The l-class group of the Z_{p}-extension over the rational field

By Kuniaki Horie and Mitsuko Horie

(Received July 2, 2010)
(Revised Mar. 1, 2011)

Abstract

Let p be an odd prime, and let \boldsymbol{B}_{∞} denote the \boldsymbol{Z}_{p}-extension over the rational field. Let l be an odd prime different from p. The question whether the l-class group of \boldsymbol{B}_{∞} is trivial has been considered in our previous papers mainly for the case where l varies with p fixed. We give a criterion, for checking the triviality of the l-class group of \boldsymbol{B}_{∞}, which enables us to discuss the triviality when p varies with l fixed. As a consequence, we find that, if l does not exceed 13 and p does not exceed 101, then the l-class group of \boldsymbol{B}_{∞} is trivial.

Introduction.

Let p be any odd prime number. Let \boldsymbol{Z}_{p} denote the ring of p-adic integers, and \boldsymbol{B}_{∞} the \boldsymbol{Z}_{p}-extension over the rational field \boldsymbol{Q}, namely, the unique abelian extension over \boldsymbol{Q}, contained in the complex field \boldsymbol{C}, whose Galois group over \boldsymbol{Q} is topologically isomorphic to the additive group of \boldsymbol{Z}_{p}. The p-class group of \boldsymbol{B}_{∞} is known to be trivial (cf. Iwasawa [7]). Let l be an odd prime different from p. In the present paper, we shall first give a sufficient condition for the triviality of the l-class group of \boldsymbol{B}_{∞} by means of the reflection theorem on l-class groups (cf. Leopoldt [8]) together with some results obtained through algebraic study of the analytic class number formula (cf. Hasse [2], [4], Washington [11]). Discussing the sufficient condition with the help of a personal computer, we shall next see that, if $l \leq 13$ and $p \leq 101$, then the l-class group of \boldsymbol{B}_{∞} is trivial. Although our numerical result is thus limited, our criterion for checking the triviality of the l-class group of \boldsymbol{B}_{∞} seems to be widely applicable. In any case, the upper bounds for l and p in the above would become larger by further calculations.

As to the 2-class group of \boldsymbol{B}_{∞}, we have given in [5] a sufficient condition for its triviality on the basis of some results in [3], [4]. Such a study motivates the investigation of the present paper; while, in connection with the contents of [3], [5], Ichimura and Nakajima have recently shown in [6] that, if $p<500$, then the

[^0]2-class group of \boldsymbol{B}_{∞} is trivial.
Acknowledgements. The authors are thankful to the referee who suggested natural modifications to the original proof of Lemma 4 including corrections of mistakes in the proof.

1. Notations and Theorems.

For each positive integer a, we put

$$
\xi_{a}=e^{2 \pi i / p^{a}}
$$

Let \boldsymbol{P}_{∞} denote the composite, in \boldsymbol{C}, of the cyclotomic fields of p^{b} th roots of unity for all positive integers b, i.e., let

$$
\boldsymbol{P}_{\infty}=\bigcup_{b=1}^{\infty} \boldsymbol{Q}\left(\xi_{b}\right)=\boldsymbol{B}_{\infty}\left(\xi_{1}\right)
$$

Let F be the decomposition field of l for the abelian extension $\boldsymbol{P}_{\infty} / \boldsymbol{Q}$. We note that $\boldsymbol{P}_{\infty} / F\left(\xi_{1}\right)$ is a \boldsymbol{Z}_{p}-extension. There exists a unique positive integer ν for which $\boldsymbol{Q}\left(\xi_{\nu}\right)$ is an extension of F and the degree of $\boldsymbol{Q}\left(\xi_{\nu}\right) / F$ divides $p-1$:

$$
F \subseteq \boldsymbol{Q}\left(\xi_{\nu}\right), \quad\left[\boldsymbol{Q}\left(\xi_{\nu}\right): F\right] \mid p-1
$$

In other words, ν is the positive integer determined by

$$
l^{p-1} \equiv 1 \quad\left(\bmod p^{\nu}\right), \quad l^{p-1} \not \equiv 1 \quad\left(\bmod p^{\nu+1}\right) .
$$

Let \mathfrak{O} denote the ring of algebraic integers in F. Let S be the minimal set of non-negative integers less than $\varphi\left(p^{\nu}\right)=p^{\nu-1}(p-1)$ such that the additive group in $\boldsymbol{Q}\left(\xi_{\nu}\right)$ generated by ξ_{ν}^{m} for all $m \in S$ contains \mathfrak{O}, i.e.,

$$
\mathfrak{O} \subseteq \sum_{m \in S} \boldsymbol{Z} \xi_{\nu}^{m}
$$

\boldsymbol{Z} being the ring of (rational) integers. Evidently, S is not empty: $0<|S| \leq \varphi\left(p^{\nu}\right)$. Now, take any cyclic group Γ of order p^{ν}, and a generator γ of Γ;

$$
\Gamma=\left\{\gamma^{m} \mid m \in \boldsymbol{Z}, \quad 0 \leq m<p^{\nu}\right\} .
$$

Let S^{*} denote the minimal set of non-negative integers less than p^{ν} such that in $\boldsymbol{Z}[\Gamma]$, the group ring of Γ over \boldsymbol{Z},

$$
\left(1-\gamma^{p^{\nu-1}}\right) \sum_{m \in S} b_{m} \gamma^{m} \in \sum_{m^{\prime} \in S^{*}} \boldsymbol{Z} \gamma^{m^{\prime}}
$$

for every sequence $\left\{b_{m}\right\}_{m \in S}$ of integers with $\sum_{m \in S} b_{m} \xi_{\nu}^{m} \in \mathfrak{O}$. We easily see that S^{*} does not depend on the choice of Γ or γ. It also follows that $0<\left|S^{*}\right| \leq p^{\nu}$.

Let v be the number of distinct prime divisors of $(p-1) / 2$. Take the prime powers $q_{1}>1, \ldots, q_{v}>1$ satisfying

$$
\frac{p-1}{2}=q_{1} \ldots q_{v}
$$

and let V denote the subset of the cyclic group $\left\langle e^{2 \pi i /(p-1)}\right\rangle$ consisting of

$$
e^{\pi i m_{1} / q_{1}} \ldots e^{\pi i m_{v} / q_{v}}
$$

for all v-tuples $\left(m_{1}, \ldots, m_{v}\right)$ of integers with $0 \leq m_{1}<q_{1}, \ldots, 0 \leq m_{v}<q_{v}$. We understand that $V=\{1\}$ if $p=3$. Furthermore, V is a complete set of representatives of the factor group $\left\langle e^{2 \pi i /(p-1)}\right\rangle /\langle-1\rangle$. Let Φ denote the family of maps from V to the set of non-negative integers at most equal to $l\left|S^{*}\right|$. We put

$$
M=\max _{\kappa \in \Phi}\left|\mathfrak{N}\left(\sum_{\varepsilon \in V} \kappa(\varepsilon) \varepsilon-1\right)\right|,
$$

where \mathfrak{N} denotes the norm map from $\boldsymbol{Q}\left(e^{2 \pi i /(p-1)}\right)$ to \boldsymbol{Q}. Clearly, M is a positive integer.

