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Abstract. Let M be an almost complex manifold and g a periodic au-
tomorphism of M of order p. Then the rotation angles of g around fixed points
of g are naturally defined by the almost complex structure of M . In this paper,
under the assumption that the fixed points of gk (1 ≤ k ≤ p−1) are isolated, a
calculation formula is provided for the homomorphism ID : Zp → R/Z defined
in [8]. The formula gives a new method to study the periodic automorphisms
of almost complex manifolds. As examples of the application of the formula,
we show the nonexistence of the Zp-action of specific isotropy orders and ex-
amine whether specific rotation angles exist or not.

1. Introduction.

The problem whether a manifold with some geometric structure admits an
action of a finite group which preserves the geometric structure is a basic problem
in geometry, and the problem is well studied for compact Riemann surfaces.

Let M be a 2m-dimensional closed oriented manifold and G a finite group
acting on M . We assume that the action of G is effective. Let g be an element of
G of order p ≥ 2 and Zp the cyclic group generated by g. In this paper, we set the
following assumption.

Assumption 1.1. Some gk (1 ≤ k ≤ p− 1) has a fixed point, and any fixed
point of gk is isolated for 1 ≤ k ≤ p− 1 if gk has a fixed point.

Under the assumption above, let Ω be the union of the fixed points of gk for
1 ≤ k ≤ p − 1 and suppose that the image π(Ω) consists of b points y1, . . . , yb ∈
M/Zp where π : M −→ M/Zp is the projection. In this paper, the Zp-action is
called the Zp-action of isotropy orders (p1, . . . , pb) if the isotropy group at a point
qi ∈ π−1(yi) (1 ≤ i ≤ b) is the cyclic group of order pi. Then for 1 ≤ i ≤ b the
isotropy group at any points in π−1(yi) is the cyclic group of order pi generated by
gri where ri = p/pi and π−1(yi) consists of ri points qi, g · qi, . . . , g

ri−1 · qi. Note
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that π : M −→ M/Zp is called a branched covering with branch points y1, . . . , yb

of order (p1, . . . , pb) if m = 1.
In [5] Harvey gives the necessary and sufficient condition for the existence

of the branched covering of a specific order, and the problem of examining the
existence of an action of a cyclic group has been completely settled (see also
[3], [4], [7]). But there still has been no known general method to examine the
existence of an action of a cyclic group when m ≥ 2.

In [8] we introduce a group homomorphism ID by using an elliptic operator D

adapted to a geometric structure of a manifold, whose dimension is not restricted.
Let D be a G-equivariant elliptic operator. Then a homomorphism ID from

G to R/Z is defined by

ID(g) =
1

2π
√−1

log det(D, g) ∈ R/Z

for g ∈ G, where det(D, g) is defined by

det(D, g) = det(g | kerD)/ det(g | cokerD) ∈ S1 ⊂ C∗

(see [8, Definition 2.1]). Then as we see in [8] (3) the next equality holds

ID(g) ≡ p− 1
2p

Ind(D)− 1
p

p−1∑

k=1

1
1− ξ−k

p

Ind(D, gk) (mod Z), (1)

where Ind is the Atiyah-Singer index (see [2]) and ξp is the primitive p-th root of
unity defined by ξp = e2π

√−1/p.
We can express the value ID(g) by the fixed point data of the gk-action

(1 ≤ k ≤ p − 1) by using the equality (1) and the fixed point formula of Atiyah-
Segal-Singer [1], [2].

Since ID is a homomorphism, the equalities ID(gz) = zID(g), ID(gh) =
ID(g) + ID(h) hold for any g, h ∈ G and any integer z because R/Z is an abelian
group. These properties of ID impose conditions on the fixed point data and ID

can be used to examine the existence of a finite group action.
When M is a compact Riemann surface and the g-action preserves the complex

structure of M , we give a formula to calculate ID(g) precisely for the ⊗`TM -valued
Dolbeault operator D over M in [8, Proposition 3.2].

Though the formula is useful to examine the existence of a finite group action
on the Riemann surfaces, we need a formula to calculate the precise value of
ID(g) for arbitrary m to examine the existence of a finite group action on higher
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dimensional manifolds. In this paper, we give a formula to calculate the precise
value of ID(g) for 2m-dimensional almost complex manifolds.

2. Main result.

Let M be a 2m-dimensional almost complex manifold. Assume that p ≥ 2
and that the action of Zp = 〈g〉 preserves the almost complex structure of M .

The main theorem of this paper is stated by using integers fm,p, Λm,p defined
below.

For a nonnegative integer s, an integer fm,p(s) is defined by

fm,p(s) =
m∑

k=0

m−k∑

`=0

(−1)`

(
m− k

`

)(−`p + s + m− p

m

)

×
m+1∑

u=k

(
s

m + 1− u

) k∑
v=0

(−1)v

(
k

v

)(
pv

u

)
. (2)

Let E be a complex Zp-vector bundle over M and DE the E-valued Dolbeault
operator over the almost complex manifold M , which is a Zp-equivariant elliptic
operator.

Suppose that gri acts on the tangent space of M at qi ∈ π−1(yi) via mul-
tiplication by a diagonal matrix with diagonal entries ξτi1

pi
, . . . , ξτim

pi
and acts on

the fiber E|qi via diagonal matrix with diagonal entries ξµi1
pi

, . . . , ξµid
pi

where d is
the rank of E, 1 ≤ τij , µic ≤ pi − 1 and τij is prime to pi. Then since g acts
transitively on π−1(yi), gri acts on the tangent space of M or the fiber of E at
each point in π−1(yi) via multiplication by the same diagonal matrices. In this
paper the set {τij} is called the rotation angle of gri around the points in π−1(yi).

Since the fixed point set of gk (1 ≤ k ≤ p − 1) exists if and only if k equals
riκ for 1 ≤ i ≤ b, 1 ≤ κ ≤ pi − 1, it follows from Theorem (4.3), Theorem (4.6) in
[2] (see also [8, Proposition 2.7, p. 101]) that

Ind(DE) = Ch(E)Td(M)[M ],

p−1∑

k=1

1
1− ξ−k

p

Ind(DE , gk) =
b∑

i=1

ri

d∑
c=1

pi−1∑
κ=1

ξκµic
pi

1− ξ−κ
pi

m∏

j=1

1

1− ξ
−κτij
pi

(3)

where Ch(E) is the Chern character of E, Td(M) is the Todd class of M and [M ]
is the fundamental cycle of M .

Definition 2.1. For an integer λ which is prime to p, there exists an integer
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λ which satisfies the following conditions:

1 ≤ λ ≤ p− 1, λλ ≡ 1 (mod p).

λ is called the mod p inverse of λ.

For any natural number z and any integers µ, s, an integer Λm,p(z, µ, s) is
defined by

Λm,p(z, µ, s) =
zθi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

· · ·
θim−1∑

λm1,...,λmm=0

δp(ζ(z, µ, s, τ, λ)), (4)

where τ, λ denote the sets {τij | 1 ≤ j ≤ m}, {λ1, λjk | 2 ≤ j ≤ m, 1 ≤ k ≤ j}
respectively and δp(ζ(z, µ, s, τ, λ)) is defined by

ζ(z, µ, s, τ, λ) = 1 + λ1 + zµ + z
m∑

j=1

τij + z
m∑

j=2

τi j−1(λj1 + · · ·+ λjj) + szτim,

δp(ζ(z, µ, s, τ, λ)) =

{
1 (ζ(z, µ, s, τ, λ) ≡ 0 (mod p))

0 (otherwise)
.

