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Abstract. For p-solvable groups, a strong form of Alperin’s weight con-
jecture has been proved by T. Okuyama (unpublished). L. Barker has refined
this theorem by taking Green correspondence into account. We prove here a
relative version of Barker’s theorem.

Introduction.

Let G be a finite group and p a prime. Let k be an algebraically closed field
of characteristic p. In the present paper, a block always means a p-block for the
prime p. The main result of the present paper is as follows:

Theorem 1. Let N be a normal subgroup of G. Let Q be a p-subgroup of G.
Let β be a block of NG(Q)N . Assume that G/N is p-solvable. Then the number of
isomorphism classes of simple kG-modules with vertex Q whose Green correspon-
dents with respect to (G,Q, NG(Q)N) lie in β equals the number of isomorphism
classes of simple kNG(Q)N -modules with vertex Q lying in β.

When N = 1, Theorem 1 coincides with L. Barker’s theorem ([Ba, Theorem
1.1]). Thus Theorem 1 is a relative version of Barker’s theorem. While Barker’s
proof of his theorem is based on G-algebra theory and quite involved, our proof of
Theorem 1 is module theoretical1 and straightforward.

Notation and convention.
In this paper all modules are identified with their isomorphic ones. Let IBr(G)

be the set of all simple kG-modules. For a block B of G, let IBr(B) be the set of
all simple kG-modules lying in B. For kG-modules V and W , V ⊗W stands for
V ⊗k W . If N is a normal subgroup of G and V is a k[G/N ]-module, InfG/N→G(V )
denotes the inflation of V to G via the natural map G → G/N . For a simple kN -
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module X, let IBr(G|X) be the set of simple kG-modules lying over X and TG(X)
the inertial group of X in G. For a block B of G, let IBr(B|X) be the set of
simple kG-modules in B which lie over X. For a block B of G and a subgroup
H of G, BL(H, B) denotes the set of blocks b of H such that bG = B ([NT,
p. 320]). For a simple kG-module S, let B(S) be the block of G containing S. For
an indecomposable kG-module X, let vx(X) be a vertex of X.

We introduce the following notation; Let Q be a p-subgroup of G and let H

be a subgroup of G containing NG(Q). Let β be a block of H. For S ∈ IBr(G)
with a vertex Q, the Green correspondent V with respect to (G,Q, H) is defined
([NT, p. 276]). If V lies in β, we write S ∈Q β.

Let Q be a p-subgroup of G and let β be a block of NG(Q). Then let

lG(β, Q) = ]{S ∈ IBr(G); vx(S) =G Q,S ∈Q β}.

So

lNG(Q)(β, Q) = ]{U ∈ IBr(β); vx(U) = Q}.

A group G is said to be of Barker type (cf. [Ba, Theorem 1.1]) if lG(β, Q) =
lNG(Q)(β, Q) for any p-subgroup Q of G and any block β of NG(Q).

1. Vertices and sources.

In this section we study properties of vertices of indecomposable modules
needed in Section 2.

Lemma 2. Let N be a normal subgroup of G. Let U be a Q-projective kG-
module for a subgroup Q of G. Then InvN (U) is a QN/N-projective G/N-module.

Proof. There is f ∈ EndQ(U) such that idU = TrG
Q(f). It is easy to see

TrQN
Q (f) acts on InvN (U). Let ϕ be the restriction of TrQN

Q (f) to InvN (U). Then

ϕ ∈ EndQN/N (InvN (U)) and idInvN (U) = TrG/N
QN/N (ϕ), so the result follows. ¤

The following complements Lemma 1.1 of [Mu].

Proposition 3. Let N be a normal subgroup of G. Let W be an inde-
composable k[G/N ]-module. Let V be an indecomposable kG-module such that
VN is indecomposable. Then V ⊗ InfG/N→G(W ) is indecomposable and vx(V ⊗
InfG/N→G(W ))N/N is a vertex of W. In particular, a Sylow p-subgroup of the
inverse image in G of vx(W ) is a vertex of InfG/N→G(W ).
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Proof. We write V ⊗ W instead of V ⊗ InfG/N→G(W ). By [HB1, VII
9.12] (see also [Mu, Lemma 1.1]), V ⊗W is indecomposable. It is easy to see that
vx(V ⊗W )N/N ≤G/N vx(W ). Put Q = vx(V ⊗W ). For the dual module V ∗ of V ,
V ∗⊗V ⊗W is Q-projective. So InvN (V ∗⊗V ⊗W ) is QN/N -projective by Lemma 2.
Now InvN (V ∗⊗V ⊗W ) ' EndN (V )⊗W . Since VN is indecomposable, EndN (V ) =
k idV ⊕J(EndN (V )). So 1G|EndN (V ). Therefore W | InvN (V ∗ ⊗ V ⊗W ). Thus
W is QN/N -projective and QN/N ≥G/N vx(W ).

Put Q = vx(InfG/N→G(W )). By the above we may assume QN/N = vx(W ).
So it suffices to show Q is a Sylow p-subgroup of QN . Now |QN : Q| = |N : Q∩N |.
Since (InfG/N→G(W ))N is a multiple of 1N , Q ≥G vx(1N ). Since vx(1N ) is a Sylow
p-subgroup of N , we see |N : Q ∩N | is prime to p. The proof is complete. ¤

If N is a normal subgroup of G,R is a p-subgroup of G and X is an R-
invariant simple kN -module, then let X̂(R) be a unique extension of X to RN

([NT, Theorem 3.5.11]).

Proposition 4. Let N be a normal subgroup of G. Let X be a G-invariant
simple kN-module. Let S be an indecomposable kG-module such that SN is a mul-
tiple of X. Let P be a vertex of S. Choose an indecomposable k[PN ]-module U such
that U |SPN and S|UG. Then

( i ) U is determined up to NG(PN)-conjugacy.
( ii ) There is a unique k[PN/N ]-module W such that U = X̂(P ) ⊗

InfPN/N→PN (W ). Here, if G/N is p-solvable and S is simple, then dimk W

is prime to p and P is G-conjugate to a vertex of X̂(P ).

