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Abstract. In this paper, we study the existence and the asymptotic be-
havior of a positive solution to the one-dimensional stationary shadow system
of the Gierer-Meinhardt system with saturation. We equip a reaction term of
activator with saturation effect κ0ε2α for α ∈ (0, 1) (semi-strong saturation
effect). Here, ε > 0 stands for the diffusion constant of activator. For suffi-
ciently small ε, we show the existence of a new type of solutions which has the
following properties:
(a) the solution has an internal transition-layer of O(ε) in width,
(b) the transition-layer is located in the position of O(εα) from the boundary

x = 0,
(c) the solution concentrates at x = 0 with the amplitude of the order of

O(ε−α) when ε ¿ 1.

1. Introduction.

In this paper, we are concerned with the following stationary problem of the
shadow system for the Gierer-Meinhardt system with saturation:





0 = ε2A′′ −A +
A2

ξ(1 + κ0ε2αA2)
, x ∈ (0, 1),

ξ =
∫ 1

0

A2dx,

A′(0) = A′(1) = 0,

(1.1)

where ε > 0, κ0 > 0 and α ≥ 0 are constants. The unknowns are A = A(x)
and ξ. A(x) and ξ represent the concentrations of an activator and an inhibitor
at x ∈ (0, 1). In the shadow system case, the concentration of an inhibitor is
considered to be uniform, and hence ξ does not depend on x. The value κ0ε

2α

stands for the saturation effect of activator.
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The Gierer-Meinhardt system [5] is a reaction-diffusion system of an activator
and an inhibitor and is a model of biological pattern formations. The general
Gierer-Meinhardt system is written by





∂A

∂t
= ε2∆A−A +

A2

H(1 + κA2)
, x ∈ Ω, t > 0,

τ
∂H

∂t
= D∆H −H + A2, x ∈ Ω, t > 0,

∂A

∂ν
=

∂H

∂ν
= 0, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x), H(x, 0) = H0(x), x ∈ Ω,

(1.2)

where ε, D, τ are positive constants, and κ ≥ 0. Ω is a domain in RN with
smooth boundary ∂Ω. ν is the unit outer normal to ∂Ω. A(x, t) and H(x, t) are
concentrations of an activator and an inhibitor at x and time t. A0 and H0 are
their initial data. Dividing the second equation in (1.2) by D and taking the limit
D →∞ formally, we have ∆H = 0 in Ω and ∂H/∂ν = 0 on ∂Ω. This means that
H(x, t) does not depends on x, and hence we can regard H(x, t) = ξ(t) under the
limit D →∞. By this consideration, we have the following shadow system:





∂A

∂t
= ε2∆A−A +

A2

ξ(1 + κA2)
, x ∈ Ω, t > 0,

τ
∂ξ

∂t
= ξ − 1

|Ω|
∫

Ω

A2dx, t > 0,

∂A

∂ν
= 0, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x), ξ(0) = ξ0, x ∈ Ω.

(1.3)

The system (1.1) is the one-dimensional stationary problem of (1.3) with κ = κ0ε
2α

and Ω = (0, 1).
It is known that (1.2) and (1.3) have various kinds of striking solutions when

ε is small and D is large. In this paper, we are concerned with stationary solutions
only. It is known that different types of solutions appear according to the value
κ. Dividing three cases, let us present several known facts.

(a) No saturation case. When κ = 0, the saturation effect is neglected.
In this case, there are many results on the stationary solutions to (1.2) or (1.3). In
particular, spike-layer solutions (or point-condensation solutions) appear. The first
result on the existence of spike-layer solutions was established by I. Takagi [25]. He
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treated the one-dimensional problem of (1.3) and (1.2), and constructed stationary
boundary spike-layer solutions to (1.3) and (1.2) for sufficiently small ε and large
D. In the one-dimensional case, it is known that, for the shadow system (1.3),
only monotone decreasing or increasing stationary solutions could be stable (see
[17], [22]). Hence, if a spike-layer solution to the one-dimensional shadow system
is stable, then the number of the spikes must be one, and the location of the spike
must be on the boundary. However, in the case where D > 0 is not so large, the
situation changes dramatically. For sufficiently small ε, if D becomes smaller and
smaller, then multi-spike layer solutions get back their stability (see [7], [32]). In
two dimensional case, interior multi-spike layer solutions were constructed, and
their stability were studied in [28], [29], [30], [33]. For other related result, see
[4], [10], [12], [13], [18], [19], [20], [26], [27], [16] and the references therein.

(b) Weak saturation case. When κ > 0 is small enough according to ε,
it is known that spike-layer solutions may appear similarly to the no saturation
case. By J. Wei and M. Winter [31], the following condition was subjected:

(A) κ > 0 depends on ε, and there exists a limit κε−2N → κ0 as ε → 0 for some
κ0 ∈ [0,∞).

Under this assumption, for sufficiently small ε, they showed the existence of a
boundary spike-layer solution to the shadow system (1.3) and studied its stability.
After their work, K. Kurata and the author [9] showed the existence of boundary
multi-spike layer solutions on axially symmetric domains Ω to the shadow system
(1.3) and the original system (1.2) for sufficiently small ε and large D under the
same assumption (A). The case where D is not so large (so-called the strong
coupling case) was treated in [15] in the one-dimensional case. For other related
results, see [8], [14], [23].

(c) Strong saturation case. When κ > 0 is fixed, it is known that spike-
layer solutions could not appear by numerical simulation. Moreover, if κ > 0 is very
large, then stationary problem of (1.2) possesses the constant solution only under
some suitable conditions (see [2]). Therefore, κ > 0 must be small suitably to
obtain nonconstant solutions. For small fixed constant κ > 0, internal transition-
layer solutions may appear due to the bistable structure. In fact, M. Mimura,
M. Tabata and Y. Hosono [11] showed the existence of internal transition-layer
solutions to (1.2) in one-dimensional case when ε is sufficiently small and D is large.
See also [21]. In higher dimension case, the existence of an internal transition-layer
solution was studied in [3], [24]. However, in higher dimension case, the problem
becomes more difficult, and hence the existence of such a solution has been proven
rigorously only in the case where Ω is a ball.

In the case where κ = κ(ε) → 0 as ε → 0 but ε−2Nκ →∞ as ε → 0, there is
no result as far as the author knows. We call such a saturation effect a semi-strong
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saturation effect. Thus, as a preliminary step, we intend to study the existence
and the asymptotic behavior of a solution to the one-dimensional shadow system
(1.1) for α ∈ (0, 1).

1.1. Main results.
Before stating our main results, we reformulate our problem. For (1.1), we

put A(x) = ε−αã(x) and ξ = ε−αξ̃. Then we have





0 = ε2ã′′ − ã +
ã2

ξ̃(1 + κ0ã2)
, x ∈ (0, 1),

ξ̃ =
1
εα

∫ 1

0

ã2dx,

ã′(0) = ã′(1) = 0.

(1.4)

Moreover, we put a(y) = ã(εαy), x = εαy, and we rewrite ξ̃ 7→ ξ simply. Then we
have the following problem:





0 = ε2(1−α)a′′ − a +
a2

ξ(1 + κ0a2)
, y ∈ Ωε :=

(
0,

1
εα

)
,

ξ =
∫ 1/εα

0

a2dy,

a′(0) = a′
(

1
εα

)
= 0.

(1.5)

As the first step, we start with a formal consideration. With respect to the non-
linear term above, let us consider the graph of the function gξ(t) with parameter
ξ > 0 defined by

gξ(t) := −t +
1
ξ

t2

1 + κ0t2
, t ∈ R. (1.6)

Then it is easy to see that there exist numbers 0 < ξ < ξ < ∞ such that gξ(t) = 0,
t ∈ R, possesses three roots t = 0, t1(ξ), t2(ξ) (0 < t1(ξ) < t2(ξ)) for each
ξ ∈ (ξ, ξ). g′ξ(0) < 0, g′ξ(t1(ξ)) > 0 and g′ξ(t2(ξ)) < 0 hold for each ξ ∈ (ξ, ξ).
Moreover, there exists a unique ξ∗ ∈ (ξ, ξ) such that

J(ξ∗) = 0, J ′(ξ∗) < 0, J(ξ) :=
∫ t2(ξ)

0

gξ(s)ds. (1.7)
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In the case of ξ = ξ∗, gξ∗(t) has an equi-stable nonlinearity. For simplicity of
notation, we write β := t2(ξ∗) henceforth. Under those situation, it is known that
the problem





w′′(z)− w(z) +
1
ξ∗

f(w(z)) = 0, z ∈ R, f(w) :=
w2

1 + κ0w2
,

w(−∞) = β, w(+∞) = 0,

(1.8)

possesses a unique solution provided translations are neglected (see, e.g., [6]).
Using this solution w(z), if we consider ξ ∼ ξ∗, then we could expect a solution
to the first equation in (1.5) such that a(y) has a transition-layer with the width
of the order of O(ε1−α) around some point. Namely, if we take yc ∈ Ωε suitably,
then we can expect a one-parameter family of solutions aε(y) to (1.5) such that

aε(y) ∼ β, y ∈ (0, yc − δ), (1.9)

aε(y) ∼ 0, y ∈ (yc + δ, 1/εα), (1.10)

as ε → 0 for any small δ > 0. Indeed, we introduce a new z-coordinate in the
transition-layer by y = yc + ε1−αz. Let us assume that a(y) is a solution to the
first equation in (1.5), which has a transition-layer at certain point yc. Putting
u(z) = a(yc + ε1−αz) and taking a limit ε → 0 formally, we see that u(z) satisfies
the same equation as that in (1.8). Therefore, we see that the solution w(z) to
(1.8) gives a good approximation of an inner solution u(x) which connects outer
solutions β and 0. On the other hand, if a(y) has an asymptotic behavior such as
(1.9) and (1.10), and if a(y) decays exponentially at each point in (1.10), then we
can approximate roughly as follows:

∫ 1/εα

0

a2(y)dy ∼ β2yc (1.11)

for sufficiently small ε. Hence, considering the second equation in (1.5), in order
to ensure that ξ ∼ ξ∗ as ε → 0 we see that yc should be taken so that

yc :=
ξ∗
β2

. (1.12)

Let us define an approximate solution to (1.5). We define yc by (1.12). Let
χ0 ∈ C∞0 (Ωε) be a function such that, 0 ≤ χ0 ≤ 1, and satisfies



892 K. Morimoto

χ0(y) =





1, y ∈
[
3

4
yc,

5

4
yc

]
,

0, y ∈
(
0,

1

2
yc

]
∪

[
3

2
yc,

1

εα

)
.

(1.13)

Define χ1 by

χ1(y) =





1, y ∈
(
0,

1

2
yc

)
,

1− χ0(y), y ∈
[
1

2
yc,

3

4
yc

)
,

0, y ∈
[
3

4
yc,

1

εα

)
.

(1.14)

Let wγ be a unique solution to (1.8) with initial value w(0) = γ for each γ ∈ (0, β).
We define an approximate solution Uε,γ(y) by

Uε,γ(y) := wγ

(
y − yc

ε1−α

)
χ0(y) + βχ1(y), y ∈

(
0,

1
εα

)
. (1.15)

Now, we are ready to state our main results.

