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Abstract. Let Ω be a Brelot space satisfying the domination principle
and has a positive potential. We define the superharmonic extension property
(SEP) for Ω and introduce a sufficient condition under which Ω has the SEP
property. We give a characterization of the extreme Jensen measures in a
Brelot space with SEP property.

1. Introduction.

Let Ω be a connected, locally compact, second countable Hausdorff space.
Suppose that Ω has a system of harmonic functions satisfying Brelot axioms [3].
That is, the system of harmonic functions have the sheaf property and there exist
a base of connected open sets (called regular) where Dirichlet problem is uniquely
solvable, moreover the limit of an increasing sequence of harmonic functions defined
on a domain is either infinity or harmonic. A lower semicontinuous, extended real
valued function u on an open set V ⊂ Ω is called superharmonic if u never takes
the value −∞, is not identically ∞ on any connected component of V and for any
regular open set ω ⊂ ω ⊂ V , u satisfies the inequality

u(x) ≥
∫

u dρω
x , ∀x ∈ ω,

where ρω
x is the harmonic measure of ω at x. The set of all superharmonic (re-

spectively nonnegative superharmonic) function on V will be denoted by SH(V )
(respectively SH+(V )). A superharmonic function p ≥ 0, is called a potential if
any harmonic function h ≤ p also satisfies h ≤ 0. Suppose that Ω has a potential
p > 0, and also assume that the constant functions are harmonic. Moreover, as-
sume that the space Ω satisfies the domination principle. That is, given a locally
bounded potential which is harmonic off some closed set A ⊂ Ω, and given a
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superharmonic function u ∈ SH+(Ω) such that u ≥ p on A, then u ≥ p on Ω. To
give an example of such spaces, let Ω be a connected open subset of Rn for n ≥ 2
such that Ω has a Green function defined on it in case n = 2. Ω with the classical
harmonic functions is a Brelot space satisfying all the above assumptions.

Definition 1.1. Let Ω be a Brelot space and let x ∈ Ω. A Jensen measure
on Ω at x ∈ Ω is a Radon probability measure supported by a compact set such
that

u(x) ≥
∫

u dµ, ∀u ∈ SH(Ω).

The set of all Jensen measures on Ω at the point x will be denoted by Jx(Ω). And
the set of all Jensen measures on Ω at the point x with support in the set K is
denoted by Jx(Ω,K).

For a Euclidean open subset U , in ([5]) B. Cole and T. J. Ransford proved
that for x ∈ U the harmonic measures ρD

x at x, for D ⊂⊂ U , are extreme element
of Jx(U). The characterization of the extreme elements of Jx(U) was completed
by S. Roy [8]. He proved that if µ is an extreme element of Jx(U), then µ has
the form µ = δCV

x where V is a finely open set such that V ⊂⊂ U . Roy’s proof
depends on the fact that the Euclidean space has some extension property for the
superharmonic functions. In this article we focus on this extension property (call
it SEP property) in Brelot spaces Ω and introduce a condition which is sufficient
for Ω to have SEP property. And then we extend Roy’s result to any Brelot spaces
with SEP property.

Definition 1.2. The Brelot space Ω is said to have the SEP property (Su-
perharmonic Extension Property) if for every compact set K ⊂ Ω, and for ev-
ery superharmonic function u ∈ SH(Ω), there exists a superharmonic function
v ∈ SH(Ω) such that v is bounded below and v = u on K.

In Theorem 3.1 we show that if Ω has suitable cover of open sets, then Ω
has SEP property. More precisely, we show that Ω has the SEP if there exists a
sequence of open sets ωn such that for each n, ωn is inner-outer regular (look at
Definition 2.1) such that ωn ⊂ ωn+1 ⊂ ωn+1 ⊂ Ω and Ω =

⋃
n ωn.

2. Preliminary.

Let E be a subset of Ω and u ∈ SH(Ω) with u ≥ 0 on E. The reduced
function of u relative to E is defined as the following:

RE
u (x) = inf{v(x) : v ∈ SH+(Ω), v ≥ u on E}
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The lower semicontinuous regularization of RE
u , denoted by R̂E

u , is called the
balayage function of u relative to E.