Proof. The existence of U is clear, since S is PN -projective. Then (i) is
known and easy to see [Bu, Theorem 9]. (In [Bu, Definition 3 and Remark, p. 335],
PN is called a N -vertex of S and U a N -source of S.) Since UN is a multiple of
X, X̂(P ) ⊗ HomN (X̂(P ), U) ' U as k[PN ]-modules. (The map sending v ⊗ ϕ

to ϕ(v) is an isomorphism.) Thus it suffices to set W = HomN (X̂(P ), U). The
uniqueness of W follows from [HB1, VII 9.12].

Assume G/N is p-solvable and S is simple. To show that dimk W is prime to
p, we choose a central extension of G

1 −−−−→ Z −−−−→ Ĝ
f−−−−→ G −−−−→ 1

with the following properties: f−1(N) = N1 × Z, N1 ¢ Ĝ, X extends to Ĝ under
the identification of N1 with N via f , and Z is a (central) p′-group. Let X̂ be an
extension of X to Ĝ. Put G̃ = Ĝ/N . There is a unique simple kG̃-module S̃ such
that InfG→Ĝ(S) = X̂ ⊗ InfG̃→Ĝ(S̃). Put f−1(P ) = P̂ × Z. Then P̂ is a vertex
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of InfG→Ĝ(S) by Proposition 3. Put P̃ = P̂N/N . Then P̃ is a vertex of S̃ by
Proposition 3. Let W̃ be a P̃ -source of S̃. Let λ be a one dimensional kZ-module
(that is, a character of Z) lying under X̂. Put Z̃ = ZN/N . We regard λ as a
character of Z̃ via the natural isomorphism Z̃ ' Z. Let L = g−1(P̃ × Z̃), where
g : Ĝ → G̃ is the natural map. Then L = P̂NZ = f−1(PN).

Since S̃|W̃ G̃ = (W̃ P̃×Z̃)G̃ and S̃ lies over the character λ−1 of Z̃, we obtain
S̃|(W̃ × λ−1)G̃. Thus

InfG→Ĝ(S)|X̂ ⊗ (
Inf P̃×Z̃→L(W̃ × λ−1)

)Ĝ =
(
X̂L ⊗ Inf P̃×Z̃→L(W̃ × λ−1)

)Ĝ
.

On the other hand, W̃ |S̃P̃ . So W̃ × λ−1|S̃P̃×Z̃ , since S̃ lies over λ−1. Thus

X̂L ⊗ Inf P̃×Z̃→L(W̃ × λ−1)|( InfG→Ĝ(S)
)
L
.

Hence it follows from (i) that X̂L ⊗ Inf P̃×Z̃→L(W̃ × λ−1) = InfPN→L(Ux) for
some x ∈ NG(PN). Considering dimensions we have dimk X dimk W̃ = dimk U =
dimk X̂(P ) dimk W . So dimk W = dimk W̃ . Since G̃ is p-solvable, by Puig’s
theorem [Th, Theorem 5.30.5], W̃ is an endo-permutation module, so that dimk W̃

is prime to p by Lemma 6.4 of Dade [Da] ([Th, Corollary 5.28.11]). (This fact
follows also from Corollary 3 of [Wa].) Thus dimk W is prime to p.

Clearly P =G vx(U). Since U = X̂(P ) ⊗ InfPN/N→PN (W ), vx(U) ≤PN

vx(X̂(P )). Since dimk W is prime to p, 1PN/N |W ∗ ⊗ W ([Fe, Lemma III 2.2]).
Thus X̂(P )|U ⊗ InfPN/N→PN (W ∗). So vx(X̂(P )) ≤PN vx(U). Thus vx(U) =PN

vx(X̂(P )). It follows that P =G vx(X̂(P )). The proof is complete. ¤

Corollary 5. Let N be a normal subgroup of G. Let X be a simple kN-
module. Let P be a vertex of a simple kG-module lying over X. Assume G/N is
p-solvable. Then for some g ∈ G, X is P g-invariant and P g is a vertex of X̂(P g).

Proof. Let S be a simple kG-module lying over X. Let T be the inertial
group of X in G. Let S̃ be the Clifford correspondent of S in T . Then for some
x ∈ G, P x is a vertex of S̃. Then for some t ∈ T , P xt is a vertex of X̂(P x) by
Proposition 4. Then, since P xt ≤ P xN , we have P xtN = P xN . So it suffices to
take g = xt. The proof is complete. ¤

2. A lemma.

In this section we prove a technical lemma. This is a temporary result, which
will be refined in Corollary 13.
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Lemma 6. Let N be a normal subgroup of G such that G/N is p-solvable.
Assume that any central extension of G/N is of Barker type (cf. [Ba, Theorem
1.1]). Let Q be a p-subgroup of G. Let β be a block of NG(Q)N . Let X be a
G-invariant simple kN-module. Then

]{S ∈ IBr(G|X); vx(S) =G Q,S ∈Q β}
= ]{U ∈ IBr(β|X); vx(U) =NG(Q)N Q}. (6.1)

Proof. We divide the proof into several parts.

(a) We may assume Q is a vertex of X̂(Q) and β covers B(X).
We assume that for any g ∈ G, Qg is not a vertex of X̂(Qg). Then by Corollary

5, the left-hand side (LHS for short) of (6.1) equals 0. Also the right-hand side
(RHS for short) of (6.1) equals 0. So we may assume Qg is a vertex of X̂(Qg) for
some g ∈ G. Both sides remain the same if we replace Q by Qg and β by βg. So
we may assume Q is a vertex of X̂(Q). If β does not cover B(X), then both sides
equal 0. So we may assume β covers B(X).

(b) NG(QN) = NG(Q)N .
Clearly NG(QN) ≥ NG(Q)N . Since X is G-invariant, X̂(Q) is NG(QN)-

invariant. Since Q is a vertex of X̂(Q), Frattini argument shows NG(QN) ≤
NG(Q)N . Thus the equality holds.

