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Geometric intersection of curves on punctured disks

By S. Öykü Yurttaş
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Abstract. We give a recipe to compute the geometric intersection num-
ber of an integral lamination with a particular type of integral lamination on
an n-times punctured disk. This provides a way to find the geometric inter-
section number of two arbitrary integral laminations when combined with an
algorithm of Dynnikov and Wiest.

1. Introduction.

Given a surface M of genus g with s boundary components, a well known way
of giving coordinates to integral laminations (i.e. a disjoint union of finitely many
essential simple closed curves on M modulo isotopy) and measured foliations is to
use either the Dehn-Thurston coordinates or train track coordinates. See [10] for
details.

An alternative way to coordinatize integral laminations and measured folia-
tions on an n-times punctured disk Dn is achieved by the Dynnikov coordinate sys-
tem. That is, Dynnikov coordinate system provides an explicit bijection between
the set of integral laminations Ln on Dn and Z2n−4 \{0}; and the set of measured
foliations up to isotopy and Whitehead equivalence on Dn and R2n−4 \ {0}.

Isotopy classes of orientation preserving homeomorphisms on punctured disks
are described by elements of Artin’s braid groups Bn [1], [2] and the action of Bn

on Ln in terms of Dynnikov coordinates is described by the update rules [5], [9],
[8].

The Dynnikov coordinate system together with the Dynnikov formulae (up-
date rules) was introduced in [5]. Then, it was studied in [3], [4] as an efficient
method for a solution of the word problem of Bn and in [9], [7], [8] for computing
the topological entropy of braids.

In this paper, we shall use the Dynnikov coordinate system to study the
geometric intersection number of two integral laminations on an n-times punctured
disk. In particular, we shall give Theorem 11 which gives a recipe to compute the
geometric intersection number of an integral lamination with a particular type of
integral lamination, known as a relaxed integral lamination. This provides a way
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to find the geometric intersection number of two arbitrary integral laminations
when combined with an algorithm of Dynnikov and Wiest [6], see Remark 10.

2. Dynnikov coordinates.

The aim of this section is to describe the Dynnikov coordinate system for the
set of integral laminations Ln and prove that there is an explicit bijection between
Ln and Z2n−4 \ {0}. We shall begin with the triangle coordinates which describe
each integral lamination by an element of Z3n−5 using its geometric intersection
number with given 3n − 5 embedded arcs in Dn. Dynnikov coordinates [5] are
certain linear combinations of these integers and yield a one-to-one correspondence
between Ln and Cn = Z2n−4 \ {0}. This will be proved by Theorem 7 which gives
the inversion of Dynnikov coordinates.

Let An be the set of arcs in Dn which have each endpoint either on the
boundary or at a puncture. The arcs αi ∈ An (1 ≤ i ≤ 2n − 4) and βi ∈ An

(1 ≤ i ≤ n − 1) are as depicted in Figure 1: the arcs α2i−3 and α2i−2 (for
2 ≤ i ≤ n − 1) join the ith puncture to the boundary, while the arc βi has both
endpoints on the boundary and passes between the ith and i + 1th punctures.

Observe that the arcs divide the disk into 2n− 2 (closed) regions and 2n− 4
of these are triangular : Identifying the outer boundary of the disk with a point,
each region on the left and right side of the ith puncture for 2 ≤ i ≤ n − 1 is a
triangle since it is bounded by three arcs.

Figure 1. The arcs αi, βi and triangular regions ∆i.
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The two triangles ∆2i−3 and ∆2i−2 on the left and right side of the ith punc-
ture are defined by the arcs α2i−3, α2i−2, βi−1 and α2i−3, α2i−2, βi respectively
and the two end regions ∆0 and ∆2n−3 are bounded by β1 and βn−1 respectively.
See Figure 1.

A naive way to describe integral laminations is achieved by triangle coordi-
nates: Given [α] (the isotopy class of an arc α ∈ An under isotopies through An)
and an integral lamination L, we shall write α for the geometric intersection num-
ber of L ∈ Ln with the arc α ∈ An: it will be clear from the context whether we
mean the arc or the geometric intersection number assigned on the arc.

We also note that if L ∈ Ln there is some curve system L ∈ L which is taut
(has minimum number of intersections in its homotopy class with each αi and βi).
We fix a taut representative L of a given integral lamination L ∈ Ln throughout.

