The finite group action and the equivariant determinant of elliptic operators II

By Kenji Tsuboi

(Received Dec. 15, 2010)
(Revised Nov. 29, 2011)

Abstract

Let M be an almost complex manifold and g a periodic automorphism of M of order p. Then the rotation angles of g around fixed points of g are naturally defined by the almost complex structure of M. In this paper, under the assumption that the fixed points of $g^{k}(1 \leq k \leq p-1)$ are isolated, a calculation formula is provided for the homomorphism $I_{D}: \mathbb{Z}_{p} \rightarrow \mathbb{R} / \mathbb{Z}$ defined in $[8]$. The formula gives a new method to study the periodic automorphisms of almost complex manifolds. As examples of the application of the formula, we show the nonexistence of the \mathbb{Z}_{p}-action of specific isotropy orders and examine whether specific rotation angles exist or not.

1. Introduction.

The problem whether a manifold with some geometric structure admits an action of a finite group which preserves the geometric structure is a basic problem in geometry, and the problem is well studied for compact Riemann surfaces.

Let M be a $2 m$-dimensional closed oriented manifold and G a finite group acting on M. We assume that the action of G is effective. Let g be an element of G of order $p \geq 2$ and \mathbb{Z}_{p} the cyclic group generated by g. In this paper, we set the following assumption.

Assumption 1.1. Some $g^{k}(1 \leq k \leq p-1)$ has a fixed point, and any fixed point of g^{k} is isolated for $1 \leq k \leq p-1$ if g^{k} has a fixed point.

Under the assumption above, let Ω be the union of the fixed points of g^{k} for $1 \leq k \leq p-1$ and suppose that the image $\pi(\Omega)$ consists of b points $y_{1}, \ldots, y_{b} \in$ M / \mathbb{Z}_{p} where $\pi: M \longrightarrow M / \mathbb{Z}_{p}$ is the projection. In this paper, the \mathbb{Z}_{p}-action is called the \mathbb{Z}_{p}-action of isotropy orders $\left(p_{1}, \ldots, p_{b}\right)$ if the isotropy group at a point $q_{i} \in \pi^{-1}\left(y_{i}\right)(1 \leq i \leq b)$ is the cyclic group of order p_{i}. Then for $1 \leq i \leq b$ the isotropy group at any points in $\pi^{-1}\left(y_{i}\right)$ is the cyclic group of order p_{i} generated by $g^{r_{i}}$ where $r_{i}=p / p_{i}$ and $\pi^{-1}\left(y_{i}\right)$ consists of r_{i} points $q_{i}, g \cdot q_{i}, \ldots, g^{r_{i}-1} \cdot q_{i}$. Note

[^0]that $\pi: M \longrightarrow M / \mathbb{Z}_{p}$ is called a branched covering with branch points y_{1}, \ldots, y_{b} of order $\left(p_{1}, \ldots, p_{b}\right)$ if $m=1$.

In [5] Harvey gives the necessary and sufficient condition for the existence of the branched covering of a specific order, and the problem of examining the existence of an action of a cyclic group has been completely settled (see also $[3],[4],[7])$. But there still has been no known general method to examine the existence of an action of a cyclic group when $m \geq 2$.

In $[8]$ we introduce a group homomorphism I_{D} by using an elliptic operator D adapted to a geometric structure of a manifold, whose dimension is not restricted.

Let D be a G-equivariant elliptic operator. Then a homomorphism I_{D} from G to \mathbb{R} / \mathbb{Z} is defined by

$$
I_{D}(g)=\frac{1}{2 \pi \sqrt{-1}} \log \operatorname{det}(D, g) \in \mathbb{R} / \mathbb{Z}
$$

for $g \in G$, where $\operatorname{det}(D, g)$ is defined by

$$
\operatorname{det}(D, g)=\operatorname{det}(g \mid \operatorname{ker} D) / \operatorname{det}(g \mid \operatorname{coker} D) \in S^{1} \subset \mathbb{C}^{*}
$$

(see [8, Definition 2.1]). Then as we see in [8] (3) the next equality holds

$$
\begin{equation*}
I_{D}(g) \equiv \frac{p-1}{2 p} \operatorname{Ind}(D)-\frac{1}{p} \sum_{k=1}^{p-1} \frac{1}{1-\xi_{p}^{-k}} \operatorname{Ind}\left(D, g^{k}\right) \quad(\bmod \mathbb{Z}), \tag{1}
\end{equation*}
$$

where Ind is the Atiyah-Singer index (see [2]) and ξ_{p} is the primitive p-th root of unity defined by $\xi_{p}=e^{2 \pi \sqrt{-1} / p}$.

We can express the value $I_{D}(g)$ by the fixed point data of the g^{k}-action ($1 \leq k \leq p-1$) by using the equality (1) and the fixed point formula of Atiyah-Segal-Singer [1], [2].

Since I_{D} is a homomorphism, the equalities $I_{D}\left(g^{z}\right)=z I_{D}(g), I_{D}(g h)=$ $I_{D}(g)+I_{D}(h)$ hold for any $g, h \in G$ and any integer z because \mathbb{R} / \mathbb{Z} is an abelian group. These properties of I_{D} impose conditions on the fixed point data and I_{D} can be used to examine the existence of a finite group action.

When M is a compact Riemann surface and the g-action preserves the complex structure of M, we give a formula to calculate $I_{D}(g)$ precisely for the $\otimes^{\ell} T M$-valued Dolbeault operator D over M in [8, Proposition 3.2].

Though the formula is useful to examine the existence of a finite group action on the Riemann surfaces, we need a formula to calculate the precise value of $I_{D}(g)$ for arbitrary m to examine the existence of a finite group action on higher
dimensional manifolds. In this paper, we give a formula to calculate the precise value of $I_{D}(g)$ for $2 m$-dimensional almost complex manifolds.

2. Main result.

Let M be a $2 m$-dimensional almost complex manifold. Assume that $p \geq 2$ and that the action of $\mathbb{Z}_{p}=\langle g\rangle$ preserves the almost complex structure of M.

The main theorem of this paper is stated by using integers $f_{m, p}, \Lambda_{m, p}$ defined below.

For a nonnegative integer s, an integer $f_{m, p}(s)$ is defined by

$$
\begin{align*}
f_{m, p}(s)= & \sum_{k=0}^{m} \sum_{\ell=0}^{m-k}(-1)^{\ell}\binom{m-k}{\ell}\binom{-\ell p+s+m-p}{m} \\
& \times \sum_{u=k}^{m+1}\binom{s}{m+1-u} \sum_{v=0}^{k}(-1)^{v}\binom{k}{v}\binom{p v}{u} \tag{2}
\end{align*}
$$

Let E be a complex \mathbb{Z}_{p}-vector bundle over M and D_{E} the E-valued Dolbeault operator over the almost complex manifold M, which is a \mathbb{Z}_{p}-equivariant elliptic operator.

Suppose that $g^{r_{i}}$ acts on the tangent space of M at $q_{i} \in \pi^{-1}\left(y_{i}\right)$ via multiplication by a diagonal matrix with diagonal entries $\xi_{p_{i}}^{\tau_{i 1}}, \ldots, \xi_{p_{i}}^{\tau_{i m}}$ and acts on the fiber $E \mid q_{i}$ via diagonal matrix with diagonal entries $\xi_{p_{i}}^{\mu_{i 1}}, \ldots, \xi_{p_{i}}^{\mu_{i d}}$ where d is the rank of $E, 1 \leq \tau_{i j}, \mu_{i c} \leq p_{i}-1$ and $\tau_{i j}$ is prime to p_{i}. Then since g acts transitively on $\pi^{-1}\left(y_{i}\right), g^{r_{i}}$ acts on the tangent space of M or the fiber of E at each point in $\pi^{-1}\left(y_{i}\right)$ via multiplication by the same diagonal matrices. In this paper the set $\left\{\tau_{i j}\right\}$ is called the rotation angle of $g^{r_{i}}$ around the points in $\pi^{-1}\left(y_{i}\right)$.

Since the fixed point set of $g^{k}(1 \leq k \leq p-1)$ exists if and only if k equals $r_{i} \kappa$ for $1 \leq i \leq b, 1 \leq \kappa \leq p_{i}-1$, it follows from Theorem (4.3), Theorem (4.6) in [2] (see also [8, Proposition 2.7, p. 101]) that

$$
\begin{align*}
\operatorname{Ind}\left(D_{E}\right) & =\operatorname{Ch}(E) \operatorname{Td}(M)[M], \\
\sum_{k=1}^{p-1} \frac{1}{1-\xi_{p}^{-k}} \operatorname{Ind}\left(D_{E}, g^{k}\right) & =\sum_{i=1}^{b} r_{i} \sum_{c=1}^{d} \sum_{\kappa=1}^{p_{i}-1} \frac{\xi_{p_{i}}^{\kappa \mu_{i c}}}{1-\xi_{p_{i}}^{-\kappa}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p_{i}}^{-\kappa \tau_{i j}}} \tag{3}
\end{align*}
$$

where $\operatorname{Ch}(E)$ is the Chern character of $E, \operatorname{Td}(M)$ is the Todd class of M and $[M]$ is the fundamental cycle of M.

Definition 2.1. For an integer λ which is prime to p, there exists an integer
$\bar{\lambda}$ which satisfies the following conditions:

$$
1 \leq \bar{\lambda} \leq p-1, \quad \lambda \bar{\lambda} \equiv 1 \quad(\bmod p)
$$

$\bar{\lambda}$ is called the $\bmod p$ inverse of λ.
For any natural number z and any integers μ, s, an integer $\Lambda_{m, p}(z, \mu, s)$ is defined by

$$
\begin{equation*}
\Lambda_{m, p}(z, \mu, s)=\sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m}=0}^{\theta_{i m}-1} \delta_{p}(\zeta(z, \mu, s, \tau, \lambda)), \tag{4}
\end{equation*}
$$

where τ, λ denote the sets $\left\{\tau_{i j} \mid 1 \leq j \leq m\right\},\left\{\lambda_{1}, \lambda_{j k} \mid 2 \leq j \leq m, 1 \leq k \leq j\right\}$ respectively and $\delta_{p}(\zeta(z, \mu, s, \tau, \lambda))$ is defined by

$$
\begin{aligned}
& \zeta(z, \mu, s, \tau, \lambda)=1+\lambda_{1}+z \mu+z \sum_{j=1}^{m} \tau_{i j}+z \sum_{j=2}^{m} \tau_{i j-1}\left(\lambda_{j 1}+\cdots+\lambda_{j j}\right)+s z \tau_{i m}, \\
& \delta_{p}(\zeta(z, \mu, s, \tau, \lambda))= \begin{cases}1 & (\zeta(z, \mu, s, \tau, \lambda) \equiv 0 \quad(\bmod p)) \\
0 & \text { (otherwise })\end{cases}
\end{aligned}
$$

Set $\theta_{i 1}=\tau_{i 1}$ and for $2 \leq j \leq m$ let $\theta_{i j}$ be a natural number such that $1 \leq \theta_{i j} \leq$ $p_{i}-1, \theta_{i j} \equiv \overline{\tau_{i j-1}} \tau_{i j}\left(\bmod p_{i}\right)$, where $\overline{\tau_{i j-1}}$ is the $\bmod p_{i}$ inverse of $\tau_{i j-1}$.