(c) For S ∈ IBr(G|X), vx(S) =G Q if and only if vx(S)N =G QN .
Indeed one direction is trivial. To show the other direction we may assume

vx(S)N = QN . Then by Proposition 4 and (a), vx(S) =G vx(X̂(Q)) =G Q, as
required.

(d) For U ∈ IBr(β|X), vx(U) =NG(Q)N Q if and only if vx(U)N =NG(Q)N

QN .
This is similar to (c).

Take a central extension

1 −−−−→ Z −−−−→ Ĝ
f−−−−→ G −−−−→ 1

with the following properties: f−1(N) = N1 × Z, N1 ¢ Ĝ, X extends to Ĝ under
the identification of N with N1 via f , and Z is a p′-group. Let Ẋ be an extension
of X to Ĝ. Put G̃ = Ĝ/N and Z̃ = ZN/N . Let λ be a character of Z lying under
Ẋ. We regard λ as a character of Z̃ via the natural isomorphism Z̃ ' Z. Let
f−1(Q) = Q̂ × Z. Put Q̃ = Q̂N/N . For any L ≤ G and a kL-module Y , put
Ŷ = InfL→f−1(L)(Y ).

(e) There is a bijection of IBr(G|X) onto IBr(G̃|λ−1) sending S to S̃ by the
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rule Ŝ = Ẋ ⊗ InfG̃→Ĝ(S̃). Here vx(S) =G Q if and only if vx(S̃) =G̃ Q̃.
The first assertion is well-known. The second is proved, since the following

conditions are equivalent: (1) vx(S) =G Q; (2) vx(S)N =G QN (by (c)); (3)
vx(Ŝ)NZ =Ĝ Q̂NZ (by Proposition 3); (4) vx(S̃)Z̃ =G̃ Q̃Z̃ (by Proposition 3);
(5) vx(S̃) =G̃ Q̃.

Let g : Ĝ → G̃ be the natural map.

(f) f−1(NG(QN)) = NĜ(Q̂N) = g−1(NG̃(Q̃)).
To show the first equality, we note f−1(NG(QN)) = NĜ(Q̂NZ). The con-

tainment NĜ(Q̂N) ≤ NĜ(Q̂NZ) is clear. Let x̂ ∈ NĜ(Q̂NZ). Then, since
Q̂N is a normal subgroup of Q̂NZ of p′-index, we get Q̂x̂ ≤ Q̂N . This shows
NĜ(Q̂NZ) ≤ NĜ(Q̂N) and the equality holds. The second equality is clear.

Hereafter, we put H = NG(QN), Ĥ = NĜ(Q̂N) and H̃ = NG̃(Q̃). Let β̂ be
the inflation of β to Ĥ. We see β̂ covers B(X) by (a). Let {β̃j} be the blocks of
H̃ which are ẊĤ -dominated by β̂. (See [Mu] for “ẊĤ -domination”.)

(g) For each j, β̃j covers λ−1.
For any kH̃-module Ỹ in β̃j , ẊĤ ⊗ InfH̃→Ĥ(Ỹ ) lies in β̂. Since β̂ covers

1Z , (ẊĤ ⊗ InfH̃→Ĥ(Ỹ ))Z is a multiple of 1Z , and the result follows.

(h) There is a bijection of IBr(β|X) onto
⋃

j IBr(β̃j) sending U to Ũ by the
rule: Û = ẊĤ ⊗ InfH̃→Ĥ(Ũ). Here vx(U) =H Q if and only if vx(Ũ) = Q̃.

Given U in IBr(β|X), there is a unique kH̃-module Ũ with Û = ẊĤ ⊗
InfH̃→Ĥ(Ũ). Then, since Û lies in β̂, Ũ lies in β̃j for some j. Conversely, given
Ũ in

⋃
j IBr(β̃j), ẊĤ ⊗ InfH̃→Ĥ(Ũ) is simple, lies in β̂ and is trivial on Z by (g).

Thus ẊĤ ⊗ InfH̃→Ĥ(Ũ) = Û for a simple kH-module U . Since Û lies in β̂ and Z

is a p′-group, U lies in β. Thus U ∈ IBr(H|X). The first assertion follows. The
second assertion is proved as in (e) (by using (d)).

(i) In the correspondence in (e), vx(S) =G Q and S ∈Q β if and only if
vx(S̃) =G̃ Q̃ and S̃ ∈Q̃ β̃j for some j.

We may assume either vx(S) =G Q or vx(S̃) =G̃ Q̃. Then both hold by (e).
Let Ṽ be the Green correspondent of S̃ with respect to (G̃, Q̃, H̃). Since Ṽ |S̃H̃ ,
ẊĤ ⊗ InfH̃→Ĥ(Ṽ )|ŜĤ . Therefore ẊĤ ⊗ InfH̃→Ĥ(Ṽ ) = V̂ for some kH-module
V . By [HB1, VII 9.12], V is indecomposable. Since vx(Ṽ ) = Q̃, we obtain
vx(V )N =H QN as in the proof of (e). So vx(V )N = QN . Further we have
V |SH . On the other hand, we have S̃|Ṽ G̃ and

V̂ Ĝ =
(
ẊĤ ⊗ InfH̃→Ĥ(Ṽ )

)Ĝ = Ẋ ⊗ InfG̃→Ĝ(Ṽ G̃).
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Thus Ŝ|V̂ Ĝ. So S|V G. Therefore vx(V ) =G vx(S) =G Q. Put vx(V ) = Qg for
g ∈ G. Then QgN = vx(V )N = QN . So g ∈ H. Hence Q is a vertex of V .
Since V |SH , V is the Green correspondent of S with respect to (G,Q, H). Now
the following conditions are equivalent: (1) S ∈Q β; (2) V lies in β; (3) V̂ lies in
β̂; (4) Ṽ lies in β̃j for some j; (5) S̃ ∈Q̃ β̃j for some j. Thus (i) follows.

(j) If S̃ ∈ IBr(G̃), vx(S̃) =G̃ Q̃ and S̃ ∈Q̃ β̃j for some j, then S̃ ∈ IBr(G̃|λ−1).
This follows from (g).