Theorem 1.1. Let α ∈ (0, 1). For sufficiently small ε > 0, there exists
a one-parameter family of positive solutions (aε, ξε) to (1.5), and (aε, ξε) has the
following asymptotic behavior :

aε(y) = Uε,γε
(y) + exp

{
− c1

ε1−α

}
φ̃ε(y), y ∈ Ωε, (1.16)

ξε = ξ∗ + O

(
ε(1−α)/2 exp

{
− c1

ε1−α

})
, (1.17)

as ε → 0, for some c1 > 0 independent of ε and some γε ∈ (0, β). The function
φ̃ε is bounded independently of ε. Moreover, γε accumulate at a certain unique
γ∗ ∈ (0, β) as ε → 0. In particular, for any small δ > 0, it holds that

sup
y∈(0,yc−δ)

|aε(y)− β| → 0, sup
y∈(yc+δ,1/εα)

|aε(y)| → 0, (1.18)

as ε → 0.

By this theorem, we obtain an internal transition-layer solution to (1.5), and
hence we obtain a solution to (1.1).
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Corollary 1.1. Let α ∈ (0, 1). For sufficiently small ε > 0, there exists a
one-parameter family of positive solutions (Aε, ξε) to (1.1) such that

Aε(x) =
1
εα

{
Uε,γε

(
x

εα

)
+ exp

{
− c1

ε1−α

}
φ̃ε

(
x

εα

)}
, x ∈ (0, 1), (1.19)

ξε =
1
εα

{
ξ∗ + O

(
ε(1−α)/2 exp

{
− c1

ε1−α

})}
, (1.20)

as ε → 0. In particular, for any small δ > 0, it holds that

sup
x∈(0,εα(yc−δ))

∣∣∣∣Aε(x)− 1
εα

β

∣∣∣∣ → 0, sup
x∈(εα(yc+δ),1)

|Aε(x)| → 0, (1.21)

as ε → 0.

We note that

Uε,γε

(
x

εα

)
= wγε

(
x− εαyc

ε

)
χ0

(
x

εα

)
+ βχ1

(
x

εα

)
. (1.22)

Hence, we notice that Aε(x) has a transition-layer of O(ε) in width at x = εαyc.

Remark 1. In this paper, we do not treat the stability of our solution
because the main purpose is to show the existence and the asymptotic behavior of
solutions to the shadow system (1.1) with semi-strong saturation effect. However,
the solution obtaind in Corollary 1.1 seems to be stable by a simple numerical
simulation if τ is small enough. The author thinks that it is not easy to study
the stability of our solution rigorously because it is harder to study the properties
of the linearized operator in the case κ > 0 than in the case of κ = 0. However,
dynamics of the problem is also important. For study of the dynamics of the
Gierer-Meinhardt system, see [7], [8], [12], [13], [17], [21], [26], [27], [31], [32],
[33].

1.2. Preliminaries and outline of our construction.
We first state some properties of solutions to (1.8). We recall that (1.8) admits

a unique solution wγ provided the initial value w(0) = γ, γ ∈ (0, β), is given. wγ(z)
is monotone decreasing:

w′γ(z) < 0, z ∈ R. (1.23)

Moreover, for each γ ∈ (0, β), the following estimates hold:
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max
{
β − wγ(z), |w′γ(z)|} ≤ Cecz, z < 0, (1.24)

max
{
wγ(z), |w′γ(z)|} ≤ Ce−cz, z ≥ 0, (1.25)

for some constants C, c > 0. Furthermore, from the equation (1.8) and the esti-
mates above, we have

∣∣w′′γ (z)
∣∣ ≤ wγ(z) +

1
ξ∗

f(wγ(z)) ≤ wγ(z) +
1
ξ∗

w2
γ(z)

≤ C ′wc′z, z < 0,

for some C ′, c′ > 0, and

∣∣w′′γ (z)
∣∣ =

∣∣∣∣wγ(z)− 1
ξ∗

f(wγ)
∣∣∣∣ =

∣∣∣∣wγ(z)− β − 1
ξ∗

(f(wγ(z))− f(β))
∣∣∣∣

≤ |wγ(z)− β|+ 1
ξ∗
|f(wγ(z))− f(β)|

≤ C ′′e−c′′z, z ≥ 0,

for some C ′′, c′′ > 0. Hence, |w′′γ (z)| decays exponentially at infinity. Moreover,
from the equation (1.8), the following equation holds:

w′′′γ (z)− w′γ(z) +
1
ξ∗

f ′(wγ(z))w′γ(z) = 0, z ∈ R. (1.26)

Therefore, we see that |w′′′γ (z)| also decays exponentially at infinity. Here, we note
that, for γ, γ′ ∈ (0, β), there is only difference of translations, namely,

wγ′(z) = wγ(z − z(γ′)), z ∈ R,

for some z(γ′). Therefore, if we restrict γ ∈ [γ1, γ2] for fixed γ1, γ2 ∈ (0, β), then
we have uniform estimates with respect to γ and we obtain the following lemma.

Lemma 1.1. For fixed γ1, γ2 ∈ (0, β), γ1 < γ2, there exist constants C,
c > 0 such that

max
{
β − wγ(z), |w′γ(z)|, |w′′γ (z)|, |w′′′γ (z)|} ≤ Cecz, z < 0, (1.27)

max
{
wγ(z), |w′γ(z)|, |w′′γ (z)|, |w′′′γ (z)|} ≤ Ce−cz, z ≥ 0, (1.28)
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hold for any γ ∈ [γ1, γ2].

Now, let us state our construction of a solution to (1.5). We put u(z) =
a(yc + ε1−αz), y = yc + ε1−αz. Then we have the following equations equivalent
to (1.5):

0 = u′′ − u +
1
ξ
f(u), z ∈ Ω̃ε :=

(
− 1

ε1−α
yc,

1
ε1−α

(
1
εα
− yc

))
, (1.29)

ξ = ε1−α

∫

Ω̃ε

u2(z)dz. (1.30)

Throughout this paper, we set f(u) = u2/(1 + κ0u
2). We put

Uε,γ(z) := Uε,γ(yc + ε1−αz) (1.31)

= wγ(z)χ0(z) + βχ1(z), (1.32)

where Uε,γ is defined by (1.15), and χ0(z) and χ1(z) mean

χ0(z) = χ0(yc + ε1−αz), χ1(z) = χ1(yc + ε1−αz).

Remark 2. Fundamentally, we should write like χε
0(z) and χε

1(z) instead of
χ0(z) and χ1(z) because they depend on ε. However, only the bounds of χ0 and χ1

are important for our argument. We note that χ0(z), χ1(z) and their derivatives
are bounded independently of ε small. Therefore, we omit the index of ε.

Let us first consider the single equation (1.29). We expect that there exists
a solution to (1.29), near the approximate function Uε,γ , provided |ξ − ξ∗| ¿ 1,
for sufficiently small ε. Let us consider ξ to be a parameter of the equation (1.29)
and restrict the range so that

ξ ∈ Iε :=
{
ξ ∈ R : |ξ − ξ∗| ≤ ε(1−α)/2e−c1/ε1−α}

, (1.33)

where c1 > 0 is some fixed constant decided later (see (2.6)). For our purpose, we
need to analyze the following linearized operator:

L̃ε,γ,ξφ := φ′′ − φ +
1
ξ
f ′(Uε,γ)φ. (1.34)

From (1.26), L̃ε,γ,ξ is likely to have an eigenvalue near 0 for ε sufficiently small.
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Hence, we use the Liapunov-Schmidt reduction method. We follow the method
used in [32]. Let us define an approximate kernel of L̃ε,γ,ξ as follows:

span
{

dUε,γ

dz

}
⊂ H2(Ω̃ε). (1.35)

We write U
′
ε,γ(z) = dUε,γ/dz simply, henceforth. Define

Eε,γu :=
(U

′
ε,γ , u)L2(Ω̃ε)

‖U ′
ε,γ‖2L2(Ω̃ε)

U
′
ε,γ , u ∈ L2(Ω̃ε), (1.36)

and

π⊥ε,γ := I − Eε,γ , (1.37)

where I is an identity map on L2(Ω̃ε). Then π⊥ε,γ is a projection from L2(Ω̃ε) into
C⊥ε,γ , where

C⊥ε,γ :=
{

u ∈ L2(Ω̃ε) :
∫

Ω̃ε

u(z)U
′
ε,γ(z)dz = 0

}
. (1.38)

We put

K⊥
ε,γ :=

{
u ∈ H2(Ω̃ε) :

∫

Ω̃ε

u(z)U
′
ε,γ(z)dz = 0

}
, (1.39)

H2
ν (Ω̃ε) :=

{
u ∈ H2(Ω̃ε) : u′

(
− 1

ε1−α
yc

)
= u′

(
1

ε1−α

(
1
εα
− yc

))
= 0

}
. (1.40)

We define an operator Lε,γ,ξ on C⊥ε,γ by

Dom(Lε,γ,ξ) = K⊥
ε,γ ∩H2

ν (Ω̃ε), Lε,γ,ξ := π⊥ε,γ ◦ L̃ε,γ,ξ. (1.41)

It is easy to see that Lε,γ,ξ is a self-adjoint operator. Then we will see that Lε,γ,ξ

is invertible as an operator from K⊥
ε,γ ∩ H2

ν (Ω̃ε) into C⊥ε,γ for ε sufficiently small
(Lemma 3.1). We divide the problem (1.29) into

π⊥ε,γS[u; ξ] = 0, (1.42)
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Eε,γS[u; ξ] = 0, (1.43)

where

S[u; ξ] := u′′ − u +
1
ξ
f(u). (1.44)

Our construction consists of three steps:

Step 1. For sufficiently small ε, we will construct a solution uε(·; γ, ξ) ∈ H2
ν (Ω̃ε)

of the equation (1.42), near Uε,γ , for each γ ∈ [γ1, γ2] and ξ ∈ Iε.
Step 2. For each ε sufficiently small and each γ ∈ [γ1, γ2], we will find ξ = ξε,γ ∈ Iε

such that (1.43) holds, namely,

∫

Ω̃ε

S[uε(z; γ, ξε,γ); ξε,γ ]U
′
ε,γ(z)dz = 0.

Step 3. For each ε sufficiently small, we will find γ = γε ∈ [γ1, γ2] such that (1.30)
holds, namely,

ξε,γε
= ε1−α

∫

Ω̃ε

u2
ε(z; γε, ξε,γε

)dz.

In Section 2, we lead some basic estimates. In Section 3, we complete Step
1. In Section 4, we show the continuity and the differentiability of uε(·; γ, ξ) with
respect to γ and ξ. In Sections 5 and 6, we complete Step 2 and 3, respectively.

2. Basic estimates.

In this section, we show some estimates. The following lemma is the one on
the estimate of error term.

Lemma 2.1. Let M > 0 and γ1, γ2 ∈ (0, β) be fixed. Then there exist
constants C1, c1 > 0 such that

∥∥S[Uε,γ ; ξ]
∥∥

L2(Ω̃ε)
≤

∣∣∣∣
1
ξ∗
− 1

ξ

∣∣∣∣‖f(wγ)‖L2(Ω̃ε) + C1e
−c1/ε1−α

(2.1)

holds for all γ ∈ [γ1, γ2] and all ξ > 0 such that 1/ξ < M .

Proof. We calculate the term U
′′
ε,γ − Uε,γ :
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U
′′
ε,γ − Uε,γ = w′′γχ0 + 2w′γχ′0 + wγχ′′0 + βχ′′1 − wγχ0 − βχ1.

By using Lemma 1.1, we can estimate as follows.
For |z| ≤ yc/(4ε1−α), because χ0 ≡ 1 and χ1 ≡ 0, we have

U
′′
ε,γ − Uε,γ = w′′γ − wγ .

For z ∈ (−yc/ε1−α,−yc/(2ε1−α)), because χ0 ≡ 0 and χ1 ≡ 1, we have

U
′′
ε,γ − Uε,γ = −β = w′′γ − wγ +

(
wγ − β − w′′γ

)
= w′′γ − wγ + O(e−c|z|).