Theorem 2.2. Let z be an integer such that $1 \leq z \leq p-1$ and that z is prime to p. Then the next equality holds as elements of \mathbb{R} / \mathbb{Z}.

$$
\begin{aligned}
& I_{D_{E}}\left(g^{z}\right)=\frac{p-1}{2 p} \operatorname{Ch}(E) \operatorname{Td}(M)[M]+\sum_{i=1}^{b} \frac{1}{p_{i}^{m+2}}\left\{d z\left(\prod_{j=1}^{m} \theta_{i j}^{j}\right) \sum_{s=0}^{p_{i}-1} f_{m, p_{i}}(s)\right. \\
&\left.-p_{i} \sum_{c=1}^{d} \sum_{s=0}^{p_{i}-1} f_{m, p_{i}}(s) \Lambda_{m, p_{i}}\left(z, \mu_{i c}, s\right)\right\} .
\end{aligned}
$$

Proof. Since z is prime to p_{i}, the fixed point set of $g^{z r_{i}}$ coincides with that of $g^{r_{i}}$, and $g^{z r_{i}}$ acts on $T_{q_{i}} M$ via multiplication by the diagonal matrix with diagonal entries $\xi_{p_{i}}^{z \tau_{i 1}}, \ldots, \xi_{p_{i}}^{z \tau_{i m}}$ and acts on the fiber $E_{q_{i}}$ via multiplication by the diagonal matrix with diagonal entries $\xi_{p_{i}}^{z \mu_{i 1}}, \ldots, \xi_{p_{i}}^{z \mu_{i d}}$. Hence it follows from (1), (3) that

$$
\begin{equation*}
I_{D_{E}}\left(g^{z}\right)=\frac{p-1}{2 p} \operatorname{Ch}(E) \operatorname{Td}(M)[M]-\sum_{i=1}^{b} \frac{1}{p_{i}} \sum_{c=1}^{d} \sum_{\kappa=1}^{p_{i}-1} \frac{\xi_{p_{i}}^{\kappa z \mu_{i c}}}{1-\xi_{p_{i}}^{-\kappa}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p_{i}}^{-\kappa z \tau_{i j}}} . \tag{5}
\end{equation*}
$$

Therefore it suffices to show that the equality

$$
\begin{align*}
& \sum_{k=1}^{p-1} \frac{\xi_{p}^{k z \mu}}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k z \tau_{i j}}} \\
& \quad=\frac{1}{p^{m+1}}\left\{p \sum_{s=0}^{p-1} f_{m, p}(s) \Lambda_{m, p}(z, \mu, s)-z\left(\prod_{j=1}^{m} \theta_{i j}^{j}\right) \sum_{s=0}^{p-1} f_{m, p}(s)\right\} \tag{6}
\end{align*}
$$

holds for any natural number p with $p \geq 2$ and any integer μ. To prove the equality (6) we need several lemmas.

For integers i, j define the number $\delta(i, j)$ by

$$
\delta(i, j)= \begin{cases}1 & (i=j) \\ 0 & (i \neq j)\end{cases}
$$

Lemma 2.3. For $1 \leq k, \ell \leq m+1$ set

$$
a_{k \ell}=\binom{\ell-1-k}{\ell-1} .
$$

Then we have

$$
a_{k \ell}=(-1)^{\ell-1}\binom{k-1}{\ell-1}, \quad \sum_{\ell=1}^{m+1} a_{k \ell} a_{\ell s}=\delta(k, s)
$$

Proof. Note that $a_{k \ell}=0$ if $k<\ell$. For $f(x)=\left(e^{x}-1\right)^{k-1}$ we have

$$
f(x)=\sum_{\ell=0}^{k-1}\binom{k-1}{\ell}(-1)^{k-1-\ell} e^{\ell x}
$$

and hence $(-1)^{k-1} f^{(j)}(0)$ is equal to

$$
\sum_{\ell=0}^{k-1}\binom{k-1}{\ell}(-1)^{\ell} \ell^{j}= \begin{cases}0 & \text { if } 0 \leq j<k-1 \tag{7}\\ (-1)^{k-1}(k-1)! & \text { if } j=k-1\end{cases}
$$

Since

$$
a_{k \ell}=\frac{(\ell-1-k) \cdots(1-k)}{(\ell-1)!}=(-1)^{\ell-1}\binom{k-1}{\ell-1}
$$

it follows from the equality (7) above that

$$
\begin{aligned}
\sum_{\ell=1}^{m+1} a_{k \ell} a_{\ell s} & =\sum_{\ell=1}^{k}(-1)^{\ell-1}\binom{k-1}{\ell-1}\binom{s-1-\ell}{s-1} \\
& =\sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{k-1}{\ell} \frac{(-\ell)^{s-1}+\text { lower order terms }}{(s-1)!} \\
& = \begin{cases}(-1)^{k-1}(k-1)!\frac{(-1)^{k-1}}{(k-1)!}=1 & (s=k) \\
0 & (s<k)\end{cases}
\end{aligned}
$$

Let p be a natural number with $p \geq 2$.
Lemma 2.4. For any nonnegative integers j, s the next equality holds:

$$
\binom{p j+s+m}{m}=\sum_{k=1}^{m+1} \sum_{\ell=1}^{k}\binom{j+k-1}{k-1}\binom{\ell-1-k}{\ell-1}\binom{-\ell p+s+m}{m}
$$

Proof. Define a polynomial $P(x)$ of degree m by

$$
P(x)=\frac{(p x+s+m) \cdots(p x+s+1)}{m!}-\gamma_{1}-\sum_{k=2}^{m+1} \gamma_{k} \frac{(x+k-1) \cdots(x+1)}{(k-1)!}
$$

where γ_{k} is an integer defined by

$$
\gamma_{k}=\sum_{\ell=1}^{k}\binom{\ell-1-k}{\ell-1}\binom{-\ell p+s+m}{m} .
$$

Then for any natural number j it follows from Lemma 2.3 that

$$
P(-j)=\binom{-p j+s+m}{m}-\sum_{k=1}^{m+1}\binom{k-1-j}{k-1} \sum_{\ell=1}^{k}\binom{\ell-1-k}{\ell-1}\binom{-\ell p+s+m}{m}
$$

$$
=\binom{-p j+s+m}{m}-\sum_{\ell=1}^{k} \delta(j, \ell)\binom{-\ell p+s+m}{m}=0
$$

which implies that $P(x)=0$ for any x. Hence we have $P(j)=0$ for any nonnegative integer j.

For a nonnegative integer s set

$$
h_{s}(t)=\sum_{k=1}^{m+1} \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{k-1}{\ell}\binom{-\ell p+s+m-p}{m} t^{s}\left(1-t^{p}\right)^{m+1-k} .
$$

Lemma 2.5. Let a be a complex number such that $a^{p}=1$. Then for $|t|<1$ we have

$$
\frac{1}{(1-a t)^{m+1}}=\frac{1}{\left(1-t^{p}\right)^{m+1}} \sum_{s=0}^{p-1} a^{s} h_{s}(t)
$$

Proof. Set

$$
f(t)=(1-a t)^{-1}=\sum_{i=0}^{\infty} a^{i} t^{i} .
$$

Then we have

$$
\begin{aligned}
\frac{f^{(m)}(t)}{m!a^{m}} & =(1-a t)^{-m-1}=\sum_{i=0}^{\infty}\binom{i+m}{m} a^{i} t^{i} \\
& =\sum_{j=0}^{\infty} \sum_{s=0}^{p-1}\binom{p j+s+m}{m} a^{s} t^{p j+s}=\sum_{s=0}^{p-1} a^{s} t^{s} \sum_{j=0}^{\infty}\binom{p j+s+m}{m} t^{p j}
\end{aligned}
$$

The same argument shows that

$$
\left(1-t^{p}\right)^{-k}=\sum_{j=0}^{\infty}\binom{j+k-1}{k-1} t^{p j}
$$

Hence it follows from Lemma 2.3 and Lemma 2.4 that

$$
\begin{aligned}
(1-a t)^{-m-1} & =\sum_{s=0}^{p-1} a^{s} t^{s} \sum_{k=1}^{m+1} \sum_{\ell=1}^{k} \sum_{j=0}^{\infty}\binom{j+k-1}{k-1} t^{p j}\binom{\ell-1-k}{\ell-1}\binom{-\ell p+s+m}{m} \\
& =\sum_{s=0}^{p-1} a^{s} t^{s} \sum_{k=1}^{m+1}\left(1-t^{p}\right)^{-k} \sum_{\ell=1}^{k}(-1)^{\ell-1}\binom{k-1}{\ell-1}\binom{-\ell p+s+m}{m} \\
& =\frac{1}{\left(1-t^{p}\right)^{m+1}} \sum_{s=0}^{p-1} a^{s} h_{s}(t)
\end{aligned}
$$

Lemma 2.6. Let a be a complex number such that $a^{p}=1, a \neq 1$. Then we have

$$
(1-a)^{-m-1}=\frac{(-1)^{m+1}}{p^{m+1}} \sum_{s=0}^{p-1} a^{s} f_{m, p}(s) .
$$

Proof. Let q, r be nonnegative integers. Then we have

$$
\begin{aligned}
\frac{d^{q}}{d t^{q}}\left\{t^{s}\left(1-t^{p}\right)^{r}\right\} & =\sum_{u=0}^{q}\binom{q}{u}\left(t^{s}\right)^{(q-u)}\left\{\sum_{v=0}^{r}(-1)^{v}\binom{r}{v} t^{p v}\right\}^{(u)} \\
& =\sum_{u=0}^{q}\binom{q}{u}\binom{s}{q-u}(q-u)!t^{s-q+u} \sum_{v=0}^{r}(-1)^{v}\binom{r}{v}\binom{p v}{u} u!t^{p v-u}, \\
\lim _{t \rightarrow 1}\left\{\left(1-t^{p}\right)^{r}\right\}^{(u)} & =0 \text { if } u<r,
\end{aligned}
$$

and hence it follows that

$$
\lim _{t \rightarrow 1} \frac{d^{q}}{d t^{q}}\left\{t^{s}\left(1-t^{p}\right)^{r}\right\}=q!\sum_{u=r}^{q}\binom{s}{q-u} \sum_{v=0}^{r}(-1)^{v}\binom{r}{v}\binom{p v}{u} .
$$

Therefore we have

$$
\begin{aligned}
h_{s}^{(m+1)}(1) & =\sum_{k=1}^{m+1} \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{k-1}{\ell}\binom{-\ell p+s+m-p}{m} \lim _{t \rightarrow 1}\left\{t^{s}\left(1-t^{p}\right)^{m+1-k}\right\}^{(m+1)} \\
& =\sum_{r=0}^{m} \sum_{\ell=0}^{m-r}(-1)^{\ell}\binom{m-r}{\ell}\binom{-\ell p+s+m-p}{m} \lim _{t \rightarrow 1}\left\{t^{s}\left(1-t^{p}\right)^{r}\right\}^{(m+1)}
\end{aligned}
$$

$$
\begin{aligned}
= & (m+1)!\sum_{r=0}^{m} \sum_{\ell=0}^{m-r}(-1)^{\ell}\binom{m-r}{\ell}\binom{-\ell p+s+m-p}{m} \\
& \times \sum_{u=r}^{m+1}\binom{s}{m+1-u} \sum_{v=0}^{r}(-1)^{v}\binom{r}{v}\binom{p v}{u} \\
= & (m+1)!f_{m, p}(s) .
\end{aligned}
$$

Moreover direct computation shows that

$$
\lim _{t \rightarrow 1}\left\{\left(1-t^{p}\right)^{m+1}\right\}^{(m+1)}=(-1)^{m+1}(m+1)!p^{m+1}
$$

Hence it follows from Lemma 2.5 that

$$
\begin{aligned}
\sum_{s=0}^{p-1} a^{s} f_{m, p}(s) & =\frac{1}{(m+1)!} \sum_{s=0}^{p-1} a^{s} h_{s}^{(m+1)}(1) \\
& =\frac{1}{(m+1)!} \lim _{t \rightarrow 1}\left\{(1-a t)^{-m-1}\left(1-t^{p}\right)^{m+1}\right\}^{(m+1)} \\
& =\frac{1}{(m+1)!}(1-a)^{-m-1} \lim _{t \rightarrow 1}\left\{\left(1-t^{p}\right)^{m+1}\right\}^{(m+1)} \\
& =(1-a)^{-m-1}(-1)^{m+1} p^{m+1}
\end{aligned}
$$

