e e T R(X,) [ h(x)da
oo R [AT] 1(z) Jn () dz
e‘eoSeAg’Fh(Xs)

h(z) '

Scheffe’s lemma implies that the above convergence is in L!(P,). The weight process M,
is given by

e*GUSeA'sL‘Fh(XS)

M=

(12)

6. Critical cases.

We use Chacon-Ornstein type ergodic theorem to solve the Feynman-Kac penaliza-
tion problem in this case. We have to treat a subclass of the Green-tight Kato class to
use this theorem.

Note that the extended Dirichlet space D.[£] is a Hilbert space (see [13, Lemma
1.5.5]). We further see that the embedding of D.[€] into L?(u + pr,) is also compact
by [33, Theorem 10]. Then we obtain a harmonic function in D.[£]. We weight the
probability measure by an exponential martingale L; and the harmonic function h:

h(}/t) wotp g
dPL" .= N dPE, N, := A .
x @l , t h(m) €

Hereafter, we consider the Markov process (€2, M, My, PE" Y;), or ME" for short.
We define the special Kato class.

DEFINITION 6.1. (i) Let pu be a measure of Kato class IC. p is said to be in the
special Kato class if it holds

sup [ / & — gl ul(dy) < oo.
reR™ R

We denote this class by KCs.
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(ii) A PCAF A is said to be special with respect to M*" if it holds

00 t
sup EL" [/ exp (—/ g(Xu)du) dAt] < oo
z€ER™ 0 0

for any positive Borel function g with [, g(z)dz > 0.

DEFINITION 6.2. A bounded measurable symmetric positive function F' vanishing
on the diagonal set is said to be in the class Ay if pp is in Ks.

For the rest part of this section, we assume y € s and F; € A;. One can easily
check the following properties.

LEMMA 6.3. (1) Ky is the subset of Koo
(i) p+ pr is also a member of K.

PROOF.  See [30, Section 4] about (i). Noting G(z,y) = canlr — y|*™™, (ii) also
immediately follows the equivalence of Green function G and the transformed Green
function GV (|

One can prove the following lemmas just as in [30, Section 4].

LEMMA 6.4. For all PCAFs B, it holds

b utup, t Bt pry
EEL / eAu “BudA,| = h(x)EL" / e Bu ddu__*
0 0 h(Yu)

for every x € R™ and t > 0.
LEMMA 6.5. fg(l/h(Yu))dAﬁ—s_“F1 is special with respect to MP" if Iy € A,.
PROOF.  See the proof of [30, Lemma 4.3] and [30, Lemma 4.4]. O
By using Lemma 6.4,
ntup, t ntupy + t dAZ—i_MFl
EL[et ™) = 14 EE / AT At | gy ()R / A |
0 o h(Ya)

Integrating by an arbitrary finite positive measure v, we see

o o

t ptpr
EL [e4 ]—V(R")qL(V,h)Ef;Lh[ / dAu}
0

h(Yu)

where v := (h-v)/(v,h) and (v, h) := [5, h(z)dv.
We define a function ¢ as follows.
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(t) i= BL* [ / t k(n)du], (14)

where k is an arbitrary continuous and positive function with a compact support. We
here give some properties of the function .

LEMMA 6.6. Let ¢ be as in (14).

(1) limy o0 ¥(t) = o00.
(ii) For every s > 0 it holds

lim Pt +s) —1
ST
PROOF. Let G'k(y) := fR” G"(y, 2)k(2)h?(2)dz and G"(y, z) = Oooph(t,y,z)dt

for every y, z € R™, Where p" is the heat kernel given by the formula (11). The recurrence
of ME" implies G"k(y) = oo h2dy-a.e. We then obtain (i): The Markov property implies

Y(t) > BLh /k du]

t—1
= RLh ]Ef’h K/ k(Yu)du> o6,
L 0

= EL" _Eﬁl" UH k:(Yu)du”

:/W (1, 2,y // (u, y, 2)duk(2)h2(2)d=h (y)dy

-/ P (L2, y)G"k(y)h* (y)dy

ol

= 0

as t — co. Combining (i) and the boundedness of k, we see that (ii) follows. O
We quote Chacon-Ornstein type ergodic theorem.