Now by (e), (i) and (j), the LHS of (6.1) equals

∑

j

]
{
S̃ ∈ IBr(G̃); vx(S̃) = Q̃, S̃ ∈Q̃ β̃j

}
=

∑

j

lG̃(β̃j , Q̃).

On the other hand, by (h), the RHS of (6.1) equals
∑

j lNG̃(Q̃)(β̃j , Q̃). Since G̃

is of Barker type by assumption, lG̃(β̃j , Q̃) = lNG̃(Q̃)(β̃j , Q̃) for each j. Thus the
equality (6.1) holds. The proof is complete. ¤

3. Barker’s theorem.

In this section we prove Barker’s theorem [Ba, Theorem 1.1] by using a result
of Isaacs and Navarro [IN]. For a while we follow the notation of Isaacs-Navarro
(although we use simple modules instead of irreducible Brauer characters). For a
normal subgroup K of G and a simple kK-module X, let n(G,X) be the number
of isomorphism classes of simple kG-modules lying over X. For a p-subgroup Q

of G, let n(G,X, Q) be the number of isomorphism classes of simple kG-modules
lying over X with vertex Q.

The following proposition is a special case of Proposition 6.4 of [IN]. Our
proof is a variant of the proof of Proposition 6.5 of [IN].

Proposition 7 (Isaacs-Navarro). Let Q be a p-subgroup of a p-solvable
group G. Let K be a normal p′-subgroup of G. Assume that G = NG(Q)K. Let
X be a G-invariant simple kK-module. Let Y ∈ IBr(CK(Q)) be the Glauberman
correspondent of X with respect to the action of Q on K ([Is, Theorem 13.1]).
Assume that any central extension of any subgroup of G/K is of Barker type (cf.
[Ba, Theorem 1.1]). Then n(G,X, Q) = n(NG(Q), Y,Q).

Proof. We argue by induction on |G : Q|. Put

P = {P ;P is a p-subgroup such that Q ≤ P ≤ NG(Q)}.
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Let P0 be a set of representatives of NG(Q)-conjugacy classes of P. Let S be
a simple kG-module lying over X. We claim that S has a unique vertex in P0.
Indeed, let B be the block of G containing S. Let b be a unique block of QK

covering the block of K containing X. Since X is QK-invariant, Q is a defect group
of b. Since B covers b, there is a defect group D of B such that D ∩QK = Q by
Knörr’s theorem [NT, Theorem 5.5.16 (ii)]. If we choose vx(S) so that vx(S) ≤ D,
then vx(S) ∩ QK ≤ D ∩ QK = Q. On the other hand, since S lies over X̂,
vx(X̂) ≤G vx(S) ∩ QK, where X̂ is the extension of X to QK. Since X̂ has
p′-degree, vx(X̂) =QK Q. Thus vx(S) ∩QK = Q, and vx(S) ∈ P.

Next we show: P , P g ∈ P, g ∈ G implies g ∈ NG(Q). Indeed, since P ≥ Q,
QK ≥ P ∩ QK ≥ Q. So P ∩ QK = Q. Likewise, P g ∩ QK = Q. Hence
Qg = P g ∩QK = Q, so that g ∈ NG(Q). Thus the claim is proved.

The same thing holds for any U ∈ IBr(NG(Q)) lying over Y .
Since n(G,X) = n(NG(Q), Y ) by Theorem 4.3 of [IN], it follows that

∑

P∈P0

n(G,X, P ) =
∑

P∈P0

n(NG(Q), Y, P ).

If Q is a Sylow p-subgroup of NG(Q), then P0 = {Q}. So n(G,X, Q) =
n(NG(Q), Y,Q). Assume that Q is not a Sylow p-subgroup of NG(Q). We show

(∗) For any P ∈ P0, P 6= Q, n(G,X, P ) = n(NG(Q), Y, P ).

From (∗) it will follow that n(G,X, Q) = n(NG(Q), Y,Q).
Let P ∈ P0, P 6= Q. Let Z ∈ IBr(CK(P )) be the Glauberman correspondent

of Y with respect to the action of P on CK(Q). Put L = CK(Q). Note that Y

is NG(Q)-invariant and that NG(P )L ≤ NG(Q), since P ∩QK = Q as above. To
prove (∗), it suffices to show the following equalities:

(1) n(NG(P )K,X, P ) = n(NG(P ), Z, P ).
(2) n(NG(P )L, Y, P ) = n(NG(P ), Z, P ).
(3) n(G,X, P ) = n(NG(P )K, X, P ).
(4) n(NG(Q), Y, P ) = n(NG(P )L, Y, P ).

(1) Since NG(P )K/K ≤ G/K and |NG(P )K : P | < |G : Q|, the equality
holds by induction. (Note that Z is the Glauberman correspondent of X with
respect to the action of P on K.)

(2) Since NG(P )L/L ' NG(P )/NG(P ) ∩ L = NG(P )/CK(P ) '
NG(P )K/K ≤ G/K and |NG(P )L : P | < |G : Q|, the equality holds by induction.

(3) By our assumption, we can use Lemma 6 to obtain that
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]{S ∈ IBr(G|X); vx(S) =G P, S ∈P β}
= ]{U ∈ IBr(β|X); vx(U) =NG(P )K P}

for all blocks β of NG(P )K. Summing this equality for all β, we obtain (3).
(4) Since NG(Q)/L = NG(Q)/NG(Q) ∩K ' NG(Q)K/K = G/K, the proof

is similar to that of (3).
The proof is complete. ¤

In the following, by abuse of notation, the block idempotent of kG correspond-
ing to a block of G will be denoted by the same letter when necessary. For the
notation and terminology, we refer the reader to [AB], [Th]. In particular, for each
p-subgroup Q of G, let BrQ : (kG)Q → kCG(Q) be the Brauer homomorphism,
where

(kG)Q = {a ∈ kG; ax = xa for all x ∈ Q}.

Until Proposition 10, we use the following notation. Let N be a normal
subgroup of G and let e be a block of N . Let B be a block of G covering e. Let
T be the inertial group of e in G. Let b be the Fong-Reynolds correspondent of B

in T over e ([NT, Theorem 5.5.10]).
Part of the following proposition are similar to part of Theorem 1 of Puig

[Pu].