For each i with 1 ≤ i ≤ n − 2, define Si = ∆2i−1 ∪ ∆2i (see Figure 1). A
path component of L in Si is a component of L∩ Si. There are four types of path
components in Si. An above component has end points on βi and βi+1 and passes
across α2i−1. A below component has end points on βi and βi+1 and passes across
α2i. A left loop component has both end points on βi+1 and a right loop component
has both end points on βi.

The solid lines in Figure 2 depict the above and below components. Left and
right loop components are depicted by dashed lines. Note that there is one type
of path component in the end regions: left loop components in region ∆0 and right
loop components in region ∆2n−3.

Remark 1. We note that there could only be one of the two types of loop
components (i.e. right or left) in each Si since the curves in L are mutually disjoint.

Figure 2. Above, below, left loop and right loop components.



1156 S. Ö. Yurttaş

For each 1 ≤ i ≤ n− 2 we define

bi =
βi − βi+1

2
. (1)

Then |bi| gives the number of loop components in Si and εi = sgn(bi) tells whether
the loop components are left or right. That is, when bi > 0 the loop components
are right and when bi < 0 the loop components are left. See Figure 2: on the left,
βi+1 = βi + 2 (so bi = −1) and the additional two intersections of L with βi+1

yield one left loop component. Similarly, on the right βi = βi+1 + 4 (so bi = 2)
and the additional four intersections of L with βi yield two right loop components.

The following Lemma is obvious since each above and below component in-
tersects α2i−1 and α2i respectively.

Lemma 2. The numbers of above and below components in region Si are
given by α2i−1 − |bi| and α2i − |bi| respectively.

Similarly, the next Lemma is obvious from Figure 3 and Figure 4.

Lemma 3. There are equalities for each Si :
When there are left loop components (bi < 0),

α2i + α2i−1 = βi+1 (2)

α2i + α2i−1 − βi = 2|bi|, (3)

when there are right loop components (bi > 0),

α2i + α2i−1 = βi (4)

α2i + α2i−1 − βi+1 = 2|bi|, (5)

and when there are no loop components (bi = 0),

α2i + α2i−1 = βi = βi+1. (6)

Note that Lemma 3 implies that some coordinates are redundant.
The triangle coordinate function τ : Ln → Z3n−5

≥0 is defined by

τ(L) = (α1, . . . , α2n−4, β1, . . . , βn−1).

τ : Ln → Z3n−5
≥0 is injective: working in each region Si, we can determine
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Figure 3. Left loop components and the case is bi ≤ 0.

Figure 4. Right loop components and the case is bi ≥ 0.

Figure 5. τ(L) = (2, 6, 3, 5, 4, 4; 4, 8, 8, 4).

the number of above, below and right/left loop components. Therefore, the path
components in each Si are connected in a unique way up to isotopy and hence L
is determined uniquely.

However, it is not always possible to construct an integral lamination from
given triangle coordinates. Namely, τ : Ln → Z3n−5

≥0 is not surjective since τ(L)
must satisfy the triangle inequality in each of the strips of Figure 1, as well as
additional conditions such as the equalities in Lemma 3. Next, we shall discuss
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what properties an integral lamination L ∈ Ln satisfies in terms of its triangle
coordinates and construct a new coordinate system from the triangle coordinates
which describes integral laminations in a unique way. Namely, we shall describe
the Dynnikov coordinate system [5].

Given a taut representative L of L ∈ Ln one can initially observe the following:

Remarks 4.

( i ) Every component of L intersects each βi an even number of times. Also
recall that bi = (βi − βi+1)/2 and |bi| gives the number of loop components
in Si. When bi > 0 the loop components are right and when bi < 0 the loop
components are left (Figure 6).

( ii ) Set xi = |α2i − α2i−1| and mi = min{α2i−1 − |bi|, α2i − |bi|}; 1 ≤ i ≤
n− 2. Then xi gives the difference between the number of above and below
components in Si, and mi gives the smaller of these two numbers by Lemma
2 (Figure 6). We note that xi is even since each simple closed curve in L

intersects α2i ∪ α2i−1 an even number of times.

Figure 6. Number of above and below components in Si.

(iii) Set 2ai = α2i − α2i−1; 1 ≤ i ≤ n − 2, (ai is an integer since |ai| = xi/2).
Assume that bi ≥ 0. Then, βi = α2i + α2i−1 by Lemma 3. Since 2ai =
α2i − α2i−1 it follows that

α2i = ai +
βi

2
; and α2i−1 = −ai +

βi

2
.

