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Abstract. In this paper, we give a natural, and generalized reverse
Hölder inequality, which says that if ωi ∈ A∞, then for every cube Q,

Z

Q

mY

i=1

ωi
θi ≥

mY

i=1

„ R
Q ωi

[ωi]A∞

«θi

, (0.1)

where
Pm

i=1 θi = 1, 0 ≤ θi ≤ 1.
As a consequence, we get a more general inequality, which can be viewed

as an extension of the reverse Jensen inequality in the theory of weighted in-
equalities. Based on this inequality (0.1), we then give some results concerning
multilinear Calderón-Zygmund operators and maximal operators on weighted
Hardy spaces, which improve some known results significantly.

1. Introduction and main results.

The theory of the reverse Jensen inequality (see [1], [5]) says that ω ∈ A∞ if
and only if there exists a constant C such that for every cube Q,

1
|Q|

∫

Q

w ≤ C exp
(

1
|Q|

∫

Q

log w

)
. (1.1)

The sharp constant C is defined to be [ω]A∞ . Meanwhile, as a result of the Jensen
inequality and the fact that (tθ−1)/θ ↓ log t as θ ↓ 0, we know that (see [6, p. 11])

exp
(

1
|Q|

∫

Q

log w

)
= lim

θ→0

(
1
|Q|

∫

Q

ωθ

)1/θ

. (1.2)
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Combine (1.1), (1.2) and the monotonic decrease of ((1/|Q|) ∫
Q

ωθ)1/θ as θ ↓ 0, we
can get ω ∈ A∞ if and only if there exists a constant C such that

1
|Q|

∫

Q

ω ≤ C

(
1
|Q|

∫

Q

ωθ

)1/θ

(1.3)

for every cube Q and every θ > 0.
Being different from the classical reverse Hölder inequality (see [3] and the

references therein), which states that if ω ∈ Ap for some p, 1 ≤ p < ∞, then there
exists constants C and γ such that for every cube Q,

(∫
Q

ω1+γ

|Q|
)1/(1+γ)

≤ C

|Q|
∫

Q

ω, (1.4)

it can be seen that (1.3) actually gives the opposite inequality of (1.4). Obviously,
it is impossible to deduce the reverse Hölder inequality by using (1.3) directly.
And what seems interesting is that we also cannot deduce (1.3) with the reverse
Hölder inequality. This can be clarified by taking ω = constant when [ω]A∞ = 1
and C in (1.4) is bigger than 1.

In this paper, we obtain an inequality which is quite useful as follows:

Theorem 1.1. If ωi ∈ A∞, then for every cube Q, we have

∫

Q

m∏

i=1

ωi
θi ≥

m∏

i=1

( ∫
Q

ωi

[ωi]A∞

)θi

, (1.5)

where
∑m

i=1 θi = 1, 0 ≤ θi ≤ 1.

As a consequence of Theorem 1.1, we get a more general inequality, which
can be viewed as an extension of the reverse Jensen inequality (1.3).

Corollary 1.1. If ωi ∈ A∞ and 0 ≤ ∑m
i=1 θi ≤ 1, then for every cube Q,

we have

∫

Q

m∏

i=1

ωi
θi ≥ |Q|1−

P
i θi

m∏

i=1

( ∫
Q

ωi

[ωi]A∞

)θi

, (1.6)

where 0 ≤ θi ≤ 1.

Remark 1.1. When m = 1, (1.6) coincides with (1.3), thus it can be viewed
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as an extension of the reverse Jensen inequality (1.3). Moreover, basing on (1.3),
the following inequality can be induced by definition which seems to be new:

If ω ∈ A∞, and ω−p′/p ∈ A∞, then

[ω]Ap
≤ [

ω−p′/p
]
A∞

[ω]A∞ . (1.7)

Remark 1.2. Although the inequalities (1.5) and (1.6) are much connected
with the reverse Jensen inequality, and do not coincide with the well-known re-
verse Hölder inequality, we would still like to call them generalized reverse Hölder
inequalities as they are indeed reverse versions of generalized Hölder inequalities.