Proposition 8. The following holds.

(1) For any b-subpair (Q, bQ), b
CG(Q)
Q is defined, and (Q, b

CG(Q)
Q ) is a B-subpair.

(2) Two b-subpairs (Q, bQ) and (R, bR) are T-conjugate if and only if (Q, b
CG(Q)
Q )

and (R, b
CG(R)
R ) are G-conjugate.

(3) Any B-subpair is G-conjugate to (Q, b
CG(Q)
Q ) for some b-subpair (Q, bQ).

(4)2 For any b-subpair (Q, bQ), NG(Q, b
CG(Q)
Q ) = NT (Q, bQ)CG(Q). In particular,

NG(Q, b
CG(Q)
Q )/CG(Q) ' NT (Q, bQ)/CT (Q).

(5) Let Q be a p-subgroup of T. For any b′ ∈ BL(NT (Q), b), b′NG(Q) is defined
and b′NG(Q) ∈ BL(NG(Q), B).

(6) Let Q be a p-subgroup of G. For any B′ ∈ BL(NG(Q), B), there exist R ≤ T

and b′ ∈ BL(NT (R), b) such that R = Qg and that b′NG(R) = B′g for some
g ∈ G.

Proof. For each b-subpair (Q, bQ), let eQ be a block of CN (Q) which is

2This is not necessary in the present paper. It is included here for future use.
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covered by bQ. It holds that BrQ(e)eQ = eQ. Indeed, since b covers e, eb = b.
Since BrQ(b)bQ = bQ, we get BrQ(e)bQ = bQ. Thus there is a block e′Q of CN (Q)
which is covered by bQ and BrQ(e)e′Q = e′Q. Then, since e′Q is CT (Q)-conjugate
to eQ, we get BrQ(e)eQ = eQ.

(1) and (4). Since BrQ(e)eQ = eQ, the inertial group of eQ in NG(Q) is
contained in T . In particular, the inertial group of eQ in CG(Q) is contained
in CT (Q). Therefore, by the Fong-Reynolds theorem, b

CG(Q)
Q is defined. Put

BQ = b
CG(Q)
Q . We have Bb = b by [NT, 5.5.11]. So BQ BrQ(B) BrQ(b)bQ =

BQ BrQ(b)bQ = BQbQ. Here BQbQ 6= 0 by [NT, 5.3.9]. Hence BQ BrQ(B) 6= 0,
and (Q,BQ) is a B-subpair. Thus (1) is proved.

To prove (4), let t ∈ NG(Q,BQ). Let eQ be as above. Then BQ covers eQ

and et
Q, so et

Q = ex
Q for some x ∈ CG(Q). Then tx−1 ∈ T (as above) and if T1 is

the inertial group of eQ in NT (Q), tx−1 ∈ T1. Thus NG(Q,BQ) ≤ (NG(Q,BQ) ∩
T1)CG(Q). By the Fong-Reynolds theorem, we get NG(Q,BQ)∩ T1 ≤ NT (Q, bQ).
Hence NG(Q,BQ) ≤ NT (Q, bQ)CG(Q). Since the reverse containment is clear, the
equality holds.

(2) “only if” part is clear. Assume that (Q, b
CG(Q)
Q )x = (R, b

CG(R)
R ) for x ∈ G.

If eQ and eR are as above, then b
CG(R)
R covers both ex

Q and eR. So we have

ex
Q = ec

R for some c ∈ CG(R). Put y = xc−1. Then (Q, b
CG(Q)
Q )y = (R, b

CG(R)
R )

and ey
Q = eR. Then, since BrQ(e)eQ = eQ, we have BrR(ey)ey

Q = ey
Q; that is,

BrR(ey)eR = eR. Since BrR(e)eR = eR, we get e = ey and y ∈ T . Then by the
Fong-Reynolds theorem, (Q, bQ)y = (R, bR). Thus (2) holds.

(3) Let (Q,BQ) be a B-subpair. Write
∑

x∈T\G ex =
∑

i ei, where ei are
blocks of QN . Since

∑
i eiB = B, we have

BQ = BrQ(B)BQ = BrQ

( ∑

i

ei

)
BrQ(B)BQ

= BrQ

( ∑

i

ei

)
BQ =

∑

i

BrQ(ei)BQ.

Thus, for some i, BrQ(ei)BQ 6= 0 and then a defect group of ei contains Q. Then
the block of N covered by this ei is QN -invariant. Then we have ei = ex for some
x ∈ G. Then Qx−1 ≤ T . Put (Q,BQ)x−1

= (R, BR). Then BrR(e)BR 6= 0. Thus
there is a block e′R of CN (R) which is covered by BR and BrR(e)e′R = e′R. As
in the proof of (1), we see that the inertial group of e′R in CG(R) is contained
in CT (R). Let bR be the Fong-Reynolds correspondent of BR over e′R in CT (R).
Then BR = b

CG(R)
R .

It remains to show that (R, bR) is a b-subpair. Let (R, bR) be a b1-subpair for
a block b1 of T . Then
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0 6= bRe′R = bR BrR(b1) BrR(e)e′R = eR BrR(b1e)e′R.

So b1e 6= 0, and b1 covers e. Let B1 be the Fong-Reynolds correspondent of b1 over
e in G. Applying (1) with B1 in place of B, we see (R, BR) is a B1-subpair. So
B1 = B. Thus b1 = b by the Fong-Reynolds theorem, and (R, bR) is a b-subpair.
Thus (3) holds.

(5) Let bQ be a block of CT (Q) covered by b′. Then (Q, bQ) is a b-subpair.
Let eQ be as above. Then the inertial group of eQ in NG(Q) is contained in NT (Q)
by the proof of (1). Since b′ covers eQ, b′NG(Q) is defined by the Fong-Reynolds
theorem. Then (b′NG(Q))G = (b′T )G = bG = B.

