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Abstract. In this paper we investigate Wulff shapes in Rn+1 (n ≥ 0)
from the topological viewpoint. A topological characterization of the limit of
Wulff shapes and the dual Wulff shape of the given Wulff shape are provided.
Moreover, we show that the given Wulff shape is never a polytope if its support
function is of class C1. Several characterizations of the given Wulff shape
from the viewpoint of pedals are also provided. One of such characterizations
may be regarded as a bridge between the mathematical aspect of crystals at
equilibrium and the mathematical aspect of perspective projections.

1. Introduction.

In 1901 Wulff gave the simple geometric construction for the shape of a crystal at
equilibrium ([22], see also [16], [20], [21]). In this paper, we study Wulff shapes, which
are the sets obtained by Wulff’s geometric construction, from the topological viewpoint.

We first review Wulff’s construction. For any non-negative integer n we let Sn be
the unit sphere in Rn+1. Let γ : Sn → R+ be a continuous function where R+ = {λ ∈
R | λ > 0}. For any θ ∈ Sn ⊂ Rn+1 put

Γγ,θ = {x ∈ Rn+1 | x · θ ≤ γ(θ)},

where the dot in the center stands for the scalar product of x, θ ∈ Rn+1. Then, the Wulff
shape associated with the support function γ is the following set Wγ :

Wγ =
⋂

θ∈Sn

Γγ,θ.

Wulff showed in [22] that for any crystal at equilibrium the shape of it can be constructed
as the Wulff shape Wγ by an appropriate support function γ. It is clearly seen that any
Wulff shape Wγ is compact, convex and the origin of Rn+1 is contained in Wγ as an
interior point. It is known that its converse, too, holds as follows (see page 573 of [20]).

Proposition 1.1. Let W be a subset of Rn+1. Then, there exists a parallel transla-
tion T : Rn+1 → Rn+1 such that T (W ) is the Wulff shape associated with an appropriate
support function if and only if W is compact, convex and has an interior point.
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Figure 1. Wulff’s construction.

In this paper, we first study dissolution of Wulff shapes. Let H(Rn+1) be the set
of non-empty compact subsets of Rn+1. Let dH : H(Rn+1) × H(Rn+1) → R+ ∪ {0}
be the Hausdorff metric (for the Hausdorff metric, see for instance [4], [5]). Then, it
is well-known that the metric space (H(Rn+1), dH) is a complete metric space (for the
complete metric space (H(Rn+1), dH), see for instance [4], [5]). Let Hconv(Rn+1) be the
subset of H(Rn+1) consisting of non-empty compact convex subsets:

Hconv(Rn+1) =
{
W ∈ H(Rn+1) | W is convex

}
.

Any Wulff shape Wγ belongs to Hconv(Rn+1) since it is compact, convex and having
an interior point. Any Cauchy sequence of Wulff shapes with respect to the Hausdorff
metric converges in Hconv(Rn+1) since the following Lemma 1.1 holds.

Lemma 1.1. The metric space (Hconv(Rn+1), dH) is complete.

Proof of Lemma 1.1. Let {Wi}i=1,2,... ⊂ Hconv(Rn+1) be a Cauchy sequence
with respect to the Hausdorff metric dH . Put

W =
{

x ∈ Rn+1
∣∣∣ ∃xi ∈ Wi (i ∈ N); lim

i→∞
xi = x

}
.

Then, it is known that {Wi}i=1,2,... is convergent to W in (H(Rn+1), dH) (see for instance
[4]). Thus, it is sufficient to show that W is convex.

Let x, y be two points of W and let {xi ∈ Wi}i=1,2,... (resp. {yi ∈ Wi}i=1,2,...)
be a sequence such that limi→∞ xi = x (resp. limi→∞ yi = y). Then, since Wi ∈
Hconv(Rn+1), it follows that (1 − t)xi + tyi ∈ Wi for any t ∈ [0, 1] and any i ∈ N. On
the other hand, it is clear that

(1− t)x + ty = lim
i→∞

((1− t)xi + tyi)

for any t ∈ [0, 1]. Thus, by definition of W , we have that (1 − t)x + ty ∈ W for any
t ∈ [0, 1]. Therefore, W is convex. ¤
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The zero dimensional Euclidean space R0 = {0} itself may be regarded as the Wulff
shape in R0 associated with a support function S−1 → R+ where S−1 = {x ∈ R0 |
‖x‖ = 1} = ∅; since R0 is compact, convex and has an interior point. Then, we have the
following:

Theorem 1.1. Let {Wγi
}i=1,2,... be a Cauchy sequence of Wulff shapes in

Hconv(Rn+1) with respect to the Hausdorff metric dH . Then, there exist an integer
k (0 ≤ k ≤ n + 1), a rotation R : Rn+1 → Rn+1 around the origin of Rn+1 and a
parallel translation T : Rn+1 → Rn+1 such that T ◦ R(limi→∞Wγi

) is a Wulff shape in
(Hconv(Rk × {(0, . . . , 0)}), dH).

Since the definitions of Hconv(Rk × {(0, . . . , 0)}) and Wulff shapes in it are clear,
we omit to state them.

Secondly, we study the dual Wulff shape for the given Wulff shape Wγ of a given
support function γ : Sn → R+. Let γ : Sn → R+ be a continuous function. For any
θ ∈ Sn put

Γ̃γ,θ =
{
(x, 1) ∈ Rn+1 × {1} | (x, 1) · (θ, 0) ≤ γ(θ)

}
,

where the dot in the center stands for the scalar product of (x, 1), (θ, 0) of Rn+2. Consider
the following set:

W̃γ =
⋂

θ∈Sn

Γ̃γ,θ.

It is clear that Wγ and W̃γ are congruent. Thus, W̃γ may be regarded as the Wulff
shape. Our result is stated in terms of W̃γ , the following spherical polar set X◦ of a set
X ⊂ Sn+1 and the following central projection αN . For any point P of Sn+1, we let
H(P ) be the following set:

H(P ) = {Q ∈ Sn+1 | P ·Q ≥ 0}.

Here, the dot in the center stands for the scalar product of P, Q ∈ Rn+2.