Inequality (1.5) turns out to be very suitable to solve some problems arising
in the study of multilinear Calderón-Zygmund operators (and maximal operators)
with multiple weights. Before we state another theorem, we firstly recall some
definitions and backgrounds on the multilinear Calderón-Zygmund operator, as
well as its maximal operator.

Definition 1.1 (Multilinear Calderón-Zygmund operators). Let T be a
multilinear operator initially defined on the m-fold product of Schwartz spaces
and taking values in the space of tempered distributions,

T : S (Rn)× · · · ×S (Rn) −→ S ′(Rn).

Following [6], we say that T is an m-linear Calderón-Zygmund operator if for some
1 ≤ qj < ∞, it extends to a bounded multilinear operator from Lq1 × · · · ×Lqm to
Lq, where

1
q

=
1
q1

+ · · ·+ 1
qm

, (1.8)

and if there exists a function K, defined off the diagonal x = y1 = · · · = ym in
(Rn)m+1, satisfying

T (f1, . . . , fm)(x) =
∫

(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 · · · dym

for all x 6∈ ⋂m
j=1 supp fj ;

∣∣K(y0, y1, . . . , ym)
∣∣ ≤ A( ∑m

k,l=0 |yk − yl|
)mn ; (1.9)
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and

∣∣K(y0, . . . , yj , . . . , ym)−K(y0, . . . , y
′
j , . . . , ym)

∣∣ ≤ A
∣∣yj − y′j

∣∣ε
( ∑m

k,l=0 |yk − yl|
)mn+ε , (1.10)

for some ε > 0 and all 0≤ j ≤ m, whenever |yj − y′j | ≤ 1/2max0≤k≤m |yj − yk|.

As in the linear theory, a certain amount of extra smoothness is required for
these operators to have such boundedness properties on Hardy spaces. We will
assume that K(y0, y1, . . . , ym) satisfies the following estimates

∣∣∂α0
y0
· · · ∂αm

ym
K(y0, y1, . . . , ym)

∣∣ ≤ Aα( ∑m
k,l=0 |yk − yl|

)mn+|α| , (1.11)

for all |α| ≤ N , where α = (α0, . . . , αm) is an ordered set of m-tuples of nonneg-
ative integers, |α| = |α0| + · · · + |αm|, where |αj | is the order of each multiindex
αj , and N is a large integer to be determined later.

The corresponding maximal operator T∗ (see [9]) for the m-linear Calderón-
Zygmund operator T is given by

T∗(~f )(x) = T∗(f1, . . . , fm)(x)

= sup
δ>0

∣∣∣∣
∫

|x−y1|2+···+|x−ym|2>δ2
K(x, y1, . . . , ym)f1(y1) · · · fm(ym)d~y

∣∣∣∣.

(1.12)

In [8], the authors proved that every m-linear Calderón-Zygmund operator can
extend its boundedness on all other products of Lebesgue spaces with exponents
1 < qj ≤ ∞ satisfying (1.8). Similar results were obtained in [9] for T∗ by proving a
Coltlar’s inequality for the maximal operator. Moreover, there are endpoint weak-
type estimates when some of the exponents qj are equal to one. In particular,

T : L1 × · · · × L1 → L1/m,∞. (1.13)

In 2001, Grafakos and Kalton [7] proved the boundedness for multilinear
Calderón-Zygmund operators and its maximal operator on products of Hardy
spaces as follows:

Theorem A ([7]). Let 1 < q1, . . . , qm, q < ∞ be fixed indices satisfying
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1
q1

+ · · ·+ 1
qm

=
1
q

and let 0 < p1, . . . , pm, p ≤ 1 be real numbers satisfying

1
p1

+ · · ·+ 1
pm

=
1
p
.

Suppose that K satisfies (1.9)–(1.11) with N = [n(1/p) − 1]. Let T be related to
K and assume that T admits an extension that maps Lq1 × · · · × Lqm into Lq

with norm B. Then both T and T∗ can be extended to a bounded operator from
Hp1 × · · · ×Hpm into Lp.