Let R be a set of positive integers smaller than p such that

$$
R \cap\{p-a \mid a \in R\}=\emptyset, \quad R \cup\{p-a \mid a \in R\}=\{1, \ldots, p-1\}
$$

Given any integer $u \geq 0$, let R_{u} denote the set of integers b for which $b^{p-1} \equiv 1$ $\left(\bmod p^{u+1}\right), 0<b<p^{u+1}$, and $b \equiv a(\bmod p)$ with some $a \in R$. It follows that $\left|R_{u}\right|=|R|=(p-1) / 2$; because, for each $a \in R$, there exists a unique $b \in R_{u}$ with $b \equiv a(\bmod p)$. For each positive integer n and each $\lambda \in \boldsymbol{Q}$ either relatively prime to p or in $p \boldsymbol{Z}$, we denote by $z_{n}(\lambda)$ the integer such that

$$
z_{n}(\lambda) \equiv \lambda \quad\left(\bmod p^{n}\right), \quad 0 \leq z_{n}(\lambda)<p^{n}
$$

As easily seen, any $b \in R_{u}$, any integer c with $p \nmid c$, and any integer $u^{\prime}>u$ satisfy

$$
\left(z_{u^{\prime}}\left(c^{-1}\right) z_{u+1}(b c)\right)^{p-1} \equiv 1 \quad\left(\bmod p^{u+1}\right)
$$

whence

$$
\left(z_{u^{\prime}}\left(c^{-1}\right) z_{u+1}(b c)\right)^{p^{\nu}-1} \equiv 1 \quad\left(\bmod p^{u+1}\right)
$$

We then define $w_{u, u^{\prime}}(b, c)$ to be the least non-negative residue, modulo p^{ν}, of the integer $\left(1-\left(z_{u^{\prime}}\left(c^{-1}\right) z_{u+1}(b c)\right)^{p^{\nu}-1}\right) p^{-u-1}$:

$$
w_{u, u^{\prime}}(b, c)=z_{\nu}\left(\left(1-\left(z_{u^{\prime}}\left(c^{-1}\right) z_{u+1}(b c)\right)^{p^{\nu}-1}\right) p^{-u-1}\right)
$$

Let \boldsymbol{B}_{u} denote the subfield of \boldsymbol{B}_{∞} with degree p^{u}, and let h_{u} denote the class number of \boldsymbol{B}_{u}. Since p is totally ramified for $\boldsymbol{B}_{\infty} / \boldsymbol{Q}$, class field theory shows that $h_{n-1} \mid h_{n}$ for every positive integer n. One of our results is now stated as follows.

Theorem 1. Let n be an integer $\geq 2 \nu-1$, so that $n \geq \nu$. Assume that, for any positive integer $j \leq l-2$ relatively prime to $l-1$, there exists an integer c with $p \nmid c$ for which the algebraic integer

$$
\sum_{b \in R_{n-\nu}} \sum_{a=0}^{z_{\nu}(b c)-1} \sum_{r=0}^{l-1}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right)^{j} \xi_{\nu}^{z_{\nu}\left(b^{-1} c^{-1}\right)(l a+r)+w_{n-\nu, n+1}(b, c)}
$$

is relatively prime to l, i.e., does not belong to any prime ideal of $\boldsymbol{Q}\left(\xi_{\nu}\right)$ dividing l. Then l does not divide the integer h_{n} / h_{n-1}.

On the other hand, [4, Lemma 3] means that l does not divide $h_{n^{\prime}} / h_{n^{\prime}-1}$ for any integer $n^{\prime} \geq 2 \nu-1$ satisfying $p^{n^{\prime}-\nu+1}>M$. Hence the above theorem leads us to the following.

Theorem 2. Let n_{0} be an integer $\geq 2 \nu-2$. Assume that $l \nmid h_{n_{0}}$ and that, for any positive integer $j \leq l-2$ relatively prime to $l-1$ and for any integer $n>n_{0}$ satisfying $p^{n-\nu+1} \leq M$, there exists an integer c with $p \nmid c$ for which

$$
\sum_{b \in R_{n-\nu}} \sum_{a=0}^{z_{\nu}(b c)-1} \sum_{r=0}^{l-1}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right)^{j} \xi_{\nu}^{z_{\nu}\left(b^{-1} c^{-1}\right)(l a+r)+w_{n-\nu, n+1}(b, c)}
$$

is relatively prime to l. Then the l-class group of \boldsymbol{B}_{∞} is trivial.

For each pair (r, n) of positive integers, let $H_{n}(r)$ denote the set of positive integers a with $p \nmid a$ satisfying $a / p^{n+1}<r / l$, and for each integer b with $p \nmid b$, let $y_{n}(b)$ denote the least non-negative residue, modulo p^{n}, of the integer $\left(1-b^{p^{n}-1}\right) / p$. The following result, independent of ν, is useful in checking the indivisibility $l \nmid h_{n} / h_{n-1}$ particularly for a positive integer $n \leq 2 \nu-2$.

Theorem 3. Let n be a positive integer. Assume that, for each positive integer $j \leq l-2$ relatively prime to $l-1$, the algebraic integer

$$
\sum_{r=1}^{(l-1) / 2} \sum_{a \in H_{n}(r)} r^{j} \xi_{n}^{y_{n}(a)}
$$

is relatively prime to l. Then l does not divide h_{n} / h_{n-1}.

2. Proofs of Theorems 1 and 3.

To prove Theorems 1 and 3, we shall first give some preliminaries. Let \boldsymbol{Z}_{l}, \boldsymbol{Q}_{l}, and Ω_{l} denote the ring of l-adic integers, the field of l-adic numbers, and an algebraic closure of \boldsymbol{Q}_{l}, respectively. All algebraic numbers in \boldsymbol{C} will also be regarded as elements of Ω_{l} through a fixed imbedding, into Ω_{l}, of the algebraic closure of \boldsymbol{Q} in \boldsymbol{C}. In the rest of the paper, we suppose every Dirichlet character to be primitive. Given any Dirichlet character χ, we denote by g_{χ} the order of χ, denote by f_{χ} the conductor of χ, put $\mu_{\chi}=e^{2 \pi i / f_{\chi}}$, and define χ^{*} to be the homomorphism of the Galois group $\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{\chi}\right) / \boldsymbol{Q}\right)$ into the multiplicative group of Ω_{l} such that, for each integer a relatively prime to $f_{\chi}, \chi(a)$ is the image under χ^{*} of the automorphism in $\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{\chi}\right) / \boldsymbol{Q}\right)$ sending μ_{χ} to μ_{χ}^{a}. Let K_{χ} denote the fixed field in $\boldsymbol{Q}\left(\mu_{\chi}\right)$ of the kernel of χ^{*} :

$$
\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{\chi}\right) / K_{\chi}\right)=\operatorname{Ker}\left(\chi^{*}\right)
$$