Definition 1.1. Let X be a subset of Sn+1. Then, the set

⋂

P∈X

H(P )

is called the spherical polar set of X and is denoted by X◦.

Let N be the point (0, . . . , 0, 1) ∈ Sn+1 where N stands for the north pole of Sn and
let Sn+1

N,+ be the upper hemisphere {P ∈ Sn+1 | N ·P > 0}. Thus, Sn+1
N,+ = Sn+1−H(−N).

We let αN : Sn+1
N,+ → Rn+1 × {1} be the map defined by
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αN (P1, . . . , Pn+2) =
(

P1

Pn+2
, . . . ,

Pn+1

Pn+2
, 1

)

for any P = (P1, . . . , Pn+2) ∈ Sn+1
N,+ . The map αN is called the central projection relative

to N (see Figure 2).

Figure 2. Central projection relative to N .

Definition 1.2. Let X̃ be a subset of Rn+1×{1}. Then the following set is called
the convex hull of X̃ and is denoted by conv(X̃).

conv(X̃) =
{ k∑

i=1

ti(xi, 1)
∣∣∣∣ (xi, 1) ∈ X̃,

k∑

i=1

ti = 1, ti ≥ 0, k ∈ N
}

.

In Definition 1.2 we may assume k ≤ n + 2 by Carathéodory’s theorem (for
Carathéodory’s theorem, see for instance [10]).

Definition 1.3. Let {(x1, 1), . . . , (xk, 1)} be a finite subset of Rn+1 × {1}.
Suppose that conv({(x1, 1), . . . , (xk, 1)}) has an interior point. Then, we call
conv({(x1, 1), . . . , (xk, 1)}) the polytope generated by (x1, 1), . . . , (xk, 1).

Theorem 1.2. Let γ : Sn → R+ be a continuous function. Then, for the Wulff
shape W̃γ ⊂ Rn+1 × {1} the following hold :

1. The set αN ((α−1
N (W̃γ))◦) is the Wulff shape associated with an appropriate support

function.
2. The given Wulff shape W̃γ is a polytope if and only if αN ((α−1

N (W̃γ))◦) is a polytope.

By Theorem 1.2 it is reasonable to call the Wulff shape αN ((α−1
N (Wγ))◦) the dual

Wulff shape of Wγ . In Section 5 it turns out that the dual Wulff shape of Wγ is exactly
the convex hull of 1/γ polar plot. Thus, the dual Wulff shape of Wγ may be regarded as
a generalization of Frank-Meijering construction (for details, see Section 5).

Thirdly, as an application of Theorem 1.2, we show the following:

Theorem 1.3. Let γ : Sn → R+ be a function of class C1. Then the Wulff shape
Wγ is never a polytope.
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This paper is organized as follows. In Section 2, we prepare several properties of
spherical polar sets for proofs of Theorems 1.2 and 1.3. Theorems 1.1, 1.2 and 1.3 are
proved in Sections 3, 4 and 5 respectively. Finally, in Section 6, we investigate Wulff
shapes from the viewpoint of pedals.

2. Spherical polar sets.

In this section we investigate properties of spherical polar sets in Sn+1. The no-
tion of spherical polar sets seems to be less common. Since Theorem 1.3 is proved by
using spherical polar sets and Theorem 1.2 is stated in terms of spherical polar sets, we
emphasize that the notion of spherical polar sets is significant.

It is clear that X◦ = ∩P∈XH(P ) is closed for any X ⊂ Sn+1.

Lemma 2.1. Let X, Y be subsets of Sn+1. Suppose that the inclusion X ⊂ Y holds.
Then, the inclusion Y ◦ ⊂ X◦ holds.

Proof of Lemma 2.1. Let Q be an element of Y ◦. Then, by definition we have
that P ·Q ≥ 0 for any P ∈ Y . Thus by the assumption we have that P̃ ·Q ≥ 0 for any
P̃ ∈ X and therefore by definition Lemma 2.1 follows. ¤

Lemma 2.2. For any subset X of Sn+1, the inclusion X ⊂ X◦◦ holds.

Proof of Lemma 2.2. For any point P of X the inclusion X◦ ⊂ {P}◦ = H(P )
holds by Lemma 2.1. Hence the inequality P ·Q ≥ 0 holds for any Q ∈ X◦ by definition.
Therefore, again by definition we have that P ∈ X◦◦. ¤

Definition 2.1. A subset X ⊂ Sn+1 is said to be hemispherical if there exists a
point P ∈ Sn+1 such that H(P ) ∩X = ∅.

Definition 2.2. A hemispherical subset X ⊂ Sn+1 is said to be spherical convex
if PQ ⊂ X for any P, Q ∈ X.

Here, PQ stands for the following arc:

PQ =
{

(1− t)P + tQ

‖(1− t)P + tQ‖ ∈ Sn+1

∣∣∣∣ 0 ≤ t ≤ 1
}

.

Note that ‖(1 − t)P + tQ‖ 6= 0 for any P, Q ∈ X and any t ∈ [0, 1] if X ⊂ Sn+1 is
hemispherical. Note further that X◦ is spherical convex if X is hemispherical and has
an interior point. However, in general, X◦ is not necessarily spherical convex even if X

is hemispherical (for instance if X = {P} then X◦ = H(P ) is not spherical convex).

Lemma 2.3. Let Xλ ⊂ Sn+1 be a spherical convex subset for any λ ∈ Λ. Then,
the intersection ∩λ∈ΛXλ is spherical convex.

Proof of Lemma 2.3. Let P, Q be two points of ∩λ∈ΛXλ. Since P, Q belong to
Xλ and Xλ is spherical convex for any λ ∈ Λ we have that PQ ⊂ Xλ for any λ ∈ Λ.
Therefore ∩λ∈ΛXλ contains PQ and thus it is spherical convex. ¤
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Definition 2.3. Let X be a hemispherical subset of Sn+1. Then, the following
set is called the spherical convex hull of X and is denoted by s-conv(X).

s-conv(X) =
{ ∑k

i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0, k ∈ N
}

.