(6) Let BQ be a block of CG(Q) covered by B′. Then (Q,BQ) is a B-subpair.
So, by (3), there is a b-subpair (R, bR) such that (Q,BQ)g = (R, b

CG(R)
R ) for

some g ∈ G. Then (6) holds with b′ = b
NT (R)
R . Indeed, since B′g covers b

CG(R)
R ,

B′g = (bCG(R)
R )NG(R) = b

NG(R)
R = b′NG(R).

The proof is complete. ¤

Proposition 9. Let Q be a subgroup of a defect group of B. Let {Qxi}
be a set of representatives of T -conjugacy classes of {Qg;Qg ≤ T, g ∈ G}. Put
BL(NT (Qxi), b) = {bij}. Put βij = {bij

NG(Qxi )}x−1
i . Then BL(NG(Q), B) =

{βij}, where no duplication occurs.

Proof. By (5) of Proposition 8, b
NG(Qxi )
ij is defined. Then clearly βij ∈

BL(NG(Q), B). Conversely, let β ∈ BL(NG(Q), B). By (6) of Proposition 8 there
exist R ≤ T and b′ ∈ BL(NT (R), b) such that R = Qg and that b′NG(R) = βg

for some g ∈ G. Then Qgt = Qxi for some t ∈ T and some i. Then b′t ∈
BL(NT (Qxi), b). So b′t = bij for some j. Then b

NG(Qxi )
ij is defined by (5) of

Proposition 8. Since βg = b′NG(Qg), we have βgt = b
NG(Qxi )
ij . Then (bNG(Qxi )

ij )x−1
i

= βgtx−1
i = β, since gtx−1

i ∈ NG(Q). Thus β = βij . Hence BL(NG(Q), B) =
{βij}.

Assume βij = βlm. Let bQxi (resp. bQxl ) be a block of CT (Qxi) (resp.
CT (Qxl)) covered by bij (resp. blm). Then as before, bij is the Fong-Reynolds cor-
respondent of b

NG(Qxi )
ij over eQxi . A similar thing holds for bQxl . So b

NG(Qxl )
lm covers

eQxl . By assumption, (bNG(Qxi )
ij )x−1

i xl = b
NG(Qxl )
lm . So b

NG(Qxl )
lm covers (eQxi )x−1

i xl .

Thus (eQxi )x−1
i xl = (eQxl )n for some n ∈ NG(Qxl). Put y = x−1

i xln
−1. Then

(eQxi )y = eQxl and (Qxi)y = Qxl . Then as in the proof of (2) of Proposition 8,
we have y ∈ T . Then i = l. By the Fong-Reynolds theorem, bij = bim. So j = m.
The proof is complete. ¤

Proposition 10. Let β ∈ BL(NG(Q), B). Then β = βij for a unique (i, j)
by Proposition 9.
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( i ) For S ∈ IBr(B), let S̃ be the Fong-Reynolds correspondent of S in b. Then
the following are equivalent.
(a) Q is a vertex of S and S ∈Q β.
(b) Qxi is a vertex of S̃ and S̃ ∈Qxi bij.

( ii ) ]{X ∈ IBr(β); vx(X) = Q} = ]{Y ∈ IBr(bij); vx(Y ) = Qxi}.

Proof. (i) We may assume Qxl is a vertex of S̃ for some l. Let V be the
Green correspondent of S̃ with respect to (T,Qxl , NT (Qxl)). Then V lies in blm

for some m by Nagao-Green theorem [NT, Theorem 5.3.12]. Now V NG(Qxl ) is
indecomposable, lies in b

NG(Qxl )
lm and Qxl is a vertex of V NG(Qxl ) by the Fong-

Reynolds theorem. By Mackey decomposition, V NG(Qxl ) is a direct summand
of SNG(Qxl ). Thus V NG(Qxl ) is the Green correspondent of S with respect to
(G,Qxl , NG(Qxl)). Therefore (V NG(Qxl ))x−1

l is the Green correspondent of S with
respect to (G,Q, NG(Q)) and it lies in βlm. Thus (a) holds if and only if (l, m) =
(i, j) if and only if (b) holds.

(ii) We have βxi = b
NG(Qxi )
ij . So conjugation by xi defines a bijection of

{X ∈ IBr(β); vx(X) = Q} and {Z ∈ IBr(bNG(Qxi )
ij ); vx(Z) = Qxi}. Further, {Z ∈

IBr(bNG(Qxi )
ij ); vx(Z) = Qxi} corresponds bijectively to {Y ∈ IBr(bij); vx(Y ) =

Qxi} by Fong-Reynolds theorem. Thus (ii) holds. The proof is complete. ¤

Lemma 11. Let G be a p-solvable group and let Q be a p-subgroup of G. Let
β be a block of NG(Q). Put B = βG and K = Op′(G). Let X be a G-invariant
simple kK-module. Let Y ∈ IBr(CK(Q)) be the Glauberman correspondent of X
with respect to the action of Q on K. Assume B covers B(X). Then

( i ) β is a unique block of NG(Q) covering B(Y ).
( ii ) BL(NG(Q), B) = {β}.

Proof. (i) It is well known that BrQ(B(X)) = B(Y ). By Fong’s theorem
B = B(X). So we have 0 6= BrQ(B)β = BrQ(B(X))β = B(Y )β. So β covers
B(Y ). We see Y is NG(Q)-invariant. Since G is p-solvable, CK(Q) = Op′(NG(Q))
([HB2, X 1.6]). Therefore, by Fong’s theorem, (i) follows.

(ii) Let γ ∈ BL(NG(Q), B). For the same reason as above, γ covers B(Y ).
So γ = β by (i). ¤

Theorem 12 (Barker [Ba, Theorem 1.1]). Any p-solvable group is of Barker
type.

Proof. Let G be a p-solvable group. Let Q be a p-subgroup of G and let
β be a block of NG(Q). We argue by induction firstly on |G/Z(G)| and secondly
on |G|.
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Put B = βG and K = Op′(G). Let e be a block of K covered by B. Let X

be a unique simple kK-module in e.