For z ∈ (−yc/(2ε1−α),−yc/(4ε1−α)), because χ1 = 1− χ0, we have

U
′′
ε,γ − Uε,γ = w′′γχ0 + 2w′γχ′0 + wγχ′′0 − βχ′′0 − wγχ0 − β(1− χ0)

= w′′γ − wγ − (1− χ0)w
′′
γ + (wγ − β) + χ0(β − wγ) + 2w′γχ′0

+ χ′′0(wγ − β)

= w′′γ − wγ + O(e−c|z|).

For z ∈ Ω̃ε\(−yc/ε1−α, yc/(4ε1−α)), because wγ and |w′′γ | are estimated by Ce−c|z|,
we have

U
′′
ε,γ − Uε,γ = w′′γ − wγ + O(ε−c|z|).

Then we can see that

∥∥S[Uε,γ ; ξ]
∥∥

L2(Ω̃ε)
=

∥∥∥∥U
′′
ε,γ − Uε,γ +

1
ξ
f(Uε,γ)

∥∥∥∥
L2(Ω̃ε)

≤
∥∥∥∥w′′γ − wγ +

1
ξ
f(Uε,γ)

∥∥∥∥
L2(Ω̃ε)

+ C ′e−c′/ε1−α

=
∥∥∥∥−

1
ξ∗

f(wγ) +
1
ξ
f(Uε,γ)

∥∥∥∥
L2(Ω̃ε)

+ C ′e−c′/ε1−α

≤
∣∣∣∣
1
ξ∗
− 1

ξ

∣∣∣∣‖f(wγ)‖L2(Ω̃ε) +
1
ξ

∥∥f(wγ)− f(Uε,γ)
∥∥

L2(Ω̃ε)

+ C ′e−c′/ε1−α

,
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for some C ′, c′ > 0. Here, we see that

∣∣f(wγ)− f(Uε,γ)
∣∣ ≤ ∣∣w2

γ − U
2

ε,γ

∣∣ ≤ 2β
∣∣wγ − Uε,γ

∣∣

by direct calculation. Noting wγ ≡ Uε,γ for z ∈ (−yc/(4ε1−α), yc/(4ε1−α)), we see
by the same consideration as above that

∥∥f(wγ)− f(Uε,γ)
∥∥

L2(Ω̃ε)
≤ C ′′e−c′′/ε1−α

holds for some C ′′, c′′ > 0. Thus we have a conclusion. ¤

Next, we see that the same type of estimate holds for L̃ε,γ,ξU
′
ε,γ .

Lemma 2.2. Let M > 0 and γ1, γ2 ∈ (0, β) be fixed. Then there exist
constants C2, c2 > 0 such that

∥∥L̃ε,γ,ξU
′
ε,γ

∥∥
L2(Ω̃ε)

≤
∣∣∣∣
1
ξ∗
− 1

ξ

∣∣∣∣
∥∥f ′(wγ)w′γ

∥∥
L2(Ω̃ε)

+ C2e
−c2/ε1−α

(2.2)

holds for all γ ∈ [γ1, γ2] and all ξ > 0 such that 1/ξ < M .

Proof. The proof can be carried out by the same argument as that in the
proof of Lemma 2.1. Thus we omit the proof. ¤

Lemma 2.3. Let M > 0 and γ1, γ2 ∈ (0, β) be fixed. Then the following
identity holds

∫

Ω̃ε

S
[
Uε,γ ; ξ

]
U
′
ε,γdz =

(
1
ξ
− 1

ξ∗

) ∫ Dε

−Dε

f(wγ)w′γdz + k(ε), (2.3)

Dε :=
1

4ε1−α
yc,

for all γ ∈ [γ1, γ2] and all ξ > 0 such that 1/ξ < M . The term k(ε) satisfies

|k(ε)| ≤ C3e
−c3/ε1−α

(2.4)

for some constants C3, c3 > 0 independent of ε, γ and ξ.

Proof. By the definition of Uε,γ , we have U
′
ε,γ = w′γχ0 + wγχ′0 + βχ′1.

Therefore,
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U
′
ε,γ =





w′γ , |z| < Dε,

w′γχ0 + (wγ − β)χ′0, z ∈ (−2Dε,−Dε),

w′γχ0 + wγχ′0, z ∈ (Dε, 2Dε),

0, elsewhere.

(2.5)

Noting w′′γ − wγ + f(wγ)/ξ∗ = 0, we have

∫

Ω̃ε

S
[
Uε,γ ; ξ

]
U
′
ε,γdz =

∫

Ω̃ε

(
U
′′
ε,γ − Uε,γ +

1
ξ
f(Uε,γ)

)
U
′
ε,γdz

=
∫ Dε

−Dε

(
w′′γ − wγ +

1
ξ
f(wγ)

)
w′γdz

+
∫

Ω̃ε\[−Dε,Dε]

(
U
′′
ε,γ − Uε,γ +

1
ξ
f(Uε,γ)

)
U
′
ε,γdz

=
(

1
ξ
− 1

ξ∗

) ∫ Dε

−Dε

f(wγ)w′γdz

+
∫

Ω̃ε\[−Dε,Dε]

(
U
′′
ε,γ − Uε,γ +

1
ξ
f(Uε,γ)

)
U
′
ε,γdz.

Using the estimates in Lemma 1.1 and (2.5), and noting U
′′
ε,γ − Uε,γ + f(Uε,γ)/ξ

is bounded, we can estimate as follows:

∣∣∣∣
∫

Ω̃ε\[−Dε,Dε]

(
U
′′
ε,γ − Uε,γ +

1
ξ
f(Uε,γ)

)
U
′
ε,γdz

∣∣∣∣ ≤ C3e
−c3/ε1−α

for some C3, c3 > 0. Thus we complete the proof. ¤

Here, we define the number c1 > 0 in (1.33) so that

c1 < min{c1, c2, c3}. (2.6)

We always consider ξ ∈ Iε = {ξ ∈ R : |ξ − ξ∗| ≤ ε(1−α)/2e−c1/ε1−α}, henceforth.

3. Liapunov-Schmidt reduction method.

In this section, we will show the invertibility of Lε,γ,ξ and solve the equation
(1.42).
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Lemma 3.1. There exist ε1 > 0 and λ > 0 such that, for all ε ∈ (0, ε1),
γ ∈ [γ1, γ2] and ξ ∈ Iε, the following hold :

∥∥Lε,γ,ξφ
∥∥

L2(Ω̃ε)
≥ λ‖φ‖H2(Ω̃ε), φ ∈ K⊥

ε,γ ∩H2
ν (Ω̃ε), (3.1)

Ran(Lε,γ,ξ) = C⊥ε,γ . (3.2)

Therefore, Lε,γ,ξ : K⊥
ε,γ ∩H2

ν (Ω̃ε) → C⊥ε,γ has a bounded inverse L−1
ε,γ,ξ.

Proof. We first show (3.1). Let the contrary be true. Then there exist
sequences εn, γn ∈ [γ1, γ2], ξn ∈ Iεn and φn ∈ K⊥

εn,γn
∩ H2

ν (Ω̃εn), n = 1, 2, . . . ,
such that εn → 0 as n →∞ and

∥∥Lεn,γn,ξnφn

∥∥
L2(Ω̃εn )

≤ 1
n

, ‖φn‖H2(Ω̃εn ) = 1, (3.3)

for n = 1, 2, . . . . We may assume γn → γ′ ∈ [γ1, γ2] as n →∞ by the compactness
of [γ1, γ2]. Moreover, we note that ξn → ξ∗ as n →∞. We extend φn into H2(R)-
function for each n. We keep the same notation for the extended function for
simplicity of notation. Then we can see that

‖φn‖H2(R) ≤ M (3.4)

holds for some M > 0 independent of n. Hence we can pick up a subsequence (we
denote the subsequence by {φn} simply) such that,

φn ⇀ φ in H2(R), (3.5)

φn → φ in L2
loc(R) and L∞loc(R), (3.6)

as n → ∞, for some φ ∈ H2(R), where “⇀” means the weak-limit. Now, we
take a test function ϕ ∈ C∞0 (R). Set K = supp(ϕ). We may assume K ⊂ Ω̃εn

considering εn to be small enough. Let

(
Lεn,γn,ξn

φn, ϕ
)
L2(Ω̃εn )

=
(
L̃εn,γn,ξnφn, ϕ

)
L2(K)

− (
Eεn,γnL̃εn,γn,ξnφn, ϕ

)
L2(K)

. (3.7)

Then it is easy to see that

(
L̃εn,γn,ξn

φn, ϕ
)
L2(K)

→
∫

K

{
φ′′ − φ +

1
ξ∗

f ′(wγ′)φ
}

ϕdz (3.8)
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as n →∞. Recall that

Eεn,γn
L̃εn,γn,ξn

φn =
(U

′
εn,γn

, L̃εn,γn,ξn
φn)L2(Ω̃εn )

‖U ′
εn,γn

‖2
L2(Ω̃εn )

U
′
εn,γn

. (3.9)

In this term, we can calculate as follows

∣∣(U ′
εn,γn

, L̃εn,γn,ξn
φn)L2(Ω̃εn )

∣∣ =
∣∣(L̃εn,γn,ξn

U
′
εn,γn

, φn)L2(Ω̃εn )

∣∣

≤ ∥∥L̃εn,γn,ξn
U
′
εn,ξn

∥∥
L2(Ω̃εn )

.

Hence, we see by Lemma 2.2 that

∣∣(Eεn,γnL̃εn,γn,ξnφn, ϕ)L2(K)

∣∣ → 0 (3.10)

as n →∞. On the other hand, we notice that

∣∣(Lεn,γn,ξn
φn, ϕ)L2(Ω̃εn )

∣∣ ≤ ∥∥Lεn,γn,ξn
φn

∥∥
L2(Ω̃εn )

‖ϕ‖L2(Ω̃εn ) → 0 (3.11)

as n →∞ from (3.3). Combining (3.7), (3.8), (3.10) and (3.11), we have

∫

R

{
φ′′ − φ +

1
ξ∗

f ′(wγ′)φ
}

ϕdz = 0 (3.12)

for any ϕ ∈ C∞0 (R). Therefore, we see that

φ′′ − φ +
1
ξ∗

f ′(wγ′)φ = 0 in R. (3.13)

It is known that such a bounded function φ satisfying (3.13) is only a multiple
of w′γ′ (see, e.g, [1], [6]). However, we can see that φ ⊥ w′γ′ in L2(R) from
φn ∈ K⊥

εn,γn
. Therefore, we have φ = 0.

Now, we claim that ‖φn‖H2(Ω̃εn ) → 0 as n →∞, and we lead a contradiction.

For the purpose, we divide Ω̃εn
into two intervals as follows

Ω̃1
εn

:=
(
− 1

ε1−α
n

yc,−a

)
, (3.14)

Ω̃2
εn

:=
(
− a,

1
ε1−α

(
1
εα
− yc

))
, (3.15)
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where a > 0 is a fixed large constant. Here, we note that we may regard φn as a
C1-function by Sobolev’s embedding theorem. Moreover, because the C1-norm of
φn is bounded from (3.4) and φn → 0 in L∞loc(R), we see that |φ′n(−a)φn(−a)| → 0
as n →∞.