It is clear that s-conv(X) = X if X is spherical convex. More generally, we have the
following:

Lemma 2.4. For any hemispherical subset X, the spherical convex hull of X is the
smallest spherical convex set containing X.

Proof of Lemma 2.4. Let Y be a spherical convex set such that X ⊂ Y . Let∑k
i=1 tiPi/‖

∑k
i=1 tiPi‖ be an element of s-conv(X). Then, since Pi ∈ X ⊂ Y for any i

(1 ≤ i ≤ k) and Y is spherical convex, Pi1Pi2 is contained in Y for any i1, i2 (1 ≤ i1, i2 ≤
k). Let ti1 , ti2 be two non-negative real numbers such that ti1 + ti2 = 1. Then, since
(ti1Pi1 + ti2Pi2)/‖ti1Pi1 + ti2Pi2‖ and Pi3 are contained in Y and Y is spherical convex,
the set

{
(1− ti3)ti1Pi1 + (1− ti3)ti2Pi2 + ti3Pi3

‖(1− ti3)ti1Pi1 + (1− ti3)ti2Pi2 + ti3Pi3‖

∣∣∣∣ 0 ≤ ti3 ≤ 1
}

is contained in Y . In this way, it is seen that the given point
∑k

i=1 tiPi/‖
∑k

i=1 tiPi‖ is
contained in Y . ¤

Definition 2.4. Let {P1, . . . , Pk} be a hemispherical finite subset of Sn+1. Sup-
pose that s-conv({P1, . . . , Pk}) has an interior point. Then, we call s-conv({P1, . . . , Pk})
the spherical polytope generated by P1, . . . , Pk.

Proposition 2.1. For any closed hemispherical subset X ⊂ Sn+1, the following
hold :

1. The equality s-conv(X) = (s-conv(X))◦◦ holds.1

2. The set s-conv(X) is a spherical polytope if and only if (s-conv(X))◦ is a spherical
polytope.

Note that for any closed hemispherical subset X ⊂ Sn+1, s-conv(X), too, is closed
and hemispherical. Note also that for any subset X ⊂ Sn+1, the inclusion X ⊂ X◦◦

holds always by Lemma 2.2. However, even if X is closed and hemispherical, the inverse
inclusion X ⊃ X◦◦ does not hold in general as Figure 3 shows.

For the proof of Proposition 2.1, we need the following Maehara’s lemma.

Lemma 2.5 (Maehara’s lemma ([9])). For any hemispherical finite subset X =

1The assertion 1 of Proposition 2.1 has been already known (see [7]). However, since no proofs of this
fact have been given in [7], we give a proof of the assertion 1 of Proposition 2.1 for the sake of readers’

convenience.
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Figure 3. Left:X. Right: X◦◦.

{P1, . . . , Pk} ⊂ Sn+1, the following holds:

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0
}◦

= H(P1) ∩ · · · ∩H(Pk).

Since the reference [9] is written in Japanese, we give a proof of Lemma 2.5 here for the
sake of readers’ convenience.

Figure 4. (PQ)◦ = H(P ) ∩H(Q).

Proof of Lemma 2.5. Let Q be a point of Sn+1. Then, we see that the inequal-
ity Q ·( ∑k

i=1 tiPi

) ≥ 0 holds for any t1, . . . , tk such that
∑k

i=1 ti = 1, ti ≥ 0 (1 ≤ i ≤ k)
if and only if Q · Pi ≥ 0 for any i (1 ≤ i ≤ k). Therefore, Lemma 2.5 follows. ¤

Proof of the assertion 1 of Proposition 2.1. By Lemma 2.2, we have the
inclusion s-conv(X) ⊂ (s-conv(X))◦◦. Conversely, suppose that there exists a point
P ∈ (s-conv(X))◦◦ such that P 6∈ s-conv(X). Since s-conv(X) is hemispherical closed
and P 6∈ s-conv(X), there exists a point Q ∈ Sn+1 such that s-conv(X) ⊂ H(Q) and
P 6∈ H(Q) by the separation theorem (for the separation theorem, see for instance [10]).
Since s-conv(X) ⊂ H(Q) we have that Q · R ≥ 0 for any R ∈ s-conv(X), which implies
that Q ∈ (s-conv(X))◦. Hence and since P ∈ (s-conv(X))◦◦ we have that P · Q ≥ 0,
which contradicts that P 6∈ H(Q). ¤

Proof of the assertion 2 of Proposition 2.1. Suppose that s-conv(X) is a
spherical polytope. Let F1, . . . , F` be n-dimensional cells of s-conv(X) (that is, F1, . . . , F`
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are facets of s-conv(X)). Then, since s-conv(X) is a spherical polytope, we have that
` ≥ n + 2. Let Ai be the point of Sn+1 such that s-conv(X) = H(A1) ∩ · · · ∩ H(A`).
By Maehara’s lemma (Lemma 2.5) we have that (s-conv({A1, . . . , A`}))◦ = H(A1) ∩
· · · ∩H(A`). Thus, by the assertion 1 of Proposition 2.1, we have that (s-conv(X))◦ =
s-conv({A1, . . . , A`}). On the other hand, since s-conv(X) has an interior point, it follows
that there exists a subset {i1, . . . , in+2} ⊂ {1, . . . , `} such that Ai1 , . . . , Ain+2 are linearly
independent. Hence, s-conv({A1, . . . , A`}) has an interior point. Therefore, (s-conv(X))◦

is a spherical polytope.
Conversely, suppose that (s-conv(X))◦ is a spherical polytope. Then, by the ar-

gument so far, (s-conv(X))◦◦ is a spherical polytope. Therefore, by the assertion 1 of
Proposition 2.1, s-conv(X) is a spherical polytope. ¤

3. Proof of Theorem 1.1.

Since {Wγi}i=1,2,... is a Cauchy sequence in (Hconv(Rn+1), dH), limi→∞Wγi exists
in Hconv(Rn+1) by Lemma 1.1. Hence, limi→∞Wγi

is a non-empty, compact and convex
subset of Rn+1. Then, since limi→∞Wγi

is convex, there exists the unique integer k

(0 ≤ k ≤ n + 1) and the unique k-dimensional linear subspace V k of Rn+1 such that
limi→∞Wγi ⊂ V k and limi→∞Wγi has an interior point in V k. Therefore, there exist
a rotation R : Rn+1 → Rn+1 around the origin of Rn+1 such that R(V k) = Rk ×
{(0, . . . , 0)} and R(limi→∞Wγi