THEOREM 6.7 ([4]). Let vy and v be arbitrary probability measures and let By and
C; be special PCAFs with respect to M™". Suppose fo w)dB,, and fo w)dCy, are
special PCAF's with respect to MY". It then holds

i B L J 0B _ (WP, f)
= B [y g(Ya)dCy]  (RPuesg)

for arbitrary bounded positive Borel-measurable functions f and g. Here, ug and uc are
Revuz measures corresponding to By and Cy respectively.
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Now, we solve the Feynman-Kac penalization problem in the critical case. Using
the formula (13), Lemma 6.6, and Theorem 6.7,

wtup,

Ejlet ] _ . v(RY)

]Eﬁﬁh[fo 1/h dA/t+uF1]
T R X0

£h[f0 Yy )du]

ELM] [y (L/R(Y,))dAL ™)

+ (v, h)

S
_ B+ pr,h)
= g

We set a finite positive measure v for every B € B™ as follows:

u+up1

v(B) :=EL[e? " S;Y, € B

Note that the Markov property implies

E£ [eAiL-HLFl S] ]EL[ “ HFy S]E£ [eAfj:Fl o 95|M5H

ntp KRy
— B[ S [
— L[4
Lemma 6.6 and Theorem 6.7 yield
w,F wt ey
E.[ed" 9] . EL[eA:
im ————— = lim T
t—o00 Eaj[eAé" } t—o0 EL[eAi HEy

Eﬁ [eA?““ S)/u(t)
1/¢< )

i B0 = ) ot 900}
e EL[eA "] /(1)
LB W)/ )

{(0u, ) + pry, M)}/ (2, k)
)

h(z) "

Rewriting the last limit, we completely solve the problem.



238 M. MATSUURA

(.h)  EE[eAt T R(Y,)s)
h(z) h(x)
pAL T (X,)
=FE,|Ls h@) S
=E,[M,S)]
= E;[9]

M, = 08 (15)

REMARK 6.8.  Since M™" is an irreducible recurrent h?dz-symmetric right process,
the ergodic theorem yields
t—oo

We see that h € L*(R", dx) (positive critical) if and only if n > 2o and h & L*(R"™, dz)
(null critical) if and only if o < n < 2a, since ¢~ z|*™™ < h(z) < c|z|*™™ for all |z| > 1.
Consequently, we see the asymptotic behavior of the non-local Feynman-Kac semigroup
P f(a) = Bale f(X0)]:

~ By e?%] if A(0) > 1
~ | h(x) h(zx)dz ) eP! if A(0) <1
Ptp,,Fl(x) < /R" )
~ (h(x) . h(z)d(p+ MF1)>t if A(0) =1 and n > 2«
= o(t) if A(0)=1and a <n < 2«a

as t — co. We further see the growth of LP-spectral bounds for all 1 < p < oo (see [32,
Theorem 5.6)). Let [, := — lim; o (1/t)log || P/"*||,»- Then

l 0 ifA0)>1
Pl =6y i A0) < 1.

This implies that our definition of (sub-, super-)criticality corresponds to Simon’s defi-
nition (see p.218 of [26]).
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7. Examples of jumping functions.

We give some concrete examples of jumping functions which belong to the class A
and the class A; (see Definition 2.3 and Definition 6.2 for the definitions of them). We
assume n > « in this section. Since the Green function of X is cqpnlz — y|*~ ™ and the
Lévy kernel of X is cqnl|z —y|~*™ ", F € A is equivalent to

R—o00,7—0 zcRn

lim  sup / dy |z — y|a7"/ dz|ly —z|"* "F(y,z) =0 (16)
B(0,R)°UB(z,r) R”™

and F' € A, is equivalent to

sup o] / dylz -yl / dzly — 2|~ F(y, ) < oo, (17)
reR” R R™

We first give a well-known example.