We first claim that ‖φn‖H2(Ω̃2
εn

) → 0 as n →∞. Let

φ′′n − φn = Lεn,γn,ξn
φn + Eεn,γn

L̃εn,γn,ξn
φn − 1

ξn
f ′(Uεn,γn

)φn =: g̃n. (3.16)

Let us estimate the L2(Ω̃2
εn

)-norm of g̃n. Let

‖g̃n‖L2(Ω̃2
εn

) ≤
∥∥Lεn,γn,ξn

φn

∥∥
L2(Ω̃2

εn
)
+

∥∥Eεn,γn
L̃εn,γn,ξn

φn

∥∥
L2(Ω̃2

εn
)

+
1
ξn

∥∥f ′(Uεn,γn
)φn

∥∥
L2(Ω̃2

εn
)
. (3.17)

We have already known that the first term and the second term in (3.17) tend
to 0 as n → ∞. We see that the third term also tends to 0 as n → ∞ by
using φn → φ = 0 in L∞loc(R) and the estimates: |Uεn,γn(z)| ≤ Ce−cz, z > 0,
and ‖φn‖L∞(R) ≤ C ′ for some C, c, C ′ > 0 independent of n. Hence, we have
‖g̃n‖L2(Ω̃2

εn
) → 0 as n → ∞. Now, integrating (3.16) after multiplying both sides

by φn, we see that

∫

Ω̃2
εn

(φ′n)2 +
∫

Ω̃2
εn

φ2
n = −

∫

Ω̃2
εn

g̃nφn − φ′n(−a)φn(−a) (3.18)

holds by integration by parts and the Neumann boundary condition. Then we
easily see that the right hand side of (3.18) tends to 0 as n → ∞ because the
L2-norm of φn is bounded independently of n and ‖g̃n‖L2(Ω̃2

εn
) → 0 as n → ∞.

Hence ‖φn‖H1(Ω̃2
εn

) → 0 holds as n → 0. Moreover, from (3.16), we have

∫

Ω̃2
εn

(φ′′n)2 =
∫

Ω̃2
εn

(φn + g̃n)2

=
∫

Ω̃2
εn

φ2
n + 2

∫

Ω̃2
εn

φng̃n +
∫

Ω̃2
εn

g̃2
n

≤ ‖φn‖2L2(Ω̃2
εn

)
+ 2‖φn‖L2(Ω̃2

εn
)‖g̃n‖L2(Ω̃2

εn
) + ‖g̃n‖2L2(Ω̃2

εn
)
→ 0

as n →∞. Therefore, we have ‖φn‖H2(Ω̃2
εn

) → 0 as n →∞.
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Next, let us show that ‖φn‖H2(Ω̃1
εn

) → 0 as n →∞. Put

Vn(z) := 1− 1
ξn

f ′(Uεn,γn
(z)). (3.19)

Recall that 1− f ′(β)/ξ∗ > 0. Hence, if we take a > 0 in (3.15) large enough, then
we can take a constant µ > 0 such that

µ ≤ Vn(z) ≤ 1
µ

, z ∈ Ω̃1
εn

,

holds for all n sufficiently large. Then φn satisfies the following equation:

φ′′n − Vnφn = Lεn,γn,ξn
φn + Eεn,γn

L̃εn,γn,ξn
φn =: gn in Ω̃1

εn
. (3.20)

We note that ‖gn‖L2(Ω̃1
εn

) → 0 as n → ∞. Integrating (3.20) after multiplying
both sides by φn, we have

∫

Ω̃1
εn

φ′′nφn −
∫

Ω̃1
εn

Vnφ2
n =

∫

Ω̃1
εn

gnφn.

Noting φ′n(z) = 0 at z = −yc/ε1−α, we have

∫

Ω̃1
εn

(φ′n)2 +
∫

Ω̃1
εn

Vnφ2
n = −

∫

Ω̃1
εn

gnφn − φ′n(−a)φn(−a)

≤ ‖gn‖L2(Ω̃1
εn

)‖φn‖L2(Ω̃1
εn

) +
∣∣φ′n(−a)φn(−a)

∣∣.

Hence, we see that ‖φn‖H1(Ω̃′εn
) → 0 as n →∞. Moreover, from (3.20), we have

∫

Ω̃1
εn

(φ′′n)2 =
∫

Ω̃1
εn

(Vnφn + gn)2

=
∫

Ω̃1
εn

V 2
n φ2

n + 2
∫

Ω̃1
εn

Vnφngn +
∫

Ω̃1
εn

g2
n

≤ 1
µ2
‖φn‖2L2(Ω̃1

εn
)
+

2
µ
‖φn‖L2(Ω̃1

εn
)‖gn‖L2(Ω̃1

εn
) + ‖gn‖2L2(Ω̃1

εn
)
→ 0,

as n → ∞. Thus we have ‖φn‖H2(Ω̃1
εn

) → 0 as n → ∞. Hence we have
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‖φn‖H2(Ω̃εn ) → 0 as n →∞. This contradicts (3.3). Thus (3.1) is verified.
Next, we show (3.2). We recall that Lε,γ,ξ is a self-adjoint operator, and we

note that (3.1) means that Ran(Lε,γ,ξ) is closed. Then we notice that (3.1) means
also that Lε,γ,ξ is surjective by the theory of adjoint operators. Thus we complete
the proof. ¤

Now, we solve (1.42) in the form u = Uε,γ + e−c1/ε1−α

φ for some φ ∈ H2
ν (Ω̃ε).

We substitute u = Uε,γ + e−c1/ε1−α

φ into (1.42). Then we have

π⊥ε,γ

{
S[Uε,γ ; ξ] + e−c1/ε1−α

L̃ε,γ,ξφ +
1
ξ
Mε,γ [φ]

}
= 0, (3.21)

where

Mε,γ [φ] := f
(
Uε,γ + e−c1/ε1−α

φ
)− f(Uε,γ)− e−c1/ε1−α

f ′(Uε,γ)φ. (3.22)

Then, by Lemma 3.1, for ε ∈ (0, ε1), (3.21) is equivalent to the following

φ = ec1/ε1−α

{
−L−1

ε,γ,ξ

(
π⊥ε,γS[Uε,γ ; ξ]

)−1
ξ
L−1

ε,γ,ξ

(
π⊥ε,γMε,γ [φ]

)}
=: Tε,γ,ξ[φ]. (3.23)

Hence, we only need to find a fixed point of Tε,γ,ξ in a suitable function space. For
the purpose, we prepare the following lemma.

Lemma 3.2. For Mε,γ defined by (3.22), there exists a constant C1 > 0 such
that, for any φ, φ1, φ2 ∈ H2(Ω̃ε),

∥∥Mε,γ [φ]
∥∥

L2(Ω̃ε)
≤ C1e

−2c1/ε1−α‖φ‖2
H2(Ω̃ε)

, (3.24)
∥∥Mε,γ [φ1]−Mε,γ [φ2]

∥∥
L2(Ω̃ε)

≤ C1e
−2c1/ε1−α{‖φ1‖H2(Ω̃ε) + ‖φ2‖H2(Ω̃ε)

}‖φ1 − φ2‖H2(Ω̃ε), (3.25)

hold for all ε > 0 sufficiently small and all γ ∈ (0, β).

Proof. We first note that

|f ′′(t)| =
∣∣∣∣
2− 6κ0t

2

(1 + κt2)3

∣∣∣∣ ≤ C

holds for some C > 0. Then, by making use of the mean value theorem, we can
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estimate as follows

∣∣Mε,γ [φ]
∣∣ =

∣∣∣∣
∫ 1

0

{
f ′(Uε,γ + e−c1/ε1−α

tφ)− f ′(Uε,γ)
}
dt

∣∣∣∣
∣∣e−c1/ε1−α

φ
∣∣

≤ Ce−2c1/ε1−α |φ|2.

Hence, we have

‖Mε,γ [φ]‖L2(Ω̃ε) ≤ Ce−2c1/ε1−α‖φ‖L∞(Ω̃ε)‖φ‖L2(Ω̃ε).

Using the fact:

‖φ‖L∞(Ω̃ε) ≤ C ′‖φ‖H2(Ω̃ε), φ ∈ H2(Ω̃ε), (3.26)

holds for some C ′ > 0 independent of φ, and C ′ > 0 can be taken uniformly on ε

sufficiently small, we have (3.24).
Similarly, we can estimate as follows

∣∣Mε,γ [φ1]−Mε,γ [φ2]
∣∣

=
∣∣f(

Uε,γ + e−c1/ε1−α

φ1

)− f
(
Uε,γ + e−c1/ε1−α

φ2

)− e−c1/ε1−α

f ′(Uε,γ)(φ1 − φ2)
∣∣

= e−c1/ε1−α

∣∣∣∣
∫ 1

0

{
f ′

(
Uε,γ + e−c1/ε1−α

φ2 + e−c1/ε1−α

t(φ1 − φ2)
)− f ′(Uε,γ)

}
dt

∣∣∣∣

× |φ1 − φ2|

≤ Ce−2c1/ε1−α

∫ 1

0

|φ2 + t(φ1 − φ2)|dt · |φ1 − φ2|

≤ Ce−2c1/ε1−α{|φ1|+ |φ2|}|φ1 − φ2|.

Taking L2-norm and using (3.26), we have (3.25). ¤

Here, we remember the inequality (2.1). We note that the term ‖f(wγ)‖L2(Ω̃ε)

tends to infinity as ε → 0. However, the following estimate holds

∣∣∣∣
1
ξ∗
− 1

ξ

∣∣∣∣‖f(wγ)‖L2(Ω̃ε) ≤
2
ξ2∗
|ξ − ξ∗|‖f(wγ)‖L2(Ω̃ε)

≤ 2
ξ2∗

e−c1/ε1−α

ε(1−α)/2‖f(wγ)‖L2(Ω̃ε)
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=
2
ξ2∗

e−c1/ε1−α

(
ε1−α

∫

Ω̃ε

f2(wδ)dz

)1/2

,

for ξ ∈ Iε and ε sufficiently small. Because of (1.28), we see that

(
ε1−α

∫

Ω̃ε

f2(wδ)dz

)1/2

≤ C0 (3.27)

holds for some constant C0 > 0 independent of γ ∈ [γ1, γ2] and ε sufficiently small.
To show the existence of a fixed point of Tε,γ,ξ, we set

B :=
{

φ ∈ H2
ν (Ω̃ε) : ‖φ‖H2(Ω̃ε) ≤

4
λξ2∗

C0

}
, (3.28)

where λ is a constant given in Lemma 3.1 and C0 is a constant given in (3.27).

Proposition 3.1. There exists ε2 > 0 such that, for ε ∈ (0, ε2), γ ∈ [γ1, γ2]
and ξ ∈ Iε, Tε,γ,ξ is a contraction mapping on B, and hence Tε,γ,ξ admits a unique
fixed point φε,γ,ξ ∈ B. Moreover, φε,γ,ξ ∈ K⊥

ε,γ ∩H2
ν (Ω̃ε).

Proof. Let φ ∈ B. Then, by Lemmas 2.1, 3.1, 3.2 and the estimate (3.27),
we can estimate as follows:

∥∥Tε,γ,ξ[φ]
∥∥

H2(Ω̃ε)

≤ ec1/ε1−α 1
λ

{∥∥S[Uε,γ ; ξ]
∥∥

L2(Ω̃ε)
+

1
ξ
‖Mε,γ [φ]‖L2(Ω̃ε)

}

≤ ec1/ε1−α 1
λ

{
2
ξ2∗

C0e
−c1/ε1−α

+ C1e
−c1/ε1−α

+
2C1

ξ2∗
‖φ‖2

H2(Ω̃ε)
e−2c1/ε1−α

}

=
2

λξ2∗
C0 +

1
λ

C1e
−(c1−c1)/ε1−α

+
2

λξ2∗
C1 ·

(
4

λξ2∗
C0

)2

e−c1/ε1−α

.