) is compact, convex and has an interior point in R(V k).
Hence, by Proposition 1.1, there exists a parallel translation T : Rn+1 → Rn+1 such that
T ◦R(limi→∞Wγi

) is the Wulff shape of an appropriate support function γ : Sk−1 → R+

in Rk × {(0, . . . , 0)}. ¤

4. Proof of Theorem 1.2.

As defined in Section 1, N is the point (0, . . . , 0, 1) of Sn+1, Sn+1
N,+ is the upper

hemisphere {P ∈ Sn+1 | N · P > 0} and αN : Sn+1
N,+ → Rn+1 × {1} is the central

projection relative to N .

Lemma 4.1. 1. For any spherical convex X ⊂ Sn+1
N,+ , αN (X) is convex.

2. For any convex X̃ ⊂ Rn+1 × {1}, α−1
N (X̃) is spherical convex.

Proof of Lemma 4.1. Let P, Q be two points of αN (X). Suppose that there
exists t ∈ [0, 1] such that (1 − t)P + tQ 6∈ αN (X). Let ` be the linear line of Rn+2

spanned by the (n + 2)-dimensional vector (1 − t)P + tQ. Since X is spherical convex,
the intersection of ` and Sn+1

N,+ belongs to X. Thus, the point (1 − t)P + tQ, which is
the image of the intersection by αN belongs to αN (X). The contradiction shows that
αN (X) must be convex.

Next, let P, Q be two points of α−1
N (X̃). Suppose that there exists t ∈ [0, 1] such that

((1− t)P + tQ)/‖(1− t)P + tQ‖ 6∈ α−1
N (X̃). Let ` be the linear line of Rn+2 spanned by

the (n + 2)-dimensional vector (1 − t)P + tQ. Since X̃ is convex, the intersection of `

and Rn+1 × {1} belongs to X̃. Thus, the point ((1− t)P + tQ)/‖(1− t)P + tQ‖, which
is the inverse image of the intersection by αN , belongs to α−1

N (X̃). The contradiction
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shows that α−1
N (X̃) must be spherical convex. ¤

Let the cylinder {(θ, ρ) | θ ∈ Sn, ρ ∈ R} be denoted by CN and let βN : Sn+1 −
{±N} → CN be the map defined by

βN (P ) =


 P1√

P 2
1 + · · ·+ P 2

n+1

, . . . ,
Pn+2√

P 2
1 + · · ·+ P 2

n+1




for any P = (P1, . . . , Pn+2) ∈ Sn+1−{±N}. The map βN is called the central cylindrical
projection relative to N (see Figure 5).

Figure 5. Central cylindrical projection relative to N .

Lemma 4.2. Let X ⊂ Sn+1 be a closed and spherical convex subset. Suppose that
N = (0, . . . , 0, 1) ∈ Sn+1 is an interior point of X and X ⊂ Sn+1

N,+ . Define the function
γ : Sn → R by

βN (X − {N}) ∩ ({−θ} × R) = {−θ} × [γ(θ),∞) (∀θ ∈ Sn).

Then, γ is well-defined, continuous, γ(θ) > 0 for any θ ∈ Sn and the following equality
holds:

W̃γ = αN (X◦).

Proof of Lemma 4.2. Put Πθ = R(θ, 0) + RN for any θ ∈ Sn. Then, since X

is closed and spherical convex and N is an interior point of X, for any θ ∈ Sn we have
two points P (θ), P (−θ) ∈ X such that P (θ) · (θ, 0) > 0, P (−θ) · (−θ, 0) > 0 and the
intersection X ∩Πθ is exactly the arc P (θ)P (−θ).

Let {θi}i=1,2,... be a sequence of Sn satisfying

lim
i→∞

θi = θ0 and lim
i→∞

P (θi) = P0.
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Then, since X is closed, P0 ∈ X. Thus, by the definition of P (θ0), the scalar product
N · P0 must be greater than or equal to N · P (θ0). Suppose that N · P0 > N · P (θ0).
Then, by the definition of P0, we may assume that there exists a sufficiently small ε > 0
such that P (θi) 6∈ Dn+2

ε (P (θ0)) for any i ∈ N, where Dn+2
ε (P (θ0)) is the (n + 2)-

dimensional disk with radius ε centered at P (θ0). However, since X is spherical convex,
the arc P (θi)P (θ0) belongs to X for any i ∈ N. Thus, there must exist a point in
X ∩ Πθi

∩ Dn+2
ε (P (θ0)) for any sufficiently large i. This contradicts the definition of

P (θi) for any sufficiently large i. Hence, we have that N · P0 = N · P (θ0) which implies
that the map P : Sn → Sn+1 is continuous. Since N is an interior point of X, it is
clearly seen that P (θ) 6= N for any θ ∈ Sn. Furthermore, since X ∩ H(−N) = ∅, it is
trivial that P (Sn)∩H(−N) = ∅. Since it is clear that βN : Sn+1−{±N} → CN is a C∞

diffeomorphism and βN (P (−θ)) = (−θ, γ(θ)), γ : Sn → R+ is a well-defined continuous
function.

Let ΨN : Sn+1 − {±N} → Sn+1 be the map defined by

ΨN (P ) =
1√

1− (N · P )2
(N − (N · P )P ).

The map ΨN , which has been introduced in [12] and has been used in [12], [13] for the
study of singularities of spherical pedal curves, in [14] for the study of pedal unfoldings
of pedal curves and in [15] for the study of hedgehogs (see also [8] where the hyperbolic
version of ΨN has been introduced and studied), has the following interesting properties:

1. For any P ∈ Sn+1 − {±N}, the equality P ·ΨN (P ) = 0 holds,
2. for any P ∈ Sn+1 − {±N}, the property ΨN (P ) ∈ RN + RP holds,
3. for any P ∈ Sn+1 − {±N}, the property N ·ΨN (P ) > 0 holds,
4. the restriction ΨN |Sn+1

N,+−{N} : Sn+1
N,+ − {N} → Sn+1

N,+ − {N} is a C∞ diffeomorphism.

