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An explicit dimension formula for Siegel cusp forms

with respect to the non-split symplectic groups
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Abstract. We give an explicit dimension formula for the spaces of vec-
tor valued Siegel cusp forms of degree two with respect to a certain kind of
arithmetic subgroups of the non-split Q-forms of Sp(2,R).

1. Introduction.

The purpose of this paper is to give an explicit dimension formula for the
spaces of vector valued Siegel cusp forms of degree two with respect to a certain
kind of discrete subgroups of the non-split Q-forms of Sp(2,R).

In general, the dimensions of the spaces of Siegel modular forms can be cal-
culated, in principle, by Selberg trace formula or Riemann-Roch theorem if the
weights are sufficiently large, but there are many difficulties in actual calculations.
Our concern is explicit dimension formulae, i.e., elementary functions of weights
which give numerical values of dimensions. Such formulae are very useful for de-
termining explicit ring structures of Siegel modular forms. In addition, they can
be used also for studying a possible correspondence between Siegel modular forms
for different discrete subgroups by means of comparisons of dimension formulae.

Our main result is Theorem 3.1, which is shortly explained below. Let B be
an indefinite division quaternion algebra over Q with discriminant D. Let O be
the maximal order of B, which is unique up to conjugation. If we take a positive
divisor D1 of D and put D2 := D/D1, then there is the unique maximal two-sided
ideal A of O such that A ⊗Z Zp = Op if p | D1 or p - D, and A ⊗Z Zp = πOp if
p | D2, where π is a prime element of Op. We consider the unitary group of the
quaternion hermitian space of rank two and denote by Γ(D1, D2) the stabilizer of
the maximal lattice (A,O), namely we define

Γ(D1, D2) :=
{

g =
(

a b
c d

)
∈ GL(2;B)

∣∣∣∣ g

(
0 1
1 0

)
tg =

(
0 1
1 0

)
,

a, d ∈ O,

b ∈ A−1, c ∈ A

}
.
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(see Section 2.3.) This group can be regarded as a discrete subgroup of
Sp(2;R). Our main theorem (Theorem 3.1) is an explicit formula for dimen-
sion of Sk,j(Γ(D1, D2)), the space of vector valued Siegel cusp forms of weight
detk ⊗Symj with respect to Γ(D1, D2) for k ≥ 5. For example, we have

dimC Sk,0(Γ(1, 6)) =
4k3 − 18k2 + 696k − 1737 + (−1)k · 225

1440

+
[0,−1, 1; 3]k

9
+

[1, 0, 0,−1; 4]k
4

+
4[1, 0, 0,−1, 0; 5]k

5
,

where [a0, . . . , am−1;m]k is the function of k which takes the value ai if k ≡
i mod m.

Explicit dimension formula for the spaces of Siegel cusp forms of degree two
has been studied by many mathematicians. Among them, Arakawa [Ara75],
[Ara81], Hashimoto [Has84] and Wakatsuki [Wak, Theorem 6.1] treated the
non-split Q-forms. Hashimoto [Has84] obtained an explicit dimension formula
for scalar valued Siegel cusp forms for Γ(D, 1) by using Selberg trace formula, and
Wakatsuki [Wak, Theorem 6.1] generalized it to the vector valued Siegel cusp
forms for Γ(D, 1). Our main result of this paper (Theorem 3.1) is a generalization
of [Has84] and [Wak, Theorem 6.1] to any Γ(D1, D2). We obtain the result by
essentially the same method as [Has84], but our situation is much more compli-
cated.

We make some remarks on some known facts which are used to obtain our
result. We divide Γ = Γ(D1, D2) into disjoint union of four subsets Γ(e), Γ(u),
Γ(qu) and Γ(h) as follows:

( i ) Γ(e) consists of torsion elements of Γ.
( ii ) Γ(u) consists of non-semi-simple elements of Γ whose semi-simple factors are

14 or −14.
(iii) Γ(qu) consists of non-semi-simple elements of Γ whose semi-simple factors

belong to Γ(e) other than ±14.
(iv) Γ(h) consists of the other elements of Γ than the above three types.

We denote the contributions to dimension formula of each subset above by
I(Γ(e))k,j , I(Γ(u))k,j , I(Γ(qu))k,j and I(Γ(h))k,j . It is known that I(Γ(h))k,j = 0
and

dimC Sk,j(Γ) = I(Γ(e))k,j + I(Γ(u))k,j + I(Γ(qu))k,j .

As for the contribution I(Γ(e))k,j , we can evaluate it by means of the method
developed by Hashimoto and Ibukiyama. It is shown by Hashimoto and Ibukiyama
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[HI80], [Has83] that the formula for I(Γ(e))k,j can be expressed adelically and can
be reduced to local computation (cf. Theorem 4.1). We do not need to calculate
the local data “cp(g, Rp,Λp)” since they have been obtained in [HI80] and [HI83].
(Although B is definite in the case of [HI80] and [HI83], there is no difference
if being localized.) So, our main task is to combine the local data and determine
G-conjugacy classes which appear in the first sum in Theorem 4.1. It is still
a complicated work, and the details will be explained in Section 4. (The way
of combining local data is different from that of [HI80] and [HI83] since B is
indefinite in our case.) On the other hand, as for the contributions I(Γ(u))k,j

and I(Γ(qu))k,j , we can not reduce them to local calculations. Wakatsuki [Wak]
gave an arithmetic formula for the contributions of them, but one still have to
carry out detailed calculation to obtain an explicit formula. More precisely, we
need to determine a complete system of representatives of Γ-conjugacy classes
of “families” (cf. Proposition 5.7, 5.8, 5.9) and calculate some data for them.
Arakawa has calculated the contribution I(Γ(u))k,j in his master thesis [Ara75],
but we prove it again in Section 5 by means of Wakatsuki’s formula (e-2) since
[Ara75] was not published with enough generality. Hashimoto calculated the
contribution I(Γ(qu))k,j in the case where D1 = D and D2 = 1 in [Has84]. We
can calculate I(Γ(qu))k,j also in the general case by almost the same way.

We organize this paper as follows. In Section 2, we will review Siegel cusp
forms in Subsection 2.1, and give in Subsection 2.2 and 2.3 the precise definition
of the discrete subgroup Γ(D1, D2). In Section 3, we will state our main theo-
rem (Theorem 3.1) which will be proved in Section 4 and 5. In Section 4, we
evaluate the contribution I(Γ(e))k,j . First, we quote the formula of Hashimoto
and Ibukiyama (Theorem 4.1), and then we evaluate H1, . . . , H12 of Theorem 3.1
in Subsection 4.1–4.12. In Section 5, we evaluate the contribution I(Γ(u))k,j and
I(Γ(qu))k,j . We evaluate I1, I2 and I3 of Theorem 3.1 in Subsection 5.1, 5.2 and 5.3
respectively. In Section 6, we give some numerical examples for our main theorem.

Finally, we want to refer to a possible application of our result. In the case
where B is definite, Ibukiyama has been studying a generalization of Eichler-
Jacquet-Langlands correspondence to the case of Sp(2) (cf. [Ibu85], [HI85],
[Ibu07a]). He obtained some relations of dimension formulae and conjectured
a correspondence of discrete subgroups. Moreover, he calculated some numerical
examples of coincidence of Euler factors of L-functions in [Ibu84]. On the other
hand, in our case B is indefinite. The author constructed explicit generators of the
graded ring of scalar valued Siegel modular forms for Γ(1, 6) as an application of
our dimension formula, which will appear in a forthcoming paper and can be used
for calculating Hecke operators concretely. Our dimension formula and numerical
calculations of Hecke eigenvalues will be eventually used for comparisons similar
to the above.
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2. Preliminaries.