The results for T and T∗ on weighted Hardy Spaces with multiple weights
were given in [11] and [12] respectively. Before we state these results, we need to
mention the work on multiple weights by Lerner, Ombrosi, Pérez, Torres, Trujillo-
González [10].

Definition 1.2 ([10]) (Multilinear A~p condition). Let 1 ≤ p1, . . . , pm < ∞.
Given ~ω = (ω1, . . . , ωm), set

ν~ω =
m∏

j=1

ω
p/pj

j .

We say that ~ω satisfies the A~p condition if

sup
Q

(
1
|Q|

∫

Q

m∏

i=1

ωi
p/pi

)1/p m∏

i=1

(
1
|Q|

∫

Q

ωi
1−p′i

)1/p′i
< ∞. (1.14)

When pi = 1, ((1/|Q|) ∫
Q

ωi
1−p′i)1/p′i is understood as (infQ ωi)−1.

The A~p condition turns out to be able to characterize the strong-type inequal-
ities for a more refined multilinear maximal function M with multiple weights
defined by

M (~f )(x) = sup
Q3x

m∏

i=1

1
|Q|

∫

Q

|fi(yi)| dyi.

Theorem B ([10]). Let 1 < pj < ∞, j = 1, . . . , m, and 1/p = 1/p1 + · · ·
+1/pm. Then the inequality
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‖M (~f )‖Lp(ν~ω) ≤ C
m∏

i=1

‖fi‖Lpi (ωi) (1.15)

holds if and only if ν~ω satisfies the A~p condition.

The above theorem can be used to obtain the boundedness for multilinear
Calderón-Zygmund operators on the weighted spaces.

Theorem C ([10]). Let T be an m-linear Calderón-Zygmund operator, sat-
isfying (1.6), (1.7), 1/p = (1/p1) + · · · + (1/pm), and ~ω satisfy the A~p condition,
1 < pi < ∞. Then

∥∥T (~f )(x)
∥∥

Lp(ν~ω)
≤ C

m∏

i=1

∥∥fi

∥∥
Lpi (ωi)

. (1.16)

We are now in a position to state the theorems in [11] and [12], which our work
mainly builds on and improves significantly. We note that in [12], the maximal
operator is defined by

T∗(~f )(x) = sup
δ>0

∣∣∣∣
∫

Rn

Kδ(x, y1, . . . , ym)f1(y1) · · · fm(ym)d~y

∣∣∣∣,

where Kδ(x, y1, . . . , ym) = φ
(√|x− y1|2 + · · ·+ |x− ym|2/2δ

)
K(x, y1, . . . , ym)

and φ(x) is a smooth function on Rn, which vanishes if |x| ≤ 1/4 and is equal to
1 if |x| > 1/2. By proving the following multiple Coltlar’s inequality

T̃∗(~f )(x) ≤ Cη

((
M(|T (~f )|η)(x)

)(1/η) + (A + W )
m∏

i=1

Mfi(x)
)

,

where M denote the Hardy-Littlewood maximal function, the boundedness on
weighed Lebesgue spaces for the maximal operator as below was obtained in [12].
It can be seen that the results obtained in [12] actually hold for T∗ defined in
(1.12). Hence we have

Theorem D ([12]). Let T be an m-linear Calderón-Zygmund operator, sat-
isfying (1.9), (1.10), 1/p = (1/p1) + · · · + (1/pm), ~ω satisfy the A~p condition,
1 < pi < ∞. Then

∥∥T∗(~f )(x)
∥∥

Lp(ν~ω)
≤ C

m∏

i=1

‖fi‖Lpi (ωi). (1.17)
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There are many equivalent approaches to define weighted Hardy spaces (see
[4], [13]).