By the property 3, αN ◦ ΨN ◦ P (θ) is well-defined for any θ ∈ Sn. Properties 1 and 2
yield the following by elementary geometry:

γ(θ) = (αN ◦ΨN ◦ P (−θ)) · (θ, 0) (∀θ ∈ Sn). (a)

By using of Maehara’s lemma (Lemma 2.5) and the equality (a), we have the following:

(x, 1) ∈ αN (X◦)

⇔ α−1
N (x, 1) ∈ X◦

⇔ α−1
N (x, 1) · P ≥ 0 (∀P ∈ X)

⇔ α−1
N (x, 1) · P (−θ) ≥ 0 (∀θ ∈ Sn)

⇔ (x, 1) ∈ Γγ,θ (∀θ ∈ Sn).

Here, the equivalence of the third line and the fourth line (resp., the fourth line and the
fifth line) is obtained by Maehara’s lemma (resp., the above equality (a)). Therefore, the
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following holds:

αN (X◦) =
⋂

θ∈Sn

Γγ,θ = W̃γ . ¤

Definition 4.1. Let {(p1, 1), . . . , (pk, 1)} be a subset of Rn+1×{1}. Suppose that
the convex hull of {(p1, 1), . . . , (pk, 1)} has an interior point. Then, the convex hull of
{(p1, 1), . . . , (pk, 1)} is called the polytope generated by (p1, 1), . . . , (pk, 1).

Lemma 4.3. 1. Let X ⊂ Sn+1
N,+ be the spherical polytope generated by P1, . . . , Pk.

Then, αN (X) is the polytope generated by αN (P1), . . . , αN (Pk).
2. Let X̃ ⊂ Rn+1 × {1} be the polytope generated by (p1, 1), . . . , (pk, 1). Then, α−1

N (X̃)
is the spherical polytope generated by α−1

N ((p1, 1)), . . . , α−1
N ((pk, 1)).

Proof of Lemma 4.3. Since αN is a C∞ diffeomorphism, αN (X) has an interior
point if X has an interior point and α−1

N (X̃) has an interior point if X̃ has an interior
point. Hence, Lemma 4.3 follows. ¤

Proof of the assertion 1 of Theorem 1.2. We put C = βN ((α−1
N (W̃γ))\

{N}). Then, since W̃γ is compact, C is a closed subset of Sn×R and C∩(Sn×{0}) = ∅.
Let γ̃ : Sn → R be the function defined by C ∩ ({−θ} × R) = {−θ} × [γ̃(θ),∞) for any
θ ∈ Sn. Then, as in the proof of Lemma 4.2, γ̃(θ) > 0 holds for any θ ∈ Sn and γ̃ is con-
tinuous. Thus, by Proposition 2.1 and Lemma 4.2, we have that αN ((α−1

N (W̃γ))◦) = W̃eγ .
¤

Proof of the assertion 2 of Theorem 1.2. Suppose that W̃γ is a polytope.
Then, by Lemma 4.3, α−1

N (W̃γ) is a spherical polytope. Thus, (α−1
N (W̃γ))◦ is a spherical

polytope by Proposition 2.1. Hence, αN ((α−1
N (W̃γ))◦) is a polytope by Lemma 4.3.

Conversely, suppose that αN ((α−1
N (W̃γ))◦) is a polytope. Then, by Lemma 4.3, the

following set is a spherical polytope:

α−1
N

(
αN

((
α−1

N (W̃γ)
)◦)) =

(
α−1

N (W̃γ)
)◦

.

Thus, the following set is a spherical polytope by Proposition 2.1.

(
α−1

N (W̃γ)
)◦◦ =

(
α−1

N (W̃γ)
)
.

Hence, αN (α−1
N (W̃γ)) = W̃γ is a polytope by Lemma 4.3. ¤

5. Proof of Theorem 1.3.

Let f̃γ : Sn → Rn+1×{1}−{N} be the C1 embedding defined by f̃γ(θ) = (θ, γ(θ), 1),
where N is the point (0, . . . , 0, 1) ∈ Rn+1 × {1} and (θ, γ(θ), 1) is the polar coordinate
expression of the point of Rn+1 × {1} − {N}. Put fγ = α−1

N ◦ f̃γ . Then, fγ : Sn → Sn+1

is a C1 embedding. Then, by Maehara’s lemma, we have the following:
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Q ∈ (ΨN ◦ fγ(Sn))◦

⇔ P ·Q ≥ 0 (∀P ∈ ΨN ◦ fγ(Sn))

⇔
∑k

i=1 tiPi

‖∑k
i=1 tiPi‖

·Q ≥ 0

(∀Pi ∈ ΨN ◦ fγ(Sn), ∀ti ≥ 0 such that
k∑

i=1

ti = 1, ∀k ∈ N),

where ΨN : Sn+1 − {±N} → Sn+1 is the map defined in Section 4. Thus, the following
holds:

(ΨN ◦ fγ(Sn))◦ = (s-conv (ΨN ◦ fγ(Sn)))◦.

On the other hand, as in the proof of Lemma 4.2 the following holds:

W̃γ = αN ((ΨN ◦ fγ(Sn))◦).

Therefore, the following holds:

W̃γ = αN ((s-conv(ΨN ◦ fγ(Sn)))◦).

Hence, by Proposition 2.1 we have the following:

αN

((
α−1

N (W̃γ)
)◦) = αN (s-conv(ΨN ◦ fγ(Sn))).

Since γ is of class C1 and the property 4 of ΨN in Section 4, the boundary of
αN (s-conv(ΨN ◦ fγ(Sn))) is a C1 manifold (for instance, see [19], [23]). Hence,
αN

(
(α−1

N (W̃γ))◦
)

is not a polytope. Therefore, W̃γ is not a polytope by Theorem 1.2. ¤

As a by-product of the above proof, we have the following:

Theorem 5.1. Let γ1, γ2 : Sn → R+ be two continuous functions. Furthermore,
we let f̃γi

: Sn → Rn+1×{1} be the topological embedding defined by f̃γi
(θ) = (θ, γi(θ), 1)

and let fγi
be the composition α−1

N ◦ f̃γi
for any i (i = 1, 2). Then, W̃γ1 = W̃γ2 if and

only if s-conv(ΨN ◦ fγ1(S
n)) = s-conv(ΨN ◦ fγ2(S

n)).