2.1. Siegel cusp forms.
Let Sp(2;R) be the real symplectic group of degree two, i.e.

Sp(2;R) =
{

g ∈ GL(4,R)
∣∣∣∣ g

(
02 12

−12 02

)
tg =

(
02 12

−12 02

)}
.

Let H2 be the Siegel upper half space of degree two, i.e.

H2 = {Z ∈ M(2;C) | tZ = Z, Im(Z) is positive definite}.

The group Sp(2;R) acts on H2 by

γ〈Z〉 := (AZ + B)(CZ + D)−1

for any γ =
(

A B
C D

) ∈ Sp(2;R) and Z ∈ H2.
Let Γ be a discrete subgroup of Sp(2;R) such that vol(Γ\H2) < ∞. Let

ρk,j : GL(2;C) → GL(j + 1; C) be the irreducible rational representation of the
signature (j + k, k) for k, j ∈ Z≥0, i.e. ρk,j = detk ⊗Symj , where Symj is the
symmetric j-tensor representation of GL(2;C). We denote by Sk,j(Γ) the space
of Siegel cusp forms of weight ρk,j with respect to Γ, i.e. the space which consists
of holomorphic function f : H2 → Cj+1 satisfying the following two conditions:

( i ) f(γ〈Z〉) = ρk,j(CZ + D)f(Z), for ∀γ =
(

A B
C D

) ∈ Γ, ∀Z ∈ H2,

( ii )
∣∣ρk,j(Im(Z)1/2)f(Z)

∣∣
Cj+1 is bounded on H2,

where we define |u|Cj+1 = (tuu)1/2 for u ∈ Cj+1. It is known that Sk,j(Γ) is a
finite dimensional C-vector space.

2.2. The non-split Q-forms of Sp(2;R).
Let B be an indefinite quaternion algebra over Q. We fix an isomorphism

B ⊗Q R ' M(2;R) and we identify B with a subalgebra of M(2;R). Let D be a
product of all prime numbers p for which B ⊗Q Qp is a division algebra. We call
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D the discriminant of B. Let W be a left free B-module of rank 2. Let f be a
map on W ×W to B defined by

f(x, y) = x1y2 + x2y1, x = (x1, x2), y = (y1, y2) ∈ W,

where ¯ is the canonical involution of B. Any non-degenerate quaternion hermitian
form on W is equivalent to f . (cf. [Shi63]). Let U(2;B) be the unitary group
with respect to this hermitian space (W,f), that is,

U(2;B) = {g ∈ GL(2;B) | f(xg, yg) = f(x, y) for ∀x, y ∈ W}

=
{

g ∈ GL(2;B)
∣∣∣∣ g

(
0 1
1 0

)
tg =

(
0 1
1 0

)}
,

where tg =
(

a c
b d

)
for g =

(
a b
c d

)
. It is known that U(2;B) ⊗Q R is isomorphic to

Sp(2;R) by

φ : U(2;B)⊗Q R
∼−→ Sp(2;R)

φ(g) =




a1 a2 b2 −b1

a3 a4 b4 −b3

c3 c4 d4 −d3

−c1 −c2 −d2 d1


 , g =

(
A B
C D

)
∈ U(2;B)⊗Q R

where A =
(

a1 a2
a3 a4

)
, B =

(
b1 b2
b3 b4

)
, C =

(
c1 c2
c3 c4

)
, D =

(
d1 d2
d3 d4

) ∈ B ⊗Q R. It is
known that each Q-form of Sp(2;R) can be obtained as U(2;B) for some indefinite
quaternion algebra B (cf. [PR94]). If B = M(2;Q), then U(2;B) is isomorphic
to Sp(2;Q) by φ. In this paper, we treat the case where B is a division algebra.

2.3.
Let O be the maximal order of B, which is unique up to inner automorphisms.

We fix a quaternion hermitian space (W,f). Let L be a left O-lattice in W , that
is, L is a finitely generated Z-module satisfying L⊗Z Q = W and aL ⊂ L for any
a ∈ O. We put

U(2;B)L := {g ∈ U(2;B) | Lg = L}.

Then it is a discrete subgroup of Sp(2,R) such that vol(U(2;B)L\H2) < ∞ by
identifying it with its image by φ in Sp(2;R).

The two-sided O-ideal generated by the elements f(x, y) for x, y ∈ L is called
the norm of L. We call L a maximal lattice if L is maximal among the left O-
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lattices having the same norm. For any maximal lattice L and any prime number
p, it is known by [Shi63] that

L⊗Z Zp =

{
(Op,Op)gp if p - D

(Op,Op)gp or (πOp,Op)gp if p | D

for some gp ∈ U(2;B) ⊗Q Qp, where Op := O ⊗ Zp and π is a prime element
of Op. Hence there are exactly 2s genera of maximal lattices in W if D is a
product of s prime numbers. We put D = D1D2, where D1, D2 ∈ N such that
L ⊗Z Zp = (Op,Op)gp if p | D1, and L ⊗Z Zp = (πOp,Op)gp if p | D2, for some
gp ∈ U(2;B)⊗QQp. It is known that if two maximal lattices L1 and L2 correspond
to the same pair (D1, D2), then L1 and L2 belong to the same class (i.e. L1 = L2g

for some g ∈ U(2;B)) since B is indefinite, and therefore U(2;B)L1 = U(2;B)L2 .
For simplicity, we put

Γ(D1, D2) := U(2;B)L

for the maximal lattice L corresponding to the pair (D1, D2).

3. Main result.

Our main result is Theorem 3.1 below. It is an explicit dimension formula of
the spaces of Siegel cusp forms of weight ρk,j with respect to Γ(D1, D2) defined
above. This formula is a generalization of [Has84] and [Wak, Theorem 6.1]. We
prove Theorem 3.1 in Sections 4 and 5. We suppose that j is even. If j is odd, we
have Sk,j(Γ(D1, D2)) = {0} for any k since Γ(D1, D2) contains −14. For natural
number m and n, we denote by [a0, . . . , am−1;m]n the function on n which takes
the value ai if n ≡ i mod m. We define the set T (m;n) := {p | T ; p ≡ m mod n}
for T = D, D1 or D2.

Theorem 3.1. If k ≥ 5 and j is an even non-negative integer, then we have

dimC Sk,j(Γ(D1, D2)) =
12∑

i=1

Hi +
3∑

i=1

Ii,

where Hi and Ii are given as follows:

H1 =
(j + 1)(k − 2)(j + k − 1)(j + 2k − 3)

27 · 33 · 5 ·
∏

p|D1

(p− 1)(p2 + 1) ·
∏

p|D2

(p2 − 1)
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H2 =
(−1)k(j + k − 1)(k − 2)

27 · 32
·
∏

p|D
(p− 1)2 ×





7 if 2 - D1, D2 = 1
13 if 2 | D1, D2 = 1
3 if D2 = 2
0 otherwise

H3 =
[(−1)j/2(k − 2),−(j + k − 1), (−1)j/2+1(k − 2), j + k − 1; 4]k

25 · 3

×
∏

p|D1

(p− 1)
(

1−
(−1

p

))
×





1 if D2 = 1
3 if D2 = 2
0 otherwise

H4 =
[j + k − 1,−(j + k − 1), 0; 3]k + [k − 2, 0,−(k − 2); 3]j+k

23 · 33

×
∏

p|D1

(p− 1)
(

1−
(−3

p

))
×





1 if D2 = 1
8 if D2 = 3
0 otherwise

H5 = 2−3 · 3−2 · ([−(j + k − 1),−(j + k − 1), 0, j + k − 1, j + k − 1, 0; 6]k

+ [k − 2, 0,−(k − 2),−(k − 2), 0, k − 2; 6]j+k

)

×
∏

p|D1

(p− 1)
(

1−
(−3

p

))
×

{
1 if D2 = 1
0 otherwise

H6 =
∑

n|2D

A
∏

p|n
(p− 1)

∏

p - n

p | D1
p 6= 2

(
1−

(−1
p

)) ∏

p - n

p | D2
p 6= 2

(
p + 1

2

(
1−

(−1
p

)))
·B

For each n, A and B are defined as follows;

A =





2−73−1(−1)k+j/2(j + 1)
if n has odd numbers of prime divisors

2−73−1(−1)j/2(j + 2k − 3)
if n has even numbers of prime divisors

.

