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Abstract. Let (X, d, µ) be a metric measure space endowed with a met-
ric d and a nonnegative Borel doubling measure µ. Let L be a non-negative
self-adjoint operator of order m on X. Assume that L generates a holomor-
phic semigroup e−tL whose kernels pt(x, y) satisfy Gaussian upper bounds but
without any assumptions on the regularity of space variables x and y. Also
assume that L satisfies a Plancherel type estimate. Under these conditions, we
show the Lp bounds for Stein’s square functions arising from Bochner-Riesz
means associated to the operator L. We then use the Lp estimates on Stein’s
square functions to obtain a Hörmander-type criterion for spectral multipli-
ers of L. These results are applicable for large classes of operators including
sub-Laplacians acting on Lie groups of polynomial growth and Schrödinger
operators with rough potentials.

1. Introduction and main results.

Let (X, d, µ) be a metric measure space endowed with a metric d and a non-
negative Borel measure µ satisfying the doubling condition, i.e. there exists a
constant C > 0 such that for all x ∈ X and for all r > 0,

V (x, 2r) ≤ CV (x, r) < ∞, (1.1)

where B(x, r) = {y ∈ X : d(x, y) < r} and V (x, r) = µ(B(x, r)). In particular, X

is a space of homogeneous type. A more general definition and further studies of
these spaces can be found in [9, Chapter 3].

Note that the doubling property implies the following strong homogeneity
property,
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V (x, λr) ≤ CλnV (x, r) (1.2)

for some C, n > 0 uniformly for all λ ≥ 1 and x ∈ X. The smallest value of the
parameter n is a measure of the dimension of the space. There also exist constants
C and D so that

V (y, r) ≤ C

(
1 +

d(x, y)
r

)D

V (x, r) (1.3)

uniformly for all x, y ∈ X and r > 0. Indeed, property (1.3) with D = n is a direct
consequence of the triangle inequality for the metric d and the strong homogeneity
property (1.2). When X is Ahlfors regular, i.e. V (x, r) ∼ rn uniformly in x, the
value D can be taken to be 0.

In this article, we assume that L is a non-negative self-adjoint operator on
L2(X) and that the semigroup e−tL, generated by −L on L2(X), has the kernel
pt(x, y) which satisfies the following Gaussian upper bound

∣∣pt(x, y)
∣∣ ≤ C

V (x, t1/m)
exp

(
− d(x, y)m/(m−1)

c t1/(m−1)

)
(1.4)

for all t > 0, and x, y ∈ X, where C, c and m are positive constants and m ≥ 2.
Such estimates are typical for elliptic or sub-elliptic differential operators of

order m (see for examples, [10], [14], [23], [25] and [32]).
Since L is a non-negative self-adjoint operator acting on L2(X), it admits a

spectral resolution

L =
∫ ∞

0

λdE(λ).

For a complex number δ = σ + iτ, σ > −1, we define the Bochner-Riesz mean
Sδ

R(L) = (I − L/Rm)δ
+ of order δ of a function f

Sδ
R(L)f(x) =

∫ R

0

(
1− λ

Rm

)δ

dE(λ)f(x), x ∈ X (1.5)

by using the spectral theorem. We then consider the following square function
associated to an operator L

Gδ(L)f(x) = cmδ

( ∫ ∞

0

∣∣∣∣
∂

∂R
Sδ+1

R (L)f(x)
∣∣∣∣
2

RdR

)1/2

, x ∈ X (1.6)
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where cmδ = 1/m(δ + 1).
Note that when L is the Laplacian −∆ on Rn, the square function Gδ(∆) is

introduced by E. M. Stein in his study of Bochner-Riesz means [28]. One can view
Gδ(∆) as a vector-valued singular integral operator associated to the Bochner-Riesz
means and it is known that the Lp boundedness of Gσ(∆) for 1 < p ≤ 2 holds if
and only if σ > n(1/p−1/2)−1/2 (see [20], [21] and [28]). However for the range
p > 2, the condition σ > max{1/2, n(1/2 − 1/p)} − 1 is known to be necessary
and conjectured to be also sufficient. For the dimension n = 1 many proofs of the
conjecture are known (see [31]). The conjecture in two dimensions was proved by
Carbery [5]. In dimensions n ≥ 3, there are some partial results, see for instances,
for σ > n(1/2 − 1/p) − 1/2 in [20] and [21], and for σ > n(1/2 − 1/p) − 1,
p ∈ [2(n + 2)/n,∞) in [22]. The Lp boundedness of the square function Gδ(∆)
has been studied extensively because of its important role in the Bochner-Riesz
analysis and we refer the reader to [5], [6], [7], [20], [21], [22], [28], [29] and [30]
and the references therein.

In this article, we study and obtain the Lp boundedness of the Stein’s square
function when the Laplacian is replaced by a non-negative self-adjoint operator L

which has upper Gaussian heat kernel bounds and satisfies the so-called Plancherel
estimates. Our main result (Theorem 1.1) includes the Laplacian on Euclidean
space as a special case but it is also applicable to large classes of operators such
as the sub-Laplacians acting on Lie groups of polynomial growth and Schrödinger
operators with non-negative potentials. We note that even in the case L = −∆,
the kernel of Gδ(∆) does not possess enough regularity for the operator Gδ(∆) to
be a standard Calderón-Zygmund operator. In our work, we do not assume any
regularity on the space variables of the heat kernels and this results in a much
rougher kernel of Gδ(L). We will overcome this difficulty by carrying out certain
detailed estimates and using the techniques in [2], [3] and [14].