Furthermore, we can characterize the dual Wulff shape of Wγ for a given continuous
function γ : Sn → R+ as follows. For any continuous function γ : Sn → R+, let
f̃(1/γ,−) : Sn → Rn+1 × {1} be the map defined by f̃(1/γ,−)(θ) = (θ, 1/γ(−θ), 1) and put
f(1/γ,−) = α−1

N ◦ f̃(1/γ,−). The image of f̃(1/γ,−) is called the 1/γ polar plot. Put

Dn+1(f̃(1/γ,−)) =
{

(1− t)
(

θ,
1

γ(−θ)
, 1

)
+ t

(
− θ,

1
γ(θ)

, 1
) ∣∣∣∣ θ ∈ Sn, 0 ≤ t ≤ 1

}
.
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Note that the boundary of Dn+1(f̃(1/γ,−)) is exactly the 1/γ polar plot and
Dn+1(f̃(1/γ,−)) is not convex in general. Then, since αN

(
(α−1

N (W̃γ))◦
)

= αN (s-conv(ΨN ◦
fγ(Sn))) and f̃(1/γ,−)(θ) = αN ◦ΨN ◦ fγ(−θ), by Maehara’s lemma and Theorem 1.2 we
have the following:

Theorem 5.2. Let γ : Sn → R+ be a continuous function. Then, the following
hold :

1. The Wulff shape Wγ is exactly αN

(
(f(1/γ,−)(Sn))◦

)
.

2. The dual Wulff shape αN

(
(α−1

N (W̃γ))◦
)

is exactly the convex hull of the 1/γ polar plot.
3. Suppose that Dn+1(f̃(1/γ,−)) is a polytope. Then, Wγ is a polytope.

By Theorem 5.2, the dual Wulff shape of Wγ may be regarded as a generalization
of Frank-Meijering construction ([6], [11]).

6. Wulff shapes from the viewpoint of pedals.

Let γ : Sn → R+ be a continuous function, f̃γ : Sn → Rn+1×{1} be the topological
embedding defined by f̃γ(θ) = (θ, γ(θ), 1) and fγ : Sn → Sn+1 be the composition
α−1

N ◦ f̃γ respectively. Then, as in Section 5, we have that

W̃γ = αN

(
(s-conv(ΨN ◦ fγ(Sn)))◦

)
,

αN

((
α−1

N (W̃γ)
)◦) = αN (s-conv(ΨN ◦ fγ(Sn))).

In this section, we investigateWγ in the case that there exists a Legendrian map r : Sn →
Sn+1

N,+ such that the spherical convex hull of the image of the dual of r : Sn → Sn+1
N,+ is

exactly the spherical convex hull of ΨN ◦ fγ(Sn). In this case, Wγ can be expressed in
three ways.

Definition 6.1. 1. A tangent oriented hyperplane field K on a (2m + 1)-
dimensional oriented C∞ manifold M is said to be non-degenerate if α ∧ (dα)m 6= 0
at any point of M where α is a 1-form defining K locally.

2. For a (2m+1)-dimensional oriented C∞ manifold M and a tangent oriented hyperplane
field K on M , (M, K) is said to be a contact manifold if K is a non-degenerate
hyperplane field.

3. A C∞ submanifold of a contact manifold (M, K) is said to be integral if its tangent
plane at every point belongs to K.

4. Integral manifolds of the greatest possible dimension are said to be Legendrian sub-
manifolds of the contact manifold.

5. A C∞ bundle π : E2m+1 → Bm+1 is said to be Legendrian if its space E furnished
with a contact structure and its fibers are Legendrian submanifolds. The projective
cotangent bundle (PT ∗(M),K) furnished with the canonical contact structure is a
Legendrian bundle.

6. Let i : L → PT ∗(M) be a C∞ embedding of a Legendrian submanifold L to the
space of the projective cotangent bundle (PT ∗(M),K) of a C∞ oriented manifold M
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furnished with the canonical contact structure. Then, the composition π ◦ i is said to
be a Legendrian map.

7. For a Legendrian map π ◦ i : L → B, its image π ◦ i(L) is said to be a front.

For details on these definitions, see for instance [3]. Note that any C∞ immersion
Sn → Sn+1 is a Legendrian map. For a Legendrian map r : Sn → Sn+1, as in [1],
[17], [18], [12], [13], [15], we can define the spherical dual of r as follows. For any
θ ∈ Sn let GHr(θ) be the co-oriented great hypersphere tangent to r(Sn) at r(θ). Let
n : Sn → Sn+1 be the map which maps θ ∈ Sn to the unique point n(θ) satisfying

n(θ) · P = 0 (∀P ∈ GHr(θ)) and n(θ) ·N ≥ 0.

The map n : Sn → Sn+1 is called the dual of r. Note that n is also a Legendrian map
and singularities of n belongs to the class of Legendrian singularities which are relatively
well-investigated (for instance, see [1], [2], [3]).

Figure 6. Images of r and its dual.

Let γ : Sn → R+ be a continuous function. Hereafter until Theorem 6.3, we assume
that there exists a Legendrian map rγ : Sn → Sn+1

N,+ such that the following (b) is
satisfied; where nγ : Sn → Sn+1 is the dual of rγ , fγ is given by fγ(θ) = α−1

N (θ, γ(θ), 1)
and (θ, γ(θ), 1) is the polar coordinate expression of the point of Rn+1 × {1} − {N}:

s-conv(ΨN ◦ fγ(Sn)) = s-conv(nγ(Sn)). (b)

Our assumption is not strong, or rather, reasonable for studying Wulff shapes from the
viewpoint of Legendrian singularity theory. Actually, we can show the following Theorem
6.1 which asserts that the condition (b) is equivalent to the following condition (c):

W̃γ = αN

(
(nγ(Sn))◦

)
. (c)

Theorem 6.1. Let γ : Sn → R+ be a continuous function.