A similar calculation for bi ≤ 0 gives

α2i = ai +
βi+1

2
; and α2i−1 = −ai +

βi+1

2
.
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That is to say:

αi =





(−1)iadi/2e +
βdi/2e

2
if bdi/2e ≥ 0;

(−1)iadi/2e +
β1+di/2e

2
if bdi/2e ≤ 0

where dxe denotes the smallest integer which is not less than x.
(iv) It is straightforward to compute βi; 1 ≤ i ≤ n − 1 from item (ii) and item

(iii).

βi =

{
2mi + 2|ai| if bi ≤ 0;

2mi + 2|ai|+ 2bi if bi ≥ 0.
(7)

That is,

βi = 2[|ai|+ max(bi, 0) + mi].

Since βi = β1 − 2
∑i−1

j=1 bj by (1),

β1 = 2
[
|ai|+ max(bi, 0) + mi +

i−1∑

j=1

bj

]
for 1 ≤ i ≤ n− 2.

( v ) A crucial observation is that mi = 0 for some 1 ≤ i ≤ n− 1 since otherwise
there would be both above and below components in each Si and hence the
integral lamination would have a curve parallel to ∂Dn. Then,

When mi = 0;

β1 = 2
[
|ai|+ max(bi, 0) +

i−1∑

j=1

bj

]
.

When mi > 0;

β1 > 2
[
|ai|+ max(bi, 0) +

i−1∑

j=1

bj

]
.

Therefore,
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β1 = max
1≤k≤n−2

2
[
|ak|+ max(bk, 0) +

k−1∑

j=1

bj

]
.

We have seen that αi and βi have been recovered from ai and bi where

ai =
α2i − α2i−1

2
and bi =

βi − βi+1

2
.

Now, we are ready to define the Dynnikov coordinate system which has the
advantage to coordinatize Ln bijectively and with the least number of coordinates.

Definition 5. The Dynnikov coordinate function ρ : Ln → Z2n−4 \ {0} is
defined by

ρ(L) = (a, b) = (a1, . . . , an−2, b1, . . . , bn−2),

where for 1 ≤ i ≤ n− 2

ai =
α2i − α2i−1

2
and bi =

βi − βi+1

2
. (8)

Let Cn = Z2n−4 \ {0} denote the space of Dynnikov coordinates of integral lami-
nations on Dn.

Example 6. The integral lamination L in Figure 5 has Dynnikov coordi-
nates ρ(L) = (2, 1, 0,−2, 0, 2). We have,

α1 = 2, β1 = 4, a1 =
α2 − α1

2
=

6− 2
2

= 2

α2 = 6, β2 = 8, a2 =
α4 − α3

2
=

5− 3
2

= 1

α3 = 3, β3 = 8, a3 =
α5 − α6

2
=

4− 4
2

= 0

α4 = 5, β4 = 4, b1 =
β1 − β2

2
=

4− 8
2

= −2

α5 = 4, b2 =
β2 − β3

2
=

8− 8
2

= 0

α6 = 4, b3 =
β3 − β4

2
=

8− 4
2

= 2.
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Note that bi can easily be read off from a picture of the lamination by counting
the number of loop components and checking whether they are left or right. For
example, there are two left loop components in S1, therefore b1 should be −2.

Theorem 7 (Inversion of Dynnikov coordinates). Let (a, b) ∈ Cn. Then
(a, b) is the Dynnikov coordinate of exactly one element L of Ln, which has

βi = 2 max
1≤k≤n−2

[
|ak|+ max(bk, 0) +

k−1∑

j=1

bj

]
− 2

i−1∑

j=1

bj (9)

αi =





(−1)iadi/2e +
βdi/2e

2
if bdi/2e ≥ 0;

(−1)iadi/2e +
β1+di/2e

2
if bdi/2e ≤ 0

(10)

where dxe denotes the smallest integer which is not less than x.

Proof. ρ is injective: Let L ∈ Ln, with τ(L) = (α, β) and ρ(L) = (a, b).
We showed in Remarks 4 that (α, β) must be given by (9) and (10). Hence there
is no other L′ ∈ Ln with ρ(L′) = (a, b) since the triangle coordinate function is
injective.