ExampLE 7.1. Let K; and K» be two disjoint compact subsets on R™ and let
F(z,y) be as follows:

F(x,y) = 1K1 (1’)1[{2 (y) +1k, ('T)lKl (y)

We here check that this satisfies the conditions (16) and (17). It suffices to estimate
the integral

I(x) := / dy|x — y|a7"/ dzly — [~ (1K, (9)1k, (2) + 1k, () 1k, (2))-
B(0,R)cUB(z,r) R™

sup{ly — z|7* ™y € K;j and z € Ky} is bounded so that the integral I(xz) can be
estimated:

I(x)

IN

c / dylz -y / dz (L, (9)11es (2) + 11y () L1, (2))
B(0,R)°UB(z,r) R™

IN

¢ / dy |z — 51~ (1Kl L (9) + [ K 11, ()
B(0,R)cUB(z,r)

cof —
(B(0,R)°UB (z,r))N(K1UK3)

< / dyly — z[°=",
B(z,r)

where | K| is the Lebesgue measure of K; (j = 1,2). We take R > 0 such that B(0, R) D
K1 U K5 in the fourth line. We then see that
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sup 1) < [ dylyl* "
B(0,r)

zeR™
-
< c/ p“_ldp
0

cr®.

IN

We have used the polar coordinates transform in the second line. Since the constant c is
independent of z, letting » — 0 completes the check. One can also check the condition
(17).

We give another example. Thus far, it has been unknown whether there exists a
jumping function of the class A that has a full support. We provide such a function in
the following example.

EXAMPLE 7.2.
F(z,y) = (1A |z —y|P){x) % y)~9 for p >« and ¢ > n.

Here, (x) := /1 + |z|2. We check the condition (16). Note that (z +y) < v/2(x)(y)
for all z,y € R™. We take = arbitrarily.

/ dy / dzla — y|* "y — 2| (1 Ay — 2[P) (y) " U(z) 0
B(0,R)cUB(z,r) R

<

/ dy / Ay 2 (LA [2P) e — y) " —y — 2)
B(z,R)°U—B(z,r)+x n

< C/ dy/ dely|* 2| 7T AN 2P ) (@ — )TN @) (y) 0 (z) 0
B(z,R)°U—B(z,r)+x n

< c(<x>5q / dylyl*—" (e y>—q<y>5q)
B(z,R)°U—B(z,r)+x

X (/ dz|z| 72" (1 A |Z|P)<z>-5q).

Here, —B(x,r) + 2 := {x — y;y € B(z,r)} and § > 0 is so close to 0. We have replaced
z —y and y — z by y and z in the second line respectively. We have used two estimates:
(y —2)77 < cly —2)7% and (y — 2)7! < v2(y)(z)~! in the third line. It is easy to see
that the second factor of the fourth line is dominated by a constant independent of x.
Note that the condition p > « is needed for this estimate.

The first factor of the fourth line is estimated as follows.

(2% / ]y — )~ (y)P9dy
—B(z,r)+zUB(x,R)°

< cfz) / & — w]* (& — )% ()0 )~ — )y
B(z,r)UB(0,R)°
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= c/ |z — w]* ™ (z — w) 2 w) "INy (=: I(x)).
B(x,r)UB(0,R)*

Here, w := x—y. We consider two cases: one is € B(0, R) and the other is x € B(0, R)°.

sup I(z) < sup </ +/ >|x —w|* Tz — w) 2 (w) ==y
z€B(0,R) 2€B(0,R) \JB(e,r) JB(O,R)*

r oo
<c¢ sup / pa*” .pnfldp_krafn/ p7(176)q+n71dp
z€B(0,R) JO R

<c(r*+ ra*"R”*q”q).

sup I(z) < sup (/ —|—/ )J;—w|°‘_”
2€B(0,R)° 2€B(0,R)° \ JB(z,r)NB(0,R)e  JB(z,r)°NB(0,R)*

X (x — w) 2% (1) == gy
< or® 4 er® PRIt
< e(r® 4 T RMTITOT),
Here, |B(0,7)]| is the volume of B(0,r). If for an arbitrary € > 0 we take r, R > 0 such
that r* < ¢ and r® " R"~9199 < ¢ then F € A.

We see that some jumping functions of A have full support and are in L*(R™ x R™).
We also give a concrete example of jumping functions in the class A;.