1. Suppose that there exists a Legendrian map rγ : Sn → Sn+1
N,+ such that the condition

(b) is satisfied, where nγ : Sn → Sn+1 is the dual of rγ , fγ is given by fγ(θ) =
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α−1
N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression of the point of Rn+1×
{1} − {N}. Then, the condition (c) is satisfied.

2. Suppose that there exists a Legendrian map rγ : Sn → Sn+1
N,+ such that the condition

(c) is satisfied, where nγ : Sn → Sn+1 is the dual of rγ . Then, the condition (b)
is satisfied, where fγ is given by fγ(θ) = α−1

N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar
coordinate expression of the point of Rn+1 × {1} − {N}.

Proof of the assertion 1 of Theorem 6.1. Note that the condition (b) im-
plies that nγ(Sn) ⊂ Sn+1

N,+ . In particular, we have that N 6∈ ⋃
θ∈Sn GHrγ(θ). As in

Section 5, the following holds:

W̃γ = αN

(
(s-conv(ΨN ◦ fγ(Sn)))◦

)
.

On the other hand, the following holds by Maehara’s lemma:

αN

(
(nγ(Sn))◦

)
= αN

(
(s-conv(nγ(Sn)))◦

)
.

Therefore, the assertion 1 of Theorem 6.1 follows. ¤

Proof of the assertion 2 of Theorem 6.1. Note that the condition (c) im-
plies that nγ(Sn) ⊂ Sn+1

N,+ . In particular, we have that N 6∈ ⋃
θ∈Sn GHrγ(θ). As in

Section 5, the following holds:

(s-conv(ΨN ◦ fγ(Sn)))◦ = α−1
N

(W̃γ

)
.

Thus, by the assertion 1 of Proposition 2.1, the following holds:

s-conv(ΨN ◦ fγ(Sn)) =
(
α−1

N (W̃γ)
)◦

.

On the other hand, the following holds by Maehara’s lemma:

(s-conv(nγ(Sn)))◦ = (nγ(Sn))◦.

Thus, again by the assertion 1 of Proposition 2.1, the following holds:

s-conv(nγ(Sn)) = (nγ(Sn))◦◦.

Therefore, the assertion 2 of Theorem 6.1 follows. ¤

Define the map s-pedrγ ,N : Sn → Sn+1
N,+ as s-pedrγ ,N (θ) is the unique nearest point

in GHrγ(θ) from N . The map s-pedrγ ,N is called the spherical pedal relative to the pedal
point N for rγ . Note that s-pedrγ ,N is well-defined since rγ(Sn) ⊂ Sn+1

N,+ . It is easy to
show that the spherical pedal relative to the pedal point N for rγ can be characterized
as follows (see [12]).
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Lemma 6.1. s-pedrγ ,N = ΨN ◦ nγ .

Put r̃γ = αN ◦ rγ . Note that r̃γ is a Legendrian map since rγ is a Legendrian map
and αN : Sn+1

N,+ → Rn+1×{1} is a C∞ diffeomorphism. For any θ ∈ Sn let HPerγ(θ) be the
hyperplane tangent to r̃γ(Sn) at r̃γ(θ). Then, we have that N 6∈ ⋃

θ∈Sn HPerγ(θ) since
N 6∈ ⋃

θ∈Sn GHrγ(θ). Define the map pederγ ,N : Sn → Rn+1 × {1} as pederγ ,N (θ) is the
unique nearest point in HPerγ(θ) from N . The map pederγ ,N is called the pedal relative to
the pedal point N for r̃γ . Then, since the nearest point in GHrγ

(θ) from N is mapped to
the nearest point in HPerγ

(θ) from N by the central projection αN , the following clearly
holds:

Lemma 6.2. pederγ ,N = αN ◦ s-pedrγ ,N .

For the central cylindrical projection βN : Sn+1 − {±N} → CN , we put βN (P ) =
(βN,Sn(P ), βN,R(P )) where βN,Sn(P ) ∈ Sn and βN,R(P )) ∈ R. Then, the following
equality holds by elementary geometry:

pederγ ,N (θ) = (−βN,Sn(nγ(θ)), βN,R(nγ(θ)), 1)

Here, (−βN,Sn(nγ(θ)), βN,R(nγ(θ)), 1) is the polar coordinate expression of the point of
Rn+1 × {1} − {N}. Furthermore, put

∆ped,θ =
{
(x, 1) ∈ Rn+1 × {1} | (x, 1) · (−βN,Sn(nγ(θ)), 0) ≤ βN,R(nγ(θ))

}
.

Note that the boundary of ∆ped,θ is exactly HPerγ(θ). By Theorem 6.1, we have the
following characterization of the Wulff shape associated with the support function γ by
using the pedal relative to N for r̃γ :

Theorem 6.2. Let γ : Sn → R+ be a continuous function. Suppose that there
exists a Legendrian map rγ : Sn → Sn+1 such that s-conv(ΨN◦fγ(Sn)) = s-conv(nγ(Sn))
is satisfied; where nγ : Sn → Sn+1 is the dual of rγ , fγ is given by fγ(θ) = α−1

N (θ, γ(θ), 1)
and (θ, γ(θ), 1) is the polar coordinate expression of the point of Rn+1×{1}−{N}. Then,
the following holds:

W̃γ =
⋂

θ∈Sn

∆ped,θ.

Moreover, we can show the following:

Theorem 6.3. Let γ : Sn → R+ be a continuous function. Suppose that there
exists a Legendrian map rγ : Sn → Sn+1 such that s-conv(ΨN◦fγ(Sn)) = s-conv(nγ(Sn))
is satisfied. Then, the following holds:

W̃γ = Rn+1 × {1} −
⋃

θ∈Sn

HPerγ(θ).
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Here, nγ : Sn → Sn+1 is the spherical dual of rγ , fγ is given by fγ(θ) =
α−1

N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression of the point of Rn+1 ×
{1} − {N}, r̃γ = αN ◦ rγ and X stands for the topological closure of X ⊂ Rn+1 × {1}.