ρ is surjective: Let (a, b) ∈ Cn. We will show that (α, β) defined by (9) and
(10) are the triangle coordinates of some L ∈ Ln which has ρ(L) = (a, b). It is clear
that if there is some L with τ(L) = (α, β), then ρ(L) = (a, b). By the construction
in Remarks 4, it is possible to draw in each Si, 1 ≤ i ≤ n−2 some non-intersecting
path components which intersect βi, α2i−1, α2i, and βi+1 the number of times given
by (α, β). Joining these components (and completing in the only way in the two
end regions) gives a system of mutually disjoint simple closed curves in Dn. There
are no curves that bound punctures as every path component of a curve system
has the property that its intersection with each Si is of one of the four types by
construction, so in particular there can’t be a curve that bounds a puncture. There
are no curves parallel to ∂Dn as some mi is equal to zero. Hence this is an integral
lamination which has triangle coordinates (α, β) as required. ¤

In the next section we shall give a formula to compute the geometric inter-
section number of a given integral lamination L ∈ Ln with a given relaxed curve
[6] Cij in Dn in terms of triangle coordinates. Furthermore, the formula can be
given in terms of Dynnikov coordinates by Theorem 7.
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3. Geometric intersection of integral laminations with relaxed
curves.

Figure 7. sa
i,j and sb

i,j .

Let Si,j =
⋃

i≤k≤j Sk. A path component of L in Si,j is a component of
L ∩ Si,j . An above component in Si,j has end points on βi and βj+1 and does not
intersect any α2k with i ≤ k ≤ j. A below component in Si,j has end points on
βi and βj+1 and does not intersect any α2k−1 with i ≤ k ≤ j (Figure 7). Using
Lemma 2 one can compute the number of above and below components in Si,j .

Lemma 8. The number of above and below components in Si,j is given by

sa
i,j = min

i≤k≤j
{α2k−1 − |bk|} and sb

i,j = min
i≤k≤j

{α2k − |bk|}

respectively. Therefore the sum si,j = sa
i,j + sb

i,j gives the number of above and
below components in Si,j.

Proof. For each 1 ≤ k ≤ n − 2, sa
k = α2k−1 − |bk| and sb

k = α2k − |bk| by
Lemma 2.

Then sb
i,j = mini≤k≤j{sb

k} and sa
i,j = mini≤k≤j{sa

k}. Hence,

si,j = min
i≤k≤j

{sa
k}+ min

i≤k≤j
{sb

k}. ¤

Remark 9. Notice that the number of path components in Si,j which are
not simple closed curves is given by (βi + βj+1)/2 (Figure 7).

Given an essential simple closed curve C in Dn, ‖C‖ denotes the minimum
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number of intersections of C with the x-axis. Then, given L ∈ Ln, the norm of L
is defined as

‖L‖ =
∑

i

‖Ci‖

where {Ci} are connected components of L. We say that Ci is relaxed if ‖Ci‖ = 2.
Then, L is relaxed if each of its connected components Ci is relaxed [6].

Figure 8. Relaxed curves C24, C14, C12 in D5 from top to bottom.

For 1 ≤ i < j < n or 1 < i < j ≤ n, Cij ∈ Ln denotes the isotopy
class of relaxed curves in Dn which bound a disk containing the set of punctures
{i, i + 1, . . . , j}.

Hence, we observe that

ρ(Cij) = (0, . . . , 0, b1, . . . , bn−2)

where bi−1 = −1 if i > 1, bj−1 = 1 if j < n and bk = 0 for all other cases. Figure
8 shows some examples of relaxed curves.

Remark 10. It is always possible to turn a non-relaxed integral lamination
L ∈ Ln into one which is relaxed. That is to say, for any L ∈ Ln there exists a
braid β ∈ Bn such that β(L) is relaxed. An algorithm to accomplish this is given
in [6].

Given L1 ∈ Ln and L2 ∈ Ln which are not relaxed, the geometric intersection
number i(L1,L2) can be computed by first relaxing one of the integral lamina-
tions with an n-braid β by the algorithm described in [6] and then computing
i(β(L1), β(L2)) (note that i(L1,L2) = i(β(L1), β(L2)) since geometric intersec-
tion number is preserved under homeomorphisms). Hence, to compute i(L1,L2),
it is sufficient to find a formula that gives i(Cij ,L) for a given L ∈ Ln.
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Theorem 11. Given an integral lamination L ∈ Ln with triangle coordi-
nates (α, β) and Cij ∈ Ln, i(L, Cij) is given by,

i(L, Cij) = βi−1 + βj − 2si−1,j−1 (11)

where si,j is defined as in Lemma 8.