If D2 has a prime divisor p such that p | n and (−1/p) = −1, then B = 0,
otherwise,

B =





5 if 2 | D1 and 2 | n
11 if 2 | D1 and 2 - n
7 if 2 | D2 and 2 | n
9 if 2 | D2 and 2 - n
3 if 2 - D and 2 | n
5 if 2 - D and 2 - n
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H7 =
∑

n|3D

A
∏

p|n
(p− 1)

∏

p - n

p | D1
p 6= 3

(
1−

(−3
p

)) ∏

p - n

p | D2
p 6= 3

(
p + 1

2

(
1−

(−3
p

)))
·B

For each n, A and B are defined as follows;

A =





2−33−3(j + 1)[0, 1,−1; 3]j+2k

if n has odd numbers of prime divisors

2−33−3(j + 2k − 3)[1,−1, 0; 3]j
if n has even numbers of prime divisors

.

If D2 has a prime divisor p such that p | n and (−3/p) = −1, then B = 0,

otherwise,

B =





1 if 3 | D1 and 3 | n
16 if 3 | D1 and 3 - n
4 if 3 | D2 and 3 | n
10 if 3 | D2 and 3 - n
1 if 3 - D and 3 | n
4 if 3 - D and 3 - n

H8 =
C1

22 · 3 ·
∏

p|D

(
1−

(−1
p

))(
1−

(−3
p

))
×

{
1 if D2 = 1
0 otherwise

,

where we put

C1 =





[1, 0, 0,−1,−1,−1,−1, 0, 0, 1, 1, 1; 12]k if j ≡ 0 mod 12
[−1, 1, 0, 1, 1, 0, 1,−1, 0,−1,−1, 0; 12]k if j ≡ 2 mod 12
[1,−1, 0, 0,−1, 1,−1, 1, 0, 0, 1,−1; 12]k if j ≡ 4 mod 12
[−1, 0, 0,−1, 1,−1, 1, 0, 0, 1,−1, 1; 12]k if j ≡ 6 mod 12
[1, 1, 0, 1,−1, 0,−1,−1, 0,−1, 1, 0; 12]k if j ≡ 8 mod 12
[−1,−1, 0, 0, 1, 1, 1, 1, 0, 0,−1,−1; 12]k if j ≡ 10 mod 12

H9 =
C2

2 · 32
×

∏

p|D1,p 6=2

(
1−

(−3
p

))2

×





2 if 2 - D1 and D2 = 1
5 if 2 | D1 and D2 = 1
3 if 2 - D1 and D2 = 2
0 otherwise

,

where we put

C2 =





[1, 0, 0,−1, 0, 0; 6]k if j ≡ 0 mod 6
[−1, 1, 0, 1,−1, 0; 6]k if j ≡ 2 mod 6
[0,−1, 0, 0, 1, 0; 6]k if j ≡ 4 mod 6

.
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H10 =
C3

2 · 5 ×
∏

p|D
2×

∏

p∈D(4;5)

2×





0 if
3⋃

i=1

D1(i; 5) ∪
⋃

i∈{1,−1}
D2(i; 5) 6= ∅

1 if
3⋃

i=1

D1(i; 5) ∪
⋃

i∈{1,−1}
D2(i; 5) = ∅

and 5 | D

2 if
3⋃

i=1

D1(i; 5) ∪
⋃

i∈{1,−1}
D2(i; 5) = ∅

and 5 - D

,

where we put

C3 =





[1, 0, 0,−1, 0; 5]k if j ≡ 0 mod 10
[−1, 1, 0, 0, 0; 5]k if j ≡ 2 mod 10

0 if j ≡ 4 mod 10
[0, 0, 0, 1,−1; 5]k if j ≡ 6 mod 10
[0,−1, 0, 0, 1; 5]k if j ≡ 8 mod 10

.

H11 =
C4

23
×

∏

p|D,p 6=2

2×
∏

p∈D1(7;8)

2×
{

0 if D(1; 8) tD2(7; 8) 6= ∅
1 otherwise

,

where we put

C4 =





[1, 0, 0,−1; 4]k if j ≡ 0 mod 8
[−1, 1, 0, 0; 4]k if j ≡ 2 mod 8
[−1, 0, 0, 1; 4]k if j ≡ 4 mod 8
[1,−1, 0, 0; 4]k if j ≡ 6 mod 8

.

H12 = 2−23−1(−1)j/2+k[1,−1, 0; 3]j ×
∏

p|D
2×

∏

p∈D1(11;12)

2×A

+ 2−23−1(−1)j/2[0,−1, 1; 3]j+2k ×
∏

p|D
2×

∏

p∈D1(11;12)

2×B,

where A and B are defined as follows.
( i ) If D(1; 12) tD2(11; 12) 6= ∅, then A = B = 0.
(ii) If D(1; 12) tD2(11; 12) = ∅, then A (resp. B) are given by the follow-

ing table, depending on the conditions of D, D1 and D2.
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case (I) case (II) case (III)
2 - D, 3 - D 0 1/2 1
2 - D, 3 | D1 1/2 3/4 1
2 - D, 3 | D2 0 1/4 1/2
2 | D1, 3 - D 1 3/4 1/2
2 | D1, 3 | D1 5/4 9/8 1
2 | D1, 3 | D2 1/2 3/8 1/4
2 | D2, 3 - D 1/2 1/4 0
2 | D2, 3 | D1 1/2 3/8 1/4
2 | D2, 3 | D2 1/4 1/8 0

where case (I), (II) and (III) are given as follows:




( I ) D1(11; 12) = ∅ and ]D(5; 12) = even (resp. odd)
( II ) D1(11; 12) 6= ∅
(III) D1(11; 12) = ∅ and ]D(5; 12) = odd (resp. even)

.

I1 =
j + 1
23 · 3

∏

p|D
(p− 1)

I2 = − (−1)j/2

23

∏

p|D

(
1−

(−1
p

))

I3 = − [1,−1, 0; 3]j
2 · 3

∏

p|D

(
1−

(−3
p

))
.

4. The contribution of semi-simple conjugacy classes.

In this section, we evaluate I(Γ(e))k,j , i.e. the contributions of torsion elements
(cf. Section 1). The principal polynomials of torsion elements of G = U(2;B) are
as follows, and each Hi in Theorem 3.1 means the contribution of Γ-conjugacy
classes whose principal polynomials are of the form fi(±x).

f1(x) = (x− 1)4, f1(−x) = (x + 1)4,

f2(x) = (x− 1)2(x + 1)2,

f3(x) = (x− 1)2(x2 + 1), f3(−x) = (x + 1)2(x2 + 1),

f4(x) = (x− 1)2(x2 + x + 1), f4(−x) = (x + 1)2(x2 − x + 1),
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f5(x) = (x− 1)2(x2 − x + 1), f5(−x) = (x + 1)2(x2 + x + 1),

f6(x) = (x2 + 1)2,

f7(x) = (x2 + x + 1)2, f7(−x) = (x2 − x + 1)2,

f8(x) = (x2 + 1)(x2 + x + 1), f8(−x) = (x2 + 1)(x2 − x + 1),

f9(x) = (x2 + x + 1)(x2 − x + 1),

f10(x) = x4 + x3 + x2 + x + 1, f10(−x) = x4 − x3 + x2 − x + 1,

f11(x) = x4 + 1,

f12(x) = x4 − x2 + 1.