Definition 1.3 ([13]). Let f be a distribution, ω ∈ A∞, and 0 < p ≤ ∞.
We say f belongs to Hp

ω(Rn) if there exists a Φ ∈ S with
∫

Φ 6= 0 so that
MΦf ∈ Lp

ω(Rn), where MΦf(x) is defined by

MΦf(x) = sup
t>0

|(f ∗ Φt)(x)|.

We define the norm of f in Hp
ω(Rn) by ‖f‖Hp

ω(Rn) = ‖MΦf‖Lp
ω(Rn).

We will appeal to the atomic decomposition characterization of weighted
Hardy spaces to establish the boundedness of the operators. As if ω ∈ Ap for
1 < p < ∞, then ω ∈ Ar for all r > p and ω ∈ Aq for some 1 < q < p, we will use
qω := inf{q > 1 : ω ∈ Aq} to denote the critical index of ω.

Definition 1.4. Assume that ω ∈ A∞ with critical index qω. Let [ · ]
be the greatest integer function. If p ∈ (0, 1], q ∈ [qω,∞), s ∈ Z satisfying
s ≥ [n(qω/p − 1)], a real-valued function a(x) is called (p, q, s)-atom centered at
x0 with respect to ω (or ω − (p, q, s)-atom centered at x0) if

(a) a ∈ Lq
ω(Rn) and is supported in a cube Q centered at x0;

(b) ‖a‖Lq
ω
≤ ω(Q)(1/q)−(1/p);

(c)
∫

Rn a(x)xαdx = 0 for every multi-index α with |α| ≤ s.

When q = ∞, L∞ω will be taken to mean L∞ and ‖f‖L∞ω = ‖f‖L∞ .

From [4], we know that if w ∈ Aq, 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q, and
f ∈ Hp

ω(Rn), there exist a sequence ai of ω − (p, q, [n(qw/p) − 1])-atoms, and a
sequence λi of real numbers with

∑ |λi|p ≤ C‖f‖p
Hp

ω
such that f =

∑
λiai both

in the sense of distributions and in the Hp
ω norm.

Theorem E ([11], [12]). Let 1 < q1, . . . , qm, q < ∞, 0 < p1, . . . , pm, p ≤ 1,
satisfying

1
q1

+ · · ·+ 1
qm

=
1
q

(1.18)

and

1
p1

+ · · ·+ 1
pm

=
1
p
. (1.19)
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Let T be an m-linear Calderón-Zygmund operator satisfying (1.9), (1.10) and
(1.11) with

N = max
1≤i≤m

[n((qi)ω/pi − 1)], [(qi/pi − 1)mn],

and T∗ be its corresponding maximal operator, then

( i ) If ω ∈ Aq1 ∩ · · · ∩Aqm , then

∥∥T (~f )(x)
∥∥

Lp
ω
≤ C

m∏

i=1

∥∥fi

∥∥
H

pi
ω

(1.20)

and

∥∥T∗(~f )(x)
∥∥

Lp
ω
≤ C

m∏

i=1

∥∥fi

∥∥
H

pi
ω

. (1.21)

( ii ) If for each i, ωi ∈ A1, let

ν~ω =
m∏

j=1

ω
p/pj

j , (1.22)

then

∥∥T (~f )(x)
∥∥

Lp
ν~ω

≤ C
m∏

i=1

∥∥fi

∥∥
H

pi
ωi

(1.23)

and

∥∥T∗(~f )(x)
∥∥

Lp
ν~ω

≤ C
m∏

i=1

∥∥fi

∥∥
H

pi
ωi

. (1.24)

We will apply Theorem 1.1 to the multilinear Calderón-Zygmund operator and
its maximal operator on weighted Hardy spaces, and get the following theorem.

Theorem 1.2. Let 1 < q1, . . . , qm, q < ∞, 0 < p1, . . . , pm, p ≤ 1, satisfying

1
q1

+ · · ·+ 1
qm

=
1
q
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and

1
p1

+ · · ·+ 1
pm

=
1
p
.