Set θi1 = τi1 and for 2 ≤ j ≤ m let θij be a natural number such that 1 ≤ θij ≤
pi − 1, θij ≡ τi j−1τij (mod pi), where τi j−1 is the mod pi inverse of τi j−1.

Theorem 2.2. Let z be an integer such that 1 ≤ z ≤ p − 1 and that z is
prime to p. Then the next equality holds as elements of R/Z.

IDE
(gz) =

p− 1
2p

Ch(E)Td(M)[M ] +
b∑

i=1

1
pm+2

i

{
dz

( m∏

j=1

θj
ij

) pi−1∑
s=0

fm,pi
(s)

− pi

d∑
c=1

pi−1∑
s=0

fm,pi(s)Λm,pi(z, µic, s)
}

.

Proof. Since z is prime to pi, the fixed point set of gzri coincides with
that of gri , and gzri acts on TqiM via multiplication by the diagonal matrix with
diagonal entries ξzτi1

pi
, . . . , ξzτim

pi
and acts on the fiber Eqi via multiplication by the

diagonal matrix with diagonal entries ξzµi1
pi

, . . . , ξzµid
pi

. Hence it follows from (1),
(3) that
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IDE
(gz) =

p− 1
2p

Ch(E)Td(M)[M ]−
b∑

i=1

1
pi

d∑
c=1

pi−1∑
κ=1

ξκzµic
pi

1− ξ−κ
pi

m∏

j=1

1

1− ξ
−κzτij
pi

. (5)

Therefore it suffices to show that the equality

p−1∑

k=1

ξkzµ
p

1− ξ−k
p

m∏

j=1

1

1− ξ
−kzτij
p

=
1

pm+1

{
p

p−1∑
s=0

fm,p(s)Λm,p(z, µ, s)− z

( m∏

j=1

θj
ij

) p−1∑
s=0

fm,p(s)
}

(6)

holds for any natural number p with p ≥ 2 and any integer µ. To prove the equality
(6) we need several lemmas.

For integers i, j define the number δ(i, j) by

δ(i, j) =

{
1 (i = j)

0 (i 6= j)
.

Lemma 2.3. For 1 ≤ k, ` ≤ m + 1 set

ak` =
(

`− 1− k

`− 1

)
.

Then we have

ak` = (−1)`−1

(
k − 1
`− 1

)
,

m+1∑

`=1

ak`a`s = δ(k, s).

Proof. Note that ak` = 0 if k < `. For f(x) = (ex − 1)k−1 we have

f(x) =
k−1∑

`=0

(
k − 1

`

)
(−1)k−1−`e`x

and hence (−1)k−1f (j)(0) is equal to

k−1∑

`=0

(
k − 1

`

)
(−1)``j =

{
0 if 0 ≤ j < k − 1

(−1)k−1(k − 1)! if j = k − 1
. (7)
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Since

ak` =
(`− 1− k) · · · (1− k)

(`− 1)!
= (−1)`−1

(
k − 1
`− 1

)
,

it follows from the equality (7) above that

m+1∑

`=1

ak`a`s =
k∑

`=1

(−1)`−1

(
k − 1
`− 1

)(
s− 1− `

s− 1

)

=
k−1∑

`=0

(−1)`

(
k − 1

`

)
(−`)s−1 + lower order terms

(s− 1)!

=





(−1)k−1(k − 1)!
(−1)k−1

(k − 1)!
= 1 (s = k)

0 (s < k)
. ¤

Let p be a natural number with p ≥ 2.

Lemma 2.4. For any nonnegative integers j, s the next equality holds:

(
pj + s + m

m

)
=

m+1∑

k=1

k∑

`=1

(
j + k − 1

k − 1

)(
`− 1− k

`− 1

)(−`p + s + m

m

)
.

Proof. Define a polynomial P (x) of degree m by

P (x) =
(px + s + m) · · · (px + s + 1)

m!
− γ1 −

m+1∑

k=2

γk
(x + k − 1) · · · (x + 1)

(k − 1)!

where γk is an integer defined by

γk =
k∑

`=1

(
`− 1− k

`− 1

)(−`p + s + m

m

)
.

Then for any natural number j it follows from Lemma 2.3 that

P (−j) =
(−pj + s + m

m

)
−

m+1∑

k=1

(
k − 1− j

k − 1

) k∑

`=1

(
`− 1− k

`− 1

)(−`p + s + m

m

)
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=
(−pj + s + m

m

)
−

k∑

`=1

δ(j, `)
(−`p + s + m

m

)
= 0,

which implies that P (x) = 0 for any x. Hence we have P (j) = 0 for any nonnega-
tive integer j. ¤

For a nonnegative integer s set

hs(t) =
m+1∑

k=1

k−1∑

`=0

(−1)`

(
k − 1

`

)(−`p + s + m− p

m

)
ts(1− tp)m+1−k.

Lemma 2.5. Let a be a complex number such that ap = 1. Then for |t| < 1
we have

1
(1− at)m+1

=
1

(1− tp)m+1

p−1∑
s=0

ashs(t).

Proof. Set

f(t) = (1− at)−1 =
∞∑

i=0

aiti.

Then we have

f (m)(t)
m!am

= (1− at)−m−1 =
∞∑

i=0

(
i + m

m

)
aiti

=
∞∑

j=0

p−1∑
s=0

(
pj + s + m

m

)
astpj+s =

p−1∑
s=0

asts
∞∑

j=0

(
pj + s + m

m

)
tpj .

The same argument shows that

(1− tp)−k =
∞∑

j=0

(
j + k − 1

k − 1

)
tpj .

Hence it follows from Lemma 2.3 and Lemma 2.4 that



804 K. Tsuboi

(1− at)−m−1 =
p−1∑
s=0

asts
m+1∑

k=1

k∑

`=1

∞∑

j=0

(
j + k − 1

k − 1

)
tpj

(
`− 1− k

`− 1

)(−`p + s + m

m

)

=
p−1∑
s=0

asts
m+1∑

k=1

(1− tp)−k
k∑

`=1

(−1)`−1

(
k − 1
`− 1

)(−`p + s + m

m

)

=
1

(1− tp)m+1

p−1∑
s=0

ashs(t). ¤

Lemma 2.6. Let a be a complex number such that ap = 1, a 6= 1. Then we
have

(1− a)−m−1 =
(−1)m+1

pm+1

p−1∑
s=0

asfm,p(s).

Proof. Let q, r be nonnegative integers. Then we have

dq

dtq
{ts(1− tp)r} =

q∑
u=0

(
q

u

)
(ts)(q−u)

{ r∑
v=0

(−1)v

(
r

v

)
tpv

}(u)

=
q∑

u=0

(
q

u

)(
s

q − u

)
(q − u)!ts−q+u

r∑
v=0

(−1)v

(
r

v

)(
pv

u

)
u! tpv−u,

lim
t→1

{(1− tp)r}(u) = 0 if u < r,

and hence it follows that

lim
t→1

dq

dtq
{ts(1− tp)r} = q!

q∑
u=r

(
s

q − u

) r∑
v=0

(−1)v

(
r

v

)(
pv

u

)
.

Therefore we have

h(m+1)
s (1) =

m+1∑

k=1

k−1∑

`=0

(−1)`

(
k − 1

`

)(−`p + s + m− p

m

)
lim
t→1

{ts(1− tp)m+1−k}(m+1)

=
m∑

r=0

m−r∑

`=0

(−1)`

(
m− r

`

)(−`p + s + m− p

m

)
lim
t→1

{ts(1− tp)r}(m+1)
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= (m + 1)!
m∑

r=0

m−r∑

`=0

(−1)`

(
m− r

`

)(−`p + s + m− p

m

)

×
m+1∑
u=r

(
s

m + 1− u

) r∑
v=0

(−1)v

(
r

v

)(
pv

u

)

= (m + 1)!fm,p(s).