Then K_{χ} is a cyclic extension over \boldsymbol{Q} of degree g_{χ} with conductor f_{χ}. Let

$$
G_{\chi}=\operatorname{Gal}\left(K_{\chi} / \boldsymbol{Q}\right)
$$

and let A_{χ} denote the l-class group of K_{χ}, which becomes a module over the group ring $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$ in the obvious manner. Let $\widetilde{\chi}$ denote the rational irreducible character of G_{χ} such that, for each $\mathfrak{s} \in \operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{\chi}\right) / \boldsymbol{Q}\right)$, the image under $\tilde{\chi}$ of the restriction of \mathfrak{s} to K_{χ} is the sum of $\chi^{*}(\mathfrak{s})^{j}$ for all positive integers $j \leq g_{\chi}$ relatively prime to g_{χ}. When l does not divide $g_{\chi}=\left[K_{\chi}: \boldsymbol{Q}\right]$, we can define an idempotent $\mathfrak{e}(\chi)$ of $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$ by

$$
\mathfrak{e}(\chi)=\frac{1}{g_{\chi}} \sum_{\sigma \in G_{\chi}} \widetilde{\chi}\left(\sigma^{-1}\right) \sigma,
$$

and $A_{\chi}^{\mathfrak{e}(\chi)}=\left\{\alpha^{\mathfrak{e}(\chi)} \mid \alpha \in A_{\chi}\right\}$ is the $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$-submodule of A_{χ} consisting of all elements β of A_{χ} with $\beta^{\mathfrak{e}(\chi)}=\beta$. On the other hand, when χ is odd, i.e., $\chi(-1)=$ -1 , we put

$$
h_{\chi}=\delta_{\chi} \prod_{j}\left(-\frac{1}{2 f_{\chi}} \sum_{a=1}^{f_{\chi}} \chi^{j}(a) a\right)
$$

Here, if f_{χ} is a power of an odd prime and $g_{\chi}=\varphi\left(f_{\chi}\right)$, then δ_{χ} denotes the prime divisor of f_{χ}; otherwise, δ_{χ} denotes 1 ; and j ranges over the positive integers $<g_{\chi}$ relatively prime to g_{χ}. In this case, $4 h_{\chi}$ is known to be a positive integer, so that $h_{\chi} \in \boldsymbol{Z}_{l} \backslash\{0\}$ (cf. [2, Sections 27-33]). Furthermore, unless f_{χ} is a power of a prime number, h_{χ} itself is a positive integer since

$$
-\frac{1}{2 f_{\chi}} \sum_{a=1}^{f_{\chi}} \chi(a) a
$$

is an algebraic integer (cf. [2, Section 28]).
Lemma 1. Let χ be a Dirichlet character as above. Assume that χ is odd and $l \nmid g_{\chi}$. Then the order of $A_{\chi}^{\mathfrak{e}(\chi)}$ is equal to the l-part of h_{χ}, i.e., the highest power of l dividing h_{χ}.

Proof. Let A_{χ}^{-}denote the kernel of the homomorphism $A_{\chi} \rightarrow A_{\chi^{2}}$ induced by the norm map from the ideal class group of K_{χ} to that of $K_{\chi^{2}}$. Since $K_{\chi^{2}}$ is the maximal real subfield of K_{χ}, A_{χ}^{-}is none other than the Sylow l-subgroup of the relative class group of K_{χ}. Naturally A_{χ}^{-}, as well as $A_{\chi^{u}}$ for each positive divisor u of g_{χ}, becomes a $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$-module. Let T be the set of positive odd divisors of g_{χ}. By the assumption $l \nmid g_{\chi}$, each $u \in T$ gives in $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$ an idempotent $\mathfrak{e}_{u}=g_{\chi}^{-1} \sum_{\sigma \in G_{\chi}} \widetilde{\chi^{u}}\left(\sigma^{-1}\right) \sigma, A_{\chi}^{-}$is the direct product of its $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$-submodules $A_{\chi}^{e_{u}}$ for all $u \in T$, and the natural map $A_{\chi^{u}} \rightarrow A_{\chi}$ for each $u \in T$ induces an isomorphism $A_{\chi^{u}}^{\mathfrak{e}\left(\chi^{u}\right)}=A_{\chi^{u}}^{\mathfrak{e}_{u}} \xrightarrow{\sim} A_{\chi}^{\mathfrak{e}_{u}}$ of $\boldsymbol{Z}_{l}\left[G_{\chi}\right]$-modules. We therefore obtain

$$
\left|A_{\chi}^{-}\right|=\prod_{u \in T}\left|A_{\chi^{u}}^{\mathfrak{e}\left(\chi^{u}\right)}\right|
$$

The analytic class number formula implies, however, that $\left|A_{\chi}^{-}\right|$coincides with the l-part of $\prod_{u \in T} h_{\chi^{u}}$; in fact, the relative class number of K_{χ} is equal to $2^{b} \prod_{u \in T} h_{\chi^{u}}$ for some positive integer b (cf. [2, Satz 34]). Thus we can prove the lemma by induction on g_{χ}.

We denote by ω the Teichmüller character modulo l, namely, the odd Dirichlet character of order $l-1$ with conductor l such that, in Ω_{l},

$$
\omega(a) \equiv a \quad(\bmod l) \quad \text { for every } a \in \boldsymbol{Z}
$$

Lemma 2. Let n be a positive integer, and ψ a Dirichlet character of order p^{n} with conductor p^{n+1}. If $A_{\omega \psi^{u}}^{e\left(~\left(\omega \psi^{u}\right)\right.}$ is trivial for every positive integer $u<p^{n}$ relatively prime to p, then $A_{\psi}^{\mathrm{e}(\psi)}$ is trivial.

Proof. Let

$$
\mathfrak{K}=K_{\omega} K_{\psi}=K_{\psi}\left(e^{2 \pi i / l}\right),
$$

and let $G_{\mathfrak{K}}$ denote the Galois group of the abelian extension $\mathfrak{K} / Q: G_{\mathfrak{K}}=\operatorname{Gal}(\mathfrak{K} / \boldsymbol{Q})$. We take any Dirichlet character χ with $K_{\chi} \subseteq \mathfrak{K}$. The composite of the restriction map $G_{\mathfrak{K}} \rightarrow G_{\chi}$ and $\tilde{\chi}$ defines a rational irreducible character of $G_{\mathfrak{K}}$, and an idempotent $\boldsymbol{e}(\chi)$ of $\boldsymbol{Z}_{l}\left[G_{\mathfrak{\Omega}}\right]$ is defined by

$$
\boldsymbol{e}(\chi)=\frac{1}{[\mathfrak{K}: \boldsymbol{Q}]} \sum_{\boldsymbol{s} \in G_{\mathfrak{K}}} \widetilde{\chi}\left(s_{\chi}^{-1}\right) \boldsymbol{s}
$$