Let T be an m-linear Calderón-Zygmund operator related to K and assume that T

admits an extension that maps Lq1×· · ·×Lqm into Lq, satisfying (1.9), (1.10) and
(1.11) with N ≥ max1≤i≤m{[(1/pi − 1)mn]} and T∗ be its corresponding maximal
operator. We have the following results:

If for each i, ωi ∈ A∞, let

ν~ω =
m∏

j=1

ω
p/pj

j ,

then

∥∥T (~f )(x)
∥∥

Lp
ν~ω

≤ C
m∏

i=1

∥∥fi

∥∥
H

pi
ωi

(1.25)

and

∥∥T∗(~f )(x)
∥∥

Lp
ν~ω

≤ C
m∏

i=1

∥∥fi

∥∥
H

pi
ωi

. (1.26)

Remark 1.3. Note that the condition ωi ∈ A1 in Theorem E is replaced
by the condition ωi ∈ A∞. Thus Theorem 1.2 improves the results in Theorem E
essentially and significantly. We also obtain a bigger random of N in (1.11), which
allows more Calderón-Zygmund operators having such boundness properties on
Hardy spaces.

2. Proof of the Theorems.

Proof of Theorem 1.1. We first prove that when ωi ∈ Aq, 1 < q < ∞,

∫

Q

ν~ω ≥
m∏

i=1

( ∫
Q

ωi

[ωi]Aq

)θi

. (2.1)

Once this is proved, as [ω]Aq
↓ [ω]A∞ for any ω ∈ Aq, 1 ≤ q < ∞, and the fact

that A∞ =
⋃

q>1 Aq (see [2]), take the limit q →∞ in (2.1), and the theorem can
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be obtained.
We now prove (2.1). Set

ν~ω =
m∏

i=1

ωθi
i . (2.2)

By Hölder’s inequality,

|Q| =
∫

Q

(
ν~ω · 1

ν~ω

)1/q

≤
( ∫

Q

ν~ω

)1/q( ∫

Q

ν
−q′/q
~ω

)1/q′

=
( ∫

Q

ν~ω

)1/q( ∫

Q

m∏

i=1

ω
−θi(q

′/q)
i

)1/q′

≤
( ∫

Q

ν~ω

)1/q m∏

i=1

( ∫

Q

ω
−q′/q
i

)θi/q′

. (2.3)

If ωi ∈ Aq, by definition,

sup
Q

∫
Q

ωi

( ∫
Q

ω
−q′/q
i

)q/q′

|Q|q ≤ [ωi]Aq . (2.4)

Then we have

∫

Q

ν~ω ≥ |Q|q
∏m

i=1

( ∫
Q

ω
−q′/q
i

)q/q′
θi

≥ |Q|q
∏m

i=1

(
[ωi]Aq |Q|qR

Q
ωi

)θi
=

m∏

i=1

( ∫
Q

ωi

[ωi]Aq

)θi

. (2.5)

This is just (2.1) and Theorem 1.1 is thus proved. ¤

Proof of Corollary 1.1. We give two methods to prove Corollary 1.1.

Method 1:
For

∑m
i=1 θi < 1, we denote ε = 1 − ∑m

i=1 θi > 0. Repeat the step in (2.3)
and using Hölder’s inequality (since θ1 + · · ·+ θm + ε = 1), we get
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|Q| =
∫

Q

(
ν~ω · 1

ν~ω

)1/q

≤
( ∫

Q

ν~ω

)1/q( ∫

Q

ν
−q′/q
~ω

)1/q′

≤
( ∫

Q

ν~ω

)1/q m∏

i=1

( ∫

Q

ω
−q′/q
i

)θi/q′

|Q|ε/q′ . (2.6)

Thus by (2.4) and (2.6), we get

∫

Q

ν~ω ≥ |Q|q
|Q|(1−

Pm
i=1 θi)q/q′ ∏m

i=1

( ∫
Q

ω
−q′/q
i

)q/q′θi

≥ |Q|q

|Q|(1−
Pm

i=1 θi)q/q′ ∏m
i=1

(
[ωi]Aq |Q|qR

Q
ωi

)θi
≥ |Q|1−

P
i θi

m∏

i=1

( ∫
Q

ωi

[ωi]Aq

)θi

.