Moreover direct computation shows that

lim
t→1

{(1− tp)m+1}(m+1) = (−1)m+1(m + 1)!pm+1.

Hence it follows from Lemma 2.5 that

p−1∑
s=0

asfm,p(s) =
1

(m + 1)!

p−1∑
s=0

ash(m+1)
s (1)

=
1

(m + 1)!
lim
t→1

{(1− at)−m−1(1− tp)m+1}(m+1)

=
1

(m + 1)!
(1− a)−m−1 lim

t→1
{(1− tp)m+1}(m+1)

= (1− a)−m−1(−1)m+1pm+1. ¤

Now the equality (6) is proved as follows. Set ν = 1 + zµ + z
∑m

j=1 τij . Then
it follows from Lemma 2.6 that

p−1∑

k=1

ξkzµ
p

1− ξ−k
p

m∏

j=1

1

1− ξ
−kzτij
p

=
p−1∑

k=1

(−1)m+1ξkν
p

(1− ξk
p )(1− ξkzτi1

p ) · · · (1− ξkzτim
p )

= (−1)m+1

p−1∑

k=1

ξkν
p

1− ξkzθi1
p

1− ξk
p

(
1− ξkzτi1θi2

p

1− ξkzτi1
p

)2

· · ·
(

1− ξ
kzτi m−1θim
p

1− ξ
kzτi m−1
p

)m 1
(1− ξkzτim

p )m+1
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= (−1)m+1

p−1∑

k=1

ξkν
p

zθi1−1∑

λ1=0

ξkλ1
p

( θi2−1∑

λ2=0

ξkzτi1λ2
p

)2

· · ·
( θim−1∑

λm=0

ξkzτi m−1λm
p

)m 1
(1− ξkzτim

p )m+1

= (−1)m+1

p−1∑

k=1

ξkν
p

zθi1−1∑

λ1=0

ξkλ1
p

θi2−1∑

λ21,λ22=0

ξkzτi1(λ21+λ22)
p

· · ·
θim−1∑

λm1,...,λmm=0

ξkzτi m−1(λm1+···+λmm)
p

1
(1− ξkzτim

p )m+1

= (−1)m+1

p−1∑

k=1

ξkν
p

zθi1−1∑

λ1=0

ξkλ1
p

θi2−1∑

λ21,λ22=0

ξkzτi1(λ21+λ22)
p

· · ·
θim−1∑

λm1,...,λmm=0

ξkzτi m−1(λm1+···+λmm)
p

(−1)m+1

pm+1

p−1∑
s=0

ξkszτim
p fm,p(s)

=
1

pm+1

p−1∑
s=0

fm,p(s)
zθi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

· · ·
θim−1∑

λm1,...,λmm=0

p−1∑

k=1

ξkζ(z,µ,s,τ,λ)
p

=
1

pm+1

p−1∑
s=0

fm,p(s)
zθi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

· · ·
θim−1∑

λm1,...,λmm=0

p∑

k=1

ξkζ(z,µ,s,τ,λ)
p

− 1
pm+1

p−1∑
s=0

fm,p(s)
zθi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

· · ·
θim−1∑

λm1,...,λmm=0

ξpζ(z,µ,s,τ,λ)
p

=
1

pm+1

{
p

p−1∑
s=0

fm,p(s)Λm,p(z, µ, s)− zθi1θ
2
i2 · · · θm

im

p−1∑
s=0

fm,p(s)
}

.

This completes the proof of the equality (6) and hence completes the proof of
Theorem 2.2. ¤

Remark 2.7. Using Proposition 2.6 in [8] and the equality (6), we can
obtain a calculation formula of ID(g) for the Dirac operator D and a periodic
automorphism g of a Spinc-manifold under Assumption 1.1.

Proposition 2.8. There exists a polynomial gm,p(s) with integer coefficients
which satisfies the equality below :
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fm,p(s) =
(−p)m

m!(m + 1)!
gm,p(s).

Proof. It follows from the equality (7) that the equalities

m−k∑

`=0

(−1)`

(
m− k

`

)(−`p + s + m− p

m

)
=

1
m!

m−k∑

`=0

(−1)`

(
m− k

`

) m∑

i=m−k

(−p`)iQi(s),

k∑
v=0

(−1)v

(
k

v

)(
pv

u

)
=

1
u!

k∑
v=0

(−1)v

(
k

v

) u∑

j=k

(pv)jSj(u)

hold where Qi(s), Sj(u) are polynomials with integer coefficients. Hence we have

fm,p(s) =
m∑

k=0

1
m!

m−k∑

`=0

(−1)`

(
m− k

`

) m∑

i=m−k

(−p`)iQi(s)

×
m+1∑

u=k

(
s

m + 1− u

)
1
u!

k∑
v=0

(−1)v

(
k

v

) u∑

j=k

(pv)jSj(u)

=
m∑

k=0

(−p)m−k

m!
Rk(s)

m+1∑

u=k

s · · · (s−m + u)
(m + 1− u)!

(−p)k

u!
Tk(u)

=
(−p)m

m!(m + 1)!

m∑

k=0

Rk(s)
m+1∑

u=k

(
m + 1

u

)
Tk(u){s · · · (s−m + u)}

where Rk(s), Tk(u) are polynomials with integer coefficients. ¤

Example 2.9. Direct computation shows that

g1,p(s) = s2 − (p− 2)s− (p− 1)2,

g2,p(s) = 2s3 − 3(p− 3)s2 + (p2 − 9p + 12)s + 9(p− 1)2(p− 2),

1
2
g3,p(s) = 3s4 − 6(p− 4)s3 + 3(p2 − 12p + 22)s2 + 6(p− 4)(2p− 3)s

− (p− 1)2(73p2 − 274p + 265).

Note that g1,p(s) coincides with fp(s) in [8, Proposition 3.2].

Corresponding to the irreducible representations of the unitary group, com-
plex vector bundles are defined by using the almost complex structure of M .
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Definition 2.10. Let L be the subset of Zm defined by

L = {(`1, . . . , `m−1, `m) ∈ Zm | `j ≥ 0 (1 ≤ j ≤ m− 1)}.

For (`1, . . . , `m) ∈ L, let E`1,...,`m
be a complex vector bundle defined by

E`1,...,`m =
m⊗

j=1

( `j⊗ ( j∧
C
TM

))

and D`1,...,`m the E`1,...,`m -valued Dolbeault operator with respect to the almost
complex structure of M .

Let bj denote the binomial coefficient
( m

j

)
hereafter. Then we have

d = rankCE`1,...,`m
=

m∏

j=1

(bj)`j ,

d∑
c=1

ξkzµic
pi

=
m∏

j=1

(σij)`j (1 ≤ i ≤ b) (8)

where σij is the j-th elementary symmetric polynomial in ξkzτi1
pi

, . . . , ξkzτim
pi

.
Let ci(M) be the i-th Chern class of M . Then we have the next formula (see

[6]).

Formula 2.11. Up to higher order terms, the following equalities hold :

Td(M) = 1 +
1
2
c1(M) +

1
12

(c1(M)2 + c2(M)) +
1
24

c1(M)c2(M),

Ch(TM) = m + c1(M) +
1
2
(c1(M)2 − 2c2(M))

+
1
6
(c1(M)3 − 3c1(M)c2(M) + 3c3(M)),

Ch
( m∧

C
TM

)
= 1 + c1(M) +

1
2
c1(M)2 +

1
6
c1(M)3.