The following theorem is our main result.

Theorem 1.1. Let L be a non-negative self-adjoint operator such that the
corresponding heat kernels satisfy Gaussian bounds (1.4). Assume that for some
2 ≤ q ≤ ∞ and any t > 0 and all Borel functions F such that suppF ⊆ [0, t],

∫

X

∣∣KF (
m√

L)(x, y)
∣∣2dµ(x) ≤ C

V (y, t−1)
‖F(t)‖2Lq , (1.7)

where F(t)(λ) = F (tλ). Let Gσ(L) be an operator given in (1.6). If p ∈ (1,∞) and

σ >

(
n + 1− 2

q

)∣∣∣∣
1
p
− 1

2

∣∣∣∣−
1
2
, (1.8)
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then there exists a constant C > 0 such that

C−1‖f‖Lp(X) ≤ ‖Gσ(L)f‖Lp(X) ≤ C‖f‖Lp(X).

Remark 1.2. Consider the case 1 < p ≤ 2 and σ > n(1/p − 1/2) − 1/2.
Assume that condition (1.7) is true with q = 2 (which is true for the case of the
Laplace operator on Rn). Then our result on the range of p

2n

n + 2σ + 1
< p ≤ 2

gives Lp boundedness of Gσ(L). This range is optimum even for the Laplace
operator on Rn.

The Stein’s square function can be useful in the study of spectral multipliers of
self-adjoint operators. Here, we will use Theorem 1.1 in the proof of the following
Hörmander type spectral multiplier theorem.

Theorem 1.3. Let L be a non-negative self-adjoint operator such that the
corresponding heat kernels satisfy Gaussian bounds (1.4). Assume that condition
(1.7) holds for some q ∈ [2,∞]. Let F be a locally absolutely continuous function
on (0,∞) and

B := ‖F‖L∞ +
(

sup
R>0

R

∫ 2R

R

|F ′(λ)|2dλ

)1/2

< ∞. (1.9)

Then F (L) is bounded on Lp(X) for all p ∈ (1,∞) with (n+1−2/q)|1/p−1/2| <
1/2. In addition,

‖F (L)‖Lp(X)→Lp(X) ≤ CB

with C independent of F .

We note that when L is the Laplacian −∆ on Rn, condition (1.7) is true with
q = 2, and the corresponding Theorem 1.3 with q = 2 is obtained in [21].

This paper is organized as follows. In Section 2, we will state two lemmas
concerning kernel estimates of spectral multipliers and C∞c (R+) functions, then
criteria for Lp boundedness for singular integrals in [2], [3], which are useful in
the sequel. In Section 3 we will prove Theorem 1.1 by using criteria for Lp bound-
edness, Stein’s interpolation theorem and duality theory. We then apply Theorem
1.1 to obtain an important estimate in the proof of Theorem 1.3. In Section 4,
we show that our results are applicable to various operators in different settings,
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including the sub-Laplacians on homogeneous groups and Schrödinger operators
with rough potentials.

Throughout, the letter C and c will denote (possibly different) constants that
are independent of the essential variables.

2. Some useful estimates on functions and singular integrals.

Let (X, d, µ) be a metric measure space endowed with a distance d and a
nonnegative Borel doubling measure µ. Unless otherwise specified in the sequel
we always assume that L is a non-negative self-adjoint operator such that the
corresponding heat kernels satisfy Gaussian bound (1.4).

We first record a useful auxiliary result, which will be useful in the proof of
Theorem 1.1. For a proof, see pp. 453–454, Lemma 4.3 of [14].

Lemma 2.1. Suppose that L satisfies estimate (1.7). Then for any s, ε > 0,
there exists a constant C = C(s, ε) such that

∫

X

∣∣KF (
m√

L)(x, y)
∣∣2(1 + td(x, y)

)s
dµ(x) ≤ C

V (y, t−1)
‖F(t)‖2W q

(s/2)+ε
(2.1)

for all Borel functions F such that suppF ⊆ [t/4, t], where F(t)(λ) = F (tλ) and
‖F‖W q

s
= ‖(I − d2/dx2)s/2F‖Lq .

We call hypothesis (1.7) the Plancherel estimate or the Plancherel condition
(see also [8], [14] and [15]). For the standard Laplace operator on Euclidean
spaces Rn, condition (1.7) with q = 2 is equivalent to (1, 2) Stein-Tomas restriction
theorem (which is also the Plancherel estimate of the Fourier transform). For the
general operator L, we note that Gaussian bound (1.4) implies estimates (1.7) for
q = ∞. Indeed, it was proved in Lemma 2.2 of [14] that for any Borel function F

such that suppF ⊂ [0, R],

∥∥KF (
m√

L)(·, y)
∥∥2

L2(X)
=

∥∥KF (
m√

L)(y, ·)∥∥2

L2(X)

≤ C

V (y, R−1)
‖F‖2L∞ (2.2)

where F denotes the complex conjugate of F . Condition (1.7) holds for large
classes of operators including Laplace operators acting on Lie groups of polynomial
growth and Schrödinger operators with non-negative potentials (see also Section 4
below). It is also closely related to Strichartz and other dissipative type estimates.
For further discussion of condition (1.7), see [14].
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Now, for a complex number δ = σ+ iτ , σ > −1, recall that the Bochner-Riesz
means of order δ are given by Sδ