(2.7)

Taking the limit q →∞ in (2.7) yields the desired results.

Method 2:
By using Theorem 1.1 directly, we get

∫

Q

m∏

i=1

ωi
θi =

∫

Q

m∏

i=1

ωi
θi11−Pi θi ≥

m∏

i=1

( ∫
Q

ωi

[ωi]A∞

)θi
( ∫

Q
1

[1]A∞

)1−Pi θi

= |Q|1−
P

i θi

m∏

i=1

( ∫
Q

ωi

[ωi]A∞

)θi

.

Proof of Theorem 1.2. We follow the main idea in [11] and [12] to prove
this theorem.

We use the atomic decomposition of Hp
ω spaces [4], and we will firstly consider

finite sums of atoms. Assume fi =
∑

ki
λi,kiai,ki , where ai,ki are wi-(pi,∞, s)-

atoms. This means that they are supported in cubes Qi,ki , |ai,ki | ≤ ω(Qi,ki)
−1/pi

and

∫

Qi,ki

ai,ki(x)xαdx = 0, |α| ≤ s, s ≥ [n((qi)ω/pi − 1)]. (2.8)
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We first consider the m-linear Calderón-Zygmund operator and prove (1.25).
Denote by ci,ki

and l(Qi,ki
) the center and the side length of Qi,ki

, and let
Q∗i,ki

= 8
√

nQi,ki
. We write

T (f1, . . . , fm)(x)

=
∑

k1

· · ·
∑

km

λ1,k1 · · ·λm,km
T (a1,k1 , . . . , am,km

)(x)

≤
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km | |T (a1,k1 , . . . , am,km)(x)|χ
Q∗1,k1

∩···∩Q∗
m,km

+
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km
| |T (a1,k1 , . . . , am,km

)(x)|χQ∗1,k1
c∪···∪Q∗m,km

c

= I1(x) + I2(x). (2.9)

We first estimate I2. This part has been estimated in [11], but we note that it can
actually be obtained by following [7] in the unweighted situation and the easy fact
that if |ai,ki

| ≤ ω(Qi,ki
)−1/pi , then

∫
Qi,ki

|ai,ki
| ≤ |Qi,ki

|ωi(Qi,ki
)−1/pi . We then

can get

I2(x) ≤ C
m∏

i=1

( ∑

ki

ωi(Qi,ki)
−1/pi |Qi,ki |1+(N+1)/nm

(|x− ci,ki |+ l(Qi,ki))n+(N+1)/m

)
. (2.10)

We set the m-linear Calderón-Zygmund operator satisfies (1.11) with N ≥
max1≤i≤m{[(1/pi−1)mn]} (accordingly, we assume ai,ki

are (pi,∞, s)-atoms with
s ≥ N). Then we have

∥∥I2

∥∥
Lp

ν~ω

≤ C
m∏

i=1

( ∑

ki

|λi,ki
|pi

)1/pi

. (2.11)

So it remains to estimate I1(x). For fixed k1, . . . , km, assume that Q∗1,k1
∩· · ·∩

Q∗m,km
6= ∅, otherwise there is nothing to prove. Assume that the side length of the

cube Qα,kα
is the smallest among the side lengths of the cubes Q1,k1 , . . . , Qm,km

.
We take a cube Gk1,...,km

such that

Q∗1,k1
∩ · · · ∩Q∗m,km

⊂ Gk1,...,km
⊂ G∗k1,...,km

⊂ Q∗∗1,k1
∩ · · · ∩Q∗∗m,km

and
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ωi

(
Gk1,...,km

) ≥ Cωi

(
Q∗α,kα

)
,

1 < i < m.
Let k be a positive integer, q = kp, qi = kpi, then 1/q =

∑
i(1/qi),

ν~ω =
m∏

i=1

ω
p/pi

i =
m∏

i=1

ω
q/qi

i . (2.12)

We assume k to be big enough such that q > 1, and ωi ∈ Aqi
. Set ~ω = (ω1, . . . , ωm).