Let e, σ denote the Euler number and the signature of M respectively.

Example 2.12. When m = 2, we have
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c2
1 = 2e + 3σ, c2 = e (9)

where c2
1 = c1(M)2[M ], c2 = c2(M)[M ] are Chern numbers (see [6]). Hence it

follows from Formula 2.11 that

Ch(E`1,`2)Td(M)[M ] = Ch(TM)`1 Ch
( 2∧

C
TM

)`2

Td(M)[M ]

= 2`1−3
{
(2`21 + 8`1`2 + 8`22 + 2`1 + 8`2 + 2)e

+ (3`21 + 12`1`2 + 12`22 + 9`1 + 12`2 + 2)σ
}
. (10)

Moreover we have

σ`1
1 σ`2

2 =
(
ξkzτi1
pi

+ ξkzτi2
pi

)`1(
ξkzτi1
pi

ξkzτi2
pi

)`2 =
`1∑

γ=0

(
`1
γ

)
ξkzµiγ
pi

where µiγ = τi1(`2 + γ) + τi2(`1 + `2 − γ) and hence it follows from Theorem 2.2,
Proposition 2.8 and Example 2.9 that

ID`1,`2
(gz)

=
p− 1
2p

2`1−3
{
(2`21 + 8`1`2 + 8`22 + 2`1 + 8`2 + 2)e

+ (3`21 + 12`1`2 + 12`22 + 9`1 + 12`2 + 2)σ
}

+
b∑

i=1

1
12p2

i

{
2`1zθi1θ

2
i2

pi−1∑
s=0

g2,pi(s)− pi

`1∑
γ=0

(
`1
γ

) pi−1∑
s=0

g2,pi(s)Λ2,pi(z, µiγ , s)
}

(11)

where

Λ2,pi(z, µiγ , s) =
zτi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

δpi(ζ(z, µiγ , s, τ, λ)),

ζ(z, µiγ , s, τ, λ) = 1 + λ1 + zτi1(`2 + γ + λ21 + λ22 + 1)

+ zτi2(s + `1 + `2 − γ + 1).
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3. Nonexistence of a cyclic group action.

In this section we use Theorem 2.2 to examine whether a Zp-action with spe-
cific isotropy orders exists or not. Assume that Zp = 〈g〉 acts on a 2m-dimensional
almost complex manifold M and suppose that the isotropy orders of the Zp-action
are (p1, . . . , pb).

Since the Todd genus of 4-dimensional almost complex manifolds M is equal
to (e + σ)/4 (see Formula 2.11 and the equality (9)), e + σ is a multiple of 4.
Conversely it follows from [9, Theorem 1] that there exists a closed connected
almost complex manifold with e = u, σ = v if u+v is a multiple of 4. [9, Theorem
1] also asserts that there exists a closed connected complex manifold with e = u,
σ = v if u + v is a multiple of 4 and v ≤ 0.

Remark 3.1. Since Zp acts freely on the punctured manifold M0 = M \
{⋃b

i=1 π−1(yi)}, the next equality holds:

e ≡
b∑

i=1

ri (mod p). (12)

Example 3.2. In this example we consider the case that M is a 4-
dimensional almost complex manifold with e + σ = 0. Suppose that p = 6,
b = 3. First we set (p1, p2, p3) = (2, 2, 6). Then direct computation below shows
that ID0,0(g

5) 6= 5ID0,0(g), which implies that M does not admit any Z6-action of
isotropy orders (2, 2, 6).

Since (r1, r2, r3) = (3, 3, 1) and `1 = `2 = γ = 0, µ10 = µ20 = µ30 = 0 for the
trivial complex line bundle E0,0, it follows from (11) that

12 · 62ID0,0(g
z) = 432ID0,0(g

z) =
3∑

i=1

r2
i fi(z, τi1, τi2)

where

fi(z, τi1, τi2) ≡ zθi1θ
2
i2

pi−1∑
s=0

g2,pi(s)− pi

pi−1∑
s=0

g2,pi(s)Λ2,pi(z, 0, s) (mod 432)

(see Example 2.9). For i = 1, 2, we have

τi1 = τi2 = 1 =⇒ θi1 = θi2 = 1, g2,2(0) = 0, g2,2(1) = 3,
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Λ2,2(5, 0, 1) =
4∑

λ1=0

δ2(λ1 + 16) = 3, Λ2,2(1, 0, 1) =
0∑

λ1=0

δ2(λ1 + 4) = 1

and hence it follows that

fi(5, τ11, τ12) = 5
1∑

s=0

g2,2(s)− 2
1∑

s=0

g2,2(s)Λ2,2(5, 0, s) = −3,

fi(1, τ11, τ12) =
1∑

s=0

g2,2(s)− 2
1∑

s=0

g2,2(s)Λ2,2(1, 0, s) = −3.

Therefore we have

432(ID0,0(g
5)− 5ID0,0(g))

≡ 2 · 32(−3) + f3(5, τ31, τ32)− 5{2 · 32(−3) + f3(1, τ31, τ32)} (mod 432).

When (τ31, τ32) = (1, 1), we have θ31 = θ32 = 1 and direct computation shows
that f3(5, τ31, τ32) = −105, f3(1, τ31, τ32) = 135. Hence we have

432(ID0,0(g
5)− 5ID0,0(g)) ≡ −564 6≡ 0 (mod 432).

When (τ31, τ32) = (1, 5), we have θ31 = 1, θ32 = 5 and direct computation shows
that f3(5, τ31, τ32) = f3(1, τ31, τ32) = −105. Hence we have

432(ID0,0(g
5)− 5ID0,0(g)) ≡ 636 6≡ 0 (mod 432).

When (τ31, τ32) = (5, 5), we have θ31 = 5, θ32 = 1 and direct computation shows
that f3(5, τ31, τ32) = 135, f3(1, τ31, τ32) = −105. Hence we have

432(ID0,0(g
5)− 5ID0,0(g)) ≡ 876 6≡ 0 (mod 432).

These results imply that M does not admit the Z6-action of isotropy orders (2, 2, 6).

Example 3.3. Let N be a 4-dimensional almost complex manifold with
the Euler number 8n and the signature −8n where n is a natural number. Then
a 6-dimensional almost complex manifold M is defined by M = N × CP 1. We
consider the case that p = 4, b = 5, (p1, p2, p3, p4, p5) = (2, 2, 2, 4, 4). Note that
the condition (12) is satisfied in this case. Let ai be the i-th Chern class of N , u

the positive generator of H2(CP 1;Z) = Z and c(M) the total Chern class of M .
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Then we have a2
1u[M ] = −8n, a2u[M ] = 8n (see (9)) and

c(M) = (1 + a1 + a2)(1 + 2u) = 1 + (a1 + 2u) + (a2 + 2a1u) + 2a2u,

Td(M) = Td(N)Td(CP 1) = 1 +
1
2
(a1 + 2u) +

1
12

(a2
1 + a2 + 6a1u) +

1
12

(a2
1 + a2)u,

Ch(E0,0,`) = exp(`(a1 + 2u)) = 1 + `(a1 + 2u) +
1
2
`2(a2

1 + 4a1u) + `3a2
1u

for any integer `. Hence for p = 4 we have

p− 1
2p

Ch(E0,0,`)Td(M)[M ] = −3
2
n`(` + 1)(2` + 1),

which is an integer. Set µi = `(τi1 + τi2 + τi3). Then we have

σ0
1σ0

2σ`
3 =

(
ξkzτi1
pi

ξkzτi2
pi

ξkzτi3
pi

)` = ξkzµi
pi

and therefore it follows from Theorem 2.2 and Proposition 2.8 that

ID0,0,`
(gz) = −

5∑

i=1

1
72p2

i

{
zθi1θ

2
i2θ

3
i3

pi−1∑
s=0

hpi
(s)− pi

pi−1∑
s=0

hpi
(s)Λ3,pi

(z, µi, s))
}

where hp(s) = g3,p(s)/2 (see Example 2.9) and

Λ3,pi(z, µi, s) =
zτi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

θi3−1∑

λ31,λ32,λ33=0

δpi(ζ(z, µi, s, τ, λ)),

ζ(z, µi, s, τ, λ) = 1 + λ1 + zµi + z(λ21 + λ22 + 1)τi1

+ z(λ31 + λ32 + λ33 + 1)τi2 + z(s + 1)τi3.