EXAMPLE 7.3.
F(z,y) = (1 AJz—y|"){(z) Y y)"? forp>aandq>2n—a.
We check that this function satisfies the condition (17).
o R e e (O RO
<lolm [ dy [ asly A ) e =) =y =)
<™ [ dy [ delylT AP = )7 ) ) )

< c(lel=t@ [ anpie o= o) - ([ aslieranle ).

Here, § > 0 is so close to 0. It is easy to see that the second factor of the fourth line is
dominated by a constant independent of z. The condition p > « is then needed.
Consequently, we have only to prove that
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ol )" [yl =) )y

is uniformly dominated by a constant independent of . We divide the last integral into
three parts:

/ :/ +/ +/ (=: 1+ I+ 1II).
" {ly|<1} {ly|>1 and |y—z|<|z|/2 {ly|>1 and |y—=z|>|z|/2}

Noting (y — )9 < 29/2(2)~9(y)?, (x)®~1De < 1 and (y)1+99 < 224 for all x € R"
and |y| <1,

< el (z)% / [y ()~ (y) 1) Dy
{lyI<1}

1
< C|$‘n_a<l‘>(6_1)q/ pa—npn—ldp
0

< C(|x‘n—a A |$‘n—a+(6—l)q).

We use the polar coordinates transform in the second line. Thus I is dominated by a
constant independent of x. The estimate of II is tricky. Note that if |z] < 2/3 then II
= 0 since the subset {|y| > 1 and |y — 2| < |z|/2} is empty, that |z — y| < |z|/2 implies
ly|*=™ < 277 |z|*~™ and that (y)%7 < 2°9/2(2)99(y — x)99 holds. We then see

11 < ¢(x)% / (y — )~ U y)*dy

{ly|=1 and |y—z|<|z|/2}

< c{z)? / (y — 2)C Dy
{ly|>1 and |y—z|<|z|/2}

] /2
<claot [ g1 ) 0
0

< C|$|25q . ‘m|n+(6—1)q

< C|$|n+(35—1)q

for |z| > 2/3. Since n+ (36 —1)q < 0, II is also dominated by a constant independent of
x. The estimate of III is also tricky.

I < c|z|"~(z)% / ly|*™(y — x) O~V (y)dqy
{ly1>1 and |y—a|>|e|/2}
< claf ()’ [ (y)* 9y — ) T Dagy

{ly|=1 and |y—=z|>|=|/2}
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< C‘x|7l—a<m>5q/ <m _ y>o‘_”+6q<x>”_a_5q<y _ $>(6_1)qdy
{ly|>1 and |y—z|>|z|/2}

< C‘x|n—a<x>n—a/ <JJ _ y>a—n+(5—1)qdy
{ly—z|>|=[/2}

SC.’IJln_a<.’L‘>n_a/|/ (1+p2)(a—n+(5—1)q)/2pn—1dp
z|/2

< el (@) (2] A 007D

< C(‘x|2n7a A |m|2nfa+(671)q).

We have used the estimate [y|®~" < 2(=)/2(y)e=" for all |y| > 1 in the first line. Since
a—n+dqg <0, (yye e < 2n—a=0a)/2(p _yya-ntdqgpyn—a=da e use this in the
third line. Since 2n — a4 (§ — 1)g < 0, IIT is also uniformly dominated by a constant
independent of x.

REMARK 7.4. We further see that the jumping function of Example 7.3 does not
belong to Az (see also [7, Definition 2.3]), that is, it does not hold

lim sup |z —y|*"

|x _ w|nfoc/
R—00,7—=0 (3 1) ede B(z,r)UB(0,R)cx B(z,r)UB(0,R)*
x (LA Ly =27 (y) " 1(z) "z — w|* "y — 2|~ "V dydz = 0.

Indeed, we may take a closed ball B, ,, with radius 1 in {(y, 2); ]y — 2| < 1,]z —w| <
1,1 <|y—z <5, and |y, |2| > R} for an arbitrary R > 0. It then follows

& — w] / & — gL A fy — 2
B(z,r)UB(0,R)¢x B(z,r)UB(0,R)*

X (y) )Tz —wl|* "y — 2T dydz

> ¢/ B(0, 1)z — w["™* {z) ™ (w) ™1

Here, |B(0,1)] is the volume of B(0,1). Therefore we find that Az 7 A, and Az C A.
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