We recall that c1 − c1 > 0. Hence, if ε is small enough, then

‖Tε,γ,ξ[φ]‖H2(Ω̃ε) ≤
4

λξ2∗
C0 (3.29)

holds for any γ ∈ [γ1, γ2], ξ ∈ Iε. Thus Tε,γ,ξ becomes a mapping from B into
itself.

Next, let φ1, φ2 ∈ B. Then, by Lemmas 3.1 and 3.2, we can estimate as
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follows:

∥∥Tε,γ,ξ[φ1]− Tε,γ,ξ[φ2]
∥∥

H2(Ω̃ε)

≤ 2
λξ∗

ec1/ε1−α∥∥Mε,γ [φ1]−Mε,γ [φ2]
∥∥

L2(Ω̃ε)

≤ 2
λξ∗

C1

{‖φ1‖H2(Ω̃ε) + ‖φ2‖H2(Ω̃ε)

}‖φ1 − φ2‖H2(Ω̃ε)e
−c1/ε1−α

≤ 2
λξ∗

C1
8

λξ2∗
C0‖φ1 − φ2‖H2(Ω̃ε)e

−c1/ε1−α

.

Therefore, if ε is small enough, then it holds that

∥∥Tε,γ,ξ[φ1]− Tε,γ,ξ[φ2]
∥∥

H2(Ω̃ε)
≤ 1

2
‖φ1 − φ2‖H2(Ω̃ε)

for all γ ∈ [γ1, γ2], ξ ∈ Iε. Thus, Tε,γ,ξ is a contraction mapping on B, and
there exists a unique fixed point φε,γ,ξ ∈ B. Moreover, from (3.23), we see that
φε,γ,ξ ∈ K⊥

ε,γ ∩H2
ν (Ω̃ε). Thus, we complete the proof. ¤

Thus, we complete Step 1 with

uε(z; γ, ξ) := Uε,γ(z) + e−c1/ε1−α

φε,γ,ξ(z). (3.30)

4. Continuity on parameters.

Before going to the next step, we must show the continuity and differentiability
of φε,γ,ξ on γ and ξ. It is known that, if Tε,γ,ξ[φ] is continuous with respect to γ

and ξ for each φ ∈ B, then φε,γ,ξ is also continuous with respect to γ and ξ (see
Proposition 1.2 of [34]). That is, we only need to show the following lemma to
ensure the continuity of φε,γ,ξ on γ and ξ.

Proposition 4.1. Let ε ∈ (0, ε2). For any γ′, γ ∈ [γ1, γ2] and ξ′, ξ ∈ Iε, it
holds that

∥∥Tε,γ′,ξ′ [φ]− Tε,γ,ξ[φ]
∥∥

H2(Ω̃ε)
→ 0 (4.1)

as γ → γ′ and ξ → ξ′ for every φ ∈ B.

To show this, we prepare some lemmas.
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Lemma 4.1. Let γ, γ′ ∈ [γ1, γ2] and ξ ∈ Iε. Then, for each ε > 0 sufficiently
small, the following estimate holds

∥∥L−1
ε,γ′,ξπ

⊥
ε,γ′φ− L−1

ε,γ,ξπ
⊥
ε,γφ

∥∥
H2(Ω̃ε)

≤ ω1(γ, γ′)‖φ‖L2(Ω̃ε), φ ∈ L2(Ω̃ε), (4.2)

where ω1(γ, γ′) > 0 is a certain quantity independent of φ and ξ and satisfies
ω1(γ, γ′) → 0 as γ → γ′.

Proof. In this proof, we omit the indexes of ε and ξ. Let

vγ := L−1
γ π⊥γ φ, vγ′ := L−1

γ′ π⊥γ′φ.

Then

π⊥γ L̃γvγ = π⊥γ φ = φ− bγU
′
γ , bγ :=

(Uγ , φ)L2(Ω̃ε)

‖Uγ‖2L2(Ω̃ε)

. (4.3)

Similarly, we have π⊥γ′L̃γ′vγ′ = φ−bγ′U
′
γ′ . From (4.3), we have φ = π⊥γ L̃γvγ+bγU

′
γ .

Hence,

π⊥γ′L̃γ′vγ′ = φ− bγ′U
′
γ′

= π⊥γ L̃γvγ + bγU
′
γ − bγ′U

′
γ′

= L̃γvγ − EγL̃γvγ + bγU
′
γ − bγ′U

′
γ′

= L̃γ′vγ′ +
(
L̃γ − L̃γ′

)
vγ − EγL̃γvγ + bγU

′
γ − bγ′U

′
γ′

= L̃γ′vγ′ +
1
ξ

(
f ′(Uγ′)− f ′(Uγ)

)
vγ − EγL̃γvγ + bγU

′
γ − bγ′U

′
γ′ .

Multiplying both sides by π⊥γ′ , we have

π⊥γ′L̃γ′vγ′ = π⊥γ′L̃γ′vγ +
1
ξ
π⊥γ′

{
(f ′(Uγ′)− f ′(Uγ))vγ

}− π⊥γ′EγL̃γvγ + bγπ⊥γ′U
′
γ .

Multiplying both sides by L−1
γ′ , we have

vγ′ − vγ =
1
ξ
L−1

γ′
[
π⊥γ′{(f ′(Uγ′)− f ′(Uγ))vγ}

]− L−1
γ′ π⊥γ′EγL̃γvγ + bγL−1

γ′ π⊥γ′U
′
γ .
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Thus we have

‖vγ − vγ′‖H2(Ω̃ε) ≤
1
λ

{
1
ξ

∥∥f ′(Uγ′)− f ′(Uγ)
∥∥

L∞(Ω̃ε)
‖vγ‖L2(Ω̃ε)

+
∥∥π⊥γ′EγL̃γvγ

∥∥
L2(Ω̃ε)

+ bγ

∥∥π⊥γ′U
′
γ

∥∥
L2(Ω̃ε)

}
. (4.4)

We may consider 1/ξ < 2/ξ∗ for ξ ∈ Iε. It is easy to see that ‖f ′(Uγ′) −
f ′(Uγ)‖L∞(Ω̃ε) = o(1) holds as γ → γ′ (see the proof of Lemma 4.3), and
‖vγ‖L2(Ω̃ε) ≤ ‖φ‖L2(Ω̃ε)/λ holds. Hence, the first term of the right hand side
of (4.4) is estimated as follows:

1
ξ

∥∥f ′(Uγ′)− f ′(Uγ)
∥∥

L∞(Ω̃ε)
‖vγ‖L2(Ω̃ε) ≤ ω1(γ, γ′)‖φ‖L2(Ω̃ε), (4.5)

the quantity ω1(γ, γ′) satisfies the assertion of this lemma. For the second term of
the right hand side of (4.4), we can calculate as follows:

π⊥γ′EγL̃γvγ = (I − Eγ′)EγL̃γvγ

= EγL̃γvγ − Eγ′EγL̃γvγ

=
(U

′
γ , L̃γvγ)L2(Ω̃ε)

‖U ′
γ‖2L2(Ω̃ε)

{
U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

}
.

Thus we can estimate as follows:

∥∥π⊥γ′EγL̃γvγ

∥∥
L2(Ω̃ε)

≤
|(U ′

γ , L̃γvγ)L2(Ω̃ε)|
‖U ′

γ‖2L2(Ω̃ε)

∥∥∥∥U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

=
|(L̃γU

′
γ , vγ)L2(Ω̃ε)|

‖U ′
γ‖2L2(Ω̃ε)

∥∥∥∥U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

≤
‖L̃γU

′
γ‖L2(Ω̃ε)‖L−1

γ π⊥γ φ‖L2(Ω̃ε)

‖U ′
γ‖2L2(Ω̃ε)

∥∥∥∥U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

≤ C

∥∥∥∥U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

‖φ‖L2(Ω̃ε),
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for some constant C > 0. It is easy to see that

∥∥∥∥U
′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

= o(1), as γ → γ′.

Therefore,

∥∥π⊥γ′EγL̃γvγ

∥∥
L2(Ω̃ε)

≤ ω1(γ, γ′)‖φ‖L2(Ω̃ε)

holds for some quantity ω1(γ, γ′) > 0 satisfying the assertion. For the third term
in (4.3), we easily see that

∥∥π⊥γ′U
′
γ

∥∥
L2(Ω̃ε)

=
∥∥∥∥U

′
γ −

(U
′
γ′ , U

′
γ)L2(Ω̃ε)

‖U ′
γ′‖2L2(Ω̃ε)

U
′
γ′

∥∥∥∥
L2(Ω̃ε)

= o(1) as γ → γ′,

and

|bγ | =
|(U ′

γ , φ)L2(Ω̃ε)|
‖U ′

γ‖2L2(Ω̃ε)

≤
‖φ‖L2(Ω̃ε)

‖U ′
γ‖L2(Ω̃ε)

≤ C‖φ‖L2(Ω̃ε),

for some C > 0. By taking ω1(γ, γ′) suitably, we have a conclusion. ¤

Lemma 4.2. Let ξ, ξ′ ∈ Iε. For each ε > 0 sufficiently small, the following
estimate holds

∥∥(L−1
ε,γ,ξ − L−1

ε,γ,ξ′)φ
∥∥

H1(Ω̃ε)
≤ ω2(ξ, ξ′)‖φ‖L2(Ω̃ε), φ ∈ C⊥ε,γ , (4.6)

where ω2(ξ, ξ′) > 0 is a certain quantity independent of φ and γ ∈ [γ1, γ2] and it
satisfies ω2(ξ, ξ′) → 0 as ξ → ξ′.

Proof. In this proof, we omit the indexes of ε and γ of Lε,γ,ξ. For φ ∈ C⊥ε,γ ,
let

φ = Lξ′L
−1
ξ′ φ

= {Lξ + (Lξ′ − Lξ)}L−1
ξ′ φ

=
{

Lξ +
(

1
ξ′
− 1

ξ

)
f ′(Uε,γ)

}
L−1

ξ′ φ
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L−1
ξ φ = L−1

ξ′ φ +
(

1
ξ′
− 1

ξ

)
L−1

ξ

[
f ′(Uε,γ)L−1

ξ′ φ
]
.

Then we have

∥∥L−1
ξ φ− L−1

ξ′ φ
∥∥

H2(Ω̃ε)
≤ 1

λ

∣∣∣∣
1
ξ′
− 1

ξ

∣∣∣∣
∥∥f ′(Uε,γ)L−1

ξ′ φ
∥∥

L2(Ω̃ε)

≤ 1
λ2

∣∣∣∣
1
ξ′
− 1

ξ

∣∣∣∣
∥∥f ′(Uε,γ)

∥∥
L∞(Ω̃ε)

‖φ‖L2(Ω̃ε).

We note that ‖Uε,γ‖L∞(Ω̃ε) is bounded independently of ε and γ, and hence
‖f ′(Uε,γ)‖L∞(Ω̃ε) is also bounded independently of ε and γ. From the estimate
above, we have a conclusion. ¤

Lemma 4.3. Let γ, γ′ ∈ [γ1, γ2] and ξ, ξ′ ∈ Iε. For each ε sufficiently small,
it holds that

∥∥S[Uε,γ′ ; ξ′]− S[Uε,γ ; ξ]
∥∥

L2(Ω̃ε)
→ 0

as γ → γ′ and ξ → ξ′.