Then for i = 1, 2, 3 we have (τi1, τi2, τi3) = (1, 1, 1) and it follows that

h2(0) = −9, h2(1) = 0, Λ3,2(z, µi, 0) =
z−1∑

λ1=0

δ2(1 + λ1 + 3z(` + 1)) =
z + (−1)`

2

=⇒ − 1
72 · 22

(
z

1∑
s=0

h2(s)− 2
1∑

s=0

h2(s)Λ3,2(z, 3`, s)
)

=
(−1)`+1

32
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for z = 1, 3. Moreover since

− 1
72 · 42

3∑
s=0

h4(s) ≡ 41
64

(mod Z),

1
72 · 4(h4(0), h4(1), h4(2), h4(3)) ≡

(
− 17

32
,−20

32
,−25

32
,−20

32

)
(mod Z),

we have

ID0,0,`
(gz) = − 1

72 · 22

3∑

i=1

{
z

1∑
s=0

h2(s)− 2
1∑

s=0

h2(s)Λ3,2(z, 3`, s)
}

− 1
72 · 42

5∑

i=4

{
zθi1θ

2
i2θ

3
i3

3∑
s=0

h4(s)− 4
3∑

s=0

h4(s)Λ3,4(z, µi, s)
}

= (−1)`+1 3
32

+
41
64

z
{
θ41θ

2
42θ

3
43 + θ51θ

2
52θ

3
53

}

− 1
32

5∑

i=4

{
17Λ3,4(z, µi, 0) + 20Λ3,4(z, µi, 1)
+25Λ3,4(z, µi, 2) + 20Λ3,4(z, µi, 3)

}
.

Set

ϕ`(τ41, τ42, τ43, τ51, τ52, τ53) = 32ID0,0,`
(g3)− 3 · 32ID0,0,`

(g).

Then direct computation shows that

ϕ0(1, 1, 1, 3, 3, 3) ≡ 0− 3 · 0 = 0 ≡ 0 (mod 32),

ϕ0(1, 1, 3, 1, 1, 3) ≡ −12− 3 · (−4) = 0 ≡ 0 (mod 32),

ϕ0(1, 3, 3, 1, 3, 3) ≡ −4− 3 · (−12) = 32 ≡ 0 (mod 32)

and ϕ0(τ41, τ42, τ43, τ51, τ52, τ53) 6≡ 0 (mod 32) for

(τ41, τ42, τ43, τ51, τ52, τ53)

= (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 3, 3),

(1, 1, 3, 1, 3, 3), (1, 1, 3, 3, 3, 3), (1, 3, 3, 3, 3, 3), (3, 3, 3, 3, 3, 3).

Direct computation also shows that
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ϕ1(1, 1, 1, 1, 1, 1) ≡ 12− 3 · 4 = 0 ≡ 0 (mod 32),

ϕ1(1, 1, 3, 1, 3, 3) ≡ 0− 3 · 0 = 0 ≡ 0 (mod 32),

ϕ1(3, 3, 3, 3, 3, 3) ≡ 4− 3 · 12 = −32 ≡ 0 (mod 32)

and ϕ1(τ41, τ42, τ43, τ51, τ52, τ53) 6≡ 0 (mod 32) for

(τ41, τ42, τ43, τ51, τ52, τ53)

= (1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 3, 3), (1, 1, 1, 3, 3, 3),

(1, 1, 3, 1, 1, 3), (1, 1, 3, 3, 3, 3), (1, 3, 3, 1, 3, 3), (1, 3, 3, 3, 3, 3).

As we see above there does not exist (τ41, τ42, τ43, τ51, τ52, τ53) such that

ϕ`(τ41, τ42, τ43, τ51, τ52, τ53) ≡ 0 (mod 32)

for ` = 0, 1, which implies that M does not admit the Z4-action of isotropy orders
(2, 2, 2, 4, 4).

4. Angle vectors.

In this section we assume that p is an odd prime number. In Example 3.2
we argued about the existence of a rotation angle of a Z6-action. In this section
using the assumption above, we give a detailed examination of the existence of a
rotation angle.

Let Zp be the cyclic group of order p generated by g. Assume that Zp acts on
a 2m-dimensional almost complex manifold M and that the action preserves the
almost complex structure of M . Let q1, . . . , qn be the fixed points of g. Then the
fixed points of gk coincides with those of g for 1 ≤ k ≤ p− 1.

In this section, a set of natural numbers {tij} (1 ≤ j ≤ m, 1 ≤ i ≤ n) is
called an angle vector of type (m,n) and denoted by t(p) or ((t11, . . . , t1m), . . . ,
(tn1, . . . , tnm)) when 0 < tij < p for any i, j. An angle vector of type (m,n) is
regarded as an element of the vector space Zmn

p over the field Zp. Note that a
rotation angle {τij} is an angle vector but an angle vector t(p) is not necessarily
a rotation angle.

If t(p) is the rotation angle of the periodic automorphism g, it follows from
the equalities (1), (3), (8) that the equality

F (z, `1, . . . , `m; t(p)) ≡ IDE
(gz) (mod Z) (13)

holds where F (z, `1, . . . , `m; t(p)) is a complex number defined below.
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Definition 4.1. Let z be an integer such that 0 < z < p, (`1, . . . , `m) an
element of L, t(p) = {tij} an angle vector of type (m,n) and σij the j-th elemen-
tary symmetric polynomial in ξkzti1

p , . . . , ξkztim
p . Then F (z, `1, . . . , `m; t(p)) ∈ C is

defined by

F (z, `1, . . . , `m; t(p)) =
p− 1
2p

Ch(E`1,...,`m
)Td(M)[M ]

− 1
p

n∑

i=1

p−1∑

k=1

( m∏

j=1

(σij)`j

)
1

1− ξ−k
p

m∏

j=1

1

1− ξ
−kztij
p

. (14)

Note that if

m∏

j=1

(σij)`j =
d∑

c=1

ξkzµic
p (1 ≤ i ≤ n),

it follows from the equality (6) that

F (z, `1, . . . , `m; t(p))

=
p− 1
2p

Ch(E`1,...,`m
)Td(M)[M ]

+
1

pm+2

n∑

i=1

{
dz

( m∏

j=1

θj
ij

) p−1∑
s=0

fm,p(s)− p

d∑
c=1

p−1∑
s=0

fm,p(s)Λm,p(z, µic, s)
}

(15)

where 1 ≤ θij ≤ p− 1, θij ≡ ti j−1tij (mod p) and

Λm,p(z, µic, s) =
zθi1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

· · ·
θim−1∑

λm1,...,λmm=0

δp(ζ(z, µic, s, τ, λ)),

ζ(z, µic, s, τ, λ) = 1 + λ1 + zµic + z
m∑

j=1

tij + z
m∑

j=2

ti j−1(λj1 + · · ·+ λjj) + sztim.