R(L) = (I−L/Rm)δ
+, R > 0. Under the Plancherel

condition (1.7) with some q ∈ [2,∞], it follows by Theorem 3.1 in [14] that for
σ > (n/2) − (1/q), the Bochner-Riesz mean Sδ

R(L) is of weak type (1, 1). Hence
by interpolation, it is bounded on Lp(X) for all 1 < p < ∞. In addition, there
exists a constant C = C(p, δ) > 0 such that

∥∥Sδ
R(L)

∥∥
Lp(X)→Lp(X)

≤ C for all R > 0. (2.3)

Lemma 2.2. Let φ be a function in C∞c (R+) supported in [1/4, 1]. Let ` ∈ Z,
m ∈ 2N and δ = σ + iτ , σ > −1/2. For 0 < s < σ + 1/q where 2 ≤ q ≤ ∞, there
exist C, c > 0 such that

sup
`∈Z: `≤1

∥∥φ(λ)(1− 2m`λm)δ
+

∥∥
W q

s (R)
≤ Cec|τ |. (2.4)

Proof. The proof of Lemma 2.2 is standard. We give a brief argument of
this proof for completeness and convenience for the reader.

Observe that for every ` ≤ −1, the function φ(λ)(1 − 2m`λm)δ
+ = φ(λ)(1 −

2m`λm)δ is in C∞0 ([1/2, 1]), and then estimate (2.4) holds. To complete the proof,
it suffices to consider the cases ` = 0, 1. For the case ` = 0, we note that for any
Sobolev space W q

s (R), if k is integer greater than s, then

∥∥φ(λ)(1− λm)δ
+

∥∥
W q

s
≤ ∥∥(1− λ2)δ

+

∥∥
W q

s
‖(1 + λ2 + · · ·+ λm−2)δ‖Ck[1/4,1]‖φ(λ)‖Ck

≤ C(1 + |τ |)[s]+1
∥∥(1− λ2)δ

+

∥∥
W q

s
. (2.5)

Let F denote the Fourier transform. Since q ∈ [2,∞], it follows from Hausdorff-
Young inequality ([29, p. 583]), that

∥∥(1− λ2)δ
+

∥∥
W q

s
=

∥∥(I − d2/dx2)s/2(1− λ2)δ
+

∥∥
Lq

≤ C
∥∥(1 + t2)s/2F((1− λ2)δ

+)(t)
∥∥

Lp , (2.6)

where q−1 + p−1 = 1 and 1 ≤ p ≤ 2. For this purpose we recall the following
well-known facts in the theory of Bessel function ([28, p. 106]),

F(
(1− λ2)δ

+

)
(t) =

∫ 1

−1

(1− λ2)δe−itλdλ

= πΓ(δ + 1)Jδ+(1/2)(t)t−δ−(1/2), (2.7)
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where

Jζ(t) =
2
π

tζ

Γ(ζ + 1/2)

∫ 1

0

(1− u2)ζ−1/2 cos(ut)du, Re(ζ) > −1
2
, (2.8)

|Jξ+iη(t)| ≤
{

Cξe
π|η||t|−1/2, |t| ≥ 1, ξ ≥ 0

Cξe
(1/2)π|η||t|ξ, |t| > 0, ξ ≥ 0.

(2.9)

Since σ > s− 1/q, from (2.5), (2.6), (2.7), (2.8) and (2.9) it can be verified that

∥∥φ(λ)(1− λm)δ
+

∥∥
W q

s
≤ Cσ(1 + |τ |)[s]+1ec|τ | ≤ Cec′|τ |.

The similar argument above holds for the case ` = 1, and then estimate (2.4)
is proved. Hence, the proof of Lemma 2.2 is complete. ¤

In the following, we will often just use B for B(xB , rB). Denote by M the
Hardy-Littlewood maximal operator

Mf(x) = sup
B3x

1
V (B)

∫

B

|f(y)|dµ(y),

where B ranges over all open balls containing x. Also given λ > 0, we will write
λB for the λ−dilated ball, which is the ball with the same center as B and with
radius rλB = λrB . We set

U1(B) := 4B, and Uj(B) := 2j+1B\2jB for j = 2, 3, . . . . (2.10)

We now state the following criteria for Lp boundedness for singular integrals
in [2], [3], [4], which will be useful in the proof of Theorem 1.1.

Proposition 2.3. Let T be a sublinear operator which is bounded on L2(X).
Let {Ar}r>0 be a family of linear operators acting on L2(X). Assume that for j ≥ 2

( ∫

Uj(B)

∣∣T (I −ArB
)f

∣∣2dµ

)1/2

≤ Cg(j)V (2j+1B)−1/2

∫

B

|f |dµ (2.11)

and for j ≥ 1

( ∫

Uj(B)

∣∣ArB
f
∣∣2dµ

)1/2

≤ Cg(j)V (2j+1B)−1/2

∫

B

|f |dµ (2.12)
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for all ball B with rB the radius of B and all f supported in B. If
∑

g(j) < ∞,
then T is of weak type (1, 1), with a bound depending only on its (2, 2) norm, on
the constant in (1.1), and on the constants C in (2.11) and (2.12), hence bounded
on Lp(X) for 1 < p < 2.