Step 1: We may assume G = TG(X).
Put T = TG(X). Assume G 6= T . By applying Proposition 9 with N = K,

we have β = βij for a unique (i, j). By Proposition 10 (i) and Nagao-Green
theorem [NT], lG(β, Q) = lT (bij , Q

xi). By Proposition 10 (ii), lNG(Q)(β, Q) =
lNT (Qxi )(bij , Q

xi). Since |G : Z(G)| > |T : Z(T )|, lT (bij , Q
xi) = lNT (Qxi )(bij , Q

xi)
by induction. Therefore, lG(β, Q) = lNG(Q)(β, Q), as required.

Step 2: BL(NG(Q), B) = {β}.
This follows from Step 1 and Lemma 11.

Step 3: We may assume Q ≥ Op(G).
We assume Q � Op(G) and show that lG(β, Q) = lNG(Q)(β, Q) = 0. Assume

lG(β, Q) 6= 0. If S is a simple kG-module with vertex Q, then Q ≥ Op(G), a
contradiction. Hence lG(β, Q) = 0. On the other hand, assume lNG(Q)(β, Q) 6= 0.
If U is a simple kNG(Q)-module with vertex Q, then Op(NG(Q)) = Q. So Q =
Op(NG(Q)) ≥ NG(Q) ∩ QOp(G) ≥ Q, so that NG(Q) ∩ QOp(G) = Q. Hence
QOp(G) = Q and Q ≥ Op(G), a contradiction. Hence lNG(Q)(β, Q) = 0.

Step 4: We may assume Op(G) = 1.
Assume Op(G) 6= 1. Put Ḡ = G/ Op(G). Then |Ḡ : Z(Ḡ)| ≤ |G :

Z(G)Op(G)| ≤ |G : Z(G)| and |Ḡ| < |G|. So Ḡ is of Barker type by induc-
tion. Let {β̄j} be the set of blocks of NG(Q) = NḠ(Q̄) dominated by β. For
a simple kG-module S, let S̄ be a simple kḠ-module corresponding to S. Then
by Proposition 3 S has vertex Q if and only if S̄ has vertex Q̄. (A similar thing
holds for a simple kNG(Q)-module.) Further S ∈Q β if and only if S̄ ∈Q̄ β̄j for
some j. Therefore lG(β, Q) =

∑
j lḠ(β̄j , Q̄) =

∑
j lNḠ(Q̄)(β̄j , Q̄) = lNG(Q)(β, Q),

as required.

Step 5: We may assume G = NG(Q)K and Z(G) < K.
Since Op(G) = 1, Z(G) ≤ K. If Z(G) = K, then Op′p(G) = Z(G). So

G = Z(G) and we are done. So we may assume Z(G) < K. Then, by induction
any central extension of G/K is of Barker type. Let β1 = βNG(Q)K . By Lemma 6,

]{S ∈ IBr(G|X); vx(S) =G Q,S ∈Q β1}
= ]{U ∈ IBr(β1|X); vx(U) =NG(Q)K Q}. (12.1)

For S ∈ IBr(G) with a vertex Q, S ∈Q β1 if and only if S ∈ B if and only if S ∈Q β

by Nagao-Green theorem [NT] and Step 2. And if these conditions hold, then S

lies over X. Thus the LHS of (12.1) equals lG(β, Q). On the other hand, since β1
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covers e, the RHS of (12.1) equals lNG(Q)K(β, Q) by Nagao-Green theorem [NT]
and Step 2. If NG(Q)K < G, then by induction lNG(Q)K(β, Q) = lNG(Q)(β, Q).
Thus lG(β, Q) = lNG(Q)(β, Q), as required.

Step 6: Conclusion.
By Step 1 and Fong’s theorem, B is a unique block of G covering e. So

lG(β, Q) = n(G,X, Q) by Step 2 and Nagao-Green theorem [NT]. Let Y be as
in Lemma 11. By Lemma 11 β is a unique block of NG(Q) covering B(Y ). So
lNG(Q)(β, Q) = n(NG(Q), Y,Q). Let H/K ≤ G/K and Ĥ be a central extension
of H/K. Then |Ĥ : Z(Ĥ)| ≤ |H : K| ≤ |G : K| < |G : Z(G)|. Thus by induction
Ĥ is of Barker type. Therefore the assumption of Proposition 7 holds by Step 5.
Hence n(G,X, Q) = n(NG(Q), Y,Q). So lG(β, Q) = lNG(Q)(β, Q). The proof is
complete. ¤

Now we can refine Lemma 6. (Similarly we could refine Proposition 7.)

Corollary 13. Assume that G/N is p-solvable. Let Q be a p-subgroup of
G. Let β be a block of NG(Q)N . Let X be a G-invariant simple kN-module. Then

]{S ∈ IBr(G|X); vx(S) =G Q,S ∈Q β}
= ]{U ∈ IBr(β|X); vx(U) =NG(Q)N Q}.

Proof. Use Lemma 6 and Theorem 12. ¤

Corollary 14. Assume that G/N is p-solvable. Let Q be a p-subgroup of
G. Let X be a G-invariant simple kN-module. Then

]{S ∈ IBr(G|X); vx(S) =G Q}
= ]{U ∈ IBr(NG(Q)N |X); vx(U) =NG(Q)N Q}.

Proof. Sum the equality of Corollary 13 over all blocks β of NG(Q)N . ¤

Remark 15. When G is p-solvable and N is a p′-group, Corollary 14 is a
special case of Theorem 6.3 of [IN].

4. Proof of Theorem 1.

The following extends Corollary 13.