By [10], we know ~ω satisfies the A~q condition. According to (1.6) and Theorem
C, we have

1
ν~ω(Gk1,...,km

)

∫

Gk1,...,km

∣∣T (a1,k1 , . . . , am,km
)(x)

∣∣ν~ω(x)dx

≤ Cν~ω(Gk1,...,km)−1/q
m∏

i=1

‖ai,ki‖L
qi
ωi

≤ C

( ∫

Gk1,...,km

m∏

i=1

ω
q/qi

i

)−1/q m∏

i=1

ωi(Q∗α,kα
)(1/qi)−(1/pi)

≤ C

m∏

i=1

(∫
Gk1,...,km

ωi

[ωi]A∞

)−q/qi·1/q m∏

i=1

ωi(Q∗α,kα
)(1/qi)−(1/pi)

≤ C

m∏

i=1

(
ωi(Q∗α,kα

)
)−q/qi·1/q

m∏

i=1

ωi(Q∗α,kα
)(1/qi)−(1/pi)

≤ C
m∏

i=1

ωi(Q∗α,kα
)−1/pi . (2.13)

To estimate I1, we need the following lemma in [11].

Lemma 2.1. Let 0 < p ≤ 1. Then there is a constant C = C(p) such that
for all finite collections of cubes {Qk}m

k=1 in Rn and all nonnegative functions
gk ∈ Lω with supp gk ⊂ Qk we have

∥∥∥∥
m∑

k=1

gk

∥∥∥∥
Lp(ω)

≤ C

∥∥∥∥
m∑

k=1

1
ω(Qk)

∫

Qk

gk(x)ω(x)dxχQ̃k

∥∥∥∥
Lp(ω)

. (2.14)
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We note that when ω = 1, this lemma was proved in [7].
By Lemma 2.1, we obtain

∥∥I1

∥∥
Lp

ν~ω

≤ C

∥∥∥∥
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km |
m∏

i=1

ωi(Q∗α,kα
)−1/piχG∗k1,...,km

∥∥∥∥
Lp

ν~ω

≤ C
m∏

i=1

∥∥∥∥
( ∑

ki

|λi,ki |ωi(Q∗α,kα
)−1/piω

1/pi

i χG∗k1,...,km

)∥∥∥∥
Lpi

≤ C
m∏

i=1

( ∑

ki

|λi,ki |pi

)1/pi

. (2.15)

Summing (2.11) and (2.15), we get

∥∥T (~f )
∥∥

Lp
ν~ω

≤ C
m∏

i=1

( ∑

ki

|λi,ki
|pi

)1/pi

, (2.16)

for fi =
∑

ki
λi,ki

ai,ki
, where ai,ki

are (pi,∞, s)-atoms.
Thus so far we have proved (2.16) when ωi ∈ Akpi . If ωi ∈ A∞, then there

exists ri, 1 < ri < ∞, such that ωi ∈ Ari . Let k be big enough that kqi > ri,
1 < ri < ∞. Then the above argument shows the same boundedness of the
m-linear Calderón-Zygmund operator for such weights ωi.

Note that T (also T∗) is an operator bounded from
∏m

i=1 L2m(wi) to L2(ν~ω) (if
we replace T by T∗, the following argument still works from (2.19) to (2.21)). For
general fi ∈ L2m(wi) ∩ Hpi(wi), by the n-dimensional version of Theorem II.3.6
(see [4]), there exist sequences of (pi,∞)-atoms ai,ki

and sequences of numbers
λi,ki

satisfying

∞∑

ki=1

|λi,ki
|pi ≤ C‖fi‖pi

Hpi (wi)
, (2.17)

and

fi(x) =
∞∑

ki=1

λi,ki
ai,ki

(x) a.e. and in L2m(wi). (2.18)