Proof. For the proof of Proposition 2.3, we refer it to Theorem 5.11, [4];
Theorem 1.1, [2]. ¤

Proposition 2.4. Let T be a sublinear operator which is bounded on L2(X).
Let {Ar}r>0 be a family of linear operators acting on L2(X). Assume

(
1

V (B)

∫

B

∣∣T (I −ArB
)f

∣∣2dµ

)1/2

≤ CM
(|f |2)1/2(x) (2.13)

and

∥∥TArB
f
∥∥

L∞(B)
≤ CM

(|Tf |2)1/2(x) (2.14)

for all f ∈ L2(X), all x ∈ X and all ball B 3 x, rB being the radius of B. If
2 < p < ∞ and Tf ∈ Lp(X) when f ∈ Lp(X), then T is strong type (p, p), and
its operator norm is bounded by a constant depending only on its (2, 2) norm, on
the constant in (1.1), on p and on the constants C in (2.13) and (2.14).

Proof. For the proof of Proposition 2.4, we refer it to Theorem 2.1, [3]. ¤

3. Proofs of main results.

3.1. Proof for the Lp bounds on Stein’s square functions.
We now show Theorem 1.1 by considering the following three cases.

Case 1: We first show that for every δ = σ + iτ , σ > −1/2, there exists a positive
constant Bσ such that for every f ∈ L2(X),

‖Gδ(L)f‖L2(X) = Bσ‖f‖L2(X). (3.1)

Let us prove (3.1). For every R > 0 and λ > 0, we recall that Sδ
R(λ) =

(1− λ/Rm)δ
+, and set

F δ
R(λ) = cmδR

∂

∂R
Sδ+1

R (λ) (3.2)

with cmδ = 1/m(δ + 1). It follows from the spectral theory in [33] that for any
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f ∈ L2(X),

‖Gδ(L)f‖L2(X) =
{ ∫ ∞

0

〈
F δ

R(L) F δ
R(L)f, f

〉dR

R

}1/2

=
{〈 ∫ ∞

0

|F δ
R|2(L)

dR

R
f, f

〉}1/2

=
{ ∫ ∞

λ1/m

(
1− λ

Rm

)2σ
λ2

R2m+1
dR

}1/2

‖f‖L2(X)

= Bσ‖f‖L2(X), (3.3)

where

B2
σ =

∫ ∞

λ1/m

(
1− λ

Rm

)2σ
λ2

R2m+1
dR =

∫ ∞

1

s−(2m+1)(1− s−m)2σds < ∞

and the above integral converges if σ > −1/2. This proves (3.1).

Case 2: We will prove that for every p ∈ (1,∞) satisfying σ > (n+1−(2/q))|(1/p)−
(1/2)|−(1/2), there exists a constant C = C(p) > 0 such that for every f ∈ Lp(X),

‖Gσ(L)f‖Lp(X) ≤ C‖f‖Lp(X). (3.4)

To prove (3.4), we need some preliminary results. Let φ ∈ C∞c (0,∞) be a
non-negative function satisfying suppφ ⊆ [1/4, 1] and

∑∞
`=−∞ φ(2−`λ) = 1 for

any λ > 0. Let F δ
R be a function given in (3.2). Since suppF δ

R(λm) ⊂ [0, R] and
suppφ ⊆ [1/4, 1], we have that for every λ > 0,

F δ
R(λm) =

∞∑

`=−∞
φ(2−`λ/R)F δ

R(λm) =
1∑

`=−∞
φ(2−`λ/R)F δ

R(λm). (3.5)

This decomposition implies that the sequence
∑1

`=−N φ(2−` m
√

L/R)F δ
R(L) con-

verges strongly in L2(X) to F δ
R(L) (see for instance, Reed and Simon [24, Theorem

VIII.5]). For every ` ≤ 1 and r > 0, we set for λ > 0,

F δ
R,`,r(λ) = φ(2−`λ/R)F δ

R(λm)(1− e−(rλ)m

). (3.6)

We may write
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F δ
R(L)(I − e−rmL)f = lim

N→∞

1∑

`=−N

F δ
R,`, r(

m
√

L)f,

where the sequence converges strongly in L2(X).
For a ball B, we let rB be the radius of B. For every j = 2, 3, . . . , we recall

that Uj(B) = 2j+1B\2jB is defined in (2.10). Let KF δ
R,`, rB

(
m√

L)(x, y) be the kernel

of the operator F δ
R,`, rB

(m
√

L). Then the following result holds.

Lemma 3.1. Suppose that F δ
R,`, rB

(m
√

L) are defined as above. Let σ > (n/2)−
(1/q) with some q ∈ [2,∞] and let n/2 < s < σ + (1/q) and m + (n/2) − s > 0.
Then there exists a constant C > 0 such that

∫ ∞

0

∫

Uj(B)

(∣∣KF δ
R,`, rB

(
m√

L)(x, y)
∣∣2 +

∣∣KF δ
R,`, rB

(
m√

L)(y, x)
∣∣2)dµ(x)

dR

R

≤ Cec|τ |

V (2j+1B)
(
2(2m−1)`2−j + 2(2m+n−2s)`2j(n−2s)

)
, j = 2, 3, . . . (3.7)

Proof of Lemma 3.1. Since L is a non-negative self-adjoint operator on
L2(X), we have that KF δ

R,`, rB
(
m√

L)(y, x) = K
F

δ
R,`, rB

(
m√

L)
(x, y). So we only estimate

(3.7) for the kernel KF δ
R,`, rB

(
m√

L)(x, y) since KF δ
R,`, rB

(
m√

L)(y, x) satisfies the similar

estimate as KF δ
R,`, rB

(
m√

L)(x, y).