where \boldsymbol{s}_{χ} denotes the restriction of each $\boldsymbol{s} \in G_{\mathfrak{K}}$ to K_{χ}. Let $A_{\mathfrak{K}}$ denote the l-class group of \mathfrak{K}. We consider A_{χ}, as well as $A_{\mathfrak{K}}$, to be a $\boldsymbol{Z}_{l}\left[G_{\mathfrak{K}}\right]$-module in the obvious manner. Since $l \nmid\left[\mathfrak{K}: K_{\chi}\right]$, the natural map $A_{\chi} \rightarrow A_{\mathfrak{K}}$ induces an isomorphism $A_{\chi}^{\boldsymbol{e}(\chi)} \xrightarrow{\sim} A_{\mathfrak{K}}^{\boldsymbol{e}(\chi)}$ of $\boldsymbol{Z}_{l}\left[G_{\mathfrak{K}}\right]$-modules. Noting that $l \nmid g_{\chi}$, let $\dot{\chi}$ denote the l-adic irreducible character of G_{χ} such that, for each $\mathfrak{s} \in \operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{\chi}\right) / \boldsymbol{Q}\right)$, the image under $\dot{\chi}$ of the restriction of \mathfrak{s} to K_{χ} is the sum of $\chi^{*}(\mathfrak{s})^{a^{a}}$ for all non-negative integers a smaller than the order of l modulo g_{χ}. We then define an idempotent $\boldsymbol{i}(\chi)$ of $\boldsymbol{Z}_{l}\left[G_{\mathfrak{K}}\right]$ by

$$
i(\chi)=\frac{1}{[\mathfrak{K}: \boldsymbol{Q}]} \sum_{s \in G_{\mathfrak{K}}} \dot{\chi}\left(s_{\chi}^{-1}\right) s
$$

It follows that $\boldsymbol{e}(\chi) \boldsymbol{i}(\chi)=\boldsymbol{i}(\chi)$ in $\boldsymbol{Z}_{l}\left[G_{\boldsymbol{\Omega}}\right]$.

Now, let H denote the set of positive integers $<p^{n}$ relatively prime to p. Assume that $A_{\omega \psi^{u}}^{\mathfrak{e}\left(\omega \psi^{u}\right)}=\{1\}$, i.e., $A_{\mathfrak{K}}^{e\left(\omega \psi^{u}\right)}=\{1\}$ with any $u \in H$. Then $A_{\mathfrak{K}}^{i\left(\omega \psi^{u}\right)}=A_{\mathfrak{K}}^{e\left(\omega \psi^{u}\right) \boldsymbol{i}\left(\omega \psi^{u}\right)}=\{1\}$, while the reflection theorem (cf. [8, Section 3 Der Spigelungssatz]) implies that the rank of (the finite abelian l-group) $A_{\mathfrak{K}}^{i\left(\psi^{-u}\right)}$ does not exceed the rank of $A_{\mathfrak{\Omega}}^{i\left(\omega \psi^{u}\right)}$. We thus obtain $A_{\Omega}^{i\left(\psi^{-u}\right)}=\{1\}$ for every $u \in H$. Furthermore, in $\boldsymbol{Z}_{l}\left[G_{\mathfrak{K}}\right], \boldsymbol{e}(\psi)=\boldsymbol{e}\left(\psi^{-1}\right)$ is the sum of all elements of $\left\{\boldsymbol{i}\left(\psi^{-u}\right) \mid u \in H\right\}$. Hence $A_{\mathfrak{K}}^{e(\psi)}=\{1\}$, and consequently $A_{\psi}^{\mathfrak{e}(\psi)}=\{1\}$.

By means of the lemmas proved above, let us give
Proof of Theorem 1. Take any Dirichlet character ψ of order p^{n} with conductor p^{n+1}. Then $K_{\psi}=\boldsymbol{B}_{n}, K_{\psi^{p}}=\boldsymbol{B}_{n-1}$, and the order of $A_{\psi}^{\mathfrak{e}(\psi)}$ is the l-part of the integer h_{n} / h_{n-1}. The present proof therefore concludes if the triviality of $A_{\psi}^{\mathfrak{e}(\psi)}$ can be shown. On the other hand, Lemmas 1 and 2 show that $A_{\psi}^{\mathfrak{e}(\psi)}=\{1\}$ if l does not divide the integer $h_{\omega \psi^{\prime}}$ for any Dirichlet character ψ^{\prime} of order p^{n} with conductor p^{n+1}. Hence it suffices to prove that l does not divide

$$
h_{\omega \psi}=\prod_{j}\left(-\frac{1}{2 l p^{n+1}} \sum_{a=1}^{l p^{n+1}} \omega^{j}(a) \psi^{j}(a) a\right)
$$

where j ranges over all positive integers $<(l-1) p^{n} / \operatorname{gcd}\left(l-1, p^{n}\right)$ relatively prime to $(l-1) p$. We put

$$
\Theta=-\frac{1}{2 l p^{n+1}} \sum_{a=1}^{l p^{n+1}} \omega^{j}(a) \psi^{j}(a) a, \quad \eta=\psi^{j}\left(1+p^{n-\nu+1}\right),
$$

with any positive integer j relatively prime to $(l-1) p$. Note that Θ is an algebraic integer in $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$, and η is a primitive p^{ν} th root of unity. We denote by \mathfrak{T} the trace map from $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$ to $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{\nu}\right)$. Since $F \subseteq \boldsymbol{Q}\left(\xi_{\nu}\right)$, we have

$$
\begin{aligned}
& \boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{\nu}\right) \neq \boldsymbol{Q}\left(e^{2 \pi i /(l-1)},\right.\left.\xi_{\nu+1}\right) \\
& \text { i.e., }\left[\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right): \boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{\nu}\right)\right]=p^{n-\nu} .
\end{aligned}
$$

Recalling that $n \geq 2 \nu-1$, let c range over the integers not divisible by p. Arguments in the first part of $[\mathbf{1 1}$, Section IV] then teach us that

$$
\begin{aligned}
\mathfrak{T}\left(-\psi^{-j}(c) \Theta\right)= & p^{n-\nu} \sum_{b \in R_{n-\nu}} \psi^{-j}(c) \psi^{j}\left(z_{n-\nu+1}(b c)\right) \\
& \times \sum_{r=0}^{l-1} \omega^{j}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right) \frac{\eta^{z_{\nu}\left(b^{-1} c^{-1}\right) r}}{\eta^{z_{\nu}\left(b^{-1} c^{-1}\right) l}-1}
\end{aligned}
$$

(cf., in particular, $\left[\mathbf{1 1},\left({ }^{* *}\right)\right]$). Each $\psi^{-j}(c) \psi^{j}\left(z_{n-\nu+1}(b c)\right)$ above is a p^{ν} th root of unity, and an integer u with $\eta^{u}=\psi^{-j}(c) \psi^{j}\left(z_{n-\nu+1}(b c)\right)$ satisfies

$$
\left(z_{n+1}\left(c^{-1}\right) z_{n-\nu+1}(b c)\right)^{p-1} \equiv\left(1+p^{n-\nu+1}\right)^{(p-1) u} \quad\left(\bmod p^{n+1}\right)
$$

so that

$$
\left(z_{n+1}\left(c^{-1}\right) z_{n-\nu+1}(b c)\right)^{p^{\nu}-1} \equiv\left(1+p^{n-\nu+1}\right)^{\left(p^{\nu}-1\right) u} \equiv 1-p^{n-\nu+1} u \quad\left(\bmod p^{n+1}\right)
$$

and consequently

$$
u \equiv w_{n-\nu, n+1}(b, c) \quad\left(\bmod p^{\nu}\right)
$$

We thus obtain

$$
\begin{aligned}
\mathfrak{T}\left(\left(1-\eta^{l}\right) \psi^{-j}(c) \Theta\right)= & p^{n-\nu} \sum_{b \in R_{n-\nu}} \sum_{r=0}^{l-1} \omega^{j}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right) \\
& \times \eta^{w_{n-\nu, n+1}(b, c)+z_{\nu}\left(b^{-1} c^{-1}\right) r} \frac{\eta^{l}-1}{\eta^{z_{\nu}\left(b^{-1} c^{-1}\right) l}-1} .
\end{aligned}
$$