Proposition 4.2. Assume that p is greater than m+2. Then the equalities

F
(
z, `1, . . . , `r + p(p− 1), . . . , `m; t(p)

)

≡ F
(
z, `1, . . . , `r, . . . , `m; t(p)

)
(mod Z) (1 ≤ r ≤ m),



816 K. Tsuboi

F
(
z, `1, . . . , `m−1, `m + p; t(p)

) ≡ F
(
z, `1, . . . , `m−1, `m; t(p)

)
(mod Z)

hold for any integer z (0 < z < p) and any (`1, . . . , `m) ∈ L.

Proof. Set CT (`1, . . . , `m) = Ch(E`1,...,`m
)Td(M)[M ] and

C(`1, . . . , `m) =
n∑

i=1

p−1∑

k=1

( m∏

j=1

(σij)`j

)
1

1− ξ−k
p

m∏

j=1

1

1− ξ
−kztij
p

.

Then we have

pF (z, `1, . . . , `m; t(p)) =
p− 1

2
CT (`1, . . . , `m)− C(`1, . . . , `m). (16)

Note that CT (`1, . . . , `m) is an index and hence an integer for any (`1, . . . , `m) ∈ L.
Let f, gj be polynomials defined by

Td(M) = 1 + f(c1(M), . . . , cm(M)),

Ch
( j∧

C
TM

)
= bj + gj(c1(M), . . . , cm(M)).

Here it follows from the definition of the Chern character that the coefficients of
m!gj are integers for 1 ≤ j ≤ m. Moreover since

x

1− e−x
=

(
x−1 −

m+1∑

i=0

(−1)i

i!
xi−1

)−1

= 1 +
m∑

j=1

( m∑

k=1

(−1)k+1

(k + 1)!
xk

)j

up to higher order terms, the coefficients of {(m+1)!}m2
f are integers. Therefore

we have

CT (`1, . . . , `m)

=
1
m!

lim
t→0

(
d

dt

)m[
{1 + f(tc1, . . . , t

mcm)}
m∏

j=1

{bj + gj(tc1, . . . , t
mcm)}`j

]

=
1
ν

( m∏

j=1

b
`j

j

)
P (`1, . . . , `m)

where ci1
1 · · · cim

m (i1 + · · · + mim = m) are Chern numbers, P (`1, . . . , `m) is a
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polynomial with integer coefficients and ν is an integer defined by

ν = {(m + 1)!}m2{m!}m
m∏

j=1

bm
j .

Since the assumption that p > m + 2 implies that ν is not a multiple of p,
there exists the mod p inverse ν of ν. Then for 1 ≤ r ≤ m we have

CT (`1, . . . , `r + p, . . . , `m) ≡ ννCT (`1, . . . , `r + p, . . . , `m) (mod p)

= bp
rν

( m∏

j=1

b
`j

j

)
P (`1, . . . , `r + p, . . . , `m)

≡ bp
rCT (`1, . . . , `r, . . . , `m) (mod p)

which implies the equality

CT (`1, . . . , `r + p(p− 1), . . . , `m) ≡ CT (`1, . . . , `r, . . . , `m) (mod p) (17)

because the assumption implies that br is not a multiple of p and hence that
bp−1
r ≡ 1 (mod p). When r = m, since bm = 1 we have

CT (`1, . . . , `m + p) ≡ CT (`1, . . . , `m) (mod p). (18)

Let Qi(s), Rk(s) be the integral polynomials in the proof of Proposition 2.8.
Then since the degree of Qj(s) with respect to s is less than or equal to m − j,
the degree of Rk(s) is less than or equal to k, and hence the degree of gm,p(s) is
less than or equal to m + 1. Here for any nonnegative integer j since

(j + 1)!pj+2 = (j + 1)!
( p∑

s=1

sj+2 −
p−1∑
s=0

sj+2

)
= (j + 1)!

p−1∑
s=0

(
(s + 1)j+2 − sj+2

)

= (j + 2)!
p−1∑
s=0

sj+1 +
j∑

i=0

(j + 1)!
(i + 1)!

(
j + 2

i

)
(i + 1)!

p−1∑
s=0

si,

the induction on j shows that

(j + 1)!
p−1∑
s=0

sj ≡ 0 (mod p).
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Hence there exists an integer λ1 such that

(m + 2)!
p−1∑
s=0

gm,p(s) = pλ1,

and therefore it follows from the assumption that there exists an integer λ2 such
that

p−1∑
s=0

gm,p(s) = pλ2.

Hence it follows from Proposition 2.8 that

(−1)mm!(m + 1)!
p−1∑
s=0

fm,p(s) = pm+1λ2,

and therefore it follows from the assumption that

hm(p) :=
1

pm+1

p−1∑
s=0

fm,p(s)

is an integer. Moreover it also follows from Proposition 2.8 that

hm,p(s) :=
fm,p(s)

pm

is an integer. Hence it follows from the equality (6) that

p−1∑

k=1

ξkzµ
p

1− ξ−k
p

m∏

j=1

1

1− ξ
−kztij
p

=
1

pm+1

{
p

p−1∑
s=0

fm,p(s)Λm,p(z, µ, s)− z

( m∏

j=1

θj
ij

) p−1∑
s=0

fm,p(s)
}

=
p−1∑
s=0

hm,p(s)Λm,p(z, µ, s)− z

( m∏

j=1

θj
ij

)
hm(p)
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is an integer for any integers z (0 < z < p) and µ. Therefore C(`1, . . . , `m) is an
integer for any `1, . . . , `m and

p−1∑

k=1

f
(
ξkzti1
p , . . . , ξkztim

p

) 1
1− ξ−k

p

m∏

j=1

1

1− ξ
−ktij
p

is an integer for any polynomial f(x1, . . . , xm) with integer coefficients.
Here there exist polynomials g(x1, . . . , xm), h(x1, . . . , xm) with integer coeffi-

cients such that

{(σir)p − br}
m∏

j=1

(σij)`j =
{( ∑

1≤j1<···<jr≤m

ξ
kz(tij1+···+tijr )
p

)p

− br

} m∏

j=1

(σij)`j

= p
∑ (p− 1)!

i1! · · · ibr
!
g
(
ξkzti1
p , . . . , ξkztim

p

) m∏

j=1

(σij)`j

= ph
(
ξkzti1
p , . . . , ξkztim

p

)

where
∑

denotes the summation over 0 ≤ i1, . . . , ibr < p such that i1+· · ·+ibr = p

because (p− 1)! is a multiple of i1! · · · ibr ! for 0 ≤ i1, . . . , ibr < p. Hence it follows
that

C(`1, . . . , `r + p, . . . , `m) ≡ brC(`1, . . . , `m) (mod p),

and therefore we have

C(`1, . . . , `r + p(p− 1), . . . , `m) ≡ C(`1, . . . , `m) (1 ≤ r ≤ m) (mod p),

C(`1, . . . , `m + p) ≡ C(`1, . . . , `m) (mod p).
(19)

Now the equality in the proposition follows from the equalities (16), (17), (18),
(19). ¤

Definition 4.3. An equivalence relation between angle vectors is defined
as follows. Two angle vectors {tij}, {t′ij} are defined to be equivalent if there
exists an integer w (0 < w < p), a permutation ρ of {1, . . . , n} and permutations
ηi (1 ≤ i ≤ n) of {1, . . . , m} such that t′ij ≡ wtρ(i)ηi(j) (mod p).