Note that suppF δ
R,`,rB

(λ) ⊂ [2`R/4, 2`R]. We use Lemma 2.1 and Hölder’s
inequality to obtain that for every y ∈ B and every s > 0,

∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(x)

≤
∫

X

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2(1 + 2`Rd(x, y))2sdµ(x)

(
2jrB2`R

)−2s

≤ C

V (y, (2`R)−1)
(
2jrB2`R

)−2s∥∥F δ
R,`,rB

(2`Rλ)
∥∥2

W q
s
. (3.8)

Now for any Sobolev space W q
s (R), if k is an integer greater than s, then

∥∥F δ
R,`,rB

(2`Rλ)
∥∥

W q
s

≤ C
∥∥(2`λ)mφ(λ)(1− 2m`λm)δ

+

∥∥
W q

s

∥∥(1− e−(2`RrB)mλm

)
∥∥

Ck[1/4,1]

≤ C2m`
∥∥φ(λ)(1− 2m`λm)δ

+

∥∥
W q

s
min{1, (2`RrB)m}. (3.9)
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Note that for all y ∈ B, by (1.2),

1
V (y, (2`R)−1)

≤ V (y, 2j+2rB)
V (y, (2`R)−1)V (2j+1B)

≤ C

V (2j+1B)
max

{
1, (2jrB2`R)n

}
. (3.10)

Hence by (3.8), (3.9) and (3.10), we have that for every y ∈ B and every s > 0,

∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(x)

≤ C22m`

V (2j+1B)
max

{
1, (2jrB2`R)n

}
min

{
1, (2`RrB)2m

}

× (
2jrB2`R

)−2s∥∥φ(λ)(1− 2m`λm)δ
+

∥∥2

W q
s
. (3.11)

We now use (3.11) to estimate (3.7). One may write

∫ ∞

0

∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(x)

dR

R

≤
( ∫ 2−(j+`)r−1

B

0

+
∫ ∞

2−(j+`)r−1
B

) ∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(x)

dR

R

= I + II.

For the term I, we note that 0 < R < 2−(j+`)r−1
B , and then max

{
1, (2jrB2`R)n

}
≤ 1. Let s = 1/2 in (3.11). It follows by Lemma 2.2 that ‖φ(λ)(1 −
2m`λm)δ

+‖W q
s

< Cec|τ |. Also, since ` ≤ 1, this implies that min{1, (2`RrB)2m} ≤
C min{1, (RrB)2m}. Those facts give

I ≤ Cec|τ |

V (2j+1B)

∫ 2−(j+`)r−1
B

0

22m` min
{
1, (RrB)2m

}(
2jrB2`R

)−1 dR

R

≤ Cec|τ |

V (2j+1B)
2(2m−1)`2−j

∫ ∞

0

min
{
1, (RrB)2m

}
(RrB)−1 dR

R

≤ Cec|τ |

V (2j+1B)
2(2m−1)`2−j .
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Consider the term II. Since σ > (n/2)−(1/q), we can choose s in (3.11) satisfying
n/2 < s < σ + (1/q) and m + (n/2) − s > 0. By Lemma 2.2 again, we have that
‖φ(λ)(1− 2m`λm)δ

+‖W q
s

< Cec|τ |. One obtains

II ≤ Cec|τ |

V (2j+1B)

∫ ∞

0

22m` min
{
1, (RrB)2m

}(
2jrB2`R

)n−2s dR

R

≤ Cec|τ |

V (2j+1B)
2(2m+n−2s)`2j(n−2s)

∫ ∞

0

min
{
1, (RrB)2m

}
(RrB)n−2s dR

R

≤ Cec|τ |

V (2j+1B)
2(2m+n−2s)`2j(n−2s).

Combining estimates I and II, we have therefore proved (3.7) for the kernel
KF δ

R,`, rB
(
m√

L)(x, y), and then the proof of Lemma 3.1 is finished.

Back to the proof of Theorem 1.1. We now begin to prove (3.4) by
considering the following three sub-cases.

Subcase (2.1). We first apply Proposition 2.3 to show that if σ > (n/2)−
(1/q), then Gδ(L) is of weak type (1, 1), and bounded on Lp(X) for 1 < p ≤ 2.

Let B be a ball with rB the radius of B and all f supported in B. We let
T = Gδ(L) and ArB

= e−rm
B L in Proposition 2.3. From the definition of Gδ(L) and

(3.6), we use the Minkowski inequality to obtain that for every j ≥ 2,

∥∥Gδ(L)(I − e−rm
B L)f

∥∥
L2(Uj(B))

≤
∑

`≤1

( ∫ ∞

0

∫

Uj(B)

∣∣F δ
R,`,rB

(m
√

L)f
∣∣2dµ

dR

R

)1/2

. (3.12)

By Hölder’s inequality and Lemma 3.1,

∫ ∞

0

∫

Uj(B)

∣∣F δ
R,`,rB

(m
√

L)f
∣∣2dµ

dR

R

≤ sup
y∈B

∫ ∞

0

∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(x)

dR

R
‖f‖2L1(X)

≤ Cec|τ |

V (2j+1B)
(
2(2m−1)`2−j + 2(2m+n−2s)`2j(n−2s)

)‖f‖2L1(X). (3.13)

Note that n/2 < s < σ + (1/q) and m + (n/2)− s > 0. Putting (3.13) into (3.12),
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a simple calculation shows that for every j ≥ 2,

( ∫

Uj(B)

∣∣Gδ(L)(I−e−rm
B L)f

∣∣2dµ

)1/2

≤ Cec|τ |g(j)V (2j+1B)−1/2‖f‖L1(X) (3.14)

with
∑

g(j) =
∑

(2−j/2 + 2j(n/2−s)) < ∞. This verifies estimate (2.11) to T =
Gδ(L) and ArB

= e−rm
B L.