Now the equality (6) is proved as follows. Set $\nu=1+z \mu+z \sum_{j=1}^{m} \tau_{i j}$. Then it follows from Lemma 2.6 that

$$
\begin{aligned}
& \sum_{k=1}^{p-1} \frac{\xi_{p}^{k z \mu}}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k z \tau_{i j}}} \\
& \quad=\sum_{k=1}^{p-1} \frac{(-1)^{m+1} \xi_{p}^{k \nu}}{\left(1-\xi_{p}^{k}\right)\left(1-\xi_{p}^{k z \tau_{i 1}}\right) \cdots\left(1-\xi_{p}^{k z \tau_{i m}}\right)} \\
& =(-1)^{m+1} \sum_{k=1}^{p-1} \xi_{p}^{k \nu} \frac{1-\xi_{p}^{k z \theta_{i 1}}}{1-\xi_{p}^{k}}\left(\frac{1-\xi_{p}^{k z \tau_{i 1} \theta_{i 2}}}{1-\xi_{p}^{k z \tau_{i 1}}}\right)^{2} \\
& \cdots\left(\frac{1-\xi_{p}^{k z \tau_{i m-1} \theta_{i m}}}{1-\xi_{p}^{k z \tau_{i m-1}}}\right)^{m} \frac{1}{\left(1-\xi_{p}^{k z \tau_{i m}}\right)^{m+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{m+1} \sum_{k=1}^{p-1} \xi_{p}^{k \nu} \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \xi_{p}^{k \lambda_{1}}\left(\sum_{\lambda_{2}=0}^{\theta_{i 2}-1} \xi_{p}^{k z \tau_{i 1} \lambda_{2}}\right)^{2} \\
& \cdots\left(\sum_{\lambda_{m}=0}^{\theta_{i m}-1} \xi_{p}^{k z \tau_{i m-1} \lambda_{m}}\right)^{m} \frac{1}{\left(1-\xi_{p}^{k z \tau_{i m}}\right)^{m+1}} \\
& =(-1)^{m+1} \sum_{k=1}^{p-1} \xi_{p}^{k \nu} \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \xi_{p}^{k \lambda_{1}} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \xi_{p}^{k z \tau_{i 1}\left(\lambda_{21}+\lambda_{22}\right)} \\
& \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \xi_{p}^{k z \tau_{i m-1}\left(\lambda_{m 1}+\cdots+\lambda_{m m}\right)} \frac{1}{\left(1-\xi_{p}^{k z \tau_{i m}}\right)^{m+1}} \\
& =(-1)^{m+1} \sum_{k=1}^{p-1} \xi_{p}^{k \nu} \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \xi_{p}^{k \lambda_{1}} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \xi_{p}^{k z \tau_{i 1}\left(\lambda_{21}+\lambda_{22}\right)} \\
& \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \xi_{p}^{k z \tau_{i m-1}\left(\lambda_{m 1}+\cdots+\lambda_{m m}\right)} \frac{(-1)^{m+1}}{p^{m+1}} \sum_{s=0}^{p-1} \xi_{p}^{k s z \tau_{i m}} f_{m, p}(s) \\
& =\frac{1}{p^{m+1}} \sum_{s=0}^{p-1} f_{m, p}(s) \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \sum_{k=1}^{p-1} \xi_{p}^{k \zeta(z, \mu, s, \tau, \lambda)} \\
& =\frac{1}{p^{m+1}} \sum_{s=0}^{p-1} f_{m, p}(s) \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \ldots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \sum_{k=1}^{p} \xi_{p}^{k \zeta(z, \mu, s, \tau, \lambda)} \\
& -\frac{1}{p^{m+1}} \sum_{s=0}^{p-1} f_{m, p}(s) \sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \xi_{p}^{p \zeta(z, \mu, s, \tau, \lambda)} \\
& =\frac{1}{p^{m+1}}\left\{p \sum_{s=0}^{p-1} f_{m, p}(s) \Lambda_{m, p}(z, \mu, s)-z \theta_{i 1} \theta_{i 2}^{2} \cdots \theta_{i m}^{m} \sum_{s=0}^{p-1} f_{m, p}(s)\right\} \text {. }
\end{aligned}
$$

This completes the proof of the equality (6) and hence completes the proof of Theorem 2.2.

Remark 2.7. Using Proposition 2.6 in [8] and the equality (6), we can obtain a calculation formula of $I_{D}(g)$ for the Dirac operator D and a periodic automorphism g of a Spin ${ }^{c}$-manifold under Assumption 1.1.

Proposition 2.8. There exists a polynomial $g_{m, p}(s)$ with integer coefficients which satisfies the equality below:

$$
f_{m, p}(s)=\frac{(-p)^{m}}{m!(m+1)!} g_{m, p}(s)
$$

Proof. It follows from the equality (7) that the equalities

$$
\begin{aligned}
\sum_{\ell=0}^{m-k}(-1)^{\ell}\binom{m-k}{\ell}\binom{-\ell p+s+m-p}{m} & =\frac{1}{m!} \sum_{\ell=0}^{m-k}(-1)^{\ell}\binom{m-k}{\ell} \sum_{i=m-k}^{m}(-p \ell)^{i} Q_{i}(s) \\
\sum_{v=0}^{k}(-1)^{v}\binom{k}{v}\binom{p v}{u} & =\frac{1}{u!} \sum_{v=0}^{k}(-1)^{v}\binom{k}{v} \sum_{j=k}^{u}(p v)^{j} S_{j}(u)
\end{aligned}
$$

hold where $Q_{i}(s), S_{j}(u)$ are polynomials with integer coefficients. Hence we have

$$
\begin{aligned}
f_{m, p}(s)= & \sum_{k=0}^{m} \frac{1}{m!} \sum_{\ell=0}^{m-k}(-1)^{\ell}\binom{m-k}{\ell} \sum_{i=m-k}^{m}(-p \ell)^{i} Q_{i}(s) \\
& \times \sum_{u=k}^{m+1}\binom{s}{m+1-u} \frac{1}{u!} \sum_{v=0}^{k}(-1)^{v}\binom{k}{v} \sum_{j=k}^{u}(p v)^{j} S_{j}(u) \\
= & \sum_{k=0}^{m} \frac{(-p)^{m-k}}{m!} R_{k}(s) \sum_{u=k}^{m+1} \frac{s \cdots(s-m+u)}{(m+1-u)!} \frac{(-p)^{k}}{u!} T_{k}(u) \\
= & \frac{(-p)^{m}}{m!(m+1)!} \sum_{k=0}^{m} R_{k}(s) \sum_{u=k}^{m+1}\binom{m+1}{u} T_{k}(u)\{s \cdots(s-m+u)\}
\end{aligned}
$$

where $R_{k}(s), T_{k}(u)$ are polynomials with integer coefficients.
Example 2.9. Direct computation shows that

$$
\begin{aligned}
g_{1, p}(s)= & s^{2}-(p-2) s-(p-1)^{2} \\
g_{2, p}(s)= & 2 s^{3}-3(p-3) s^{2}+\left(p^{2}-9 p+12\right) s+9(p-1)^{2}(p-2) \\
\frac{1}{2} g_{3, p}(s)= & 3 s^{4}-6(p-4) s^{3}+3\left(p^{2}-12 p+22\right) s^{2}+6(p-4)(2 p-3) s \\
& -(p-1)^{2}\left(73 p^{2}-274 p+265\right)
\end{aligned}
$$

Note that $g_{1, p}(s)$ coincides with $f_{p}(s)$ in $[\mathbf{8}$, Proposition 3.2].
Corresponding to the irreducible representations of the unitary group, complex vector bundles are defined by using the almost complex structure of M.

Definition 2.10. Let L be the subset of \mathbb{Z}^{m} defined by

$$
L=\left\{\left(\ell_{1}, \ldots, \ell_{m-1}, \ell_{m}\right) \in \mathbb{Z}^{m} \mid \ell_{j} \geq 0(1 \leq j \leq m-1)\right\}
$$

For $\left(\ell_{1}, \ldots, \ell_{m}\right) \in L$, let $E_{\ell_{1}, \ldots, \ell_{m}}$ be a complex vector bundle defined by

$$
E_{\ell_{1}, \ldots, \ell_{m}}=\bigotimes_{j=1}^{m}\left(\bigotimes^{\ell_{j}}\left(\bigwedge_{\mathbb{C}}^{j} T M\right)\right)
$$

and $D_{\ell_{1}, \ldots, \ell_{m}}$ the $E_{\ell_{1}, \ldots, \ell_{m}}$-valued Dolbeault operator with respect to the almost complex structure of M.

Let b_{j} denote the binomial coefficient $\binom{m}{j}$ hereafter. Then we have

$$
\begin{gather*}
d=\operatorname{rank}_{\mathbb{C}} E_{\ell_{1}, \ldots, \ell_{m}}=\prod_{j=1}^{m}\left(b_{j}\right)^{\ell_{j}} \\
\sum_{c=1}^{d} \xi_{p_{i}}^{k z \mu_{i c}}=\prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}} \quad(1 \leq i \leq b) \tag{8}
\end{gather*}
$$

where $\sigma_{i j}$ is the j-th elementary symmetric polynomial in $\xi_{p_{i}}^{k z \tau_{i 1}}, \ldots, \xi_{p_{i}}^{k z \tau_{i m}}$.
Let $c_{i}(M)$ be the i-th Chern class of M. Then we have the next formula (see [6]).

Formula 2.11. Up to higher order terms, the following equalities hold:

$$
\begin{aligned}
\operatorname{Td}(M)= & 1+\frac{1}{2} c_{1}(M)+\frac{1}{12}\left(c_{1}(M)^{2}+c_{2}(M)\right)+\frac{1}{24} c_{1}(M) c_{2}(M) \\
\operatorname{Ch}(T M)= & m+c_{1}(M)+\frac{1}{2}\left(c_{1}(M)^{2}-2 c_{2}(M)\right) \\
& +\frac{1}{6}\left(c_{1}(M)^{3}-3 c_{1}(M) c_{2}(M)+3 c_{3}(M)\right) \\
\mathrm{Ch}\left(\bigwedge_{\mathbb{C}}^{m} T M\right)= & 1+c_{1}(M)+\frac{1}{2} c_{1}(M)^{2}+\frac{1}{6} c_{1}(M)^{3} .
\end{aligned}
$$

Let e, σ denote the Euler number and the signature of M respectively.
Example 2.12. When $m=2$, we have

$$
\begin{equation*}
c_{1}^{2}=2 e+3 \sigma, \quad c_{2}=e \tag{9}
\end{equation*}
$$

where $c_{1}^{2}=c_{1}(M)^{2}[M], c_{2}=c_{2}(M)[M]$ are Chern numbers (see [6]). Hence it follows from Formula 2.11 that

$$
\begin{align*}
\operatorname{Ch}\left(E_{\ell_{1}, \ell_{2}}\right) \operatorname{Td}(M)[M]= & \operatorname{Ch}(T M)^{\ell_{1}} \operatorname{Ch}\left(\bigwedge_{\mathbb{C}}^{2} T M\right)^{\ell_{2}} \operatorname{Td}(M)[M] \\
= & 2^{\ell_{1}-3}\left\{\left(2 \ell_{1}^{2}+8 \ell_{1} \ell_{2}+8 \ell_{2}^{2}+2 \ell_{1}+8 \ell_{2}+2\right) e\right. \\
& \left.+\left(3 \ell_{1}^{2}+12 \ell_{1} \ell_{2}+12 \ell_{2}^{2}+9 \ell_{1}+12 \ell_{2}+2\right) \sigma\right\} \tag{10}
\end{align*}
$$