We will evaluate each Hi in Subsection 4.1–4.12. The method was developed by
Hashimoto and Ibukiyama [Has80], [HI80], [HI82], [HI83], [Has83], [Has84].
We quote the formula for I(Γ(e))k,j .

Theorem 4.1.

I(Γ(e))k,j = ck,j

∑

{g}G

J ′0(g)
∑

LG(Λ)

MG(Λ)
∏
p

cp(g, Rp,Λp),

where notations are as follows:

( i ) The first sum is extended over the G-conjugacy classes {g}G of torsion
elements of G which satisfies {g}G ∩ Γ 6= ∅.

( ii ) The second sum is extended over the G-genus LG(Λ) of Z-orders in Z(g)
for each g ∈ G. Here Z(g) is the commutor algebra of g in M(2;B). The
G-genus LG(Λ) represented by a Z-order Λ of Z(g) consists of all Z-orders
in Z(g) which are (Z(g)× ∩G)⊗Q Qp-conjugate to Λ⊗Z Zp for all p.

(iii) The constant ck,j for k, j are defined by

ck,j := 2−6π−3(k − 2)(j + k − 1)(j + 2k − 3).

(iv) We define J ′0(g) for each {g}G as follows. We put

Hk,j
g (Z) := tr

[
ρk,j(CZ + D)−1ρk,j

(
g〈Z〉 − Z

2i

)−1

ρk,j(Y )
]
,

J0(g) :=
∫

C0(g;Sp(2;R))\H2

Hk,j
g (Ẑ)dẐ,
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where dZ = det(Y )−3dXdY , dX = dx1dx12dx2, dY = dy1dy12dy2 for
Z = X + iY ∈ H2, X =

(
x1 x12
x12 x2

)
, Y =

( y1 y12
y12 y2

)
, and dẐ is an invariant

measure on C0(g;Sp(2;R))\H2 induced from dZ and a Haar measure on
C0(g;Sp(2;R)). The definition of C0(g;Sp(2;R)) is given for each g in each
Subsection 4.1–4.12. We define J ′0(g) := J0(g) if −14 6∈ C0(g;Sp(2;R)), and
J ′0(g) := 2−1 · J0(g) if −14 ∈ C0(g;Sp(2;R)).

( v ) We define MG(Λ) for each {g}G and LG(Λ) as follows. We decompose the
group (Z(g)× ∩G)A into the disjoint union

(Z(g)× ∩G)A = th
i=1

(
Z(g)× ∩G

)
yi

(
Λ×A ∩GA

)
,

where ΛA = Λ ⊗Z ZA. We put Λi = yiΛy−1
i = ∩p((yi)pΛp(yi)−1

p ∩ Z(g))
and define

MG(Λ) :=
h∑

i=1

vol
(
(Λ×i ∩G)\C0(g;Sp(2;R))

)
.

(vi) We define cp(g, Rp,Λp) for each {g}G, LG(Λ) and p as

cp(g, Rp,Λp) = ]
(
(Z(g)× ∩G)p\Mp(g, Rp,Λp)/(R×p ∩Gp)

)
,

where

Rp := M(2;Op) if p - D2 and Rp :=
(

Op π−1Op

πOp Op

)
if p | D2,

Mp(g, Rp,Λp) :=
{

x ∈ Gp

∣∣∣∣
x−1gx ∈ Rp, and Z(g)p ∩ xRpx

−1

is (Z(g)× ∩G)p-conjugate to Λp

}
.

If Mp(g, Rp,Λp) = ∅, then we put cp(g, Rp,Λp) = 0.

Remark 4.2. We give some remarks about Theorem 4.1.

(1) We do not need to calculate the local data cp(g, Rp,Λp) since they have been
obtained in [HI80] and [HI83]. We have only to combine the data depending
on the cases.

(2) We need to determine G-conjugacy classes which appear in the first sum in
Theorem 4.1. It is known that {g}G ∩ Γ 6= ∅ if and only if {g}Gp

∩Rp 6= ∅ for
all p. (cf. Theorem 1-3 in [Has83]). We can obtain the result by using [HI80,
Section 2], [Has84] and the results of cp mentioned above.
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(3) The integral J ′0(g) depends only on Sp(2;R)-conjugacy classes. Langlands
[Lan63] gave a formula for J0(g). We can evaluate J ′0(g) by applying explicit
formulae in [Has83] and [Wak].

We will evaluate each Hi in Subsection 4.1–4.12. We denote by G[fi] the set
of torsion elements of G whose principal polynomials are fi(x). For i = 1, 3, 4, 5,

7, 8, 10, we have only to evaluate the contribution of G[fi] and double it to obtain
Hi because the contribution of g is equal to that of −g. We use the notation:

α(θ1, θ2) =




cos θ1 0 sin θ1 0
0 cos θ2 0 sin θ2

− sin θ1 0 cos θ1 0
0 − sin θ2 0 cos θ2


 .

4.1. The contribution H1.
In this subsection, we consider the contribution of ±14. If γ = ±14, we

have C(γ;Sp(2;R)) = C0(γ;Sp(2;R)) = Sp(2;R), C(γ; Γ) = C0(γ; Γ) = Γ and
Hk,j

γ (Z) = 1, so J ′0(γ) = (1/2)
∫

Sp(2;R)\H2
dẐ. Also, we have

cp(γ, Rp,Λp) =
{

1 if Λp ∼ Rp

0 otherwise.

Hence from Theorem 4.1 we have

H1 = 2−6π−3(k − 2)(j + k − 1)(j + 2k − 3) · vol(Sp(2;R)\H2) · vol(Γ\Sp(2;R)).

We have only to multiple the value H1 in the case of D2 = 1 in [Wak] by
∏

p|D2

(p + 1)/(p2 + 1) because we have the indexes as follows:

[
Gp ∩

(
Op Op

Op Op

)×
: Gp ∩

(
Op Op

πOp Op

)× ]
= p + 1,

[
Gp ∩

(
Op π−1Op

πOp Op

)×
: Gp ∩

(
Op Op

πOp Op

)× ]
= p2 + 1.

Hence we obtain H1 as in Theorem 3.1.

4.2. The contribution H2.
In this subsection, we evaluate the contribution of G[f2], where f2(x) =

(x − 1)2(x + 1)2. The set G[f2] consists of only one G-conjugacy class repre-
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sented by an element g. We have Z(g) ' B ⊕ B. We fix g and this isomorphism
until the end of this subsection. We put

L := {(x, y) ∈ O⊕O | x− y ∈ πO2},

where π is a prime element of O2. We have the following proposition.

Proposition 4.3.

(1) The class {g}G appears in the first sum of Theorem 4.1, i.e. {g}G ∩ Γ 6= ∅, if
and only if D2 = 1 or 2.

(2) We assume D2 = 2. If Λ is a Z-order of Z(g) belonging to the same G-genus
as L, then we have

∏
p cp(g, Rp,Λp) = 1. If Λ does not belong to the same

G-genus as L, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can prove (1) and the latter part of (2) easily by [HI83, Propo-
sition 2.4]. If D2 = 2 and Λ is a Z-order of Z(g) belonging to the same G-genus as
L, then it follows from [HI80, Proposition 13] and [HI83, Proposition 2.4] that
cp(g, Rp,Λp) = 1 for any p. ¤

From Proposition 4.3, we have H2 = 0 if D2 6= 1, 2. In the case where D2 = 1,
H2 has been evaluated in [Has84] and [Wak]. Hereafter, we assume D2 = 2.
From Proposition 4.3, we have

H2 = ck,j · J ′0(g) ·MG(L).