Set gi,N =
∑N

ki=1 λi,ki
ai,ki

(x). Then, since gi,N tends to fi in L2m(wi), and T

is bounded from
∏m

i=1 L2m(wi) to L2(ν~ω), we see that T ( ~gN ) tends to T (~f ) in
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L2(ν~ω), where ~gN = (g1,N , . . . , gm,N ) and ~f = (f1, . . . , fm). Taking a subsequence
if necessary, we may assume

lim
n→∞

T ( ~gN ) = T (~f ) a.e. (2.19)

Now, from (2.16) and (2.17) we have

( ∫
|T ( ~gN )(x)|pν~ω(x)dx

)1/p

≤ C
m∏

i=1

( N∑

ki=1

|λi,ki
|pi

)1/pi

≤ C
m∏

i=1

‖fi‖Hpi (wi).

(2.20)

Thus, by (2.19) and Fatou’s lemma we get

( ∫
|T (~f )(x)|pν~ω(x)dx

)1/p

≤ C

m∏

i=1

‖fi‖Hpi (wi), fi ∈ L2m(wi) ∩Hpi(wi).

(2.21)

Since L2m(wi)∩Hpi(wi) is dense in Hpi(wi), we can extend T from L2m(wi)∩
Hpi(wi) to Hpi(wi), by using (2.21), and still get

∥∥T (~f )(x)
∥∥

Lp
ν~ω

≤ C

m∏

i=1

‖fi‖Hpi
ωi

.

This establishes (1.25).
We now prove (1.26) for the maximal operator. The step will be almost iden-

tical as above, as the multilinear Calderón-Zygmund operators and the maximal
operators share many similar properties. We also use the atomic decomposition
of Hp

ω spaces and we only need to consider finite sums of atoms for Hp
ω. We write

T∗(f1, . . . , fm)(x)

=
∑

k1

· · ·
∑

km

λ1,k1 · · ·λm,km
T∗(a1,k1 , . . . , am,km

)(x)

≤
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km
| |T∗(a1,k1 , . . . , am,km

)(x)|χ
Q∗1,k1

∩···∩Q∗
m,km

+
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km | |T∗(a1,k1 , . . . , am,km)(x)|χQ∗1,k1
c∪···∪Q∗m,km

c

= I1(x) + I2(x). (2.22)
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The estimate of I2 will be the same as in [12]. We omit its proof and only have
to estimate I1(x).

For fixed k1, . . . , km, we still assume that Q∗1,k1
∩ · · · ∩ Q∗m,km

6= ∅. We in-
troduce the same Gk1,...,km and Q∗α,kα

as in the above proof. Also set q = kp,
qi = kpi. Let k be big enough such that q > 1, and assume again ωi ∈ Aqi . Set
~ω = (ω1, . . . , ωm). By [10], we know ~ω satisfies the A~q condition. According to
(1.6) and Theorem D, we have

1
ν~ω(Gk1,...,km

)

∫

Gk1,...,km

|T∗(a1,k1 , . . . , am,km)(x)|ν~ω(x)dx

≤ C

( m∏

i=1

ωi(Gk1,...,km)q/qi

)−1/q m∏

i=1

ωi(Q∗α,kα
)(1/qi)−(1/pi)

≤ C
m∏

i=1

ωi(Q∗α,kα
)−1/pi . (2.23)

By Lemma 2.1 again,

∥∥I1

∥∥
Lp

ν~ω

≤ C

∥∥∥∥
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km
|

m∏

i=1

ωi(Q∗α,kα
)−1/piχG∗k1,...,km

∥∥∥∥
Lp

ν~ω

≤ C

m∏

i=1

∥∥∥∥
( ∑

ki

|λi,ki |ωi(Q∗α,kα
)−1/piω

1/pi

i χG∗k1,...,km

)∥∥∥∥
Lpi

≤ C

m∏

i=1

( ∑

ki

|λi,ki |pi

)1/pi

. (2.24)

We can follow the same steps as in the case of the m-linear Calderón-Zygmund
operator T , and the proof will be omitted. We then get (1.26) and the proof of
Theorem 1.2 is completed. ¤
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