Furthermore we can take a prime ideal \mathfrak{l} of $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$ which divides l and $\omega(a)-a$ for all $a \in \boldsymbol{Z}$. Hence $\mathfrak{T}\left(\left(1-\eta^{l}\right) \psi^{-j}(c) \Theta\right)$ is congruent to

$$
p^{n-\nu} \sum_{b \in R_{n-\nu}} \sum_{a=0}^{z_{\nu}(b c)-1} \sum_{r=0}^{l-1}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right)^{j_{0}} \eta^{z_{\nu}\left(b^{-1} c^{-1}\right)(l a+r)+w_{n-\nu, n+1}(b, c)}
$$

modulo \mathfrak{l} in $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$, where j_{0} denotes the least positive residue of j modulo $l-1$. It follows from the definition of ν, however, that every prime ideal of $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{\nu}\right)$ dividing l remains prime in $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$. Therefore, in view of the assumption of the theorem, $\left(1-\eta^{l}\right) \psi^{-j}(c) \Theta$ is not divisible by \mathfrak{l} for some c, and hence Θ is not divisible by \mathfrak{l}. This fact implies that \mathfrak{l} does not divide $h_{\omega \psi}$, namely, l does not divide $h_{\omega \psi}$.

We successively proceed to
Proof of Theorem 3. Let ψ be any Dirichlet character of order p^{n} with conductor p^{n+1}. As in the proof of Theorem 1, put

$$
\Theta=-\frac{1}{2 l p^{n+1}} \sum_{a=1}^{l p^{n+1}} \omega^{j}(a) \psi^{j}(a) a, \quad \eta=\psi^{j}(1+p)
$$

with any positive integer j relatively prime to $(l-1) p$. Then, for each $b \in Z$ with $p \nmid b, \psi^{j}(b)=\eta^{y_{n}(b)}$ holds, because η is a primitive p^{n} th root of unity and an integer u with $\psi^{j}(b)=\eta^{u}$ satisfies $b^{p^{n}-1} \equiv(1+p)^{u\left(p^{n}-1\right)}\left(\bmod p^{n+1}\right)$. Let \mathfrak{l} be a prime ideal of $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$ dividing l and $\omega(a)-a$ for all $a \in \boldsymbol{Z}$. It follows from [2, Section 28, (3)] that

$$
\Theta=\omega^{j}\left(p^{n+1}\right) \psi^{j}(l) \sum_{r=1}^{(l-1) / 2} \sum_{b \in H_{n}(r)} \omega^{j}(r) \psi^{j}(b) .
$$

Thus, in $\boldsymbol{Q}\left(e^{2 \pi i /(l-1)}, \xi_{n}\right)$,

$$
\Theta \equiv \omega^{j}\left(p^{n+1}\right) \psi^{j}(l) \sum_{r=1}^{(l-1) / 2} \sum_{b \in H_{n}(r)} r^{j} \eta^{y_{n}(b)} \quad(\bmod \mathfrak{l}) .
$$

Hence, by the hypothesis of the theorem, Θ is relatively prime to \mathfrak{l} and, consequently, l does not divide $h_{\omega \psi}$. Lemmas 1 and 2 therefore show that $A_{\psi}^{\mathfrak{e}(\psi)}$ is trivial, namely, l does not divide h_{n} / h_{n-1}.

3. Supplementary results.

We add a simple result supplementary to Theorem 2.
Lemma 3.

$$
M<\left(\frac{(p-1) l\left|S^{*}\right|}{2}\right)^{\varphi(p-1)}
$$

Proof. Take any $\kappa \in \Phi$. Then

$$
\left|\mathfrak{N}\left(\sum_{\varepsilon \in V} \kappa(\varepsilon) \varepsilon-1\right)\right|=\prod_{\rho}\left|\sum_{\varepsilon \in V} \kappa(\varepsilon) \varepsilon^{\rho}-1\right|,
$$

with ρ ranging over all automorphisms of $\boldsymbol{Q}\left(e^{2 \pi i /(p-1)}\right)$, and

$$
\left|\sum_{\varepsilon \in V} \kappa(\varepsilon) \varepsilon^{\rho}-1\right| \leq|\kappa(1)-1|+\sum_{\varepsilon \in V \backslash\{1\}} \kappa(\varepsilon)<\frac{p-1}{2} \cdot l\left|S^{*}\right| .
$$

Therefore

$$
\left|\mathfrak{N}\left(\sum_{\varepsilon \in V} \kappa(\varepsilon) \varepsilon-1\right)\right|<\left(\frac{(p-1) l\left|S^{*}\right|}{2}\right)^{\varphi(p-1)} .
$$

Now, let us consider the case $\nu=1$. We put $d=[F: \boldsymbol{Q}]$ for simplicity. It follows that $(p-1) / d$ is the order of l modulo p. Let χ be any Dirichlet character of order d with conductor dividing $p: g_{\chi}=d, f_{\chi} \mid p$. Let $\zeta=e^{2 \pi i / d}$ and, for each non-negative integer $j<d$, let θ_{j} denote the sum of ξ_{1}^{m} for all positive integers $m<p$ with $\chi(m)=\zeta^{j}$, so that $\theta_{j} \in \mathfrak{O}$. Further, let I denote the set of nonnegative integers less than d and other than $d / 2$. By the fact that $\xi_{1}, \xi_{1}^{2}, \ldots, \xi_{1}^{p-1}$ form a normal integral basis of $\boldsymbol{Q}\left(\xi_{1}\right) / \boldsymbol{Q}$, we see that $\theta_{0}, \ldots, \theta_{d-1}$ form a normal integral basis of F / \boldsymbol{Q}. As $\theta_{0}+\cdots+\theta_{d-1}=-1$, (the additive group of) \mathfrak{O} is a free \boldsymbol{Z}-module over $\left\{1, \theta_{1}, \ldots, \theta_{d-1}\right\}$ and, when $\chi(-1)=-1, d$ is even and \mathfrak{O} is a free Z-module over $\{1\} \cup\left\{\theta_{j} \mid j \in I\right\}$. In particular, we have