If A is a Borel subset of Ω and µ ∈ M+(Ω) (the space of all positive Radon
measures on Ω, such that µ(p) < ∞ for some strictly positive continuous potential
p), then there exists a unique Radon measure µA (called balayaged measure) such
that

∫
u dµA =

∫
R̂A

u dµ, ∀u ∈ SH+(Ω).

For details, see [4]. An important special case is the case when µ = δx for some
x ∈ Ω. In this case δA

x is defined by the relation:

∫
u dδA

x = R̂A
u (x), ∀u ∈ SH+(Ω). (1)

The fine topology on Ω is the coarsest topology on Ω which is finer than the
given topology and makes every superharmonic function continuous.

In Equation (1), when A = C ω (= Ω−ω), where ω is finely open set containing
x, the measure δCω

x is called the fine harmonic measure of ω at x.
A finely lower semicontinuous, extended real valued function f on a finely

open set U ⊂ Ω, is called finely superharmonic in U if f > −∞, finite on a dense
subset of U and ∀ finely open set V ⊂⊂ U we have the inequality

f(x) ≥
∫

f dδCV
x , ∀x ∈ U.

Let ω be an open subset of Ω. Let f be an extended real valued function
on ∂ω. The upper solution H

ω

f on ω is defined to be the lower envelop of all
superharmonic functions u in ω such that u > −∞ and

lim inf
x∈ω,x→y

u(x) ≥ f(y), ∀y ∈ ∂ω.

The lower solution H ω
f is define to be −H

ω

−f . If the function f is continuous
then H

ω

f ,H ω
f are equal and harmonic in ω. The common function is denoted by

H ω
f and called the general solution of Dirichlet problem on ω with boundary data

f . For x ∈ ω the functional f 7→ H ω
f (x) is just a Radon measure µω

x , called the
harmonic measure of ω at x, identical to ρω

x in the case ω is a regular set. Moreover
µω

x = δCω
x and Hω

f (x) =
∫

f dµω
x =

∫
f dδCω

x . The point x ∈ ∂ω is called regular
point of ω if for each f ∈ C(∂ω) (the continuous functions on the boundary of ω)
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we have

lim
y∈ω,y→x

H ω
f (y) = f(x).

Definition 2.1. A relatively compact open set ω will be called inner-outer
regular if its boundary points are regular with respect to both ω and Ω− ω.

Definition 2.2. For x ∈ Ω and a convex cone A of lower semi continuous
functions on Ω we define the set Jx(A ) by the following relation:

Jx(A ) =
{

µ ∈ M+(Ω) :
∫

u dµ ≤ u(x), ∀u ∈ A

}
.

An important special case in the above definition is the case when A =
SH+(Ω). In this case the set Jx(SH+(Ω)) is a compact (in the w*-topology)
convex subset of M+(Ω). For details, see [4].

3. Superharmonic extension.

Theorem 3.1. If Ω has a countable cover of inner-outer regular open sets
ωn such that ωn ⊂ ωn+1 ⊂ ωn+1 ⊂ Ω and Ω =

⋃
n ωn. Then Ω has SEP property.

Proof. Let K be a compact subset of Ω and u ∈ SH(Ω). Let ω be an
inner-outer regular domain such that K ⊆ ω ⊂ ω ⊂ Ω. Let ω1, ω2 be regular open
sets such that ω ⊂ ω1 ⊂ ω1 ⊂ ω2 ⊂ ω2 ⊂ Ω. Since u is lower semicontinuous, it
is bounded below on K. So, without loss of generality we can assume that u ≥ 0
on K. Define the function u on ω2 by the relation u = (R̂K

u )ω2 . Clearly, u has the
following properties:

( i ) u is a positive superharmonic function on ω2.
( ii ) u is harmonic on ω2\K, in particular continuous on ∂ω.
(iii) u = u on K.
(iv) u tends to zero on the boundary of ω2.