Proposition 16. Use the notation in Theorem 1. Let X be a simple kN-
module and let T be the inertial group of X in G. Let {Qxi} be a set of represen-
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tatives of T-conjugacy classes of {Qg;Qg ≤ T, g ∈ G}. Then

]{S ∈ IBr(G|X); vx(S) =G Q,S ∈Q β}

=
∑

i

]
{
U ∈ IBr(β|Xx−1

i ); vx(U) =NG(Q)N Q
}
. (16.1)

Proof. For S ∈ IBr(G|X), let S̃ be the Clifford correspondent of S in T .
By Clifford’s theorem the LHS of (16.1) equals

∑

i

]
{
S̃ ∈ IBr(T |X); vx(S̃) =T Qxi , S ∈Q β

}
. (16.2)

For each i, let {γij} be the set of blocks γ of NT (Qxi)N such that γ covers the
block of N containing X and γNG(Qxi )N = βxi . We claim that if Qxi is a vertex
of S̃, then S ∈Q β if and only if S̃ ∈Qxi γij for some j. Here S ∈Q β if and only if
S ∈Qxi βxi by conjugation. So it suffices to show that if Qxi is a vertex of S̃, then
S ∈Qxi βxi if and only if S̃ ∈Qxi γij for some j. Let Ṽ be the Green correspondent
of S̃ with respect to (T,Qxi , NT (Qxi)N). Then Ṽ |SNT (Qxi )N , so that there is an
indecomposable kNG(Qxi)N -module V such that V |SNG(Qxi )N and Ṽ |VNT (Qxi )N .
Then we can choose vertices so that vx(S) ≥ vx(V ) ≥ vx(Ṽ ) = Qxi . Since
vx(S) =G Q, we obtain vx(V ) = Qxi . Thus V is the Green correspondent of S

with respect to (G,Qxi , NG(Qxi)N). Let γ be the block containing Ṽ . Let Y be
a simple submodule of Ṽ . Then Y is a simple submodule of VNT (Qxi )N . Thus

0 6= HomNT (Qxi )N

(
Y, VNT (Qxi )N

) ' HomNG(Qxi )N

(
Y NG(Qxi )N , V

)
.

Since ṼN is a multiple of X, so is YN . Therefore Y NG(Qxi )N is a simple module
in γNG(Qxi )N by Lemma 3.1 of [Mu]. Then the followig conditions are equivalent:
(1) S ∈Qxi βxi ; (2) V lies in βxi ; (3) Y NG(Qxi )N lies in βxi ; (4) γNG(Qxi )N = βxi ;
(5) Ṽ lies in γij for some j; (6) S̃ ∈Qxi γij for some j. The claim is proved.

Thus (16.2) equals
∑

i,j ]{S̃ ∈ IBr(T |X); vx(S̃) =T Qxi , S̃ ∈Qxi γij}.
On the other hand, by conjugation the RHS of (16.1) equals

∑

i

]
{
U ∈ IBr(βxi |X); vx(U) =NG(Qxi )N Qxi

}
.

Thus the equality follows if we show the following for each i:
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∑

j

]
{
S̃ ∈ IBr(T |X); vx(S̃) =T Qxi , S̃ ∈Qxi γij

}

= ]
{
U ∈ IBr(βxi |X); vx(U) =NG(Qxi )N Qxi

}
.

By Corollary 13 we obtain for each j

]
{
S̃ ∈ IBr(T |X); vx(S̃) =T Qxi , S̃ ∈Qxi γij

}

= ]
{
Ũ ∈ IBr(γij |X); vx(Ũ) =NT (Qxi )N Qxi

}
.

Therefore the equality above follows from Clifford’s theorem and [Mu, Lemma
3.1]. The proof is complete. ¤

Corollary 17. Use the notation in Theorem 1. Let X be a simple kN-
module and let T be the inertial group of X in G. Let {Qxi} be a set of represen-
tatives of T -conjugacy classes of {Qg;Qg ≤ T, g ∈ G}. Then

]{S ∈ IBr(G|X); vx(S) =G Q}

=
∑

i

]
{
U ∈ IBr(NG(Q)N |Xx−1

i ); vx(U) =NG(Q)N Q
}
.

Proof. Sum the equality of Proposition 16 over all blocks β of NG(Q)N .
¤

Remark 18. A result similar to Corollary 17 is proved in Theorem of Laradji
[La] when G itself is p-solvable.

Proof of Theorem 1. Let {Xj} be a complete set of representatives of
the G-conjugacy classes of IBr(N). We have

(∗) ]{S ∈ IBr(G); vx(S) =G Q,S ∈Q β}

=
∑

j

]{S ∈ IBr(G|Xj); vx(S) =G Q,S ∈Q β}.

For each j let {Qxji} be a complete set of representatives of TG(Xj)-conjugacy
classes of {Qg;Qg ≤ TG(Xj), g ∈ G}. Then we obtain by Proposition 16 that the
RHS of (∗) equals

∑

j,i

]
{
U ∈ IBr

(
β|Xxji

−1

j

)
; vx(U) =NG(Q)N Q

}
.
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Now we claim that if Y ∈ IBr(N) is an irreducible constituent of UN for

some U ∈ IBr(NG(Q)N) with a vertex Q, then Y is NG(Q)N -conjugate to X
x−1

ji

j

for some j, i. To see this we first show that Y is QN -invariant. Let Ũ be the
Clifford correspondent of U in TNG(Q)N (Y ). Then Ũ has a vertex Qx for some
x ∈ NG(Q)N . So TNG(Q)N (Y ) ≥ Qx and TG(Y ) ≥ Q, as required. We can write
Y = Xg

j for some j and some g ∈ G. Then Q ≤ TG(Xj)g. So Qg−1 ≤ TG(Xj).
Hence Qg−1

= Qxjit for some i and some t ∈ TG(Xj). This yields xjitg =: y ∈
NG(Q). So Y = Xg

j = (X
x−1

ji

j )y. The claim is proved.

Next we claim that if (j, i) 6= (j′, i′), then X
x−1

ji

j and X
x−1

j′i′
j′ are not NG(Q)N -

conjugate. Indeed, assume X
x−1

ji

j = X
x−1

j′i′y
j′ for y ∈ NG(Q)N . Then Xj and Xj′

are G-conjugate, so j = j′. Thus X
x−1

ji

j = X
x−1

ji′y
j . So x−1

ji′ yxji =: t ∈ TG(Xj).

Put y−1 = mn with m ∈ NG(Q) and n ∈ N . Then Qxji = Qy−1xji′ t = Qnxji′ t =
Qxji′n

x
ji′ t. Since nxji′ t ∈ TG(Xj), we obtain i = i′. The claim is proved.

Therefore the required equality follows by Clifford’s theorem. The proof is
complete. ¤
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