Moreover we have

$$
\sigma_{1}^{\ell_{1}} \sigma_{2}^{\ell_{2}}=\left(\xi_{p_{i}}^{k z \tau_{i 1}}+\xi_{p_{i}}^{k z \tau_{i 2}}\right)^{\ell_{1}}\left(\xi_{p_{i}}^{k z \tau_{i 1}} \xi_{p_{i}}^{k z \tau_{i 2}}\right)^{\ell_{2}}=\sum_{\gamma=0}^{\ell_{1}}\binom{\ell_{1}}{\gamma} \xi_{p_{i}}^{k z \mu_{i \gamma}}
$$

where $\mu_{i \gamma}=\tau_{i 1}\left(\ell_{2}+\gamma\right)+\tau_{i 2}\left(\ell_{1}+\ell_{2}-\gamma\right)$ and hence it follows from Theorem 2.2, Proposition 2.8 and Example 2.9 that

$$
\begin{align*}
& I_{D_{\ell_{1}, \ell_{2}}}\left(g^{z}\right) \\
& \begin{aligned}
&=\frac{p-1}{2 p} 2^{\ell_{1}-3}\left\{\left(2 \ell_{1}^{2}+8 \ell_{1} \ell_{2}+8 \ell_{2}^{2}+2 \ell_{1}+8 \ell_{2}+2\right) e\right. \\
&\left.\quad+\left(3 \ell_{1}^{2}+12 \ell_{1} \ell_{2}+12 \ell_{2}^{2}+9 \ell_{1}+12 \ell_{2}+2\right) \sigma\right\}
\end{aligned} \\
& \quad+\sum_{i=1}^{b} \frac{1}{12 p_{i}^{2}}\left\{2^{\ell_{1}} z \theta_{i 1} \theta_{i 2}^{2} \sum_{s=0}^{p_{i}-1} g_{2, p_{i}}(s)-p_{i} \sum_{\gamma=0}^{\ell_{1}}\binom{\ell_{1}}{\gamma} \sum_{s=0}^{p_{i}-1} g_{2, p_{i}}(s) \Lambda_{2, p_{i}}\left(z, \mu_{i \gamma}, s\right)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
\Lambda_{2, p_{i}}\left(z, \mu_{i \gamma}, s\right)= & \sum_{\lambda_{1}=0}^{z \tau_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \delta_{p_{i}}\left(\zeta\left(z, \mu_{i \gamma}, s, \tau, \lambda\right)\right), \\
\zeta\left(z, \mu_{i \gamma}, s, \tau, \lambda\right)= & 1+\lambda_{1}+z \tau_{i 1}\left(\ell_{2}+\gamma+\lambda_{21}+\lambda_{22}+1\right) \\
& +z \tau_{i 2}\left(s+\ell_{1}+\ell_{2}-\gamma+1\right) .
\end{aligned}
$$

3. Nonexistence of a cyclic group action.

In this section we use Theorem 2.2 to examine whether a \mathbb{Z}_{p}-action with specific isotropy orders exists or not. Assume that $\mathbb{Z}_{p}=\langle g\rangle$ acts on a $2 m$-dimensional almost complex manifold M and suppose that the isotropy orders of the \mathbb{Z}_{p}-action are $\left(p_{1}, \ldots, p_{b}\right)$.

Since the Todd genus of 4-dimensional almost complex manifolds M is equal to $(e+\sigma) / 4$ (see Formula 2.11 and the equality (9)), $e+\sigma$ is a multiple of 4 . Conversely it follows from [9, Theorem 1] that there exists a closed connected almost complex manifold with $e=u, \sigma=v$ if $u+v$ is a multiple of 4 . [$\mathbf{9}$, Theorem 1] also asserts that there exists a closed connected complex manifold with $e=u$, $\sigma=v$ if $u+v$ is a multiple of 4 and $v \leq 0$.

Remark 3.1. Since \mathbb{Z}_{p} acts freely on the punctured manifold $M_{0}=M \backslash$ $\left\{\bigcup_{i=1}^{b} \pi^{-1}\left(y_{i}\right)\right\}$, the next equality holds:

$$
\begin{equation*}
e \equiv \sum_{i=1}^{b} r_{i} \quad(\bmod p) \tag{12}
\end{equation*}
$$

Example 3.2. In this example we consider the case that M is a 4 dimensional almost complex manifold with $e+\sigma=0$. Suppose that $p=6$, $b=3$. First we set $\left(p_{1}, p_{2}, p_{3}\right)=(2,2,6)$. Then direct computation below shows that $I_{D_{0,0}}\left(g^{5}\right) \neq 5 I_{D_{0,0}}(g)$, which implies that M does not admit any \mathbb{Z}_{6}-action of isotropy orders ($2,2,6$).

Since $\left(r_{1}, r_{2}, r_{3}\right)=(3,3,1)$ and $\ell_{1}=\ell_{2}=\gamma=0, \mu_{10}=\mu_{20}=\mu_{30}=0$ for the trivial complex line bundle $E_{0,0}$, it follows from (11) that

$$
12 \cdot 6^{2} I_{D_{0,0}}\left(g^{z}\right)=432 I_{D_{0,0}}\left(g^{z}\right)=\sum_{i=1}^{3} r_{i}^{2} f_{i}\left(z, \tau_{i 1}, \tau_{i 2}\right)
$$

where

$$
f_{i}\left(z, \tau_{i 1}, \tau_{i 2}\right) \equiv z \theta_{i 1} \theta_{i 2}^{2} \sum_{s=0}^{p_{i}-1} g_{2, p_{i}}(s)-p_{i} \sum_{s=0}^{p_{i}-1} g_{2, p_{i}}(s) \Lambda_{2, p_{i}}(z, 0, s) \quad(\bmod 432)
$$

(see Example 2.9). For $i=1,2$, we have

$$
\tau_{i 1}=\tau_{i 2}=1 \Longrightarrow \theta_{i 1}=\theta_{i 2}=1, \quad g_{2,2}(0)=0, g_{2,2}(1)=3
$$

$$
\Lambda_{2,2}(5,0,1)=\sum_{\lambda_{1}=0}^{4} \delta_{2}\left(\lambda_{1}+16\right)=3, \quad \Lambda_{2,2}(1,0,1)=\sum_{\lambda_{1}=0}^{0} \delta_{2}\left(\lambda_{1}+4\right)=1
$$

and hence it follows that

$$
\begin{aligned}
& f_{i}\left(5, \tau_{11}, \tau_{12}\right)=5 \sum_{s=0}^{1} g_{2,2}(s)-2 \sum_{s=0}^{1} g_{2,2}(s) \Lambda_{2,2}(5,0, s)=-3 \\
& f_{i}\left(1, \tau_{11}, \tau_{12}\right)=\sum_{s=0}^{1} g_{2,2}(s)-2 \sum_{s=0}^{1} g_{2,2}(s) \Lambda_{2,2}(1,0, s)=-3
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& 432\left(I_{D_{0,0}}\left(g^{5}\right)-5 I_{D_{0,0}}(g)\right) \\
& \quad \equiv 2 \cdot 3^{2}(-3)+f_{3}\left(5, \tau_{31}, \tau_{32}\right)-5\left\{2 \cdot 3^{2}(-3)+f_{3}\left(1, \tau_{31}, \tau_{32}\right)\right\} \quad(\bmod 432)
\end{aligned}
$$

When $\left(\tau_{31}, \tau_{32}\right)=(1,1)$, we have $\theta_{31}=\theta_{32}=1$ and direct computation shows that $f_{3}\left(5, \tau_{31}, \tau_{32}\right)=-105, f_{3}\left(1, \tau_{31}, \tau_{32}\right)=135$. Hence we have

$$
432\left(I_{D_{0,0}}\left(g^{5}\right)-5 I_{D_{0,0}}(g)\right) \equiv-564 \not \equiv 0 \quad(\bmod 432)
$$

When $\left(\tau_{31}, \tau_{32}\right)=(1,5)$, we have $\theta_{31}=1, \theta_{32}=5$ and direct computation shows that $f_{3}\left(5, \tau_{31}, \tau_{32}\right)=f_{3}\left(1, \tau_{31}, \tau_{32}\right)=-105$. Hence we have

$$
432\left(I_{D_{0,0}}\left(g^{5}\right)-5 I_{D_{0,0}}(g)\right) \equiv 636 \not \equiv 0 \quad(\bmod 432)
$$

When $\left(\tau_{31}, \tau_{32}\right)=(5,5)$, we have $\theta_{31}=5, \theta_{32}=1$ and direct computation shows that $f_{3}\left(5, \tau_{31}, \tau_{32}\right)=135, f_{3}\left(1, \tau_{31}, \tau_{32}\right)=-105$. Hence we have

$$
432\left(I_{D_{0,0}}\left(g^{5}\right)-5 I_{D_{0,0}}(g)\right) \equiv 876 \not \equiv 0 \quad(\bmod 432)
$$

These results imply that M does not admit the \mathbb{Z}_{6}-action of isotropy orders $(2,2,6)$.
Example 3.3. Let N be a 4 -dimensional almost complex manifold with the Euler number $8 n$ and the signature $-8 n$ where n is a natural number. Then a 6 -dimensional almost complex manifold M is defined by $M=N \times \mathbb{C P}^{1}$. We consider the case that $p=4, b=5,\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)=(2,2,2,4,4)$. Note that the condition (12) is satisfied in this case. Let a_{i} be the i-th Chern class of N, u the positive generator of $H^{2}\left(\mathbb{C P}^{1} ; \mathbb{Z}\right)=\mathbb{Z}$ and $c(M)$ the total Chern class of M.

Then we have $a_{1}^{2} u[M]=-8 n, a_{2} u[M]=8 n$ (see (9)) and

$$
\begin{gathered}
c(M)=\left(1+a_{1}+a_{2}\right)(1+2 u)=1+\left(a_{1}+2 u\right)+\left(a_{2}+2 a_{1} u\right)+2 a_{2} u \\
\operatorname{Td}(M)=\operatorname{Td}(N) \operatorname{Td}\left(\mathbb{C P}^{1}\right)=1+\frac{1}{2}\left(a_{1}+2 u\right)+\frac{1}{12}\left(a_{1}^{2}+a_{2}+6 a_{1} u\right)+\frac{1}{12}\left(a_{1}^{2}+a_{2}\right) u, \\
\operatorname{Ch}\left(E_{0,0, \ell}\right)=\exp \left(\ell\left(a_{1}+2 u\right)\right)=1+\ell\left(a_{1}+2 u\right)+\frac{1}{2} \ell^{2}\left(a_{1}^{2}+4 a_{1} u\right)+\ell^{3} a_{1}^{2} u
\end{gathered}
$$

for any integer ℓ. Hence for $p=4$ we have

$$
\frac{p-1}{2 p} \operatorname{Ch}\left(E_{0,0, \ell}\right) \operatorname{Td}(M)[M]=-\frac{3}{2} n \ell(\ell+1)(2 \ell+1)
$$

which is an integer. Set $\mu_{i}=\ell\left(\tau_{i 1}+\tau_{i 2}+\tau_{i 3}\right)$. Then we have

$$
\sigma_{1}^{0} \sigma_{2}^{0} \sigma_{3}^{\ell}=\left(\xi_{p_{i}}^{k z \tau_{i 1}} \xi_{p_{i}}^{k z \tau_{i 2}} \xi_{p_{i}}^{k z \tau_{i 3}}\right)^{\ell}=\xi_{p_{i}}^{k z \mu_{i}}
$$

and therefore it follows from Theorem 2.2 and Proposition 2.8 that

$$
\left.I_{D_{0,0, e}}\left(g^{z}\right)=-\sum_{i=1}^{5} \frac{1}{72 p_{i}^{2}}\left\{z \theta_{i 1} \theta_{i 2}^{2} \theta_{i 3}^{3} \sum_{s=0}^{p_{i}-1} h_{p_{i}}(s)-p_{i} \sum_{s=0}^{p_{i}-1} h_{p_{i}}(s) \Lambda_{3, p_{i}}\left(z, \mu_{i}, s\right)\right)\right\}
$$

where $h_{p}(s)=g_{3, p}(s) / 2($ see Example 2.9) and

$$
\begin{aligned}
\Lambda_{3, p_{i}}\left(z, \mu_{i}, s\right)= & \sum_{\lambda_{1}=0}^{z \tau_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \sum_{\lambda_{31}, \lambda_{32}, \lambda_{33}=0}^{\theta_{i 3}-1} \delta_{p_{i}}\left(\zeta\left(z, \mu_{i}, s, \tau, \lambda\right)\right), \\
\zeta\left(z, \mu_{i}, s, \tau, \lambda\right)= & 1+\lambda_{1}+z \mu_{i}+z\left(\lambda_{21}+\lambda_{22}+1\right) \tau_{i 1} \\
& +z\left(\lambda_{31}+\lambda_{32}+\lambda_{33}+1\right) \tau_{i 2}+z(s+1) \tau_{i 3} .
\end{aligned}
$$