Let h1 be the general Dirichlet solution on Ω − ω with boundary data u on
∂ω and 1 at Alexandroff point. Let h2 be the general Dirichlet solution on Ω− ω

with boundary data 0 on ∂ω and 1 at Alexandroff point. Since ω is outer regular
then h1 tends to u on ∂ω and h2 tends to zero on ∂ω, furthermore 0 < h2 ≤ 1.
Now define the harmonic function H as the following:

H = h1 −Ah2, where A > sup
{

h1(x)− u(x)
h2(x)

: x ∈ ∂ω1

}
.



Extension spaces for superharmonic functions and Jensen measures 267

We claim that

u ≥ H on the open set ω1\ω. (2)

Because u−H is a lower bounded superharmonic function (actually harmonic) on
ω1\ω, it is enough to show that

lim inf
y→x

(u−H)(y) ≥ 0, ∀x ∈ ∂(ω1\ω) = ∂(ω1) ∪ ∂(ω).

If x ∈ ∂(ω1), then

lim inf
y→x

{u(y)−H(y)} = lim inf
y→x

{u(y)− h1(y) + Ah2(y)}

= lim
y→x

(u(y)− h1(y)) + lim
y→x

Ah2(y)

(because u, h1, h2 are continuous on ∂ω1)

= u(x)− h1(x) + Ah2(x)

≥ 0 (by the choice of A)

If x ∈ ∂ω, then

lim inf
y→x

{u(y)−H(y)} = lim inf
y→x

{u(y)− h1(y) + Ah2(y)}

≥ lim inf
y→x

u(y) + lim inf
y→x

(−h1(y)) + lim inf
y→x

Ah2(y)

= u(x)− lim
y→x

h1(y) + A lim
y→x

h2(y)

(since u is continuous at x)

= u(x)− u(x) + 0 (by the construction of h1, h2)

= 0

The claim is proved.
Define the function v on Ω as the following:

v(x) =

{
H(x) if x ∈ Ω− ω

u(x) if x ∈ ω.

Now we show that the function v is the required function. It is clear that v =
u = u on K. Moreover, v is bounded below. In fact v = u ≥ 0 on ω and
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v = H = h1 −Ah2 ≥ −A on Ω− ω (since h1 > 0 and h2 ≤ 1). It remains to show
that v is superharmonic on Ω. Obviously v is super harmonic in the open sets ω

and Ω− ω. So, we only need to check that:

(a) v is lower semicontinuous on ∂ω.
(b) ∀x ∈ ∂ω there exists a local basis (at x) of regular open sets σ 3 x such that

v(x) ≥
∫

v dρσ
x . (3)

If x ∈ ∂ω, then

lim inf
y→x

v(y) = min
{

lim inf
y∈ω y→x

u(y), lim inf
y∈Ω−ω y→x

H(y)
}

≥ min
{

u(x), lim inf
y∈Ω−ω y→x

H(y)
}

(u is continuous at x)

= min{u(x), u(x)} (by the construction of H)

= u(x) = v(x).

So,

lim inf
y→x

v(y) ≥ v(x) ∀ x ∈ ∂ω.

Therefore, v is lower semicontinuous and (a) is proved.
To prove (b), let x ∈ ∂ω and let δ be a regular open set such that x ∈ δ ⊆

δ ⊆ ω1. By (2), we have that H ≤ u on ω1\ω, So v ≤ u on δ. As a result we have
that for any regular domain σ with x ∈ σ ⊂ δ,

∫
v dρσ

x ≤
∫

u dρσ
x ≤ u(x) = v(x).

The second inequality holds because u is superharmonic on ω1. This proves (b).
The proof is complete. ¤

4. Extreme Elements of Jx(Ω).

For a convex set A, denote the set of the extreme elements of A by extA. We
recall that Mokobodzki’s theorem (see [4]) gives a characterization of the extreme
elements of Jx(SH+(Ω)). Explicitly,
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ext Jx(SH+(Ω)) =
{
δA
x : A Borel ⊂ Ω

} ∪ {δx}. (4)

The following result illustrates the relation between the classes Jx(SH+(Ω)),
Jx(Ω).