Note also that by the Gaussian bounds (1.4), estimate (2.12) always holds
for ArB

= e−rm
B L. Therefore the operator Gδ(L) is of weak type (1, 1), hence by

interpolation,

‖Gδ(L)f‖Lp(X) ≤ Cp, νec|τ |‖f‖Lp(X) (3.15)

for 1 < p ≤ 2 and δ = ν + iτ , ν > (n/2)− (1/q).

Subcase (2.2). We now apply Proposition 2.4 to show that if σ > (n/2)−
(1/q), then Gδ(L) is bounded on Lp(X) for 2 ≤ p < ∞.

Recall that Proposition 2.4 applies if T = Gδ(L) is assumed to act on Lp(X).
If we set Gδ,ε(L)f(x) = cmδ(

∫ 1/ε

ε
|∂RSδ+1

R (L)f(x)|2RdR)1/2 for 0 < ε < 1, then
for f ∈ L2(X) we have ‖Gδ,ε(L)f‖L2(X) ≤ Bσ‖f‖L2(X) and Gδ,ε(L)f → Gδ(L)f in
L2(X) as ε → 0 while ‖Gδ,ε(L)f‖Lp(X) ≤ Cε‖f‖Lp(X) for f ∈ Lp(X) (this follows
from (2.3)). As the application of Proposition 2.4 to Gδ,ε(L) gives us a uniform
bound with respect to ε, a limiting argument yields the Lp-boundedness of Gδ(L)
on L2(X) ∩ Lp(X), hence on Lp(X). Henceforth, we ignore this approximation
step and our goal is now to establish (2.13) and (2.14) for Gδ(L).

Let f ∈ L2(X). Take a ball B with radius rB and a point y in B. Decompose
f as f1 + f2 + f3 + · · · with fj = fχUj(B). By the Minkowski inequality,

∥∥Gδ(L)(I − e−rm
B L)f

∥∥
L2(B)

≤
∑

j≥1

∥∥Gδ(L)(I − e−rm
B L)fj

∥∥
L2(B)

. (3.16)

For j = 1, we use the L2 boundedness of Gδ(L)(I − e−rm
B L):

∥∥Gδ(L)(I − e−rm
B L)f1

∥∥
L2(B)

≤ C
∥∥f

∥∥
L2(4B)

≤ CV (4B)1/2
(
M(|f |2))1/2(y). (3.17)

For j ≥ 2 we use the Minkowski inequality and the Cauchy-Schwarz inequality to
write
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∥∥Gδ(L)(I − e−rm
B L)fj

∥∥
L2(B)

≤
∑

`≤1

( ∫ ∞

0

∫

B

∣∣F δ
R,`,rB

(m
√

L)fj(x)
∣∣2dµ(x)

dR

R

)1/2

≤ V (B)1/2‖fj‖L2(X)

∑

`≤1

{
sup
x∈B

∫ ∞

0

∫

Uj(B)

∣∣KF δ
R,`,rB

(
m√

L)(x, y)
∣∣2dµ(y)

dR

R

}1/2

.

(3.18)

Now we apply Lemma 3.1 again to (3.18), and a simple calculation shows that for
every j ≥ 2,

∥∥Gδ(L)(I − e−rm
B L)fj

∥∥
L2(B)

≤ Cec|τ |V (B)1/2
(
2−j/2 + 2j(n/2−s)

)(
M(|f |2))1/2(y), (3.19)

which, together with estimates (3.16) and (3.17), verifies condition (2.13) in Propo-
sition 2.4 to T = Gδ(L) and ArB

= e−rm
B L.

Next we have to check (2.14) in Proposition 2.4. From the Gaussian bounds
(1.4) of the heat kernel prm

B
(x, y) of e−rm

B L and the commutativity of the semigroup,
we have that for any x ∈ B,

∣∣F δ
R(m
√

L)
(
e−rm

B Lf
)
(x)

∣∣

=
∣∣e−rm

B L
(
F δ

R(m
√

L)f
)
(x)

∣∣

≤ C
∑

j≥1

e−c2jm/(m−1)
2nj

(
1

V (2j+1B)

∫

2j+1B

∣∣F δ
R(m
√

L)f(y)
∣∣2dµ(y)

)1/2

,

which, together with the Minkowski inequality, gives

∣∣Gδ(L)(e−rm
B Lf)(x)

∣∣

≤ C
∑

j≥1

e−c2jm/(m−1)
2nj

( ∫ ∞

0

1
V (2j+1B)

∫

2j+1B

∣∣F δ
R(m
√

L)f(y)
∣∣2dµ(y)

dR

R

)1/2

.

Exchanging the sum and integral, the latter is equal to

C
∑

j≥1

e−c2jm/(m−1)
2nj

(
1

V (2j+1B)

∫

2j+1B

∣∣Gδ(L)f
∣∣2dµ

)1/2
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which is controlled by C(M(|Gδ(L)|2))1/2(y) for any y ∈ B. This verifies estimate
(2.14). Therefore, it follows by interpolation that

‖Gδ(L)f‖Lp(X) ≤ Cp,νec|τ |‖f‖Lp(X) (3.20)

for 2 ≤ p < ∞ and δ = ν + iτ , ν > (n/2)− (1/q).