We see that g is Sp(2;R)-conjugate to α(π, 0) and

C0(α(π, 0);Sp(2;R)) =








a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′




∣∣∣∣∣∣∣∣

ad− bc = 1
a′d′ − b′c′ = 1





,

J ′0(g) =
1
2
J0(α(π, 0)) = ck,j

−12−7π−4(−1)k(j + k − 1)(k − 2)

if j is even. (cf. (b-5) in [Wak]). If we put L0 = O⊕O, then we have

MG(L) = vol
(
(L× ∩G)\C(g;Sp(2;R))

)

=
[
L×0 ∩G : L× ∩G

] · vol
(
(L×0 ∩G)\C(g;Sp(2;R))

)

= 3−1π4
∏

p|D
(p− 1)2.
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(cf. (3.6), (3.7) of [Has84]). Hence we can obtain H2 as in Theorem 3.1.

4.3. The contribution H3.
In this subsection, we evaluate the contribution of G[f3], where f3(x) = (x−

1)2(x2 + 1). We have only to double it to obtain H3. Note that G[f3] 6= ∅ if
and only if (−1/p) 6= 1 for any prime divisor p of D. Hereafter, we assume that
G[f3] 6= ∅. The set G[f3] consists of two G-conjugacy classes represented by g and
g−1 for an element g. We have Z(g) ' B ⊕ F with F = Q(

√−1). We fix g and
this isomorphism until the end of this subsection. We put

L := {(x, y) ∈ O⊕ O | x− y ∈ πO2},

where O is the ring of integers of F and π is a prime element of O2. Then we have
the following proposition.

Proposition 4.4.

(1) The classes {g}G and {g−1}G appear in the first sum of Theorem 4.1 if and
only if D2 = 1 or 2.

(2) We assume D2 = 2. If Λ is a Z-order of Z(g) belonging to the same G-genus
as L, then we have

∏
p

cp(g, Rp,Λp) =
∏
p

cp(g−1, Rp,Λp) = 2]D1(3;4).

If Λ does not belong to the same G-genus as L, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can prove (1) and the latter part of (2) easily by [HI83, Propo-
sition 2.4]. If D2 = 2 and Λ is a Z-order of Z(g) belonging to the same G-genus as
L, then it follows from [HI80, Proposition 14] and [HI83, Proposition 2.4] that

cp(g, Rp,Λp) = cp(g−1, Rp,Λp) =





2 if p | D1 and
(−1

p

)
= −1

1 otherwise.
¤

From Proposition 4.4, we have H3 = 0 if D2 6= 1, 2. In the case where D2 = 1,
H3 has been evaluated in [Has84] and [Wak]. Hereafter, we assume D2 = 2.
From Proposition 4.4, we have
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H3 = 2 · ck,j ·
∑

γ∈{g,g−1}
J ′0(γ) ·Mγ(L)

∏
p

cp(γ, Rp, Lp)

= 2 · ck,j ·
(
J ′0(g) + J ′0(g

−1)
) ·Mg(L) · 2]D1(3;4).

We see that g and g−1 are Sp(2;R)-conjugate to α(π/2, 0) and α(−π/2, 0) respec-
tively and

C0

(
α

(
π

2
, 0

)
, Sp(2;R)

)
= C0

(
α

(
− π

2
, 0

)
, Sp(2;R)

)

=








1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d




∣∣∣∣∣∣∣∣
ad− bc = 1





,

J ′0(g) + J ′0(g
−1) = ck,j

−1 · 24 · π2 · [(−1)j/2(k − 2),−(j + k − 1),

(−1)j/2+1(k − 2), j + k − 1; 4
]
k

(cf. (b-4) in [Wak]). If we put L0 = O⊕ O, then we have

Mg(L) = vol
(
(L× ∩G)\C(g;Sp(2;R))

)

=
[
L×0 ∩G : L× ∩G

] · vol
(
(L×0 ∩G)\C(g;Sp(2;R))

)

= 2−2π2
∏

p|D
(p− 1).

(cf. (3.10), (3.11) of [Has84]). Hence we can obtain H3 as in Theorem 3.1.

4.4. The contribution H4.
In this subsection, we evaluate the contribution of G[f4], where f4(x) =

(x− 1)2(x2 +x+1). We have only to double it to obtain H4. Note that G[f4] 6= ∅
if and only if (−3/p) 6= 1 for any prime divisor p of D. Hereafter, we assume that
D does not have such a prime divisor. The set G[f4] consists of two G-conjugacy
classes represented by g and g−1 for an element g. We have Z(g) ' B ⊕ F with
F = Q(

√−3). We fix g and this isomorphism until the end of this subsection. We
put

L := {(x, y) ∈ O⊕ O | x− y ∈ πO3},

where O is the ring of integers of F and π is a prime element of O3. Then we have
the following proposition.
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Proposition 4.5.

(1) The classes {g}G and {g−1}G appear in the first sum of Theorem 4.1 if and
only if D2 = 1 or 3.

(2) We assume D2 = 3. If Λ is a Z-order of Z(g) belonging to the same G-genus
as L, then we have

∏
p

cp(g, Rp,Λp) =
∏
p

cp(g−1, Rp,Λp) = 2]D1(2;3).

If Λ does not belong to the same G-genus as L, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can prove (1) and the latter part of (2) easily by [HI83, Propo-
sition 2.4]. If D2 = 3 and Λ is a Z-order of Z(g) belonging to the same G-genus as
L, then it follows from [HI80, Proposition 14] and [HI83, Proposition 2.4] that

cp(g, Rp,Λp) = cp(g−1, Rp,Λp) =





2 if p | D1 and
(−3

p

)
= −1

1 otherwise.
¤

From Proposition 4.5, we have

H4 = 2 · ck,j ·
∑

γ∈{g,g−1}
J ′0(γ) ·Mγ(L)

∏
p

cp(γ, Rp, Lp)

= 2 · ck,j ·
(
J ′0(g) + J ′0(g

−1)
) ·Mg(L) · 2]D1(2;3).

We see that g and g−1 are Sp(2;R)-conjugate to α(2π/3, 0) and α(−2π/3, 0)
respectively and

C0

(
α

(
2π

3
, 0

)
, Sp(2;R)

)
= C0

(
α

(
− 2π

3
, 0

)
, Sp(2;R)

)

=








1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d




∣∣∣∣∣∣∣∣
ad− bc = 1





,

J ′0(g) + J ′0(g
−1) = ck,j

−1 · 2−3 · 3−1 · π−2

× {
[j + k − 1,−(j + k − 1), 0; 3]k

+ [k − 2, 0,−(k − 2); 3]j+k

}
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(cf. (b-4) in [Wak]). If we put L0 = O⊕ O, then we have

Mg(L) = vol
(
(L× ∩G)\C(g;Sp(2;R))

)

=
[
L×0 ∩G : L× ∩G

] · vol
(
(L×0 ∩G)\C(g;Sp(2;R))

)

= 22 · 3−2 · π2
∏

p|D
(p− 1).

(cf. (3.10), (3.11) of [Has84]). Hence we can obtain H4 as in Theorem 3.1.

4.5. The contribution H5.
In this subsection, we consider the contribution of G[f5], where f5(x) =

(x − 1)2(x2 − x + 1). We have only to double it to obtain H5. The set G[f5]
consists of two G-conjugacy classes represented by g and g−1 for an element g.
We see from [HI80, Proposition 14] and [HI83, Proposition 2.4] that the classes
{g}G and {g−1}G do not appear in the first sum of Theorem 4.1 if D2 6= 1. In the
case where D2 = 1, H5 has been evaluated in [Has84] and [Wak].