Lemma 4.1. Suppose that Ω has SEP property. For x ∈ Ω, we have

{
µ ∈ Jx(SH+(Ω)) : suppµ ⊂⊂ Ω and µ(Ω) = 1

}
= Jx(Ω).

Proof. First of all, it is clear that

Jx(Ω) ⊂ {
µ ∈ Jx(SH+(Ω)) : suppµ ⊂⊂ Ω and µ(Ω) = 1

}
.

For the converse inclusion, let µ ∈ Jx(SH+(Ω)) be such that suppµ ⊂⊂ Ω and
µ(Ω) = 1. To show that µ ∈ Jx(Ω) we only need to show that every u ∈ SH(Ω)
satisfies the inequality u(x) ≥ ∫

u dµ. Let u ∈ SH(Ω), and let K be a compact
subset of Ω containing suppµ ∪ {x}. Since Ω has the SEP property, there exists
a superharmonic function v ∈ SH(Ω) such that v is bounded below and v = u

on K. Let a be a positive real number such that v + a ≥ 0. Now u(x) + a =
v(x) + a ≥ ∫

(v + a) dµ =
∫

K
v dµ + a =

∫
K

u dµ + a =
∫

u dµ + a. Thus we have
u(x) ≥ ∫

u dµ. ¤

Lemma 4.2. Suppose that Ω has the SEP property. For x ∈ Ω, we have

ext Jx(Ω) = ext Jx(SH+(Ω)) ∩ Jx(Ω).

Proof. First, notice that Jx(Ω) ⊂ Jx(SH+(Ω)) which implies that
ext Jx(SH+(Ω)) ∩ Jx(Ω) ⊂ ext Jx(Ω). For the converse inclusion, let µ ∈
ext Jx(Ω). To show that µ ∈ ext Jx(SH+(Ω)), suppose that µ = (1/2)(µ1 + µ2)
where µ1, µ2 are in Jx(SH+(Ω)). We must show that µ = µ1 = µ2. First, we show
that the measures µ1, µ2 are in fact in Jx(Ω). Since µi(Ω) ≤ 1 for i = 1, 2 and
1 = µ(Ω) = (1/2)(µ1(Ω)+µ2(Ω)), we have that µ1(Ω) = µ2(Ω) = 1. Furthermore,
the relation µ = (1/2)(µ1 + µ2) implies that for i = 1, 2, suppµi ⊂ suppµ ⊂⊂ Ω.
Thus, by Lemma 4.1 we have that µ1, µ2 ∈ Jx(Ω). Considering the relation
µ = (1/2)(µ1 + µ2) and the fact that µ ∈ ext Jx(Ω) and µ1, µ2 ∈ Jx(Ω), we
get that µ = µ1 = µ2. ¤

Recall that the class of finely harmonic measures FHx(Ω) is defined as:

FHx(Ω) =
{
δCω
x : x ∈ ω, ω finely domain ⊂⊂ Ω

} ∪ {δx}.
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The following theorem gives a characterization of the extreme elements of Jx(Ω).

Theorem 4.1. Suppose that Ω has the SEP property. For x ∈ Ω, we have

ext Jx(Ω) = FHx(Ω). (5)

Proof. Let µ ∈ ext Jx(Ω). The above lemma implies that µ ∈
ext Jx(SH+(Ω))∩ Jx(Ω). Now, by Mokobodzki’s theorem we have that µ = δx or
µ = δA

x , x /∈ A for some Borel set A ⊂ Ω. Obviously if µ = δx then µ belongs
to the right hand side of (5). Suppose that µ = δA

x , x /∈ A. Notice that δA
x = δB

x

where B = b(A) = {y : δA
y = δy}, is the base of A ([6, Theorem 4.7]). Moreover,

µ = δB
x = δCω

x where ω is the finely connected component of Ω−B which contains
x ([6, Theorem 12.7]). Since µ ∈ Jx(Ω), suppµ = ∂ω ⊂⊂ Ω, therefore ω ⊂⊂ Ω.
Hence µ is in the right hand side of (5) and we have

ext Jx(Ω) ⊆ {
δCω
x : x ∈ ω, ω finely domain ⊂⊂ Ω

} ∪ {δx}.