Subcase (2.3). Now we can use the Stein’s interpolation theorem ([34,
p. 100]) to prove (3.4). Let H be a Hilbert space of functions on (0,∞) whose
inner product is defined by 〈fR, gR〉 =

∫∞
0

fRgRR−1dR. Let 1 < p < ∞ and let
Lp
C(X) and Lp

H(X) be the spaces of Lp integrable functions with values in C and
H, respectively. Recall that F δ

R(λ) = cmδR(∂/∂R)Sδ+1
R (λ) is defined in (3.2). It

follows from (3.15) and (3.20) that if σ > (n/2)− (1/q), then

F δ
R(L)f = cmδR

∂

∂R
Sδ+1

R (L)f (3.21)

can be seen as a linear operator mapping boundedly from Lp
C(X) into Lp

H(X) for
all 1 < p < ∞. Moreover, we have that ‖F δ

R(L)f‖Lp
H(X) = ‖Gδ(L)f‖Lp(X).

The Stein’s interpolation theorem is valid for H-valued Lp-spaces and apply
it between the inequalities (3.1) and (3.15), and (3.1) and (3.20) to get that if
p ∈ (1,∞) and σ > (n + 1− (2/q))|(1/p)− (1/2)| − 1/2, then

‖Gσ(L)f‖Lp(X) = ‖Fσ
R(L)f‖Lp

H(X) ≤ C‖f‖Lp(X). (3.22)

The desired estimate (3.4) follows readily, and the proof of Case 2 is complete.

Case 3: Finally, we show that for every p ∈ (1,∞) satisfying σ > (n + 1 −
(2/q))|(1/p) − (1/2)| − 1/2, there exists a constant C = C(p) > 0 such that for
every f ∈ Lp(X),

‖f‖Lp(X) ≤ C‖Gσ(L)f‖Lp(X). (3.23)

To prove it, we need a suitable version of the Calderón reproducing formula. By
L2-functional calculus for every f ∈ L2(X) one can write

f = B−2
σ

∫ ∞

0

(
Fσ

R(L)
)2

f
dR

R

with the integral converging in L2(X).
Estimate (3.23) then follows from (3.22) and the duality method. Hence, the
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proof of Theorem 1.1 is complete. ¤

3.2. Proof for the Hörmander type spectral multiplier theorem.
Observe that

sup
R>0

R

∫ 2R

R

|F ′(λ)|2dλ ∼ sup
R>0

R

∫ 2R

R

|G′(λ)|2dλ,

where G(λ) = F ( m
√

λ). For this reason, we can replace F (L) by F ( m
√

L) in the
proof. Notice that F (λ) = F (λ)− F (0) + F (0) and hence

F ( m
√

L) = (F (·)− F (0))( m
√

L) + F (0)I.

Replacing F by F − F (0), we may assume in the sequel that F (0) = 0. Let
f ∈ L2(X) and h = F (m

√
L)f . Recall that G0(L) is the square function in (1.6).

The general idea of the proof is to show that

G0(L)h(x) ≤ CBG0(L)f(x), x ∈ X. (3.24)

Then in view of (3.24) and Theorem 1.1 the following norm inequalities prove the
theorem:

∥∥F (m
√

L)f
∥∥

Lp(X)
= ‖h‖Lp(X) ≤ C‖G0(L)h‖Lp(X)

≤ CB‖G0(L)f‖Lp(X) ≤ CB‖f‖Lp(X)

for all p ∈ (1,∞) with (n + 1− (2/q))|(1/p)− (1/2)| < 1/2.
Let us prove (3.24). For simplicity, we denote by dEλ = dE m√

L(λ). With the
notation as in the proof of Theorem 1.1, we have

F 0
R(L)h(x) =

∫ R

0

λm

Rm
F (λ)dEλf(x),

and by integration by parts to obtain

∫ R

0

λm

Rm
F (λ)dEλf(x) = F (λ)

∫ λ

0

tm

Rm
dEtf(x)

∣∣∣
R

0
−

∫ R

0

F ′(λ)
∫ λ

0

tm

Rm
dEtf(x)dλ.

Observe that by (1.7),
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∣∣∣∣
∫ λ

0

tm

Rm
dEtf(x)

∣∣∣∣ ≤
C√

V (x, λ−1)

∥∥(λmtm/Rm)
∥∥

L2([0,λ])
‖f‖L2(X).

Since F is bounded, we obtain

lim
λ→0

F (λ)
∫ λ

0

tm

Rm
dEtf(x) = 0,

which yields

F 0
R(L)h(x) = F (R)F 0

R(L)f(x)−
∫ R

0

F ′(λ)
λm

Rm
F 0

λ(L)f(x)dλ.

By the Schwarz inequality the last integral is, in absolute value, dominated by

(
1
R

∫ R

0

|F ′(λ)|2λ2dλ

)1/2( 1
R2m−1

∫ R

0

∣∣F 0
λ(L)f(x)

∣∣2λ2m−2dλ

)1/2

.

Divide (0, R) into the intervals of the form (R/2j+1, R/2j) and dominate λ2 by
R2/22j in each interval. Then the first integral is bounded by

∞∑

j=0

1
2j−1

R

2j+1

∫ R/2j

R/2j+1
|F ′(λ)|2dλ ≤ 4 sup

R>0
R

∫ 2R

R

|F ′(λ)|2dλ.