4.6. The contribution H6.
In this subsection, we consider the contribution of G[f6], where f6(x) =

(x2 + 1)2. Note that G[f6] = ∅ if and only if D2 has a prime divisor p with
(−1/p) = 1. Hereafter, we assume that D does not have such a prime divisor.
Then there are infinitely many G-conjugacy classes in G[f6]. As in [Has84, Theo-
rem 3.2 (i),(ii)], we have a correspondence between the set of G-conjugacy classes
{g}G’s in G[f6] and the set of isomorphism classes of quaternion algebras Z0(g)’s
over Q which are contained in B⊗QF , with F = Q(

√−1). This correspondence is
two-to-one or one-to-one according as Z0(g) is definite or indefinite. We denote by
D(Z0(g)) the discriminant of Z0(g). If Z0(g) is definite, two G-conjugacy classes
{g}G and {g−1}G correspond to Z0(g). In this case, g is Sp(2;R)-conjugate to
α(π/2, π/2) and

J ′0(g) + J ′0(g
−1) = ck,j

−1 · 2−2 · (j + 1) · (−1)k+j/2,

if j is even (cf. (b-2) in [Wak]),

MG(Λ) =
1
48

∏

p|D(Z0(g))

(p− 1)
∏
p

dp(Λ)
ep(Λ)

for a Z-order Λ of Z(g) (cf. [HI80, Proposition 12]), where O0 is a maximal order
of Z0(g) and
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dp(Λ) =
[
O0

×
p : (Λ ∩ Z0(g))×p

]
, ep(Λ) =

[
Λ×p ∩Gp : O0

×
p · OF

×
p

]
.

On the other hand, if Z0(g) is indefinite, then only one G-conjugacy class {g}G

corresponds to Z0(g). In this case, g is Sp(2;R)-conjugate to α(π/2,−π/2) and

J ′0(g) = ck,j
−1 · 2−5 · π−2 · (j + 2k − 3) · (−1)j/2,

if j is even (cf. (b-3) in [Wak]),

MG(Λ) =
π2

6

∏

p|D(Z0(g))

(p− 1)
∏
p

dp(Λ)
ep(Λ)

for a Z-order Λ of Z(g) (cf. [Has84, (3.16)]).

Proposition 4.6.

(1) The class {g}G appears in the first sum of Theorem 4.1 if and only if
D(Z0(g)) | 2D.

(2) ( i ) the case where 2 | D1,
• If a G-conjugacy class {g}G satisfies 2 | D(Z0(g)), then two G-genus

of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 3
2

(resp. 1)

• If a G-conjugacy class {g}G satisfies 2 - D(Z0(g)), then three G-genus
of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 3
2

(resp. 1 and 3)

( ii ) the case where 2 | D2,
• If a G-conjugacy class {g}G satisfies 2 | D(Z0(g)), then two G-genus

of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 1
2

(resp. 3)
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• If a G-conjugacy class {g}G satisfies 2 - D(Z0(g)), then two G-genus
of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 3 (resp. 3/2)

(iii) the case where 2 - D,
• If a G-conjugacy class {g}G satisfies 2 | D(Z0(g)), then only one G-

genus of Z-orders of Z(g) appear in the second sum of Theorem 4.1,
and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 3
2

• If a G-conjugacy class {g}G satisfies 2 - D(Z0(g)), then two G-genus
of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=2

(p + 1) · 3
2

(resp. 1)

(3) For any case and any G-genus, we have
∏
p

cp(g, Rp, λp) =
∏

p-D(Z0(g))
p|D1, p 6=2

2.

Proof. We see from [HI80, Proposition 15 and 16] and [HI83, Proposition
2.5 and 2.6] that

p | D1 =⇒ {g}Gp
∩Rp 6= ∅,

p - D1 and p - Z0(g) =⇒ {g}Gp ∩Rp 6= ∅,
p - D1, p | Z0(g) and p = 2 =⇒ {g}Gp ∩Rp 6= ∅,
p - D1, p | Z0(g) and p 6= 2 =⇒ {g}Gp

∩Rp = ∅.

Hence we obtain (1) (cf. [Has80, Theorem 1-3]). Also we can obtain (2), (3) from
the above four propositions. ¤

4.7. The contribution H7.
In this subsection, we consider the contribution of G[f7], where f7(x) = (x2 +

x + 1)2. We have only to double it to obtain H7. Note that G[f7] = ∅ if and only
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if D2 has a prime divisor p with (−3/p) = 1. Hereafter, we assume that D does
not have such a prime divisor. We can use the same method as in the case of H6.
we have a correspondence between the set of G-conjugacy classes {g}G’s in G[f7]
and the set of isomorphism classes of quaternion algebras Z0(g)’s over Q which
are contained in B ⊗Q F , with F = Q(

√−3). If Z0(g) is definite, then

J ′0(g) + J ′0(g
−1) = ck,j

−13−1(j + 1)[0, 1,−1; 3]j+2k,

if j is even (cf. (b-2) in [Wak]), and

MG(Λ) =
1
72

∏

p|D(Z0(g))

(p− 1)
∏
p

dp(Λ)
ep(Λ)

for a Z-order Λ of Z(g). If Z0(g) is indefinite, then

J ′0(g) = ck,j
−123 · 3π2(j + 2k − 3)[1,−1, 0; 3]j ,

if j is even (cf. (b-3) in [Wak]), and

MG(Λ) =
π2

32

∏

p|D(Z0(g))

(p− 1)
∏
p

dp(Λ)
ep(Λ)

.

Proposition 4.7.

(1) The class {g}G appears in the first sum of Theorem 4.1 if and only if
D(Z0(g)) | 3D.

(2) ( i ) the case where 3 | D1,
• If a G-conjugacy class {g}G satisfies 3 | D(Z0(g)), then only one G-

genus of Z-orders of Z(g) appears in the second sum of Theorem 4.1,
and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 1
2

• If a G-conjugacy class {g}G satisfies 3 - D(Z0(g)), then two G-genus
of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 2 (resp. 6)
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( ii ) the case where 3 | D2,
• If a G-conjugacy class {g}G satisfies 3 | D(Z0(g)), then only one G-

genus of Z-orders of Z(g) appears in the second sum of Theorem 4.1,
and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 1

• If a G-conjugacy class {g}G satisfies 3 - D(Z0(g)), then two G-genus
of Z-orders of Z(g) appear in the second sum of Theorem 4.1, and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 1 (resp. 4)

(iii) the case where 3 - D,
• If a G-conjugacy class {g}G satisfies 3 | D(Z0(g)), then only one G-

genus of Z-orders of Z(g) appears in the second sum of Theorem 4.1,
and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 1
2

• If a G-conjugacy class {g}G satisfies 3 - D(Z0(g)), then only one G-
genus of Z-orders of Z(g) appears in the second sum of Theorem 4.1,
and

∏
p

dp(Λ)
ep(Λ)

=
∏

p-D(Z0(g))
p|D2, p 6=3

(p + 1) · 1

(3) For any case and any G-genus, we have
∏
p

cp(g, Rp, λp) =
∏

p-D(Z0(g))
p|D1, p 6=3

2.

Proof. We can prove this by the same way as Proposition 4.6. ¤

4.8. The contribution H8.
In this subsection, we evaluate the contribution of G[f8], where f8(x) =

(x2 + 1)(x2 + x + 1). We have only to double it to obtain H8. We see from
[HI83, Proposition 2.7] that no G-conjugacy classes corresponding to f8(±x) ap-
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pear in Theorem 4.1 if D2 6= 1. In the cases where D2 = 1, H8 has been evaluated
in [Has84] and [Wak].

4.9. The contribution H9.
In this subsection, we evaluate the contribution of G[f9], where f9(x) = (x2 +

x + 1)(x2 − x + 1). Note that G[f9] 6= ∅ if and only if (−3/p) 6= 1 for any prime
divisor p of D. Hereafter, we assume that G[f9] 6= ∅. We put F := Q(

√−3), then
Z(g) ' F ⊕ F for any g. We put

L := {(x, y) ∈ O ⊕ O | x− y ∈ 2O},

where O is the ring of integers of F , then we have the following proposition.