Then for $i=1,2,3$ we have $\left(\tau_{i 1}, \tau_{i 2}, \tau_{i 3}\right)=(1,1,1)$ and it follows that

$$
\begin{aligned}
& h_{2}(0)=-9, \quad h_{2}(1)=0, \quad \Lambda_{3,2}\left(z, \mu_{i}, 0\right)=\sum_{\lambda_{1}=0}^{z-1} \delta_{2}\left(1+\lambda_{1}+3 z(\ell+1)\right)=\frac{z+(-1)^{\ell}}{2} \\
& \quad \Longrightarrow-\frac{1}{72 \cdot 2^{2}}\left(z \sum_{s=0}^{1} h_{2}(s)-2 \sum_{s=0}^{1} h_{2}(s) \Lambda_{3,2}(z, 3 \ell, s)\right)=\frac{(-1)^{\ell+1}}{32}
\end{aligned}
$$

for $z=1,3$. Moreover since

$$
\begin{aligned}
-\frac{1}{72 \cdot 4^{2}} \sum_{s=0}^{3} h_{4}(s) & \equiv \frac{41}{64} \quad(\bmod \mathbb{Z}) \\
\frac{1}{72 \cdot 4}\left(h_{4}(0), h_{4}(1), h_{4}(2), h_{4}(3)\right) & \equiv\left(-\frac{17}{32},-\frac{20}{32},-\frac{25}{32},-\frac{20}{32}\right) \quad(\bmod \mathbb{Z})
\end{aligned}
$$

we have

$$
\begin{aligned}
I_{D_{0,0, \ell}}\left(g^{z}\right)= & -\frac{1}{72 \cdot 2^{2}} \sum_{i=1}^{3}\left\{z \sum_{s=0}^{1} h_{2}(s)-2 \sum_{s=0}^{1} h_{2}(s) \Lambda_{3,2}(z, 3 \ell, s)\right\} \\
& -\frac{1}{72 \cdot 4^{2}} \sum_{i=4}^{5}\left\{z \theta_{i 1} \theta_{i 2}^{2} \theta_{i 3}^{3} \sum_{s=0}^{3} h_{4}(s)-4 \sum_{s=0}^{3} h_{4}(s) \Lambda_{3,4}\left(z, \mu_{i}, s\right)\right\} \\
= & (-1)^{\ell+1} \frac{3}{32}+\frac{41}{64} z\left\{\theta_{41} \theta_{42}^{2} \theta_{43}^{3}+\theta_{51} \theta_{52}^{2} \theta_{53}^{3}\right\} \\
& -\frac{1}{32} \sum_{i=4}^{5}\left\{\begin{array}{l}
17 \Lambda_{3,4}\left(z, \mu_{i}, 0\right)+20 \Lambda_{3,4}\left(z, \mu_{i}, 1\right) \\
+25 \Lambda_{3,4}\left(z, \mu_{i}, 2\right)+20 \Lambda_{3,4}\left(z, \mu_{i}, 3\right)
\end{array}\right\} .
\end{aligned}
$$

Set

$$
\varphi_{\ell}\left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right)=32 I_{D_{0,0, \ell}}\left(g^{3}\right)-3 \cdot 32 I_{D_{0,0, \ell}}(g)
$$

Then direct computation shows that

$$
\begin{array}{ll}
\varphi_{0}(1,1,1,3,3,3) \equiv 0-3 \cdot 0=0 \equiv 0 & (\bmod 32), \\
\varphi_{0}(1,1,3,1,1,3) \equiv-12-3 \cdot(-4)=0 \equiv 0 & (\bmod 32), \\
\varphi_{0}(1,3,3,1,3,3) \equiv-4-3 \cdot(-12)=32 \equiv 0 & (\bmod 32)
\end{array}
$$

and $\varphi_{0}\left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right) \not \equiv 0(\bmod 32)$ for

$$
\begin{aligned}
& \left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right) \\
& \quad=(1,1,1,1,1,1),(1,1,1,1,1,3),(1,1,1,1,3,3) \\
& \quad(1,1,3,1,3,3),(1,1,3,3,3,3),(1,3,3,3,3,3),(3,3,3,3,3,3)
\end{aligned}
$$

Direct computation also shows that

$$
\begin{array}{ll}
\varphi_{1}(1,1,1,1,1,1) \equiv 12-3 \cdot 4=0 \equiv 0 & (\bmod 32) \\
\varphi_{1}(1,1,3,1,3,3) \equiv 0-3 \cdot 0=0 \equiv 0 & (\bmod 32) \\
\varphi_{1}(3,3,3,3,3,3) \equiv 4-3 \cdot 12=-32 \equiv 0 & (\bmod 32)
\end{array}
$$

and $\varphi_{1}\left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right) \not \equiv 0(\bmod 32)$ for

$$
\begin{aligned}
& \left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right) \\
& \quad=(1,1,1,1,1,3),(1,1,1,1,3,3),(1,1,1,3,3,3) \\
& \quad(1,1,3,1,1,3),(1,1,3,3,3,3),(1,3,3,1,3,3),(1,3,3,3,3,3)
\end{aligned}
$$

As we see above there does not exist $\left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right)$ such that

$$
\varphi_{\ell}\left(\tau_{41}, \tau_{42}, \tau_{43}, \tau_{51}, \tau_{52}, \tau_{53}\right) \equiv 0 \quad(\bmod 32)
$$

for $\ell=0,1$, which implies that M does not admit the \mathbb{Z}_{4}-action of isotropy orders (2, 2, 2, 4, 4).

4. Angle vectors.

In this section we assume that p is an odd prime number. In Example 3.2 we argued about the existence of a rotation angle of a \mathbb{Z}_{6}-action. In this section using the assumption above, we give a detailed examination of the existence of a rotation angle.

Let \mathbb{Z}_{p} be the cyclic group of order p generated by g. Assume that \mathbb{Z}_{p} acts on a $2 m$-dimensional almost complex manifold M and that the action preserves the almost complex structure of M. Let q_{1}, \ldots, q_{n} be the fixed points of g. Then the fixed points of g^{k} coincides with those of g for $1 \leq k \leq p-1$.

In this section, a set of natural numbers $\left\{t_{i j}\right\}(1 \leq j \leq m, 1 \leq i \leq n)$ is called an angle vector of type (m, n) and denoted by $\boldsymbol{t}(p)$ or $\left(\left(t_{11}, \ldots, t_{1 m}\right), \ldots\right.$, $\left(t_{n 1}, \ldots, t_{n m}\right)$) when $0<t_{i j}<p$ for any i, j. An angle vector of type (m, n) is regarded as an element of the vector space $\mathbb{Z}_{p}^{m n}$ over the field \mathbb{Z}_{p}. Note that a rotation angle $\left\{\tau_{i j}\right\}$ is an angle vector but an angle vector $\boldsymbol{t}(p)$ is not necessarily a rotation angle.

If $\boldsymbol{t}(p)$ is the rotation angle of the periodic automorphism g, it follows from the equalities (1), (3), (8) that the equality

$$
\begin{equation*}
F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \equiv I_{D_{E}}\left(g^{z}\right) \quad(\bmod \mathbb{Z}) \tag{13}
\end{equation*}
$$

holds where $F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right)$ is a complex number defined below.

Definition 4.1. Let z be an integer such that $0<z<p,\left(\ell_{1}, \ldots, \ell_{m}\right)$ an element of $L, \boldsymbol{t}(p)=\left\{t_{i j}\right\}$ an angle vector of type (m, n) and $\sigma_{i j}$ the j-th elementary symmetric polynomial in $\xi_{p}^{k z t_{i 1}}, \ldots, \xi_{p}^{k z t_{i m}}$. Then $F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \in \mathbb{C}$ is defined by

$$
\begin{align*}
F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right)= & \frac{p-1}{2 p} \operatorname{Ch}\left(E_{\ell_{1}, \ldots, \ell_{m}}\right) \operatorname{Td}(M)[M] \\
& -\frac{1}{p} \sum_{i=1}^{n} \sum_{k=1}^{p-1}\left(\prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}}\right) \frac{1}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k z t_{i j}}} . \tag{14}
\end{align*}
$$

Note that if

$$
\prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}}=\sum_{c=1}^{d} \xi_{p}^{k z \mu_{i c}} \quad(1 \leq i \leq n)
$$

it follows from the equality (6) that

$$
\begin{align*}
& F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \\
& \quad=\frac{p-1}{2 p} \operatorname{Ch}\left(E_{\ell_{1}, \ldots, \ell_{m}}\right) \operatorname{Td}(M)[M] \\
& \quad+\frac{1}{p^{m+2}} \sum_{i=1}^{n}\left\{d z\left(\prod_{j=1}^{m} \theta_{i j}^{j}\right) \sum_{s=0}^{p-1} f_{m, p}(s)-p \sum_{c=1}^{d} \sum_{s=0}^{p-1} f_{m, p}(s) \Lambda_{m, p}\left(z, \mu_{i c}, s\right)\right\} \tag{15}
\end{align*}
$$

where $1 \leq \theta_{i j} \leq p-1, \theta_{i j} \equiv \overline{t_{i j-1}} t_{i j}(\bmod p)$ and

$$
\begin{aligned}
& \Lambda_{m, p}\left(z, \mu_{i c}, s\right)=\sum_{\lambda_{1}=0}^{z \theta_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \cdots \sum_{\lambda_{m 1}, \ldots, \lambda_{m m}=0}^{\theta_{i m}-1} \delta_{p}\left(\zeta\left(z, \mu_{i c}, s, \tau, \lambda\right)\right) \\
& \zeta\left(z, \mu_{i c}, s, \tau, \lambda\right)=1+\lambda_{1}+z \mu_{i c}+z \sum_{j=1}^{m} t_{i j}+z \sum_{j=2}^{m} t_{i j-1}\left(\lambda_{j 1}+\cdots+\lambda_{j j}\right)+s z t_{i m} .
\end{aligned}
$$

Proposition 4.2. Assume that p is greater than $m+2$. Then the equalities

$$
\begin{aligned}
& F\left(z, \ell_{1}, \ldots, \ell_{r}+p(p-1), \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \\
& \quad \equiv F\left(z, \ell_{1}, \ldots, \ell_{r}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \quad(\bmod \mathbb{Z}) \quad(1 \leq r \leq m)
\end{aligned}
$$

$$
F\left(z, \ell_{1}, \ldots, \ell_{m-1}, \ell_{m}+p ; \boldsymbol{t}(p)\right) \equiv F\left(z, \ell_{1}, \ldots, \ell_{m-1}, \ell_{m} ; \boldsymbol{t}(p)\right) \quad(\bmod \mathbb{Z})
$$

hold for any integer $z(0<z<p)$ and any $\left(\ell_{1}, \ldots, \ell_{m}\right) \in L$.
Proof. Set $C T\left(\ell_{1}, \ldots, \ell_{m}\right)=\operatorname{Ch}\left(E_{\ell_{1}, \ldots, \ell_{m}}\right) \operatorname{Td}(M)[M]$ and

$$
C\left(\ell_{1}, \ldots, \ell_{m}\right)=\sum_{i=1}^{n} \sum_{k=1}^{p-1}\left(\prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}}\right) \frac{1}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k z t_{i j}}} .
$$