$$
S=\{m \in \boldsymbol{Z} \mid 0 \leq m \leq p-2, \chi(m) \neq \chi(-1)\} .
$$

This implies that

$$
|S|=1+(d-1) \frac{p-1}{d}=p-\frac{p-1}{d} .
$$

Lemma 4. If $\nu=1$, then

$$
\left|S^{*}\right|=p+1-\frac{p-1}{[F: \boldsymbol{Q}]}=|S|+1
$$

Proof. Assuming that $\nu=1$, we let $d=[F: \boldsymbol{Q}]$ and $\zeta=e^{2 \pi i / d}$ as before. Obviously, $S^{*}=\{0,1\}$ if $F=\boldsymbol{Q}$; so we also assume $d>1$. Let χ be any Dirichlet character of order d with conductor p. For any non-negative integer $j<d$, define N_{j} to be the number of positive integers $m \leq p-2$ which satisfy

$$
\chi(m)=\chi(m+1)=\zeta^{j} .
$$

Then

$$
\begin{aligned}
N_{j}= & \sum_{m=1}^{p-2}\left(\frac{1}{d} \sum_{a=0}^{d-1} \chi^{a}(m) \zeta^{-j a}\right)\left(\frac{1}{d} \sum_{b=0}^{d-1} \chi^{b}(m+1) \zeta^{-j b}\right) \\
= & \frac{1}{d^{2}}\left(p-2+\sum_{a=1}^{d-1} \zeta^{-j a} \sum_{m=1}^{p-2} \chi^{a}(m)+\sum_{b=1}^{d-1} \zeta^{-j b} \sum_{m=1}^{p-2} \chi^{b}(m+1)\right. \\
& \left.+\sum_{b=1}^{d-1} \zeta^{-j(d-b)-j b} \sum_{m=1}^{p-2} \chi^{d-b}(m) \chi^{b}(m+1)+\sum_{(a, b) \in W} \zeta^{-j a-j b} J_{a, b}\right),
\end{aligned}
$$

where W denotes the set of pairs (a, b) of positive integers less than d with $a+b \neq d$, and

$$
J_{a, b}=\sum_{m=1}^{p-2} \chi^{a}(m) \chi^{b}(m+1) \quad \text { for each }(a, b) \in W .
$$

Since

$$
\begin{aligned}
& \sum_{m=1}^{p-2} \chi^{a}(m)=-\chi^{a}(-1), \quad \sum_{m=1}^{p-2} \chi^{b}(m+1)=-1, \\
& \sum_{m=1}^{p-2} \chi^{d-b}(m) \chi^{b}(m+1)=\sum_{m=1}^{p-2} \chi^{b}\left(z_{1}\left(m^{-1}\right)+1\right)=-1
\end{aligned}
$$

in the above, it follows that

$$
N_{j}=\frac{1}{d^{2}}\left(p-d-1-\sum_{a=1}^{d-1} \chi^{a}(-1) \zeta^{-j a}-\sum_{b=1}^{d-1} \zeta^{-j b}+\sum_{(a, b) \in W} \zeta^{-j(a+b)} J_{a, b}\right)
$$

Therefore we eventually obtain

$$
\begin{equation*}
\sum_{j=0}^{d-1} N_{j}=\frac{p-d-1}{d} \tag{1}
\end{equation*}
$$

Let us recall that Γ is a cyclic group of order p generated by γ. For each nonnegative integer $j<d$, we denote by γ_{j} the sum of γ^{m}, in $\boldsymbol{Z}[\Gamma]$, for all positive integers $m \leq p-2$ with $\chi(m)=\zeta^{j}$. Meanwhile, for each positive integer $m<p$,
we denote by $\iota(m)$ the non-negative integer less than d such that $\chi(m)=\zeta^{\iota(m)}$.
Suppose now that $\chi(-1)=1$. As already seen,

$$
\mathfrak{O}=\boldsymbol{Z} \oplus \boldsymbol{Z} \theta_{1} \oplus \cdots \oplus \boldsymbol{Z} \theta_{d-1}
$$

Given arbitrary integers $s, t_{1}, \ldots, t_{d-1}$, take the integers c_{0}, \ldots, c_{p-1} satisfying

$$
c_{0}+c_{1} \gamma+\cdots+c_{p-1} \gamma^{p-1}=(1-\gamma)\left(s+\sum_{j=1}^{d-1} t_{j} \gamma_{j}\right)
$$

Then $c_{0}=s, c_{1}=-s$, and for any positive integer $m \leq p-2$,

$$
c_{m+1}= \begin{cases}t_{\iota(m+1)}-t_{\iota(m)} & \text { if } \chi(m) \neq 1, \chi(m+1) \neq 1 \\ t_{\iota(m+1)} & \text { if } \chi(m)=1, \chi(m+1) \neq 1 \\ -t_{\iota(m)} & \text { if } \chi(m) \neq 1, \chi(m+1)=1 ; \\ 0 & \text { if } \chi(m)=\chi(m+1)=1\end{cases}
$$

We therefore find that

$$
\left|S^{*}\right|=p-\sum_{j=0}^{d-1} N_{j} .
$$

Hence (1) yields

$$
\left|S^{*}\right|=p-\frac{p-d-1}{d}=p+1-\frac{p-1}{d}
$$

We next suppose that $\chi(-1)=-1$. In this case, $2 \mid d$ and

$$
\mathfrak{O}=\boldsymbol{Z} \oplus\left(\bigoplus_{j \in I} Z \theta_{j}\right)
$$

as already seen. Similarly to the case $\chi(-1)=1$, let s be any integer and let t_{j} be any integer for each $j \in I$. Take the integers $c_{0}^{\prime}, \ldots, c_{p-1}^{\prime}$ satisfying

$$
c_{0}^{\prime}+c_{1}^{\prime} \gamma+\cdots+c_{p-1}^{\prime} \gamma^{p-1}=(1-\gamma)\left(s+\sum_{j \in I} t_{j} \gamma_{j}\right)
$$

Then $c_{0}^{\prime}=s, c_{1}^{\prime}=t_{0}-s$, and for any positive integer $m \leq p-2$,

$$
c_{m+1}^{\prime}= \begin{cases}t_{\iota(m+1)}-t_{\iota(m)} & \text { if } \chi(m) \neq-1, \chi(m+1) \neq-1 \\ \iota_{\iota(m+1)} & \text { if } \chi(m)=-1, \chi(m+1) \neq-1 ; \\ -t_{\iota(m)} & \text { if } \chi(m) \neq-1, \chi(m+1)=-1 ; \\ 0 & \text { if } \chi(m)=\chi(m+1)=-1\end{cases}
$$