Proof. By the definition, we can estimate as follows:

∥∥S[Uε,γ′ ; ξ′]− S[Uε,γ ; ξ]
∥∥

L2(Ω̃ε)

=
∥∥∥∥U

′′
ε,γ′ − Uε,γ′ +

1
ξ′

f(Uγ′)− U
′′
ε,γ + Uε,γ − 1

ξ
f(Uγ′)

∥∥∥∥
L2(Ω̃ε)

≤ ∥∥U
′′
ε,γ′ − U

′′
ε,γ

∥∥
L2(Ω̃ε)

+
∥∥Uε,γ′ − Uε,γ

∥∥
L2(Ω̃ε)

+
∣∣∣∣
1
ξ′
− 1

ξ

∣∣∣∣
∥∥f(Uε,γ′)

∥∥
L2(Ω̃ε)

+
1
ξ

∥∥f(Uε,γ′)− f(Uε,γ)
∥∥

L2(Ω̃ε)
.

The third term obviously tends to 0 as ξ → ξ′. By the definition of Uε,γ , we have

Uε,γ′ − Uε,γ = (wγ′ − wγ)χ0.

Because wγ(z) = wγ′(z−z(γ)) for some z(γ) which is continuous in γ and satisfies
|z(γ)| → 0 as γ → γ′, using the mean value theorem, we can estimate as follows:
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∫

Ω̃ε

(
Uε,γ′(z)− Uε,γ(z)

)2
dz =

∫

Ω̃ε

(
wγ′(z)− wγ′(z − z(γ))

)2
χ2

0(z)dz

≤ sup
z∈R

∣∣w′γ′(z)
∣∣2

∫

Ω̃ε

|z(γ)|2dz

= sup
z∈R

∣∣w′γ′(z)
∣∣2|Ω̃ε||z(γ)|2.

Note that supz∈R |w′γ′(z)| is finite. Therefore, ‖Uε,γ′ −Uε,γ‖L2(Ω̃ε) → 0 as γ → γ′.
Next, we see that

U
′′
ε,γ′ − U

′′
ε,γ =

(
w′′γ′ − w′′γ

)
χ0 + 2

(
w′γ′ − w′γ

)
χ′0 + (wγ′ − wγ)χ′′0 .

By the same argument above, we have ‖U ′′
ε,γ′−U

′′
ε,γ‖L2(Ω̃ε) → 0 as γ → γ′. Finally,

noting 0 ≤ Uε,γ ≤ β, we can see that

∣∣f(Uε,γ′)− f(Uε,γ)
∣∣ ≤ C

∣∣Uε,γ′ − Uε,γ

∣∣

holds for some C > 0 by using the mean value theorem or a direct calculation.
Hence, we see that

∥∥f(Uε,γ′)− f(Uε,γ)
∥∥

L2(Ω̃ε)
→ 0

as γ → γ′. ¤

Lemma 4.4. Let γ, γ′ ∈ [γ1, γ2]. For each ε sufficiently small and φ ∈ B, it
holds that

‖Mε,γ′ [φ]−Mε,γ [φ]‖L2(Ω̃ε) → 0

as γ → γ′.

Proof. The proof can be done by an argument similar to that in the proof
of Lemma 4.3. Thus we omit the proof. ¤

Proof of Proposition 4.1. From Lemmas 3.1, 4.1, 4.2, 4.3 and 4.4, we
can easily verify (4.1) by a simple calculation. Thus we omit the details. ¤

Thus, we see that φε,γ,ξ, which is a unique fixed point of Tε,γ,ξ in B, is
continuous with respect to γ and ξ in the space H2(Ω̃ε). However, it is insufficient
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for going to the next step. Let us show that φε,γ,ξ is of class C1 with respect to ξ.
For the purpose, we first show the following lemma.

Lemma 4.5. Let φε,γ,ξ be a fixed point of Tε,γ,ξ given in Proposition 3.1.
Define

L̃ε,γ,ξψ := ψ′′ − ψ +
1
ξ
f ′

(
Uε,γ + e−c1/ε1−α

φε,γ,ξ

)
ψ

and Lε,γ,ξ := π⊥ε,γ ◦ L̃ε,γ,ξ. Then Lε,γ,ξ is invertible as an operator from K⊥
ε,γ ∩

H2
ν (Ω̃ε) into C⊥ε,γ for sufficiently small ε. The inverse L−1

ε,γ,ξ satisfies

∥∥L−1
ε,γ,ξg

∥∥
H2(Ω̃ε)

≤ 2
λ
‖g‖L2(Ω̃ε), g ∈ C⊥ε,γ , (4.7)

where λ > 0 is a constant given in Proposition 3.1.

Proof. For g ∈ C⊥ε,γ and u ∈ K⊥
ε,γ ∩ H2

ν (Ω̃ε), the following equations are
equivalent:

Lε,γ,ξu = g,

Lε,γ,ξu + (Lε,γ,ξ − Lε,γ,ξ)u = g

Lε,γ,ξu +
1
ξ
π⊥ε,γ

[(
f ′(Uε,γ + e−c1/ε1−α

φε,γ,ξ)− f ′(Uε,γ)
)
u
]

= g (4.8)

u +
1
ξ
L−1

ε,γ,ξ

[
π⊥ε,γ

[
(f ′(Uε,γ + e−c1/ε1−α

φε,γ,ξ)− f ′(Uε,γ))u
]]

= L−1
ε,γ,ξg. (4.9)

By the mean value theorem and (3.26), we have

∥∥f ′
(
Uε,γ + e−c1/ε1−α

φε,γ,ξ

)− f ′(Uε,γ)
∥∥

L∞(Ω̃ε)
≤ Ce−c1/ε1−α‖φε,γ,ξ‖L∞(Ω̃ε)

≤ CC ′e−c1/ε1−α‖φε,γ,ξ‖H2(Ω̃ε)

≤ C ′′e−c1/ε1−α

for some C ′′ > 0 independent of ε, γ ∈ [γ1, γ2] and ξ ∈ Iε because of φε,γ,ξ ∈ B.
Hence it holds that
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∥∥∥∥
1
ξ
L−1

ε,γ,ξ

[
π⊥ε,γ

[
(f ′(Uε,γ + e−c1/ε1−α

φε,γ,ξ)− f ′(Uε,γ))u
]]∥∥∥∥

L2(Ω̃ε)

≤ 2
ξ∗λ

∥∥[(
f ′(Uε,γ + e−c1/ε1−α

φε,γ,ξ)− f ′(Uε,γ)
)
u
∥∥

L2(Ω̃ε)

≤ C ′′′e−c1/ε1−α‖u‖L2(Ω̃ε)

≤ 1
2
‖u‖L2(Ω̃ε)

for ε sufficiently small. Hence, by the Neumann series theory, we know that the
equation (4.9) is solvable, namely, there exists a unique u ∈ C⊥ε,γ satisfying (4.9)
for each g ∈ C⊥ε,γ . Moreover, we see that u ∈ K⊥

ε,γ ∩H2
ν (Ω̃ε) from (4.9). Then, we

can estimate as follows:

‖u‖H2(Ω̃ε) ≤
1
ξ

∥∥L−1
ε,γ,ξ

[
π⊥ε,γ [(f ′(Uε,γ + e−c1/ε1−α

φε,γ,ξ)− f ′(Uε,γ))u]
]∥∥

H2(Ω̃ε)

+
∥∥L−1

ε,γ,ξg
∥∥

H2(Ω̃ε)

≤ 1
2
‖u‖H2(Ω̃ε) +

1
λ
‖g‖L2(Ω̃ε).

Hence we have ‖u‖H2(Ω̃ε) ≤ 2‖g‖L2(Ω̃ε)/λ. Thus we complete the proof. ¤

Proposition 4.2. Let φε,γ,ξ be a fixed point of Tε,γ,ξ given by Proposition
3.1. For each ε > 0 sufficiently small and γ ∈ [γ1, γ2], φε,γ,ξ is of class C1 in the
space H2(Ω̃ε) with respect to ξ ∈ Iε. The derivative is given by

∂

∂ξ
φε,γ,ξ = ec1/ε1−α 1

ξ2
L−1

ε,γ,ξ

[
π⊥ε,γf(Uε,γ + e−c1/ε1−α

φε,γ,ξ)
]
. (4.10)

Proof. We put

F (ξ, φ) := π⊥ε,γS
[
Uε,γ + e−c1/ε1−α

φ; ξ
]

= π⊥ε,γ

[
(Uε,γ + e−c1/ε1−α

φ)′′ − (Uε,γ + e−c1/ε1−α

φ)

+
1
ξ
f(Uε,γ + e−c1/ε1−α

φ)
]

for (ξ, φ) ∈ Iε × (B ∩ K⊥
ε,γ), where B is defined by (3.28). We note that

F (ξ, φε,γ,ξ) = 0. Moreover, the derivatives are given by
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Fξ(ξ, φε,γ,ξ) = − 1
ξ2

π⊥ε,γf
(
Uε,γ + e−c1/ε1−α

φε,γ,ξ

)
,

Fφ(ξ, φε,γ,ξ) = e−c1/ε1−αLε,γ,ξ.

By Lemma 4.5, Fφ(ξ, φε,γ,ξ) is bijective from K⊥
ε,γ ∩ H2

ν (Ω̃ε) onto C⊥ε,γ . By the
implicit function theorem and the uniqueness of φε,γ,ξ, we can find φε,γ,ξ ∈
C1(Iε,H

2(Ω̃ε)) and

∂

∂ξ
φε,γ,ξ = −F−1

φ (ξ, φε,γ,ξ) · Fξ(ξ, φε,γ,ξ)

= ec1/ε1−α 1
ξ2
L−1

ε,γ,ξ

[
π⊥ε,γf(Uε,γ + e−c1/ε1−α

φε,γ,ξ)
]
.

Thus we complete the proof. ¤

Remark 3. We can easily confirm that

ε1−α

∫

Ω̃ε

f2
(
Uε,γ + e−c1/ε1−α

φε,γ,ξ

)
dz < C

holds for some C > 0 independent of ε, γ and ξ. Therefore, we can estimate by
(4.7) and (4.10) as follows:

∥∥∥∥
∂

∂ξ
φε,γ,ξ

∥∥∥∥
H2(Ω̃ε)

≤ Cε−(1−α)/2ec1/ε1−α

, (4.11)

the constant C > 0 is independent of ε, γ and ξ. Hence, by applying Taylor’s
expansion theorem (see, e.g., Theorem 4.A in [34]), we obtain the following esti-
mate:

∥∥φε,γ,ξ1 − φε,γ,ξ2

∥∥
H2(Ω̃ε)

≤ Cε−(1−α)/2ec1/ε1−α |ξ1 − ξ2|, (4.12)

for any ξ1, ξ2 ∈ Iε.

5. Reduced problem.

In this section, we are going to carry out Step 2. For each ε sufficiently small
and each γ ∈ [γ1, γ2], we will find ξ = ξε,γ such that (1.43) holds, namely,
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∫

Ω̃ε

S
[
uε(z; γ, ξε,γ); ξε,γ

]
U
′
ε,γ(z)dz = 0, (5.1)

where

uε(z; γ, ξ) = Uε,γ(z) + e−c1/ε1−α

φε,γ,ξ(z). (5.2)

Moreover, for the next step, we would like to show the continuity of ξε,γ with
respect to γ. For the purpose, we reduce (5.1) into the problem: find the fixed
point of Tγ [ξ] defined by

Tγ [ξ] := σε(γ)
∫

Ω̃ε

S[uε(z; γ, ξ); ξ]U
′
ε,γ(z)dz + ξ, (5.3)

where σε(γ) 6= 0 is a constant defined by (5.5) below.

Proposition 5.1. For sufficiently small ε > 0, Tγ is a contraction mapping
on Iε for any γ ∈ [γ1, γ2], and hence there exists a unique fixed point ξε,γ ∈ Iε of
Tγ . Moreover, ξε,γ is continuous with respect to γ ∈ [γ1, γ2].