Then we have

$$
\begin{equation*}
p F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right)=\frac{p-1}{2} C T\left(\ell_{1}, \ldots, \ell_{m}\right)-C\left(\ell_{1}, \ldots, \ell_{m}\right) . \tag{16}
\end{equation*}
$$

Note that $C T\left(\ell_{1}, \ldots, \ell_{m}\right)$ is an index and hence an integer for any $\left(\ell_{1}, \ldots, \ell_{m}\right) \in L$.
Let f, g_{j} be polynomials defined by

$$
\begin{aligned}
\operatorname{Td}(M) & =1+f\left(c_{1}(M), \ldots, c_{m}(M)\right) \\
\operatorname{Ch}\left(\bigwedge_{\mathbb{C}}^{j} T M\right) & =b_{j}+g_{j}\left(c_{1}(M), \ldots, c_{m}(M)\right)
\end{aligned}
$$

Here it follows from the definition of the Chern character that the coefficients of $m!g_{j}$ are integers for $1 \leq j \leq m$. Moreover since

$$
\frac{x}{1-e^{-x}}=\left(x^{-1}-\sum_{i=0}^{m+1} \frac{(-1)^{i}}{i!} x^{i-1}\right)^{-1}=1+\sum_{j=1}^{m}\left(\sum_{k=1}^{m} \frac{(-1)^{k+1}}{(k+1)!} x^{k}\right)^{j}
$$

up to higher order terms, the coefficients of $\{(m+1)!\}^{m^{2}} f$ are integers. Therefore we have

$$
\begin{aligned}
& C T\left(\ell_{1}, \ldots, \ell_{m}\right) \\
& \quad=\frac{1}{m!} \lim _{t \rightarrow 0}\left(\frac{d}{d t}\right)^{m}\left[\left\{1+f\left(t c_{1}, \ldots, t^{m} c_{m}\right)\right\} \prod_{j=1}^{m}\left\{b_{j}+g_{j}\left(t c_{1}, \ldots, t^{m} c_{m}\right)\right\}^{\ell_{j}}\right] \\
& \quad=\frac{1}{\nu}\left(\prod_{j=1}^{m} b_{j}^{\ell_{j}}\right) P\left(\ell_{1}, \ldots, \ell_{m}\right)
\end{aligned}
$$

where $c_{1}^{i_{1}} \cdots c_{m}^{i_{m}}\left(i_{1}+\cdots+m i_{m}=m\right)$ are Chern numbers, $P\left(\ell_{1}, \ldots, \ell_{m}\right)$ is a
polynomial with integer coefficients and ν is an integer defined by

$$
\nu=\{(m+1)!\}^{m^{2}}\{m!\}^{m} \prod_{j=1}^{m} b_{j}^{m} .
$$

Since the assumption that $p>m+2$ implies that ν is not a multiple of p, there exists the $\bmod p$ inverse $\bar{\nu}$ of ν. Then for $1 \leq r \leq m$ we have

$$
\begin{aligned}
C T\left(\ell_{1}, \ldots, \ell_{r}+p, \ldots, \ell_{m}\right) & \equiv \nu \bar{\nu} C T\left(\ell_{1}, \ldots, \ell_{r}+p, \ldots, \ell_{m}\right) \quad(\bmod p) \\
& =b_{r}^{p} \bar{\nu}\left(\prod_{j=1}^{m} b_{j}^{\ell_{j}}\right) P\left(\ell_{1}, \ldots, \ell_{r}+p, \ldots, \ell_{m}\right) \\
& \equiv b_{r}^{p} C T\left(\ell_{1}, \ldots, \ell_{r}, \ldots, \ell_{m}\right)(\bmod p)
\end{aligned}
$$

which implies the equality

$$
\begin{equation*}
C T\left(\ell_{1}, \ldots, \ell_{r}+p(p-1), \ldots, \ell_{m}\right) \equiv C T\left(\ell_{1}, \ldots, \ell_{r}, \ldots, \ell_{m}\right) \quad(\bmod p) \tag{17}
\end{equation*}
$$

because the assumption implies that b_{r} is not a multiple of p and hence that $b_{r}^{p-1} \equiv 1(\bmod p)$. When $r=m$, since $b_{m}=1$ we have

$$
\begin{equation*}
C T\left(\ell_{1}, \ldots, \ell_{m}+p\right) \equiv C T\left(\ell_{1}, \ldots, \ell_{m}\right) \quad(\bmod p) \tag{18}
\end{equation*}
$$

Let $Q_{i}(s), R_{k}(s)$ be the integral polynomials in the proof of Proposition 2.8. Then since the degree of $Q_{j}(s)$ with respect to s is less than or equal to $m-j$, the degree of $R_{k}(s)$ is less than or equal to k, and hence the degree of $g_{m, p}(s)$ is less than or equal to $m+1$. Here for any nonnegative integer j since

$$
\begin{aligned}
(j+1)!p^{j+2} & =(j+1)!\left(\sum_{s=1}^{p} s^{j+2}-\sum_{s=0}^{p-1} s^{j+2}\right)=(j+1)!\sum_{s=0}^{p-1}\left((s+1)^{j+2}-s^{j+2}\right) \\
& =(j+2)!\sum_{s=0}^{p-1} s^{j+1}+\sum_{i=0}^{j} \frac{(j+1)!}{(i+1)!}\binom{j+2}{i}(i+1)!\sum_{s=0}^{p-1} s^{i}
\end{aligned}
$$

the induction on j shows that

$$
(j+1)!\sum_{s=0}^{p-1} s^{j} \equiv 0 \quad(\bmod p)
$$

Hence there exists an integer λ_{1} such that

$$
(m+2)!\sum_{s=0}^{p-1} g_{m, p}(s)=p \lambda_{1}
$$

and therefore it follows from the assumption that there exists an integer λ_{2} such that

$$
\sum_{s=0}^{p-1} g_{m, p}(s)=p \lambda_{2}
$$

Hence it follows from Proposition 2.8 that

$$
(-1)^{m} m!(m+1)!\sum_{s=0}^{p-1} f_{m, p}(s)=p^{m+1} \lambda_{2},
$$

and therefore it follows from the assumption that

$$
h_{m}(p):=\frac{1}{p^{m+1}} \sum_{s=0}^{p-1} f_{m, p}(s)
$$

is an integer. Moreover it also follows from Proposition 2.8 that

$$
h_{m, p}(s):=\frac{f_{m, p}(s)}{p^{m}}
$$

is an integer. Hence it follows from the equality (6) that

$$
\begin{aligned}
& \sum_{k=1}^{p-1} \frac{\xi_{p}^{k z \mu}}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k z t_{i j}}} \\
& \quad=\frac{1}{p^{m+1}}\left\{p \sum_{s=0}^{p-1} f_{m, p}(s) \Lambda_{m, p}(z, \mu, s)-z\left(\prod_{j=1}^{m} \theta_{i j}^{j}\right) \sum_{s=0}^{p-1} f_{m, p}(s)\right\} \\
& \quad=\sum_{s=0}^{p-1} h_{m, p}(s) \Lambda_{m, p}(z, \mu, s)-z\left(\prod_{j=1}^{m} \theta_{i j}^{j}\right) h_{m}(p)
\end{aligned}
$$

is an integer for any integers $z(0<z<p)$ and μ. Therefore $C\left(\ell_{1}, \ldots, \ell_{m}\right)$ is an integer for any $\ell_{1}, \ldots, \ell_{m}$ and

$$
\sum_{k=1}^{p-1} f\left(\xi_{p}^{k z t_{i 1}}, \ldots, \xi_{p}^{k z t_{i m}}\right) \frac{1}{1-\xi_{p}^{-k}} \prod_{j=1}^{m} \frac{1}{1-\xi_{p}^{-k t_{i j}}}
$$

is an integer for any polynomial $f\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients.
Here there exist polynomials $g\left(x_{1}, \ldots, x_{m}\right), h\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that

$$
\begin{aligned}
\left\{\left(\sigma_{i r}\right)^{p}-b_{r}\right\} \prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}} & =\left\{\left(\sum_{1 \leq j_{1}<\cdots<j_{r} \leq m} \xi_{p}^{k z\left(t_{i j_{1}}+\cdots+t_{i j_{r}}\right)}\right)^{p}-b_{r}\right\} \prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}} \\
& =p \sum \frac{(p-1)!}{i_{1}!\cdots i_{b_{r}}!} g\left(\xi_{p}^{k z t_{i 1}}, \ldots, \xi_{p}^{k z t_{i m}}\right) \prod_{j=1}^{m}\left(\sigma_{i j}\right)^{\ell_{j}} \\
& =p h\left(\xi_{p}^{k z t_{i 1}}, \ldots, \xi_{p}^{k z t_{i m}}\right)
\end{aligned}
$$

where \sum denotes the summation over $0 \leq i_{1}, \ldots, i_{b_{r}}<p$ such that $i_{1}+\cdots+i_{b_{r}}=p$ because ($p-1$)! is a multiple of $i_{1}!\cdots i_{b_{r}}$! for $0 \leq i_{1}, \ldots, i_{b_{r}}<p$. Hence it follows that

$$
C\left(\ell_{1}, \ldots, \ell_{r}+p, \ldots, \ell_{m}\right) \equiv b_{r} C\left(\ell_{1}, \ldots, \ell_{m}\right) \quad(\bmod p)
$$

and therefore we have

$$
\begin{align*}
C\left(\ell_{1}, \ldots, \ell_{r}+p(p-1), \ldots, \ell_{m}\right) & \equiv C\left(\ell_{1}, \ldots, \ell_{m}\right)(1 \leq r \leq m) \quad(\bmod p), \\
C\left(\ell_{1}, \ldots, \ell_{m}+p\right) & \equiv C\left(\ell_{1}, \ldots, \ell_{m}\right) \quad(\bmod p) . \tag{19}
\end{align*}
$$

Now the equality in the proposition follows from the equalities (16), (17), (18), (19).

Definition 4.3. An equivalence relation between angle vectors is defined as follows. Two angle vectors $\left\{t_{i j}\right\},\left\{t_{i j}^{\prime}\right\}$ are defined to be equivalent if there exists an integer $w(0<w<p)$, a permutation ρ of $\{1, \ldots, n\}$ and permutations $\eta_{i}(1 \leq i \leq n)$ of $\{1, \ldots, m\}$ such that $t_{i j}^{\prime} \equiv w t_{\rho(i) \eta_{i}(j)}(\bmod p)$.

For example, when $p=3, m=n=2$,

$$
\left(\left(t_{11}, t_{12}\right),\left(t_{21}, t_{22}\right)\right) \sim\left(\left(t_{11}^{\prime}, t_{12}^{\prime}\right),\left(t_{21}^{\prime}, t_{22}^{\prime}\right)\right)=\left(\left(2 t_{22}, 2 t_{21}\right),\left(2 t_{11}, 2 t_{12}\right)\right) .
$$

Definition 4.4. Let L_{p} be the finite subset of L defined by

$$
L_{p}=\left\{\left(\ell_{1}, \ldots, \ell_{m-1}, \ell_{m}\right) \in \mathbb{Z}^{m} \mid 0 \leq \ell_{j}<p(p-1)(1 \leq j<m), 0 \leq \ell_{m}<p\right\} .
$$

In this paper, an angle vector $\boldsymbol{t}(p)$ is called a necessary angle vector if

$$
F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \equiv z F\left(1, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right) \quad(\bmod \mathbb{Z})
$$

for any integer z such that $0<z<p$ and any element $\left(\ell_{1}, \ldots, \ell_{m}\right)$ of L_{p} and is called a proper angle vector if $F\left(z, \ell_{1}, \ldots, \ell_{m} ; \boldsymbol{t}(p)\right)$ is an integer for any integer z such that $0<z<p$ and any element $\left(\ell_{1}, \ldots, \ell_{m}\right)$ of L_{p}.