Proposition 4.8.

(1) If D2 6= 1, 2, then no G-conjugacy classes in G[f9] appear in the first sum of
Theorem 4.1.

(2) If D2 = 2, then the followings hold.
( i ) The number of G-conjugacy classes in G[f9] which appear in the first sum

of Theorem 4.1 is 4 · 2]D1(2;3).
( ii ) Let {g}G be any one of them. If Λ is a Z-order of Z(g) belonging to the

same G-genus as L, then

∏
p

cp(g, Rp,Λp) = 2 · 2]D1(2;3).

If Λ does not belong to the same G-genus as L, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can obtain (1) and the latter part of (2 ii) from [HI83, Propo-
sition 2.7]. For an element g of G[f9], g is Gp-conjugate to





γp if
(−3

p

)
= 1

γp or δp if
(−3

p

)
6= 1

for some elements γp and δp ∈ Gp. It follows from [HI80, Proposition 18] and
[HI83, Proposition 2.7] that if D2 = 2 and Λ is a Z-order of Z(g) belonging to
the same G-genus as L, then cp is as in the following table for each prime number
p satisfying the first column:
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p cp(γp, Rp,Λp) cp(δp, Rp,Λp)

p | D1 and
(−3

p

)
= −1 2 2

p - D and
(−3

p

)
= 1 1 ×

p - D and
(−3

p

)
= −1 1 0

p = 2 2 0
p = 3 1 1

Also, g is Sp(2;R)-conjugate to g1 := α(π/3, 2π/3), g1
−1 = α(−π/3,−2π/3),

g2 := α(π/3,−2π/3), and g2
−1 = α(−π/3, 2π/3). Since g2 belongs to G[f7], g is

Sp(2;R)-conjugate to g1 or g−1
1 if Z0(g2) is indefinite, and g is Sp(2;R)-conjugate

to g2 or g−1
2 if Z0(g2) is definite. We take all combinations of Gp-conjugations,

and also we take Sp(2;R)-conjugation out of “g1 or g−1
1 ” or “g2 or g−1

2 ”, according
as Z0(g2) is indefinite or definite. Then G-conjugacy class is determined uniquely
for them by Hasse principle ([Has80, Theorem 1-2]). ¤

We see from Proposition 4.8 that H9 = 0 if D2 6= 1, 2. In the case where
D2 = 1, H2 has been evaluated in [Has84] and [Wak]. Hereafter, we assume
D2 = 2. We obtain from Proposition 4.8 that

H9 = ck,j ·
∑

{g}G

J ′0(g) ·MG(L) ·
∏
p

cp(g, Rp, Lp),

∑

{g}G

J ′0(g) =
(
J ′0(g1) + J ′0(g

−1
1 ) + J ′0(g2) + J ′0(g

−1
2 )

) · 2]D1(2;3).

We have C0(g;Sp(2;R)) = {14} for any g, and

J ′0(g1) + J ′0(g1
−1) + J ′0(g2) + J ′0(g2

−1)

= c−1
k,j ·





[1, 0, 0,−1, 0, 0; 6]k if j ≡ 0 mod 6

[−1, 1, 0, 1,−1, 0; 6]k if j ≡ 2 mod 6

[0,−1, 0, 0, 1, 0; 6]k if j ≡ 4 mod 6

.

(cf. (b-1) in [Wak]). We have

MG(L) =
1
12

, (cf. (3.21) in [Has84])

∏
p

cp(g, Rp, Lp) = 2 · 2]D1(2;3)
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for any g. Hence we can obtain H9 as in Theorem 3.1.

4.10. The contribution H10.
In this subsection, we evaluate the contribution of G[f10], where f10(x) =

x4 + x3 + x2 + x + 1. We have only to double it to obtain H10. Note that
if D(1; 5) 6= ∅, then G[f10] = ∅. Hereafter, we assume D(1; 5) = ∅. We have
Z(g) = Q(g) ' Q(ζ5) for any g. We have the following proposition.

Proposition 4.9.

(1) If D1(2; 5) t D1(3; 5) t D2(4; 5) 6= ∅, then no G-conjugacy classes in G[f10]
appear in the first sum of Theorem 4.1.

(2) If D1(2; 5) tD1(3; 5) tD2(4; 5) = ∅, then the followings hold.
( i ) The number of G-conjugacy classes in G[f10] which appear in the first

sum of Theorem 4.1 is 4 · 2]D1(4;5).
( ii ) Let {g}G be any one of them. If Λ is a Z-order of Z(g) belonging to the

same G-genus as O, where O is the ring of integers of Z(g), then

∏
p

cp(g, Rp,Λp) = 2]D1(4;5) · 2]D2(2;5) · 2]D2(3;5).

If Λ does not belong to the same G-genus as O, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can obtain (1) and the latter part of (2 ii) from [HI80, Proposi-
tion 19] and [HI83, Proposition 2.8]. For any element g of G[f10], g is Gp-conjugate
to

{
γp if p 6∈ D1(4; 5)

γp or δp if p ∈ D1(4; 5)

for some elements γp and δp ∈ Gp. It follows from [HI80, Proposition 19] and
[HI83, Proposition 2.8] that if D1(2; 5)tD1(3; 5)tD2(4; 5) = ∅ and Λ is a Z-order
of Z(g) belonging to the same G-genus as O, then cp is as in the following table
for each prime number p satisfying the first column:
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p cp(γp, Rp,Λp) cp(δp, Rp,Λp)

p | D1 and p ≡ 2, 3 mod 5 0 ×
p | D1 and p ≡ 4 mod 5 2 2
p | D1 and p = 5 1 ×
p | D2 and p ≡ 2, 3 mod 5 2 ×
p | D2 and p ≡ 4 mod 5 0 0
p | D2 and p = 5 1 ×
p - D and p ≡ 1 mod 5 1 ×
p - D and p ≡ 2, 3 mod 5 1 ×
p - D and p ≡ 4 mod 5 1 0
p - D and p = 5 1 ×

Also, g is Sp(2;R)-conjugate to g1 := α(2π/5, 4π/5), g1
−1 = α(−2π/5,−4π/5),

g2 := α(2π/5,−4π/5), and g2
−1 = α(−2π/5, 4π/5). We can take all combinations

of Sp(2;R)-conjugation and Gp-conjugations. ¤

We see from Proposition 4.9 that H10 = 0 if D1(2; 5)tD1(3; 5)tD2(4; 5) 6= ∅.
In the other cases, we obtain from Proposition 4.9 that

H10 = ck,j ·
∑

{g}G

J ′0(g) ·MG(O) ·
∏
p

cp(g, Rp,Op),

∑

{g}G

J ′0(g) =
(
J ′0(g1) + J ′0(g

−1
1 ) + J ′0(g2) + J ′0(g

−1
2 )

) · 2]D1(4;5).

We have C0(g;Sp(2;R)) = {14} for any g, and

J ′0(g1) + J ′0(g1
−1) + J ′0(g2) + J ′0(g2

−1) =





[1, 0, 0,−1, 0; 5]k if j ≡ 0 mod 10

[−1, 1, 0, 0, 0; 5]k if j ≡ 2 mod 10

0 if j ≡ 4 mod 10

[0, 0, 0, 1,−1; 5]k if j ≡ 6 mod 10

[0,−1, 0, 0, 1; 5]k if j ≡ 8 mod 10

.

(cf. (b-1) in [Wak]). We have
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MG(O) =
1
10

, (cf. (3.23) in [Has84])

∏
p

cp(g, Rp,Op) = 2]D1(4;5) · 2]D2(2;5) · 2]D2(3;5)

for any g. Hence we can obtain H10 as in Theorem 3.1.