Proof. As was done in (3.21), we can write as follows:

∫

Ω̃ε

S
[
Uε,γ + e−c1/ε1−α

φε,γ,ξ; ξ
]
U
′
ε,γdz

=
∫

Ω̃ε

S[Uε,γ ; ξ]U
′
ε,γdz + e−c1/ε1−α

∫

Ω̃ε

L̃ε,γ,ξ[φε,γ,ξ]U
′
ε,γdz

+
1
ξ

∫

Ω̃ε

Mε,γ [φε,γ,ξ]U
′
ε,γdz. (5.4)

Then, by Lemma 2.3, for ξ ∈ Iε,

Tγ [ξ]− ξ∗ =
{

σε(γ)
ξξ∗

∫ Dε

−Dε

f(wγ)w′γdz − 1
}

(ξ∗ − ξ) + σε(γ)k(ε)

+ σε(γ)e−c1/ε1−α

∫

Ω̃ε

L̃ε,γ,ξ[φε,γ,ξ]U
′
ε,γdz

+ σε(γ)
1
ξ

∫

Ω̃ε

Mε,γ [φε,γ,ξ]U
′
ε,γdz.

Here, we set
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σε(γ) =
5
4
ξ2
∗

( ∫ Dε

−Dε

f(wγ)w′γdz

)−1

. (5.5)

Noting the exponential decay estimate stated in Lemma 1.1, we see that |σε(γ)| is
bounded uniformly in γ ∈ [γ1, γ2] for ε sufficiently small. Then we can estimate
as follows:

∣∣∣∣
{

σε(γ)
ξξ∗

∫ Dε

−Dε

f(wγ)w′γdz − 1
}

(ξ∗ − ξ)
∣∣∣∣ =

1
2
|ξ∗ − ξ| ≤ 1

2
ε(1−α)/2e−c1/ε1−α

.

From (2.4) and noting c1 < c3, we have

|σε(γ)k(ε)| ≤ CC3e
−c3/ε1−α

= ε(1−α)/2e−c1/ε1−α

o(1), as ε → 0.

Moreover, by Lemma 2.2, we have

∣∣∣∣σε(γ)e−c1/ε1−α

∫

Ω̃ε

L̃ε,γ,ξ[φε,γ,ξ]U
′
ε,γdz

∣∣∣∣

=
∣∣∣∣σε(γ)e−c1/ε1−α

∫

Ω̃ε

φε,γ,ξL̃ε,γ,ξ[U
′
ε,γ ]dz

∣∣∣∣

≤ Ce−c1/ε1−α‖φε,γ,ξ‖L2(Ω̃ε)

∥∥L̃ε,γ,ξ[U
′
ε,γ ]

∥∥
L2(Ω̃ε)

≤ C ′e−c1/ε1−α

{∣∣∣∣
1
ξ∗
− 1

ξ

∣∣∣∣
∥∥f ′(wγ)w′γ

∥∥
L2(Ω̃ε)

+ C2e
−c2/ε1−α

}

≤ C ′′e−c1/ε1−α{|ξ∗ − ξ|+ e−c3/ε1−α}

≤ ε(1−α)/2e−c1/ε1−α

o(1), as ε → 0.

Furthermore, by Lemma 3.2, we have

∣∣∣∣σε(γ)
1
ξ

∫

Ω̃ε

Mε,γ [φε,γ,ξ]U
′
ε,γdz

∣∣∣∣ ≤ C‖Mε,γ [φε,γ,ξ]‖L2(Ω̃ε)

∥∥U
′
ε,γ

∥∥
L2(Ω̃ε)

≤ C ′e−2c1/ε1−α

.

Thus, we have

|Tγ [ξ]− ξ∗| ≤ 3
4
ε(1−α)/2e−c1/ε1−α
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for all γ ∈ [γ1, γ2] and ξ ∈ Iε provided ε is small enough. Hence, Tγ is a mapping
from Iε into itself.

Next, for ξ1, ξ2 ∈ Iε, Let

Tγ [ξ1]− Tγ [ξ2] = σε(γ)
∫

Ω̃ε

{
S[Uε,γ ; ξ1]− S[Uε,γ ; ξ2]

}
U
′
ε,γdz + ξ1 − ξ2

+ σε(γ)e−c1/ε1−α

∫

Ω̃ε

{
L̃ε,γ,ξ1φε,γ,ξ1 − L̃ε,γ,ξ2φε,γ,ξ2

}
U
′
ε,γdz

+ σε(γ)
∫

Ω̃ε

{
1
ξ1

Mε,γ [φε,γ,ξ2 ]−
1
ξ2

Mε,γ [φε,γ,ξ2 ]
}

U
′
ε,γdz.

By the definition of S[·; ξ], we have

∣∣∣∣σε(γ)
∫

Ω̃ε

{
S[Uε,γ ; ξ1]− S[Uε,γ ; ξ2]

}
U
′
ε,γdz + ξ1 − ξ2

∣∣∣∣

=
∣∣∣∣σε(γ)

∫

Ω̃ε

(
1
ξ1
− 1

ξ2

)
f(Uε,γ)U

′
ε,γdz + ξ1 − ξ2

∣∣∣∣

=
∣∣∣∣1−

σε(γ)
ξ1ξ2

∫

Ω̃ε

f(Uε,γ)U
′
ε,γdz

∣∣∣∣|ξ1 − ξ2|

≤ 1
2
|ξ1 − ξ2|.

Here, we used

σε(γ)
ξ1ξ2

∫

Ω̃ε

f(Uε,γ)U
′
ε,γdz =

5
4

+ o(1)

as ε → 0. Using Lemma 2.2 and (4.12), we have

∣∣∣∣
∫

Ω̃ε

{
L̃ε,γ,ξ1φε,γ,ξ1 − L̃ε,γ,ξ2φε,γ,ξ2

}
U
′
ε,γdz

∣∣∣∣

≤
∣∣∣∣
∫

Ω̃ε

(φε,γ,ξ1 − φε,γ,ξ2)L̃ε,γ,ξ1 [U
′
ε,γ ]dz

∣∣∣∣

+
∣∣∣∣
∫

Ω̃ε

φε,γ,ξ2

(
L̃ε,γ,ξ1 [U

′
ε,γ ]− L̃ε,γ,ξ2 [U

′
ε,γ ]

)
dz

∣∣∣∣
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≤ ‖φε,γ,ξ1 − φε,γ,ξ2‖L2(Ω̃ε)

∥∥L̃ε,γ,ξ1 [U
′
ε,γ ]

∥∥
L2(Ω̃ε)

+ ‖φε,γ,ξ2‖L2(Ω̃ε)

∥∥f ′(Uε,γ)U
′
ε,γ

∥∥
L2(Ω̃ε)

∣∣∣∣
1
ξ1
− 1

ξ2

∣∣∣∣

≤ C

{
ε−(1−α)/2ec1/ε1−α |ξ1 − ξ2|

{∣∣∣∣
1
ξ∗
− 1

ξ1

∣∣∣∣
∥∥f ′(wγ)w′γ

∥∥
L2(Ω̃ε)

+ C2e
−c2/ε1−α

}

+ |ξ1 − ξ2|
}

≤ C ′
{
ε−(1−α)/2ec1/ε1−α{

ε(1−α)/2e−c1/ε1−α

+ e−c2/ε1−α}
+ 1

}|ξ1 − ξ2|.

Recall that c1 < c2. Therefore, we have

∣∣∣∣σε(γ)e−c1/ε1−α

∫

Ω̃ε

{
L̃ε,γ,ξ1φε,γ,ξ1 − L̃ε,γ,ξ2φε,γ,ξ2

}
U
′
ε,γdz

∣∣∣∣

≤ o(1)|ξ1 − ξ2| as ε → 0.

Finally, by Lemma 3.2 and (4.12), we have

∣∣∣∣σε(γ)
∫

Ω̃ε

{
1
ξ1

Mε,γ [φε,γ,ξ2 ]−
1
ξ2

Mε,γ [φε,γ,ξ2 ]
}

U
′
ε,γdz

∣∣∣∣

≤ C

{∣∣∣∣
1
ξ1
− 1

ξ2

∣∣∣∣
∣∣∣∣
∫

Ω̃ε

Mε,γ [φε,γ,ξ1 ]U
′
ε,γdz

∣∣∣∣

+
1
ξ2

∣∣∣∣
∫

Ω̃ε

{Mε,γ [φε,γ,ξ1 ]−Mε,γ [φε,γ,ξ2 ]}U
′
ε,γdz

∣∣∣∣
}

≤ C ′
{|ξ1 − ξ2|‖Mε,γ [φε,γ,ξ1 ]‖L2(Ω̃ε) + ‖Mε,γ [φε,γ,ξ1 ]−Mε,γ [φε,γ,ξ2 ]‖L2(Ω̃ε)

}

≤ C ′′e−2c1/ε1−α{|ξ1 − ξ2|+ ‖φε,γ,ξ1 − φε,γ,ξ2‖L2(Ω̃ε)

}

≤ C ′′′e−2c1/ε1−α |ξ1 − ξ2|
{
1 + ε−(1−α)/2ec1/ε1−α}

≤ o(1)|ξ1 − ξ2| as ε → 0.

Thus we have

|Tγ [ξ1]− Tγ [ξ2]| ≤ 3
4
|ξ1 − ξ2|
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for all ξ1, ξ2 ∈ Iε and γ ∈ [γ1, γ2] provided ε is small enough. Therefore, Tγ ,
γ ∈ [γ1, γ2], is a contraction mapping on Iε for ε sufficiently small. Then Tγ has a
unique fixed point ξε,γ ∈ Iε. Moreover, it is easy to see that Tγ [ξ] is continuous in
γ ∈ [γ1, γ2] for each ξ ∈ Iε, and hence ξε,γ is continuous in γ ∈ [γ1, γ2]. Thus we
complete the proof. ¤

6. Matching problem.

In this section, we will complete Step 3. That is, for each ε sufficiently small,
we will find γ = γε ∈ [γ1, γ2] such that

ξε,γε = ε1−α

∫

Ω̃ε

u2
ε(z; γε, ξε,γε)dz (6.1)

holds, where uε(z; γ, ξε,γ) = Uε,γ(z) + e−c1/ε1−α

φε,γ,ξε,γ (z). For the purpose, we
first show the following lemma.

Lemma 6.1. Let γ ∈ [γ1, γ2]. Then the following identity holds:

ε1−α

∫

Ω̃ε

U
2

ε,γ(z)dz = ξ∗ + ε1−αIε(γ) + k1(ε), (6.2)

where

Iε(γ) :=
∫ Dε

−Dε

{
w2

γ(z)− 1
2
β2

}
dz, Dε =

1
4ε1−α

yc, (6.3)

and the term k1(ε) satisfies

|k1(ε)| ≤ C4e
−c4/ε1−α

(6.4)

for some constants C4, c4 > 0 independent of γ ∈ [γ1, γ2] and ε sufficiently small.

Proof. In this proof, it is convenient to treat the y-variable. Recall that
y = yc + ε1−αz and

ε1−α

∫

Ω̃ε

U
2

ε,γ(z)dz =
∫

Ωε

U2
ε,γ(y)dy, ξ∗ = β2yc.

By the setting of χ0 and χ1, we can calculate as follows:
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∫

Ωε

U2
ε,γ(y)dy =

∫

Ωε

{
wγ

(
y − yc

ε1−α

)
χ0(y) + βχ1(y)

}2

dy

=
∫ yc/2

0

β2dy +
∫ 3yc/4

yc/2

{
wγ

(
y − yc

ε1−α

)
χ0(y) + β(1− χ0(y))

}2

dy

+
∫ 5yc/4

3yc/4

w2
γ

(
y − yc

ε1−α

)
dy +

∫ 3yc/2

5yc/4

w2
γ

(
y − yc

ε1−α

)
χ2

0(y)dy

=: I + II + III + IV.