For example, when p = 3, m = n = 2,

((t11, t12), (t21, t22)) ∼ ((t′11, t
′
12), (t

′
21, t

′
22)) = ((2t22, 2t21), (2t11, 2t12)).
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Definition 4.4. Let Lp be the finite subset of L defined by

Lp = {(`1, . . . , `m−1, `m) ∈ Zm | 0 ≤ `j < p(p− 1) (1 ≤ j < m), 0 ≤ `m < p}.

In this paper, an angle vector t(p) is called a necessary angle vector if

F (z, `1, . . . , `m; t(p)) ≡ z F (1, `1, . . . , `m; t(p)) (mod Z)

for any integer z such that 0 < z < p and any element (`1, . . . , `m) of Lp and is
called a proper angle vector if F (z, `1, . . . , `m; t(p)) is an integer for any integer z

such that 0 < z < p and any element (`1, . . . , `m) of Lp.

Note that an angle vector t(p) is a necessary angle vector if t(p) is the rotation
angle of a periodic automorphim of order p (see (13)).

Proposition 4.5. An angle vector t(p) is necessary or proper if t(p) is
equivalent to a necessary or proper angle vector, respectively.

Proof. It is clear that

F (z, `1, . . . , `m; {wtρ(i)ηi(j)}) = F (wz, `1, . . . , `m; {tij})

for any integer w (0 < w < p) and permutations ρ, ηi (1 ≤ i ≤ n). Hence if {tij}
is a proper angle vector, {wtρ(i)ηi(j)} is also a proper angle vector because

F (z, `1, . . . , `m; {wtρ(i)ηi(j)}) = F (wz, `1, . . . , `m; {tij}) ≡ 0 (mod Z).

If {tij} is a necessary angle vector, {wtρ(i)ηi(j)} is also a necessary angle vector
because

F (z, `1, . . . , `m; {wtρ(i)ηi(j)}) = wzF (1, `1, . . . , `m; {tij})
= zF (w, `1, . . . , `m; {tij}) = zF (1, `1, . . . , `m; {wtρ(i)ηi(j)}). ¤

First we consider the case that m = 1.

Proposition 4.6. When m = 1, an angle vector {ti} is a rotation angle of
a periodic automorphim of order p if and only if {ti} is a necessary angle vector.

Proof. Let Σγ be the compact Riemann surface of genus γ ≥ 2 and U the
universal covering of Σγ . Then there exists a Fuchsian group Γ with compact orbit
space generated by a1, . . . , aγ , b1, . . . , bγ , x1, . . . , xn with the relation
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xp
1 = · · · = xp

n = 1,

γ∏

i=1

[ai, bi]x1 · · ·xn = 1

such that Σγ = U/Γ. If the equality

n∑

i=1

ti ≡ 0 (mod p), (20)

holds, φ(xi) = ti defines a homomorphism φ : Γ → Zp such that the order of φ(xi)
is p for 1 ≤ i ≤ n. Then Zp = Γ/ kerφ acts on U/ kerφ = Σρ with rotation angle
{t1, . . . , tn}, where the genus ρ is determined by the Riemann-Hurwitz equation

ρ = p(γ − 1) +
n(p− 1)

2
+ 1. (21)

(For details see [5].) So it suffices to show that the equality (20) holds under the
assumption that {ti} is a necessary angle vector.

We have

Td(M)[M ] =
1
2
c1(M)[M ] = 1− ρ ≡ n(1− p)

2
(mod p)

(see (21)) and hence it follows that

pzF (1, 0; {ti})− pFp(z, 0; {ti}) (mod p)

≡ 1
4
(1− z)n(p− 1)2 +

n∑

i=1

p−1∑

k=1

1
1− ξ−k

p

(
1

1− ξ−kzti
p

− z
1

1− ξ−kti
p

)
(mod p).

Here as we show in Appendix, the equality

p−1∑

k=1

1
1− ξ−k

p

(
1

1− ξ−kzti
p

−z
1

1− ξ−kti
p

)
≡ ϕp(z)ti+

1
4
(1−z)(p2−1) (mod p) (22)

holds where ϕp(z) is an integer defined by

ϕp(z) =
p−1∑

k=1

k

[
kz

p

]
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where [x] is the largest integer which satisfies [x] ≤ x.
Therefore if {ti} is a necessary angle vector, the equalities

ϕp(z)
n∑

i=1

ti + p(1− z)n
p− 1

2
≡ ϕp(z)

n∑

i=1

ti ≡ 0 (mod p)

hold for 2 ≤ z ≤ p− 1. Here we have

ϕp(2) =
p−1∑

k=1

k

[
2k

p

]
=

p−1∑

k=(p+1)/2

k =
(p− 1)(3p− 1)

8
,

which is not a multiple of p. Hence the equality (20) holds. ¤

Next we consider the case that m = 2. Then it follows from (15) that

F (z, `1, `2; t(p))

=
p− 1
2p

2`1−3
{
(2`21 + 8`1`2 + 8`22 + 2`1 + 8`2 + 2)e

+ (3`21 + 12`1`2 + 12`22 + 9`1 + 12`2 + 2)σ
}

+
1

12p2

n∑

i=1

{
2`1zθi1θ

2
i2

p−1∑
s=0

g2,p(s)− p

`1∑
γ=0

(
`1
γ

) p−1∑
s=0

g2,p(s)Λ2,p(z, µiγ , s)
}

(23)

(see (11)), where

Λ2,p(z, µiγ , s) =
zti1−1∑

λ1=0

θi2−1∑

λ21,λ22=0

δp(ζ(z, µiγ , s, τ, λ)),

ζ(z, µiγ , s, τ, λ) = 1 + λ1 + zti1(`2 + γ + λ21 + λ22 + 1) + zti2(s + `1 + `2 − γ + 1).

Let M be the 2-dimensional complex projective space CP 2. Then it follows from
the Lefschetz fixed point formula that n = 3. Moreover since e = 3, σ = 1, we
have

F (z, `1, `2; t(p))

=
p− 1
2p

2`1−3
{
9`21 + 36`1`2 + 36`22 + 15`1 + 36`2 + 8

}
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+
1

12p2

3∑

i=1

{
2`1zθi1θ

2
i2

p−1∑
s=0

g2,p(s)− p

`1∑
γ=0

(
`1
γ

) p−1∑
s=0

g2,p(s)Λ2,p(z, µiγ , s)
}

.

(24)

Proposition 4.7. Assume that g preserves the standard integrable complex
structure of CP 2. Then the rotation angle {τij} of g is proper.

Proof. The set of automorphims of CP 2 which preserve the standard com-
plex structure is known to be the factor group PGL(3;C) = GL(3;C)/C∗. Any
element of PGL(3;C) is expressed as [S] by S ∈ GL(3;C). Since the cyclic group
Zp = 〈g〉 is a compact subgroup of PGL(3;C), there exists elements h ∈ PGL(3;C)
such that h−1gh is represented by an element of the special unitary group SU (3),
and there exists u ∈ PGL(3;C) such that g′ = u−1h−1ghu is represented by a
periodic diagonal matrix

S =




eiθ1

eiθ2

eiθ3


 (θ1 + θ2 + θ3 = 0).

Note that the rotation angle of g is the same as that of g′ because the eigenvalues
of the action of g on the tangent space at qi are the same as those of the action of
g′ on the tangent space at (hu)−1 · qi.