Therefore

G0(L)h(x)

≤ ‖F‖L∞

( ∫ ∞

0

F 0
R(L)f(x)

R
dR

)1/2

+ 2
(

sup
R>0

R

∫ 2R

R

|F ′(λ)|2dλ

)1/2( ∫ ∞

0

∣∣F 0
λ(L)f(x)

∣∣2λ2m−2dλ

∫ ∞

λ

dR

R2m

)1/2

≤ 4BG0(L)f(x).

Estimate (3.24) follows readily. The proof of Theorem 1.3 is complete. ¤
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4. Applications.

4.1. Sub-Laplacians on homogeneous groups.
Let G be a Lie group of polynomial growth and let X1, . . . , Xk be a system

of left-invariant vector fields on G satisfying the Hörmander condition. We define
the sub-Laplace operator L acting on L2(G) by the formula

L = −
k∑

i=1

X2
i . (4.1)

If B(x, r) is the ball define by the distance associated with system X1, . . . , Xk (see
e.g. Chapter III.4, [32]), then there exist natural numbers n0, n∞ ≥ 0 such that
V (x, r) ∼ rn0 for r ≤ 1 and V (x, r) ∼ rn∞ for r > 1 (see e.g. Chapter III.2,
[32]). Note that this implies that doubling condition (1.2) holds with the doubling
dimension n = max{n0, n∞}. Note also that one can take D = 0 in the estimates
(1.3). We call G a homogeneous group if there exists a family of dilations on G. A
family of dilations on a Lie group G is a one-parameter group (δ̃t)t>0 (δ̃t◦ δ̃t = δ̃ts)
of automorphisms of G determined by

δ̃tYj = tnj Yj , (4.2)

where Y1, . . . , Y` is a linear basis of Lie algebra of G and nj ≥ 1 for 1 ≤ j ≤ ` (see
[16]). We say that an operator L defined by (4.1) is homogeneous if δ̃tXi = tXi

for 1 ≤ i ≤ k and the system X1, . . . , Xk satisfies the Hörmander condition. Then
for the sub-Riemannian geometry corresponding to the system X1, . . . , Xk one
has n0 = n∞ =

∑`
j=1 nj (see [16]). Hence the doubling dimension is equal to

n = n0 = n∞ (see e.g., [8], [11], [16], [19]).

Proposition 4.1. Let L be the homogeneous sub-Laplacian defined by the
formula (4.1) acting on a homogeneous group G. Then the results of Theorems
1.1 and 1.3 hold for q = 2.

Proof. It is well know that the heat kernel corresponding to the operator
L satisfies Gaussian bound (1.4). It is also not difficult to check that for some
constant C > 0

∥∥F (
√

L)
∥∥2

L2(X)→L∞(X)
= C

∫ ∞

0

|F (t)|2tn−1dt.

See for example equation (7.1) of [14] or [8, Proposition 10]. It follows from
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the above equality that the operator L satisfies estimate (1.7) with q = 2. By
Theorems 1.1 and 1.3, Proposition 4.1 follows readily. ¤

Corollary 4.2. Let L be a positive definite self-adjoint left invariant op-
erator on a homogeneous group G. Suppose that the operator L is homogeneous
of order m, i.e., δ̃tL = tmL and that

∣∣Kexp(−L)(x, y)
∣∣ =

∣∣Kexp(−L)(e, x−1y)
∣∣ ≤ C exp

(− c|x−1y|m/(m−1)
)
, (4.3)

where C, c are positive constants and | · | is a homogeneous norm on G. Then the
results of Theorems 1.1 and 1.3 hold for q = 2.

Proof. From Corollary 7.1 of [14], we know that the operator L satisfies
the Plancherel estimate (1.7) with q = 2. By Theorems 1.1 and 1.3, Corollary 4.2
follows readily. ¤

Proposition 4.1 can be extended to “quasi-homogeneous” operators acting on
homogeneous groups, see [26] and [14].

Proposition 4.3. Let L be a group invariant operator acting on a Lie group
G of polynomial growth defined by (4.1). Then the results of Theorems 1.1 and 1.3
hold for q = ∞ and the doubling dimension n = max{n0, n∞}.

Proof. It is well known that the heat kernel corresponding to the operator
L satisfies Gaussian bound (1.4) so that the operator L satisfies estimate (1.7) for
q = ∞ (see also Lemma 2.2 of [14]). Hence the results of Theorems 1.1 and 1.3
hold for q = ∞ and the doubling dimension n = max{n0, n∞}. ¤

4.2. Schrödinger operators with rough potentials.
Consider the Shrödinger operator −∆ + V on R3, where ∆ is the standard

Laplace operator and V (x) ≥ 0 is a compactly supported function satisfying

∫

R6

V (x)V (y)
|x− y|2 dxdy < ∞ and sup

x∈R3

∫

R3

V (y)
|x− y|dy < 4π. (4.4)

For the Schrödinger operator in this setting, estimate (1.7) holds for q = 2
(see Theorem 7.15, [14]). We then have the following result.

Proposition 4.4. Assume that L = −∆ + V where ∆ is the standard
Laplace operator acting on R3 and V (x) ≥ 0 is a compactly supported function
satisfying condition (4.4). Then the operator L satisfies estimate (1.7) for q = 2,
and hence the results of Theorems 1.1 and 1.3 hold for q = 2.
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Proof. This result is a consequence of Theorem 7.15 of [14] and Theorems
1.1 and 1.3. ¤

Acknowledgements. The authors would like to thank the referee for sev-
eral useful suggestions.
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