Proof of Theorem 6.3. Let (x, 1) be an element of Rn+1×{1}−⋃
θ∈Sn HPerγ(θ).

Then, for any θ ∈ Sn the following holds:

(x, 1) · (−βN,Sn(nγ(θ)), 0) 6= βN,R(nγ(θ)). (d)

For the x suppose that there exists an element θ0 ∈ Sn such that

(x, 1) · (−βN,Sn(nγ(θ0)), 0) > βN,R(nγ(θ0)).

Then, since both βN,Sn : Sn+1 − {±N} → Sn and βN,R : Sn+1 − {±N} → R are
continuous, for the x and any θ ∈ Sn the following (e) must hold by (d):

(x, 1) · (−βN,Sn(nγ(θ)), 0) > βN,R(nγ(θ)). (e)

On the other hand, by Theorem 6.2, we have that for any ξ ∈ Sn there exist
θ1, θ2 ∈ Sn such that

ξ = −βN,Sn(nγ(θ1)),

−ξ = −βN,Sn(nγ(θ2)).

Thus, by (e) we have the following:

(x, 1) · (ξ, 0) > βN,R(nγ(θ1)) > 0,

−(x, 1) · (ξ, 0) = (x, 1) · (−ξ, 0) > βN,R(nγ(θ2)) > 0.

By this contradiction we have that for any (x, 1) ∈ Rn+1×{1}−⋃
θ∈Sn HPerγ(θ) and any

θ ∈ Sn the following holds:

(x, 1) · (−βN,Sn(nγ(θ)), 0) < βN,R(nγ(θ)).

Hence we have the inclusion W̃γ ⊃ Rn+1 × {1} −⋃
θ∈Sn HPerγ(θ). Since it is clear that

the converse holds, Theorem 6.3 follows. ¤

Theorem 6.3 may be regarded as a bridge between the mathematical aspect of crys-
tals and the mathematical aspect of computer vision as follows.

Let f(Sn) ⊂ Rn+1×{1} be a given front of a Legendrian map f : Sn → Rn+1×{1}.
For any point p = (p1, . . . , pn+1) of Rn+1, the parallel translation Tp : Rn+2 → Rn+2

defined by Tp(x1, . . . , xn+2) = (x1 − p1, . . . , xn+1 − pn+1, xn+2) maps the point (p, 1) ∈
Rn+1 × {1} to the point N = (0, . . . , 0, 1) ∈ Rn+1 × {1}. Put r̃p = Tp ◦ f . Furthermore,
put EN = {P ∈ Sn+1 | N · P = 0} and define the map πN : Sn+1 − {±N} → EN as
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πN (P ) is the unique point Q ∈ EN such that Q ∈ EN ∩ (RN + RP ) and P · Q > 0
for any P ∈ Sn+1. Then, we call the restricted map πN ◦ α−1

N ◦ Tp|f(Sn) : f(Sn) → EN

the perspective projection of f(Sn) from the perspective point p ([15]). The perspective
projection of the front f(Sn) from the perspective point p is said to have no silhouette if
N 6∈ ∪θ∈SnHPerp(θ). Put rp = α−1

N ◦ r̃p and let np : Sn → Sn+1 be the dual of rp. Put

NSf =
{

(p, 1) ∈ Rn+1 × {1}
∣∣∣∣ N 6∈

⋃

θ∈Sn

HPerp(θ)

}

=
{

(p, 1) ∈ Rn+1 × {1}
∣∣∣∣ (p, 1) 6∈

⋃

θ∈Sn

HPf(θ)

}
.

Here, NS stands for “No Silhouette”. Figure 7 is a set of examples of NSf . In Figure 7,
the thick curves are the given fronts and the blank region is NSf for each front f(S1).
The following Lemma 6.3 is known for NSf .

Lemma 6.3 ([15]).

(p, 1) ∈ NSf

⇔ np(Sn) ⊂ Sn+1 − EN .

Hence, by changing the given orientation of the canonical hyperplane field K of the
projective cotangent bundle PT ∗(Sn+1) if necessary, we may assume

(p, 1) ∈ NSf

⇔ np(Sn) ⊂ Sn+1
N,+ .

Then, note that N 6∈ np(Sn) for any p ∈ Rn+1 such that (p, 1) ∈ NSf since rp ⊂ Sn+1
N,+ .

Thus, for any p ∈ Rn+1 such that (p, 1) ∈ NSf , the function γp : Sn → R+ given by
βN (s-conv(np(Sn)))∩({−θ}×R) = {−θ}×[γp(θ),∞) (θ ∈ Sn) is well-defined. Therefore,
by Theorem 6.3, we have the following equality if NSf is not empty:

NSf = T−p(Wγp) for any p ∈ NSf .

Thus, NSf is an equilibrium form of crystal if NSf is not empty. Perspective
projections having no silhouette themselves seem to be meaningless because we can obtain
no information about the object f(Sn) by the perspective projections. However, such
meaningless perspective points themselves, if exist, create the morphology NSf .
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Figure 7. Various Wulff shapes constructed by tangent lines to fronts.
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Monogr. Math., 82, Birkhäuser, Boston Inc., Boston, MA, 1985.

[ 4 ] M. F. Barnsley, Fractals Everywhere. 2nd edition, Academic Press Professional, Boston, MA,

1993.

[ 5 ] K. Falconer, Fractal Geometry –Mathematical Foundations and Applications. 2nd edition, John

Wiley & Sons, Inc., Hoboken, NJ, 2003.

[ 6 ] F. C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963.

[ 7 ] F. Gao, D. Hug and R. Schneider, Intrinsic volumes and polar sets in spherical space, Math.

Notae, 41 (2001/02), 159–176 (2003).

[ 8 ] S. Izumiya and F. Tari, Projections of hypersurfaces in the hyperbolic space to hyperhorospheres

and hyperplanes, Rev. Mat. Iberoam., 24 (2008), 895–920.

[ 9 ] H. Maehara, Geometry of Circles and Spheres, Asakura Publishing, 1998 (in Japanese).
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