Let P2, P3, Vk (1 ≤ k ≤ 3) be the periodic elements of GL(3;C) defined by

P2 =




0 1 0
1 0 0
0 0 1


 , P3 =




0 0 1
0 1 0
1 0 0


 , Vk =




eiθk

1
1




and G the finite group generated by [S], [P2], [P3], [V1], [V2], [V3]. Then IDE
(g) is

defined for g ∈ G. Since

S = V1P2V2P
−1
2 P3V3P

−1
3 ,

it follows that

IDE
(g′) = IDE

([V1P2V2P
−1
2 P3V3P

−1
3 ])

= IDE
([V1]) + IDE

([P2]) + IDE
([V2])

− IDE
([P2]) + IDE

([P3]) + IDE
([V3])− IDE

([P3])

= IDE
([V1]) + IDE

([V2]) + IDE
([V3]) = IDE

([V1V2V3]) = IDE
([E3]) = 0
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where E3 is the unit matrix. Therefore it follows from (13) that

F (z, `1, `2; {τij}) ≡ IDE
(g′z) = zIDE

(g′) = 0 (mod Z)

for any integer z (0 < z < p) and any element (`1, `2) of L. ¤

Remark 4.8. Using the argument above, we can show that the rotation
angle of a periodic automorphism of CPm is proper if the automorphism preserves
the standard complex structure of CPm.

Let A be the set of angle vectors which satisfy the inequalities

1 = t11 ≤ t21 ≤ · · · ≤ tn1, 1 ≤ ti1 ≤ ti2 ≤ · · · ≤ tim ≤ p− 1 (1 ≤ i ≤ n).

Note that any angle vector is equivalent to an element of A because any tij has
its mod p inverse. The number of angle vectors {tij} which satisfies the second
inequality is equal to (p−1Hm)n where p−1Hm is the repeated combination. And
the number of mutually distinct angle vectors of the form wtρ(i)j for 0 < w < p

and permutations ρ is less than or equal to (p − 1)n! for any {tij} ∈ A and less
than (p− 1)n! for some {tij} ∈ A. Hence the number of the equivalence classes of
angle vectors is greater than L(p,m, n) where

L(p,m, n) = min
{

λ ∈ Z | λ ≥ (p−1Hm)n

(p− 1)n!

}
.

For example, when p = 3, m = 2, n = 3, six angle vectors

((1, 1), (1, 1), (1, 1)), ((1, 1), (1, 1), (1, 2)), ((1, 1), (1, 1), (2, 2)),

((1, 1), (1, 2), (1, 2)), ((1, 1), (1, 2), (2, 2)), ((1, 2), (1, 2), (1, 2))
(25)

represent all angle vectors and we have L(3, 2, 3) = 3 < 6.

Example 4.9. Let M be a 4-dimensional almost complex manifold with
(e, σ) = (3, 1), which is the same as (e, σ) of CP 2. In this example, we examine
the difference between the set of the rotation angles of CP 2 and the set of the
proper angle vectors of M and the set of angle vectors of M .

We assume that the action of Zp = 〈g〉 on CP 2 preserves the standard complex
structure of CP 2. Then as we see in the proof of Proposition 4.7, the action of g

is expressed by integers 1 ≤ ρ0 < ρ1 < ρ2 ≤ p− 1 as
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g · [z0 : z1 : z2] =
[
ξρ0
p z0 : ξρ1

p z1 : ξρ2
p z2

]
,

where [z0 : z1 : z2] is the homogeneous coordinate of CP 2, whose rotation angle is

((ρ1 − ρ0, ρ2 − ρ0), (p + ρ0 − ρ1, ρ2 − ρ1), (p + ρ0 − ρ2, p + ρ1 − ρ2)).

Direct computation shows that the angle vectors of the form above are represented
by the angle vectors listed below.

p rotation angles for CP 2

3 ((1, 2), (1, 2), (1, 2))
5 ((1, 2), (1, 4), (3, 4))
7 ((1, 2), (1, 6), (5, 6)), ((1, 3), (2, 6), (4, 5))

(26)

Moreover direct computation using the equality (24) shows that the proper
angle vectors are represented by the angle vectors listed below.

p proper angle vectors when (e, σ, n) = (3, 1, 3) L(p, 2, 3)
3 ((1, 2), (1, 2), (1, 2)) 3
5 ((1, 2), (1, 4), (3, 4)) , ((1, 2), (2, 3), (3, 4)) 42

7
((1, 2), (1, 6), (5, 6)), ((1, 2), (2, 5), (5, 6)),
((1, 2), (3, 4), (5, 6)), ((1, 3), (2, 6), (4, 5))

258

(27)

Example 4.10. Suppose that p = n = 3. Then it follows from (12) that e

must be a multiple of 3. Here we consider the case that e + σ is 0, 4, 8 and e is
0, 3, 6. When (e, σ) = (0, 0), (3,−3) or (6,−6), direct computation shows that

F (2, 0, 1, t(3))− 2F (1, 0, 1, t(3)) 6≡ 0 (mod Z)

for any angle vectors listed in (25). Hence M with (e, σ) = (0, 0), (3,−3), (6,−6)
does not admit any action of Z3 which satisfies Assumption 1.1 with three fixed
points. When (e, σ) = (0, 4), (3, 1) or (6,−2), the only one necessary angle vector
in the list (25) is ((1, 2), (1, 2), (1, 2)), and when (e, σ) = (0, 8), (3, 5) or (6, 2), the
only one necessary angle vector in the list (25) is ((1, 1), (1, 1), (1, 1)).

5. Appendix.

Here we prove the equality (22). Let p be an odd prime number and a, b

integers such that 0 < a, b < p. Then we have the next formula of Zagier (see [10,
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p. 100, p. 101]).

p−1∑

k=1

cot
πka

p
cot

πkb

p
= 4p

p−1∑

k=1

((
ka

p

))((
kb

p

))
,

p−1∑

k=1

[
ka

p

]
=

(p− 1)(a− 1)
2

where

((x)) =

{
x− [x]− (1/2) if x is not an integer

0 if x is an integer
.

Since

1
1− ξ−k

p

=
1
2
−
√−1

2
cot

πk

p
,

it follows from the formula above that

p−1∑

k=1

1
1− ξ−k

p

(
1

1− ξ−kzti
p

− z
1

1− ξ−kti
p

)

=
p−1∑

k=1

1

1− ξ−kti
p

(
1

1− ξ−kz
p

− z
1

1− ξ−k
p

)

=
p−1∑

k=1

{
Real part of

1

1− ξ−kti
p

(
1

1− ξ−kz
p

− z
1

1− ξ−k
p

)}

=
1
4
(p− 1)(1− z)− 1

4

p−1∑

k=1

cot
πkz

p
cot

πkti
p

+
1
4
z

p−1∑

k=1

cot
πk

p
cot

πkti
p

=
1
4
(p− 1)(1− z) + p

p−1∑

k=1

(
−

((
kz

p

))
+ z

((
k

p

)))((
kti
p

))

=
1
4
(p− 1)(1− z) + p

p−1∑

k=1

([
kz

p

]
− 1

2
(z − 1)

)(
kti
p
−

[
kti
p

]
− 1

2

)

=
1
4
(p− 1)(1− z) + ti

p−1∑

k=1

k

[
kz

p

]
− p

p−1∑

k=1

[
kz

p

][
kti
p

]
− p

2
(p− 1)(z − 1)

2

− 1
2
(z − 1)ti

p−1∑

k=1

k +
p

2
(z − 1)

(p− 1)(ti − 1)
2

+
p

4
(z − 1)

p−1∑

k=1

1



The finite group action and the equivariant determinant II 827

≡ ϕp(z)ti +
1
4
(1− z)(p2 − 1) (mod p).

This completes the proof of the equality (22).
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