Note that an angle vector $\boldsymbol{t}(p)$ is a necessary angle vector if $\boldsymbol{t}(p)$ is the rotation angle of a periodic automorphim of order p (see (13)).

Proposition 4.5. An angle vector $\boldsymbol{t}(p)$ is necessary or proper if $\boldsymbol{t}(p)$ is equivalent to a necessary or proper angle vector, respectively.

Proof. It is clear that

$$
F\left(z, \ell_{1}, \ldots, \ell_{m} ;\left\{w t_{\rho(i) \eta_{i}(j)}\right\}\right)=F\left(w z, \ell_{1}, \ldots, \ell_{m} ;\left\{t_{i j}\right\}\right)
$$

for any integer $w(0<w<p)$ and permutations $\rho, \eta_{i}(1 \leq i \leq n)$. Hence if $\left\{t_{i j}\right\}$ is a proper angle vector, $\left\{w t_{\rho(i) \eta_{i}(j)}\right\}$ is also a proper angle vector because

$$
F\left(z, \ell_{1}, \ldots, \ell_{m} ;\left\{w t_{\rho(i) \eta_{i}(j)}\right\}\right)=F\left(w z, \ell_{1}, \ldots, \ell_{m} ;\left\{t_{i j}\right\}\right) \equiv 0 \quad(\bmod \mathbb{Z})
$$

If $\left\{t_{i j}\right\}$ is a necessary angle vector, $\left\{w t_{\rho(i) \eta_{i}(j)}\right\}$ is also a necessary angle vector because

$$
\begin{aligned}
& F\left(z, \ell_{1}, \ldots, \ell_{m} ;\left\{w t_{\rho(i) \eta_{i}(j)}\right\}\right)=w z F\left(1, \ell_{1}, \ldots, \ell_{m} ;\left\{t_{i j}\right\}\right) \\
& \quad=z F\left(w, \ell_{1}, \ldots, \ell_{m} ;\left\{t_{i j}\right\}\right)=z F\left(1, \ell_{1}, \ldots, \ell_{m} ;\left\{w t_{\rho(i) \eta_{i}(j)}\right\}\right) .
\end{aligned}
$$

First we consider the case that $m=1$.
Proposition 4.6. When $m=1$, an angle vector $\left\{t_{i}\right\}$ is a rotation angle of a periodic automorphim of order p if and only if $\left\{t_{i}\right\}$ is a necessary angle vector.

Proof. Let Σ^{γ} be the compact Riemann surface of genus $\gamma \geq 2$ and U the universal covering of Σ^{γ}. Then there exists a Fuchsian group Γ with compact orbit space generated by $a_{1}, \ldots, a_{\gamma}, b_{1}, \ldots, b_{\gamma}, x_{1}, \ldots, x_{n}$ with the relation

$$
x_{1}^{p}=\cdots=x_{n}^{p}=1, \quad \prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] x_{1} \cdots x_{n}=1
$$

such that $\Sigma^{\gamma}=U / \Gamma$. If the equality

$$
\begin{equation*}
\sum_{i=1}^{n} \bar{t}_{i} \equiv 0 \quad(\bmod p) \tag{20}
\end{equation*}
$$

holds, $\phi\left(x_{i}\right)=\overline{t_{i}}$ defines a homomorphism $\phi: \Gamma \rightarrow \mathbb{Z}_{p}$ such that the order of $\phi\left(x_{i}\right)$ is p for $1 \leq i \leq n$. Then $\mathbb{Z}_{p}=\Gamma / \operatorname{ker} \phi$ acts on $U / \operatorname{ker} \phi=\Sigma^{\rho}$ with rotation angle $\left\{t_{1}, \ldots, t_{n}\right\}$, where the genus ρ is determined by the Riemann-Hurwitz equation

$$
\begin{equation*}
\rho=p(\gamma-1)+\frac{n(p-1)}{2}+1 \tag{21}
\end{equation*}
$$

(For details see [5].) So it suffices to show that the equality (20) holds under the assumption that $\left\{t_{i}\right\}$ is a necessary angle vector.

We have

$$
\operatorname{Td}(M)[M]=\frac{1}{2} c_{1}(M)[M]=1-\rho \equiv \frac{n(1-p)}{2} \quad(\bmod p)
$$

(see (21)) and hence it follows that

$$
\begin{aligned}
& p z F\left(1,0 ;\left\{t_{i}\right\}\right)-p F_{p}\left(z, 0 ;\left\{t_{i}\right\}\right) \quad(\bmod p) \\
& \quad \equiv \frac{1}{4}(1-z) n(p-1)^{2}+\sum_{i=1}^{n} \sum_{k=1}^{p-1} \frac{1}{1-\xi_{p}^{-k}}\left(\frac{1}{1-\xi_{p}^{-k z t_{i}}}-z \frac{1}{1-\xi_{p}^{-k t_{i}}}\right) \quad(\bmod p)
\end{aligned}
$$

Here as we show in Appendix, the equality

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{1}{1-\xi_{p}^{-k}}\left(\frac{1}{1-\xi_{p}^{-k z t_{i}}}-z \frac{1}{1-\xi_{p}^{-k t_{i}}}\right) \equiv \varphi_{p}(z) \bar{t}_{i}+\frac{1}{4}(1-z)\left(p^{2}-1\right) \quad(\bmod p) \tag{22}
\end{equation*}
$$

holds where $\varphi_{p}(z)$ is an integer defined by

$$
\varphi_{p}(z)=\sum_{k=1}^{p-1} k\left[\frac{k z}{p}\right]
$$

where $[x]$ is the largest integer which satisfies $[x] \leq x$.
Therefore if $\left\{t_{i}\right\}$ is a necessary angle vector, the equalities

$$
\varphi_{p}(z) \sum_{i=1}^{n} \bar{t}_{i}+p(1-z) n \frac{p-1}{2} \equiv \varphi_{p}(z) \sum_{i=1}^{n} \bar{t}_{i} \equiv 0 \quad(\bmod p)
$$

hold for $2 \leq z \leq p-1$. Here we have

$$
\varphi_{p}(2)=\sum_{k=1}^{p-1} k\left[\frac{2 k}{p}\right]=\sum_{k=(p+1) / 2}^{p-1} k=\frac{(p-1)(3 p-1)}{8},
$$

which is not a multiple of p. Hence the equality (20) holds.
Next we consider the case that $m=2$. Then it follows from (15) that

$$
\begin{align*}
& F\left(z, \ell_{1}, \ell_{2} ; \boldsymbol{t}(p)\right) \\
& =\frac{p-1}{2 p} 2^{\ell_{1}-3}\left\{\left(2 \ell_{1}^{2}+8 \ell_{1} \ell_{2}+8 \ell_{2}^{2}+2 \ell_{1}+8 \ell_{2}+2\right) e\right. \\
& \\
& \left.+\left(3 \ell_{1}^{2}+12 \ell_{1} \ell_{2}+12 \ell_{2}^{2}+9 \ell_{1}+12 \ell_{2}+2\right) \sigma\right\} \tag{23}\\
& \\
& \quad+\frac{1}{12 p^{2}} \sum_{i=1}^{n}\left\{2^{\ell_{1}} z \theta_{i 1} \theta_{i 2}^{2} \sum_{s=0}^{p-1} g_{2, p}(s)-p \sum_{\gamma=0}^{\ell_{1}}\binom{\ell_{1}}{\gamma} \sum_{s=0}^{p-1} g_{2, p}(s) \Lambda_{2, p}\left(z, \mu_{i \gamma}, s\right)\right\}
\end{align*}
$$

(see (11)), where

$$
\begin{aligned}
\Lambda_{2, p}\left(z, \mu_{i \gamma}, s\right) & =\sum_{\lambda_{1}=0}^{z t_{i 1}-1} \sum_{\lambda_{21}, \lambda_{22}=0}^{\theta_{i 2}-1} \delta_{p}\left(\zeta\left(z, \mu_{i \gamma}, s, \tau, \lambda\right)\right) \\
\zeta\left(z, \mu_{i \gamma}, s, \tau, \lambda\right) & =1+\lambda_{1}+z t_{i 1}\left(\ell_{2}+\gamma+\lambda_{21}+\lambda_{22}+1\right)+z t_{i 2}\left(s+\ell_{1}+\ell_{2}-\gamma+1\right)
\end{aligned}
$$

Let M be the 2-dimensional complex projective space $\mathbb{C P}^{2}$. Then it follows from the Lefschetz fixed point formula that $n=3$. Moreover since $e=3, \sigma=1$, we have

$$
\begin{aligned}
& F\left(z, \ell_{1}, \ell_{2} ; \boldsymbol{t}(p)\right) \\
& \quad=\frac{p-1}{2 p} 2^{\ell_{1}-3}\left\{9 \ell_{1}^{2}+36 \ell_{1} \ell_{2}+36 \ell_{2}^{2}+15 \ell_{1}+36 \ell_{2}+8\right\}
\end{aligned}
$$

$$
\begin{equation*}
+\frac{1}{12 p^{2}} \sum_{i=1}^{3}\left\{2^{\ell_{1}} z \theta_{i 1} \theta_{i 2}^{2} \sum_{s=0}^{p-1} g_{2, p}(s)-p \sum_{\gamma=0}^{\ell_{1}}\binom{\ell_{1}}{\gamma} \sum_{s=0}^{p-1} g_{2, p}(s) \Lambda_{2, p}\left(z, \mu_{i \gamma}, s\right)\right\} \tag{24}
\end{equation*}
$$

Proposition 4.7. Assume that g preserves the standard integrable complex structure of $\mathbb{C P}^{2}$. Then the rotation angle $\left\{\tau_{i j}\right\}$ of g is proper.

Proof. The set of automorphims of $\mathbb{C P}^{2}$ which preserve the standard complex structure is known to be the factor group $\operatorname{PGL}(3 ; \mathbb{C})=G L(3 ; \mathbb{C}) / \mathbb{C}^{*}$. Any element of $\operatorname{PGL}(3 ; \mathbb{C})$ is expressed as $[S]$ by $S \in G L(3 ; \mathbb{C})$. Since the cyclic group $\mathbb{Z}_{p}=\langle g\rangle$ is a compact subgroup of $P G L(3 ; \mathbb{C})$, there exists elements $h \in P G L(3 ; \mathbb{C})$ such that $h^{-1} g h$ is represented by an element of the special unitary group $\operatorname{SU}(3)$, and there exists $u \in \operatorname{PGL}(3 ; \mathbb{C})$ such that $g^{\prime}=u^{-1} h^{-1} g h u$ is represented by a periodic diagonal matrix

$$
S=\left(\begin{array}{lll}
e^{i \theta_{1}} & & \\
& e^{i \theta_{2}} & \\
& & e^{i \theta_{3}}
\end{array}\right) \quad\left(\theta_{1}+\theta_{2}+\theta_{3}=0\right)
$$

Note that the rotation angle of g is the same as that of g^{\prime} because the eigenvalues of the action of g on the tangent space at q_{i} are the same as those of the action of g^{\prime} on the tangent space at $(h u)^{-1} \cdot q_{i}$.