The converse inequality: Let µ be in the right hand side of (5). The result is
obvious if µ = δx. Suppose that µ = δCω

x for some finely domain ω containing
x. It is clear that the measure µ = δCω

x is a finely harmonic probability Borel
measure supported by the set ∂fω ⊂ ω ⊂⊂ Ω. If u ∈ SH(Ω), then u is a finely
superharmonic function on Ω. Therefore, by definition of finely superharmonic
function, we have the inequality u(x) ≥ ∫

u dδCω
x . This implies that µ ∈ Jx(Ω).

To show that µ = δCω
x is an extreme element of Jx(Ω), suppose that µ =

δCω
x = (1/2)(µ1 +µ2), where µ1, µ1 ∈ Jx(Ω). This relation implies that for i = 1, 2

the measure µi does not charge polar sets and suppµi ⊂ supp δCω
x ⊂ C ω.

Let u be a nonnegative superharmonic function. For i = 1, 2 we have
∫

u dµi =
∫

Cω

u dµi

=
∫

Cω

RCω
u dµi

=
∫

Cω

R̂Cω
u dµi (because µi does not charge polar sets)

=
∫

R̂Cω
u dµi

≤ R̂Cω
u (x) (because µi ∈ Jx(Ω))

=
∫

u dδCω
x . (by definition of δCω

x )
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Thus, for i = 1, 2 we have µi(u) ≤ δCω
x (u) = (1/2)(µ1(u) + µ2(u)), which implies

that µ1(u) = µ2(u) for all positive continuous superharmonic functions u. So,
µ1(u1 − u2) = µ2(u1 − u2) for all positive continuous superharmonic functions
u1, u2. Because {SH+(Ω) − SH+(Ω)} ∩ C(Ω) is dense in C(Ω), the space of
continuous functions on Ω, we get µ1 = µ1 = δCω

x . Hence µ = δCω
x ∈ ext(Jx(Ω)).

¤

Characterizing ext Jx(Ω) can be used to give integral representations for the
elements of Jx(Ω) in the sense of Choquet. First, let’s recall Choquet theorem: if
X is a compact convex metrizable subset of a locally convex space E, and x ∈ X.
Then there exists a probability Radon measure σ on X carried by extX such that

f(x) =
∫

X

f dσ, ∀f ∈ E∗,

where E∗ is the set of all continuous linear functionals on E.
Let x ∈ Ω. Let µ ∈ Jx(Ω), so µ ∈ Jx(Ω,K) for some compact set K. The

set Jx(Ω,K) is a convex compact metrizable (in w*-topology) subset of the locally
convex space C∗(Ω). So, by Choquet theorem, there exists a Radon probability
measure σ on Jx(Ω,K), supported by ext Jx(Ω,K), such that

L(µ) =
∫

ext Jx(Ω,K)

L(ν) dσ(ν), ∀L ∈ C∗∗(Ω). (6)

Obviously, σ can be extended to Jx(Ω). The set ext Jx(Ω,K) is a subset of
the Borel set ext Jx(Ω), so σ is carried by ext Jx(Ω). Moreover, the continuous
linear functionals on C∗(Ω) are the functions f ∈ C(Ω), so (6) becomes

∫
f dµ =

∫

FHx(Ω)

( ∫

Ω

f dν

)
dσ(ν), ∀f ∈ C(Ω).

The results in this note were included in a thesis submitted to McGill Uni-
versity. I would like to thank my supervisor Prof. K. GowriSankaran for his help
in the preparation of this note.
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