Figure 9. Proof of Theorem 11.

Proof. Take a taut representative L ∈ L and a representative γij of Cij

which is composed of subarcs of βi−1 and βj and horizontal arcs which are such that
the disk bounded by γij contains all of the path components of L in Si−1,j−1. The
number of intersections of γij with the path components of L in Si−1,j−1 is given
by βi−1+βj (See Remark 9). This number can be minimized by subtracting from it
the number of path components which can be isotoped so that they do not intersect
γij any more. Such path components can only be above and below components in
Si−1,j−1 (Figure 9). Since, each above and below component intersects γij twice,
we have that

i(L, Cij) = βi−1 + βj − 2si−1,j−1. ¤

Notice that the formulae given above can be written using Dynnikov coor-
dinates since one can write each αi and βi in terms of ai and bi by Theorem
7.

Example 12. Let ρ(L) = (2, 1, 0,−2, 0, 2) (Figure 5). We want to find
i(C24,L). Using the formula (11) we get,
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Figure 10. i(L, Cij) = 4. Figure 11. i(L, Cij) = 4.

i(L, C24) = β1 + β4 − 2s1,3.

From Theorem 7, we know that

(α1, α2, α3, α4, α5, α6;β1, β2, β3, β4) = (2, 6, 3, 5, 4, 4; 4, 8, 8, 4).

From Lemma 8 we have,

sa
1,3 = min

1≤k≤3
{α2k−1 − |bk|} and sb

1,3 = min
1≤k≤3

{α2k − |bk|}.

Therefore,

sa
1,3 = min{α1 − |b1|, α3 − |b2|, α5 − |b3|}

= min{2− | − 2|, 3− 0, 4− 2} = 0

and

sb
1,3 = min{α2 − |b1|, α4 − |b2|, α6 − |b3|}

= min{6− | − 2|, 5− 0, 4− 2} = 2.

So the number of above and below components in S1,3 equals sa
1,3 + sb

1,3 = 2.
Therefore,

i(L, C24) = β1 + β4 − 2s1,3 = 4 + 4− 2× 2 = 4.

See Figure 10 and Figure 11.
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Remark 13. Observe that if L1 =
⋃

Cij ∈ Ln and L2 ∈ Ln, then

i(L1,L2) =
∑

i(Cij ,L2)

since the above construction can be carried out for each Cij in turn, working from
the inside out.

The next result gives the geometric intersection number of two arbitrary in-
tegral laminations on a 3-times punctured disk using Theorem 11. Again, we note
that the formula can be given in terms of Dynnikov coordinates by Theorem 7.

Corollary 14. Let L1 ∈ L3 and L2 ∈ L3 have triangle coordinates (α1, β1)
and (α2, β2) with Dynnikov coordinates (a1, b1) and (a2, b2) respectively. Then, the
geometric intersection number i(L1,L2) is given by

i(L1,L2) =

{
α1

2α
2
1 + α1

1α
2
2 ; if ε1ε2 = −1

∣∣α1
2α

2
1 − α1

1α
2
2

∣∣; if ε1ε2 = +1
(12)

where ε1 = sgn(b1
1) and ε2 = sgn(b2

1).

Figure 12. i(Cij ,L) on D3.

Proof. We first observe that the only relaxed curves in D3 are C12 and
C23. We also note that, given L ∈ L3, i(L, C12) = β2 and i(L, C23) = β1. Hence
the formula (12) is verified for i(L, Cij) by Lemma 2. See Figure 12.

For the general case, we recall that B3 acts on both L and Cij and there
exists β ∈ B3 such that β(L) is either C12 or C23. Since the geometric intersection
number is preserved under homeomorphisms, it follows that the formula (12) is
verified for i(L1,L2) for any L1 ∈ L3 and L2 ∈ L3. ¤
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Example 15. Let L1 and L2 be the integral laminations depicted in Figure
13 and; (α1, β1) and (α2, β2) be their triangle coordinates respectively. We observe
that (α1

1, α
1
2) = (3, 1) and (α2

1, α
2
2) = (4, 2). Since L1 has right loop components

and L2 has left loop components, ε1ε2 = −1 and hence by Corollary 14, i(L1,L2)
is given by

i(L1,L2) = α1
2α

2
1 + α1

1α
2
2 = 1× 4 + 3× 2 = 10.

Figure 13. i(L1,L2) = 10.
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