Hence

$$
\left|S^{*}\right|=p-\sum_{j=0}^{d-1} N_{j}
$$

again so that, by (1),

$$
\left|S^{*}\right|=p+1-\frac{p-1}{d} .
$$

4. Computational results.

Let s_{0} be the least positive primitive root modulo p^{2}. Let us take as $R\left(=R_{0}\right)$ the set of $z_{1}\left(s_{0}^{u}\right)$ for all non-negative integers $u \leq(p-3) / 2$. Given any integer $n \geq 2 \nu-1$, any positive integer $j \leq l-2$ relatively prime to $l-1$, and any integer c with $p \nmid c$, we define

$$
\begin{aligned}
& P_{n, j, c}(X) \\
& \quad=\sum_{b \in R_{n-\nu}} \sum_{a=0}^{z_{\nu}(b c)-1} \sum_{r=0}^{l-1}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right)^{j} X^{z_{\nu}\left(b^{-1} c^{-1}\right)(l a+r)+w_{n-\nu, n+1}(b, c)}
\end{aligned}
$$

in $(\boldsymbol{Z} / l \boldsymbol{Z})[X]$, the polynomial ring in an indeterminate X over the residue field $\boldsymbol{Z} / l \boldsymbol{Z}$. Here, for each pair (m, u) of integers with $u \geq 0$, we understand that $m X^{u}$ denotes the monomial in X of degree u with coefficient the class of m in $\boldsymbol{Z} / l \boldsymbol{Z}$ or denotes the zero element of $(\boldsymbol{Z} / l \boldsymbol{Z})[X]$ according to whether $l \nmid m$ or $l \mid m$. Note also that $R_{n-\nu}$ is the set of $z_{n-\nu+1}\left(s_{0}^{p^{n-\nu} u}\right)$ for all non-negative integers $u \leq(p-3) / 2$. We denote by $Q_{n, j, c}(X)$ the greatest common divisor of $P_{n, j, c}(X)$ and the p^{ν} th cyclotomic polynomial in $(\boldsymbol{Z} / l \boldsymbol{Z})[X]$, with the leading coefficient of $Q_{n, j, c}(X)$ assumed to be the unity element of $\boldsymbol{Z} / l \boldsymbol{Z}$:

$$
Q_{n, j, c}(X)=\operatorname{gcd}\left(P_{n, j, c}(X), \sum_{u=0}^{p-1} X^{p^{\nu-1} u}\right)
$$

Since $\boldsymbol{Z}\left[\xi_{\nu}\right]$ is the ring of algebraic integers of $\boldsymbol{Q}\left(\xi_{\nu}\right)$, it then follows that

$$
\sum_{b \in R_{n-\nu}} \sum_{a=0}^{z_{\nu}(b c)-1} \sum_{r=0}^{l-1}\left(z_{n-\nu+1}(b c)+p^{n-\nu+1} r\right)^{j} \xi_{\nu}^{z_{\nu}\left(b^{-1} c^{-1}\right)(l a+r)+w_{n-\nu, n+1}(b, c)}
$$

is relatively prime to l if and only if

$$
Q_{n, j, c}(X)=1
$$

We keep this fact in mind from now on. To do most of calculations stated below, such as the calculation of each $Q_{n, j, c}(X)$ in question, we have used Mathematica on a personal computer.

First of all, let us deal with the case where $(l, p) \in\{(3,11),(7,5),(11,71)\}$ so that $\nu=2$. Let j be any positive integer $\leq l-2$ relatively prime to $l-1$, and let n be an integer not smaller than $2 \nu-1=3$. As $\left|S^{*}\right| \leq p^{2}$, the condition $p^{n-\nu+1} \leq M$ implies by Lemma 3 that
$p^{n-1}<\left(\frac{l(p-1) p^{2}}{2}\right)^{\varphi(p-1)}$, i.e., $n<\frac{\varphi(p-1) \log (l(p-1) / 2)}{\log p}+2 \varphi(p-1)+1$.
Furthermore, we have checked that

$$
\begin{equation*}
Q_{n, j, 1}(X)=1, \quad \text { when } 3 \leq n<\frac{\varphi(p-1) \log (l(p-1) / 2)}{\log p}+2 \varphi(p-1)+1 \tag{2}
\end{equation*}
$$

Now, let m be 1 or 2 . Then, in $(\boldsymbol{Z} / l \boldsymbol{Z})[X]$, we have

$$
\operatorname{gcd}\left(\sum_{r=1}^{(l-1) / 2} \sum_{a \in H_{m}(r)} r^{j} X^{y_{m}(a)}, \sum_{u=0}^{p-1} X^{p^{m-1} u}\right)=1
$$

namely, $\sum_{r=1}^{(l-1) / 2} \sum_{a \in H_{m}(r)} r^{j} \xi_{m}^{y_{m}(a)}$ is relatively prime to l. Hence, by Theorem 3, l does not divide h_{m} / h_{m-1}. This implies $l \nmid h_{2}$, since $h_{0}=1$. Theorem 2 for $n_{0}=2$, together with (2), thus proves the following

Lemma 5. The l-class group of \boldsymbol{B}_{∞} is trivial if (l, p) is either $(3,11),(7,5)$
or (11, 71).
In the rest of this section, we let n range over all positive integers less than

$$
\frac{\varphi(p-1)}{\log p} \log \left(\frac{l(p-1)}{2}\left(p+1-\frac{p-1}{[F: \boldsymbol{Q}]}\right)\right),
$$

i.e., all positive integers such that

$$
p^{n}<\left(\frac{l(p-1)}{2}\left(p+1-\frac{p-1}{[F: \boldsymbol{Q}]}\right)\right)^{\varphi(p-1)}
$$

Suppose now that $l=3, p \leq 173, p \neq 11$ and so $\nu=1$. Then we can check not only that $Q_{n, 1,1}(X)=1$ if $(p, n) \notin\{(13,3),(13,4),(13,5)\}$ but that, in the case $p=13$,

$$
Q_{3,1,2}(X)=Q_{4,1,4}(X)=Q_{5,1,2}(X)=1 .
$$

Hence Theorem 2 for $n_{0}=0$ combined with Lemmas 3 and 4 shows the triviality of the 3 -class group of \boldsymbol{B}_{∞}. Therefore, by Lemma 5 , we have

Proposition 1. If $p \leq 173$, then the 3 -class group of \boldsymbol{B}_{∞} is trivial.
Remark 1. In the case $(l, p)=(3,13)$,

$$
\begin{array}{ll}
Q_{3,1,1}(X)=X^{3}+X^{2}+X+2, & Q_{4,1,1}(X)=X^{3}+2 X+2 \\
Q_{4,1,2}(X)=X^{6}+2 X^{4}+2 X^{3}+2 X^{2}+1, & Q_{4,1,3}(X)=X^{3}+2 X^{2}+2 X+2, \\
Q_{5,1,1}(X)=X^{3}+2 X^{2}+2 X+2 . &
\end{array}
$$

Suppose next that $l=5, p \leq 137$, and hence $\nu=1$. We then have $Q_{n, 1,1}(X)=$ 1 unless $(p, n)=(71,35)$; we also have $Q_{n, 3,1}(X)=1$ unless $(p, n)=(31,4)$ or $(p, n)=(31,5)$. Furthermore,

$$
\begin{array}{ll}
Q_{35,1,2}(X)=1 & \text { when } p=71 \\
Q_{4,3,2}(X)=Q_{5,3,2}(X)=1 & \text { when } p=31
\end{array}
$$

Therefore Theorem 2 for $n_{0}=0$, together with Lemmas 3 and 4, gives the following result.