Let $P_{2}, P_{3}, V_{k}(1 \leq k \leq 3)$ be the periodic elements of $G L(3 ; \mathbb{C})$ defined by

$$
P_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad V_{k}=\left(\begin{array}{lll}
e^{i \theta_{k}} & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

and G the finite group generated by $[S],\left[P_{2}\right],\left[P_{3}\right],\left[V_{1}\right],\left[V_{2}\right],\left[V_{3}\right]$. Then $I_{D_{E}}(g)$ is defined for $g \in G$. Since

$$
S=V_{1} P_{2} V_{2} P_{2}^{-1} P_{3} V_{3} P_{3}^{-1}
$$

it follows that

$$
\begin{aligned}
I_{D_{E}}\left(g^{\prime}\right)= & I_{D_{E}}\left(\left[V_{1} P_{2} V_{2} P_{2}^{-1} P_{3} V_{3} P_{3}^{-1}\right]\right) \\
= & I_{D_{E}}\left(\left[V_{1}\right]\right)+I_{D_{E}}\left(\left[P_{2}\right]\right)+I_{D_{E}}\left(\left[V_{2}\right]\right) \\
& -I_{D_{E}}\left(\left[P_{2}\right]\right)+I_{D_{E}}\left(\left[P_{3}\right]\right)+I_{D_{E}}\left(\left[V_{3}\right]\right)-I_{D_{E}}\left(\left[P_{3}\right]\right) \\
= & I_{D_{E}}\left(\left[V_{1}\right]\right)+I_{D_{E}}\left(\left[V_{2}\right]\right)+I_{D_{E}}\left(\left[V_{3}\right]\right)=I_{D_{E}}\left(\left[V_{1} V_{2} V_{3}\right]\right)=I_{D_{E}}\left(\left[E_{3}\right]\right)=0
\end{aligned}
$$

where E_{3} is the unit matrix. Therefore it follows from (13) that

$$
F\left(z, \ell_{1}, \ell_{2} ;\left\{\tau_{i j}\right\}\right) \equiv I_{D_{E}}\left(g^{\prime z}\right)=z I_{D_{E}}\left(g^{\prime}\right)=0 \quad(\bmod \mathbb{Z})
$$

for any integer $z(0<z<p)$ and any element $\left(\ell_{1}, \ell_{2}\right)$ of L.
Remark 4.8. Using the argument above, we can show that the rotation angle of a periodic automorphism of $\mathbb{C P}^{m}$ is proper if the automorphism preserves the standard complex structure of $\mathbb{C P}^{m}$.

Let A be the set of angle vectors which satisfy the inequalities

$$
1=t_{11} \leq t_{21} \leq \cdots \leq t_{n 1}, \quad 1 \leq t_{i 1} \leq t_{i 2} \leq \cdots \leq t_{i m} \leq p-1(1 \leq i \leq n)
$$

Note that any angle vector is equivalent to an element of A because any $t_{i j}$ has its $\bmod p$ inverse. The number of angle vectors $\left\{t_{i j}\right\}$ which satisfies the second inequality is equal to $\left({ }_{p-1} H_{m}\right)^{n}$ where ${ }_{p-1} H_{m}$ is the repeated combination. And the number of mutually distinct angle vectors of the form $w t_{\rho(i) j}$ for $0<w<p$ and permutations ρ is less than or equal to $(p-1) n!$ for any $\left\{t_{i j}\right\} \in A$ and less than $(p-1) n$! for some $\left\{t_{i j}\right\} \in A$. Hence the number of the equivalence classes of angle vectors is greater than $L(p, m, n)$ where

$$
L(p, m, n)=\min \left\{\lambda \in \mathbb{Z} \left\lvert\, \lambda \geq \frac{\left(p-1 H_{m}\right)^{n}}{(p-1) n!}\right.\right\} .
$$

For example, when $p=3, m=2, n=3$, six angle vectors

$$
\begin{align*}
& ((1,1),(1,1),(1,1)),((1,1),(1,1),(1,2)),((1,1),(1,1),(2,2)), \\
& ((1,1),(1,2),(1,2)),((1,1),(1,2),(2,2)),((1,2),(1,2),(1,2)) \tag{25}
\end{align*}
$$

represent all angle vectors and we have $L(3,2,3)=3<6$.
Example 4.9. Let M be a 4 -dimensional almost complex manifold with $(e, \sigma)=(3,1)$, which is the same as (e, σ) of $\mathbb{C P}^{2}$. In this example, we examine the difference between the set of the rotation angles of $\mathbb{C P}^{2}$ and the set of the proper angle vectors of M and the set of angle vectors of M.

We assume that the action of $\mathbb{Z}_{p}=\langle g\rangle$ on $\mathbb{C P}^{2}$ preserves the standard complex structure of $\mathbb{C P}^{2}$. Then as we see in the proof of Proposition 4.7, the action of g is expressed by integers $1 \leq \rho_{0}<\rho_{1}<\rho_{2} \leq p-1$ as

$$
g \cdot\left[z_{0}: z_{1}: z_{2}\right]=\left[\xi_{p}^{\rho_{0}} z_{0}: \xi_{p}^{\rho_{1}} z_{1}: \xi_{p}^{\rho_{2}} z_{2}\right]
$$

where $\left[z_{0}: z_{1}: z_{2}\right]$ is the homogeneous coordinate of $\mathbb{C P}^{2}$, whose rotation angle is

$$
\left(\left(\rho_{1}-\rho_{0}, \rho_{2}-\rho_{0}\right),\left(p+\rho_{0}-\rho_{1}, \rho_{2}-\rho_{1}\right),\left(p+\rho_{0}-\rho_{2}, p+\rho_{1}-\rho_{2}\right)\right) .
$$

Direct computation shows that the angle vectors of the form above are represented by the angle vectors listed below.

p	rotation angles for $\mathbb{C P}^{2}$
3	$((1,2),(1,2),(1,2))$
5	$((1,2),(1,4),(3,4))$
7	$((1,2),(1,6),(5,6)),((1,3),(2,6),(4,5))$

Moreover direct computation using the equality (24) shows that the proper angle vectors are represented by the angle vectors listed below.

p	proper angle vectors when $(e, \sigma, n)=(3,1,3)$	$L(p, 2,3)$
3	$((1,2),(1,2),(1,2))$	3
5	$((1,2),(1,4),(3,4)),((1,2),(2,3),(3,4))$	42
7	$((1,2),(1,6),(5,6)),((1,2),(2,5),(5,6))$, $((1,2),(3,4),(5,6)),((1,3),(2,6),(4,5))$	258

Example 4.10. Suppose that $p=n=3$. Then it follows from (12) that e must be a multiple of 3 . Here we consider the case that $e+\sigma$ is $0,4,8$ and e is $0,3,6$. When $(e, \sigma)=(0,0),(3,-3)$ or $(6,-6)$, direct computation shows that

$$
F(2,0,1, \boldsymbol{t}(3))-2 F(1,0,1, \boldsymbol{t}(3)) \not \equiv 0 \quad(\bmod \mathbb{Z})
$$

for any angle vectors listed in (25). Hence M with $(e, \sigma)=(0,0),(3,-3),(6,-6)$ does not admit any action of \mathbb{Z}_{3} which satisfies Assumption 1.1 with three fixed points. When $(e, \sigma)=(0,4),(3,1)$ or $(6,-2)$, the only one necessary angle vector in the list (25) is $((1,2),(1,2),(1,2))$, and when $(e, \sigma)=(0,8),(3,5)$ or $(6,2)$, the only one necessary angle vector in the list (25) is $((1,1),(1,1),(1,1))$.

5. Appendix.

Here we prove the equality (22). Let p be an odd prime number and a, b integers such that $0<a, b<p$. Then we have the next formula of Zagier (see [10,
p. 100, p. 101]).

$$
\sum_{k=1}^{p-1} \cot \frac{\pi k a}{p} \cot \frac{\pi k b}{p}=4 p \sum_{k=1}^{p-1}\left(\left(\frac{k a}{p}\right)\right)\left(\left(\frac{k b}{p}\right)\right), \quad \sum_{k=1}^{p-1}\left[\frac{k a}{p}\right]=\frac{(p-1)(a-1)}{2}
$$

where

$$
((x))= \begin{cases}x-[x]-(1 / 2) & \text { if } x \text { is not an integer } \\ 0 & \text { if } x \text { is an integer }\end{cases}
$$

Since

$$
\frac{1}{1-\xi_{p}^{-k}}=\frac{1}{2}-\frac{\sqrt{-1}}{2} \cot \frac{\pi k}{p}
$$

it follows from the formula above that

$$
\begin{aligned}
\sum_{k=1}^{p-1} & \frac{1}{1-\xi_{p}^{-k}}\left(\frac{1}{1-\xi_{p}^{-k z t_{i}}}-z \frac{1}{1-\xi_{p}^{-k t_{i}}}\right) \\
= & \sum_{k=1}^{p-1} \frac{1}{1-\xi_{p}^{-k \bar{t}_{i}}}\left(\frac{1}{1-\xi_{p}^{-k z}}-z \frac{1}{1-\xi_{p}^{-k}}\right) \\
= & \sum_{k=1}^{p-1}\left\{\text { Real part of } \frac{1}{1-\xi_{p}^{-k \bar{t}_{i}}}\left(\frac{1}{1-\xi_{p}^{-k z}}-z \frac{1}{1-\xi_{p}^{-k}}\right)\right\} \\
= & \frac{1}{4}(p-1)(1-z)-\frac{1}{4} \sum_{k=1}^{p-1} \cot \frac{\pi k z}{p} \cot \frac{\pi k \bar{t}_{i}}{p}+\frac{1}{4} z \sum_{k=1}^{p-1} \cot \frac{\pi k}{p} \cot \frac{\pi k \bar{t}_{i}}{p} \\
= & \frac{1}{4}(p-1)(1-z)+p \sum_{k=1}^{p-1}\left(-\left(\left(\frac{k z}{p}\right)\right)+z\left(\left(\frac{k}{p}\right)\right)\right)\left(\left(\frac{k \bar{t}_{i}}{p}\right)\right) \\
= & \frac{1}{4}(p-1)(1-z)+p \sum_{k=1}^{p-1}\left(\left[\frac{k z}{p}\right]-\frac{1}{2}(z-1)\right)\left(\frac{k \bar{t}_{i}}{p}-\left[\frac{k \bar{t}_{i}}{p}\right]-\frac{1}{2}\right) \\
= & \frac{1}{4}(p-1)(1-z)+\bar{t}_{i} \sum_{k=1}^{p-1} k\left[\frac{k z}{p}\right]-p \sum_{k=1}^{p-1}\left[\frac{k z}{p}\right]\left[\frac{k \bar{t}_{i}}{p}\right]-\frac{p}{2} \frac{p-1)(z-1)}{2} \\
& -\frac{1}{2}(z-1) \bar{t}_{i} \sum_{k=1}^{p-1} k+\frac{p}{2}(z-1) \frac{(p-1)\left(\bar{t}_{i}-1\right)}{2}+\frac{p}{4}(z-1) \sum_{k=1}^{p-1} 1
\end{aligned}
$$

$$
\equiv \varphi_{p}(z) \bar{t}_{i}+\frac{1}{4}(1-z)\left(p^{2}-1\right) \quad(\bmod p)
$$

This completes the proof of the equality (22).

References

[1] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2), 87 (1968), 531-545.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2), 87 (1968), 546-604.
[3] E. Bujalance, F. J. Cirre, J. M. Gamboa and G. Gromadzki, On compact Riemann surfaces with dihedral groups of automorphisms, Math. Proc. Cambridge Philos. Soc., 134 (2003), 465-477.
[4] H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology, J. Pure Appl. Algebra, 44 (1987), 177-189.
[5] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2), 17 (1966), 86-97.
[6] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Grundlehren Math. Wiss., 131, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
[7] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2), 117 (1983), 235-265.
[8] K. Tsuboi, The finite group action and the equivariant determinant of elliptic operators, J. Math. Soc. Japan, 57 (2005), 95-113.
[9] A. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Natl. Acad. Sci. U.S.A., 55 (1966), 1624-1627.
[10] D. B. Zagier, Equivariant Pontrjagin Classes and Applications to Orbit Spaces, Lecture Notes in Math., 290, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

Kenji Tsuboi

Tokyo University of Marine Science and Technology 4-5-7 Kounan, Minato-ku
Tokyo 108-8477, Japan
E-mail: tsubois@kaiyodai.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 58J20; Secondary 57S17.
 Key Words and Phrases. finite group action, elliptic operator, almost complex manifold.