Then, by Lemma 1.1, we have

I =
1
2
β2yc,

II =
∫ 3yc/4

yc/2

{(
wγ

(
y − yc

ε1−α

)
− β

)
χ0(y) + β

}2

dy

=
1
4
β2yc + e.s.t.,

IV = e.s.t.,

where “e.s.t.” means the exponentially small term and is estimated by Ce−c/ε1−α

for some C, c > 0 independent of γ and ε. Therefore, we have

∫

Ωε

U2
ε,γ(y)dy =

3
4
β2yc +

∫ 5yc/4

3yc/4

w2
γ

(
y − yc

ε1−α

)
dy + e.s.t.

= β2yc +
∫ 5yc/4

3yc/4

w2
γ

(
y − yc

ε1−α

)
dy − 1

4
β2yc + e.s.t.

= ξ∗ +
∫ 5yc/4

3yc/4

{
w2

γ

(
y − yc

ε1−α

)
− 1

2
β2

}
dy + e.s.t.

= ξ∗ + ε1−αIε(γ) + e.s.t.

Thus we complete the proof. ¤

Secondly, we study the property of Iε(γ). We note that Iε(γ) is well-defined
also for γ ∈ (0, β) and is continuous and strictly monotone increasing on γ for each
ε.
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Lemma 6.2. For each ε, there exists a unique γ̃ε ∈ (0, β) such that Iε(γ̃ε) =
0. Moreover, γ̃ε converges to a certain unique γ∗ ∈ (0, β) as ε → 0.

Proof. For each ε, it is easy to see that, if we take γ ∈ (0, β) near 0,
then Iε(γ) < 0, and if we take γ ∈ (0, β) near β, then Iε(γ) > 0. Hence, by the
continuity and monotonicity, there exists a unique γ̃ε ∈ (0, β) such that Iε(γ̃ε) = 0.
Let γ∗ ∈ [0, β] be an accumulating point of γε. Then, we can exclude the possibility
of γ∗ = 0, β. Let

Iε(γ) =
∫ Dε

0

(
w2

γ(z)− 1
2
β2

)
dz +

∫ 0

−Dε

(
w2

γ(z)− 1
2
β2

)
dz

=
∫ Dε

0

w2
γ(z)dz − 1

2
β2Dε +

∫ 0

−Dε

w2
γ(z)dz − 1

2
β2Dε

=
∫ Dε

0

w2
γ(z)dz +

∫ 0

−Dε

(
w2

γ(z)− β2
)
dz.

From this, it holds that

∫ Dε

0

w2
γ̃ε

(z)dz =
∫ 0

−Dε

(
β2 − w2

γ̃ε
(z)

)
dz. (6.5)

If γ̃ε accumulates at 0, then there exists εn such that εn → 0 as n → ∞ and
γ̃εn

→ 0 as n → ∞. However, it is impossible because the left hand side of
(6.5) remains bounded as n →∞, on the other hand, the right hand side of (6.5)
tends to infinity as n → ∞. Hence, γ∗ 6= 0. Similarly, we can prove γ∗ 6= β.
Thus, γ̃ε accumulates neither at 0 nor at β. Hence, we may assume there exists
γ, γ ∈ (0, β), γ < γ, such that γ̃ε ∈ [γ, γ] for all ε sufficiently small. We claim that
the accumulating point of γ̃ε is exactly one. Indeed, let γ̃ε possess two different
accumulating points. Then, there exists M > 0 such that, for any n ∈ N, there
exist εn, ε′n ∈ (0, 1/n), εn > ε′n, such that |γ̃εn − γ̃ε′n | ≥ M holds. We see that

0 = Iεn
(γ̃εn

)− Iε′n(γ̃ε′n)

=
∫ Dε′n

−Dε′n

(
w2

γ̃εn
− w2

γ̃ε′n

)
dz +

∫ −Dε′n

−Dεn

w2
γ̃εn

dz +
∫ Dεn

Dε′n

(
w2

γ̃εn
− β2

)
dz

holds. Because γ̃εn , γ̃ε′n ∈ [γ, γ] for all n sufficiently large, if we take n →∞, then
the second term and the third term tend to 0. However, the first term cannot tend
to 0 since |γ̃εn

− γ̃ε′n | ≥ M . It is impossible. Therefore, the accumulating point of
γ̃ε is unique. Thus, we complete the proof. ¤
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Remark 4. The number γ∗ ∈ (0, β) is characterized to be a number satis-
fying

∫ ∞

0

w2
γ∗(z)dz =

∫ 0

−∞

(
β2 − w2

γ∗(z)
)
dz (6.6)

from the equation (6.5).

Hitherto, the constants γ1, γ2 ∈ (0, β) have been arbitrarily fixed constants.
From now on, let us fix the constants so that

γ̃ε ∈ (γ1, γ2), γ∗ ∈ (γ1, γ2) (6.7)

hold for all ε sufficiently small. We recall that there is only difference of translations
among wγ∗ , wγ1 and wγ2 . Let a1, a2 > 0 be constants such that

wγ1(z) = wγ∗(z + a1), wγ2(z) = wγ∗(z − a2). (6.8)

Then we have the following lemma which will be needed for the problem (6.1).

Lemma 6.3. Let γ1, γ2 ∈ (0, β) be fixed so that (6.7) holds and a1, a2 > 0 be
constants defined by (6.8). Then, Iε(γ1) and Iε(γ2) have the following asymptotic
behavior :

Iε(γ1) = −a1β
2 + o(1), (6.9)

Iε(γ2) = a2β
2 + o(1), (6.10)

as ε → 0.

Proof. We can calculate as follows:

Iε(γ1) =
∫ Dε

−Dε

{
w2

γ1
(z)− 1

2
β2

}
dz =

∫ Dε

−Dε

{
w2

γ∗(z + a1)− 1
2
β2

}
dz

=
∫ Dε+a1

−Dε+a1

{
w2

γ∗(z)− 1
2
β2

}
dz

=
∫ Dε

−Dε

{
w2

γ∗(z)− 1
2
β2

}
dz +

∫ Dε+a1

Dε

{
w2

γ∗(z)− 1
2
β2

}
dz

−
∫ −Dε+a1

−Dε

{
w2

γ∗(z)− 1
2
β2

}
dz
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=
∫ Dε

−Dε

{
w2

γ∗(z)− 1
2
β2

}
dz +

∫ Dε+a1

Dε

w2
γ∗(z)dz −

∫ −Dε+a1

−Dε

w2
γ∗(z)dz.

(6.11)

Then, we see that the first term tends to 0 as ε → 0. Indeed, let

∫ Dε

−Dε

{
w2

γ∗(z)− 1
2
β2

}
dz =

∫ Dε

−Dε

{
w2

γ∗(z)− w2
γ̃ε

(z)
}
dz. (6.12)

It is easy to see that the right hand side of (6.12) tends to 0 as ε → 0 by using the
estimates stated in Lemma 1.1 and noting γ̃ε → γ∗ as ε → 0. Moreover, the third
term of (6.11) clearly tends to 0 as ε → 0. Therefore, we can see that

Iε(γ1) = −
∫ −Dε+a1

−Dε

w2
γ∗(z)dz + o(1)

= −
∫ −Dε+a1

−Dε

{
w2

γ∗(z)− β2
}
dz − a1β

2 + o(1)

= −a1β
2 + o(1)

as ε → 0. Similarly, (6.10) can be proven. Thus we complete the proof. ¤

Now, we are ready to solve the problem (6.1).

Proposition 6.1. For each ε sufficiently small, there exists at least one
number γε ∈ [γ1, γ2] such that (6.1) holds. Moreover, γε accumulates at γ∗ as
ε → 0.

Proof. Recall that uε(z; γ, ξε,γ) = Uε,γ(z) + e−c1/ε1−α

φε,γ,ξε,γ
(z) and the

H2(Ω̃ε)-norm of φε,γ,ξε,γ is bounded uniformly on γ ∈ [γ1, γ2] and ε sufficiently
small. We write φε,γ = φε,γ,ξε,γ simply. Let

ε1−α

∫

Ω̃ε

(
Uε,γ + e−c1/ε1−α

φε,γ

)2
dz

= ε1−α

{ ∫

Ω̃ε

U
2

ε,γdz + 2e−c1/ε1−α

∫

Ω̃ε

Uε,γφε,γdz + e−2c1/ε1−α

∫

Ω̃ε

φ2
ε,γdz

}
.

We notice that the leading term is ε1−α
∫
Ω̃ε

U
2

ε,γdz. The problem (6.1) is equivalent
to the following:
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∫

Ω̃ε

u2
ε(z; γ, ξε,γ)dz − 1

ε1−α
ξ∗ =

1
ε1−α

(ξε,γ − ξ∗), (6.13)

∫

Ω̃ε

U
2

ε,γdz − 1
ε1−α

ξ∗ =
1

ε1−α
(ξε,γ − ξ∗)− 2e−c1/ε1−α

∫

Ω̃ε

Uε,γφε,γdz

− e−2c1/ε1−α

∫

Ω̃ε

φ2
ε,γdz =: k(ε, γ). (6.14)

Because ξε,γ ∈ Iε, |k(ε, γ)| is estimated by Cε−(1−α)/2e−c1/ε1−α

for some C > 0
independent of ε and γ. Hence, we see that k(ε, γ) converges to 0 as ε → 0
uniformly on γ ∈ [γ1, γ2]. Moreover, we note that k(ε, γ) is continuous in γ ∈
[γ1, γ2]. On the other hand, the left hand side of (6.14) is also continuous in
γ ∈ [γ1, γ2] and has the following behavior by Lemmas 6.1 and 6.3:

∫

Ω̃ε

U
2

ε,γdz − 1
ε1−α

ξ∗ = Iε(γ) +
1

ε1−α
k1(ε) =

{−a1β
2 + o(1), γ = γ1,

a2β
2 + o(1), γ = γ2,

(6.15)

as ε → 0. Hence, there exists a constant η > 0 such that, for γ = γ1, γ2,

∫

Ω̃ε

U
2

ε,γ1
dz − 1

ε1−α
ξ∗ ≤ −η,

∫

Ω̃ε

U
2

ε,γ2
dz − 1

ε1−α
ξ∗ ≥ η,

hold for all ε sufficiently small. Therefore, there exists at least one γ = γε ∈ [γ1, γ2]
such that (6.14) holds by the intermediate value theorem. Moreover, we see that
Iε(γε) → 0 as ε → 0. Hence, γε must be accumulated at γ∗ as ε → 0. ¤

Finally, we give the proofs of Theorem 1.1 and its corollary.

Proof of Theorem 1.1. Put

φ̃ε(y) = φε,γε,ξε,γε

(
y − yc

ε1−α

)
,

aε(y) = Uε,γε
(y) + e−c1/ε1−α

φ̃ε(y),

and

ξε = ξε,γε
.



Semi-strong saturation effect for the Gierer-Meinhardt system 927

Then aε(y) and ξε solve the equation (1.5) and obviously satisfies (1.16) and (1.17).
Moreover, we see that aε(y) > 0 for y ∈ Ωε by the usual maximum principle. Thus
we complete the proof. ¤

Proof of Corollary 1.1. Put

Aε(x) =
1
εα

aε

(
x

εα

)
, ξ̂ε =

1
εα

ξε,

where (aε, ξε) is a solution to (1.5) given by Theorem 1.1. Then we know that
(Aε, ξ̂ε) gives a solution to (1.1). Omitting the hat of ξ̂ε, we complete the proof.
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