Proposition 2. If $p \leq 137$, then the 5 -class group of \boldsymbol{B}_{∞} is trivial.
Remark 2. When $(l, p)=(5,71)$,

$$
Q_{35,1,1}(X)=X^{5}+3 X^{4}+3 X^{3}+2 X^{2}+4 X+4
$$

when $(l, p)=(5,31)$,

$$
Q_{4,3,1}(X)=X^{3}+2 X^{2}+4 X+4, \quad Q_{5,3,1}(X)=X^{3}+X^{2}+X+4
$$

Assume that $l=7$ and $p \leq 131$. To see the triviality of the 7 -class group of \boldsymbol{B}_{∞}, we may also assume by Lemma 5 that $p \neq 5$ so that $\nu=1$. We then have $Q_{n, 1,1}(X)=1$; further, unless $(p, n)=(3,1)$, we have $Q_{n, 5,1}(X)=1$. In the case $p=3$, it is well known that $h_{1}=1$. Therefore, letting $n_{0}=0$ or $n_{0}=1$ in Theorem 2 according to whether $p>3$ or $p=3$, we obtain the following result from the theorem, Lemma 3, and Lemma 4.

Proposition 3. If $p \leq 131$, then the 7 -class group of \boldsymbol{B}_{∞} is trivial.
Remark 3. In the case $(l, p)=(7,3)$, one has $\left\{h_{\omega \psi}, h_{\omega \psi^{2}}\right\}=\{1,7\}$ for a Dirichlet character ψ of order 3 with conductor 9 (cf. [2, Tafel II, p. 168]), whence the proofs of Theorems 1 and 3 tell us that neither of the hypotheses of the theorems is satisfied for $n=1$.

Assume that $l=11$ and $p \leq 109$. Let us prove the triviality of the 11 -class group of \boldsymbol{B}_{∞}. By Lemma 5 , we may further assume that $p \neq 71$ so that $\nu=1$. We let j range over the integers in $\{1,3,7,9\}$. Unless $(p, n, j)=(5,1,9)$, our computations show that $Q_{n, j, c}(X)=1$ for some $c \in \boldsymbol{Z}$ with $p \nmid c$. Precise results are as follows: $Q_{n, j, 1}(X)=1$ unless

$$
(p, n, j) \in\{(5,4,1),(5,2,3),(5,3,3),(5,2,7),(5,5,7),(5,1,9),(5,4,9)\}
$$

and, when $p=5$,

$$
\begin{aligned}
& Q_{4,1,1}(X)=X^{2}+9 X+3, \quad Q_{4,1,2}(X)=1, \quad Q_{2,3,1}(X)=X+7, \\
& Q_{2,3,2}(X)=1, \quad Q_{3,3,1}(X)=Q_{3,3,2}(X)=Q_{3,3,3}(X)=X+2, \quad Q_{3,3,4}(X)=1, \\
& Q_{2,7,1}(X)=X+6, \quad Q_{2,7,2}(X)=1, \quad Q_{5,7,1}(X)=X+6, \quad Q_{5,7,2}(X)=1, \\
& Q_{4,9,1}(X)=X+8, \quad Q_{4,9,2}(X)=X+6, \quad Q_{4,9,3}(X)=X^{2}+4 X+1, \\
& Q_{4,9,4}(X)=X^{2}+8 X+1, \quad Q_{4,9,6}(X)=1 .
\end{aligned}
$$

It is also known that $h_{1}=1$ when $p=5$ (cf. Bauer [1], Masley [9]). Therefore, once we set $n_{0}=0$ or $n_{0}=1$ in Theorem 2 according as $p \neq 5$ or $p=5$, the following result is deduced from the theorem, Lemma 3, and Lemma 4.

Proposition 4. If $p \leq 109$, then the 11 -class group of \boldsymbol{B}_{∞} is trivial.
Remark 4. In the case $(l, p)=(11,5)$, the relative class numbers of just two fields in $\left\{K_{\omega \psi}, K_{\omega \psi^{2}}, K_{\omega \psi^{3}}, K_{\omega \psi^{4}}\right\}$ are equal to 55 for a Dirichlet character ψ of order 11 with conductor 121 (cf. Schrutka von Rechtenstamm [10, p. 45]) so that neither of the hypotheses of Theorems 1 and 3 is satisfied for $n=1$.

Assume finally that $l=13, p \leq 101$, and hence $\nu=1$. Let j vary through $\{1,5,7,11\}$. Then $Q_{n, j, 1}(X)=1$ except that $Q_{3,5,1}(X)=X^{2}+X+1$ in the case $p=3$. Furthermore, when $p=3$, we have $Q_{3,5,2}(X)=1$. Therefore Theorem 2, together with Lemmas 3 and 4, gives

Proposition 5. If $p \leq 101$, then the 13 -class group of \boldsymbol{B}_{∞} is trivial.
Still for several cases of (l, p) not treated in this section, the triviality of the l-class group of \boldsymbol{B}_{∞} can be verified along the same lines as we have discussed it so far, but we omit the details here.

References

[1] H. Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper, J. Number Theory, 1 (1969), 161-162.
[2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952; Springer-Verlag, Berlin, 1985.
[3] K. Horie and M. Horie, The narrow class groups of some \boldsymbol{Z}_{p}-extensions over the rationals, Acta Arith., 135 (2008), 159-180.
[4] K. Horie and M. Horie, The ideal class group of the \boldsymbol{Z}_{p}-extension over the rationals, Tohoku Math. J., 61 (2009), 551-570.
[5] K. Horie and M. Horie, On the narrow class groups of the \boldsymbol{Z}_{p}-extensions over \boldsymbol{Q} for several primes p, In: Proceedings of the workshop on Number Theory 2010 (eds. K. Hashimoto and K. Komatsu), Institute of Pure and Applied Mathematics, Waseda University, 2010, pp. 17-26.
[6] H. Ichimura and S. Nakajima, On the 2-part of the ideal class group of the cyclotomic \boldsymbol{Z}_{p}-extension over the rationals, Abh. Math. Sem. Univ. Hamburg, 80 (2010), 175-182.
[7] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
[8] H. W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. reine angew. Math., 199 (1958), 165-174.
[9] J. Masley, Class numbers of real cyclic number fields with small conductor, Comp. Math., 37 (1978), 297-319.
[10] G. Schrutka von Rechtenstamm, Tabelle der (Relativ)-Klassenzahlen der Kreiskörper, deren ϕ-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist, Abh. Deutschen

Akad. Wiss. Berlin, Kl. Math. Phys., no. 2 (1964), 1-64.
[11] L. C. Washington, Class numbers and \boldsymbol{Z}_{p}-extensions, Math. Ann., 214 (1975), 177-193.

Kuniaki Horie	Mitsuko HoriE
3-9-2-302 Sengoku, Bunkyo-ku	Department of Mathematics
Tokyo 112-0011, Japan	Ochanomizu University
	2-1-1 Otsuka, Bunkyo-ku
	Tokyo 112-8610, Japan
	E-mail: horie.mitsuko@ocha.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11R29; Secondary 11R20, 11R23.
 Key Words and Phrases. \boldsymbol{Z}_{p}-extension, l-class group, reflection theorem, class number formula, Iwasawa theory.