4.11. The contribution H11.
In this subsection, we evaluate the contribution of G[f11], where f11(x) =

x4+1. Note that if D(1; 8) 6= ∅, then G[f11] = ∅. Hereafter, we assume D(1; 8) = ∅.
We have Z(g) = Q(g) ' Q(ζ8) for any g. We have the following proposition.

Proposition 4.10.

(1) If D2(7; 8) 6= ∅, then no G-conjugacy classes of G[f11] appear in the first sum
of Theorem 4.1.

(2) If D2(7; 8) = ∅, then the followings hold.
( i ) The number of G-conjugacy classes in G[f11] which appear in the first

sum of Theorem 4.1 is 4 · 2]D1(7;8).
( ii ) Let {g}G be any one of them. If Λ is a Z-order of Z(g) belonging to the

same G-genus as O, where O is the ring of integers of Z(g), then

∏
p

cp(g, Rp,Λp) =
∏
p|D
p6=2

2.

If Λ does not belong to the same G-genus as O, then
∏

p cp(g, Rp,Λp) = 0.

Proof. We can prove (1) and the latter part of (2 ii) easily by [HI83,
Proposition 2.9]. For any element g of G[f11], g is Gp-conjugate to

{
γp if p ≡ 1, 3 or 5 mod 8

γp or δp if p = 2 or p ≡ 7 mod 8

for some elements γp and δp ∈ Gp. It follows from [HI80, Proposition 20] and
[HI83, Proposition 2.9] that if Λ is a Z-order of Z(g) belonging to the same G-
genus as O, then cp is as in the following table for each prime number p satisfying
the first column:
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(i) If p | D1, then we have

cp(γp, Rp,Op) cp(δp, Rp,Op)

p ≡ 3 mod 8 2 ×
p ≡ 5 mod 8 2 ×
p ≡ 7 mod 8 2 2

p = 2 1 1

(ii) If p | D2, then we have

cp(γp, Rp,Op) cp(δp, Rp,Op)

p ≡ 3 mod 8 2 ×
p ≡ 5 mod 8 2 ×
p ≡ 7 mod 8 0 0

p = 2 1 1

(iii) If p - D, then we have

cp(γp, Rp,Op) cp(δp, Rp,Op)

p ≡ 1 mod 8 1 ×
p ≡ 3 mod 8 1 ×
p ≡ 5 mod 8 1 ×
p ≡ 7 mod 8 1 0

p = 2 1 1

Also, g is Sp(2;R)-conjugate to g1 := α(π/4, 3π/4), g1
−1 = α(−π/4,−3π/4),

g2 := α(π/4,−3π/4), or g2
−1 = α(−π/4, 3π/4). Since g2 belongs to G[f6], g is

Sp(2;R)-conjugate to g1 or g−1
1 if Z0(g2) is indefinite, and g is Sp(2;R)-conjugate

to g2 or g−1
2 if Z0(g2) is definite. We take all combinations of Gp-conjugacy classes

for all p, and also take Sp(2;R)-conjugation out of “g1 or g−1
1 ” or “g2 or g−1

2 ”,
according as Z0(g2) is indefinite or definite. ¤

We see from Proposition 4.10 that H11 = 0 if D2(7; 8) 6= ∅. Hereafter, we
assume D2(7; 8) = ∅. We obtain from Proposition 4.10 that

H11 = ck,j ·
∑

{g}G

J ′0(g) ·MG(O) ·
∏
p

cp(g, Rp,Op),
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∑

{g}G

J ′0(g) =
(
J ′0(g1) + J ′0(g

−1
1 ) + J ′0(g2) + J ′0(g

−1
2 )

) · 2]D1(7;8).

We have C0(g;Sp(2;R)) = {14} for any g, and

J ′0(g1) + J ′0(g1
−1) + J ′0(g2) + J ′0(g2

−1) =





[1, 0, 0,−1; 4]k if j ≡ 0 mod 8

[−1, 1, 0, 0; 4]k if j ≡ 2 mod 8

[−1, 0, 0, 1; 4]k if j ≡ 4 mod 8

[1,−1, 0, 0; 4]k if j ≡ 6 mod 8

.

(cf. (b-1) in [Wak]). We have

MG(O) =
1
8
, (cf. (3.25) in [Has84])

∏
p

cp(g, Rp,Op) =
∏
p|D
p6=2

2

for any g. Hence we can obtain H11 as in Theorem 3.1.

4.12. The contribution H12.
In this subsection, we evaluate the contribution of G[f12], where f12(x) =

x4−x2 +1. Note that G[f12] = ∅ if and only if D(1; 12) 6= ∅. Hereafter, we assume
D(1; 12) = ∅. We see from [HI80, Proposition 21] and [HI83, Proposition 2.10]
that if D2(11; 12) 6= ∅, then no G-conjugacy classes of G[f12] appear in the first
sum of Theorem 4.1. Hereafter, we assume that D2(11; 12) = ∅.

The set G[f12] consists of four Sp(2;R)-conjugacy classes represented by
h := α(π/6, 5π/6), h−1 = α(−π/6,−5π/6), h′ := α(π/6,−5π/6), h′−1 =
α(−π/6, 5π/6). We have C0(g;Sp(2;R)) = {14} for any g ∈ G[f12] and

J ′0(h) + J ′0(h
−1) = (−1)j/2+k · [1,−1, 0; 3]j ,

J ′0(h
′) + J ′0(h

′−1) = (−1)j/2 · [0,−1, 1; 3]j+2k.

(cf. (b-1) in [Wak]). Only one G-genus represented by O, where O is the ring
of integers of Z(g) ' Q(ζ12), appears in the second sum of Theorem 4.1 and
MG(O) = 1/12 (cf. (3.27) in [Has84]). If g is an element of G[f12], then g2

belongs to G[f7]. We can obtain the following proposition from [HI80, Proposition
21] and [HI83, Proposition 2.10].
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Proposition 4.11.

( I ) the case where D1(11; 12) = ∅ and ]D(5; 12) is even (resp. odd)
( i ) the case where 2 - D and 3 - D1 :

Two G-conjugacy classes {g}G and {g−1}G appear in the first sum of
Theorem 4.1. They are Sp(2;R)-conjugate to h′ and h′−1 (resp. h and
h−1) respectively, and

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

( ii ) the case where 2 | D2 and 3 - D1 :
Two G-conjugacy classes {g}G and {g−1}G appear in the first sum of
Theorem 4.1. They are Sp(2;R)-conjugate to h and h−1 (resp. h′ and
h′−1) respectively, and

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

(iii) the case where 2 - D1 and 3 | D1 :
Four G-conjugacy classes appear in the first sum of Theorem 4.1. They
are Sp(2;R)-conjugate to h, h−1, h′, h′−1 respectively.
If g is Sp(2;R)-conjugate to h (resp. h′), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

If g is Sp(2;R)-conjugate to h′ (resp. h), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) = 2 ·
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

(iv) the case where 2 - D1 and 3 | D1 :
Four G-conjugacy classes appear in the first sum of Theorem 4.1. They
are Sp(2;R)-conjugate to h, h−1, h′, h′−1 respectively.
If g is Sp(2;R)-conjugate to h (resp. h′), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) = 2 ·
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.
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If g is Sp(2;R)-conjugate to h′ (resp. h), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

( v ) the case where 2 | D1 and 3 - D1 :
Four G-conjugacy classes appear in the first sum of Theorem 4.1. They
are Sp(2;R)-conjugate to h, h−1, h′, h′−1 respectively.
If g is Sp(2;R)-conjugate to h (resp. h′), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) = 2 ·
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

If g is Sp(2;R)-conjugate to h′ (resp. h), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2.

(vi) the case where 2 | D1 and 3 | D1 :
Eight G-conjugacy classes appear in the first sum of Theorem 4.1. Each
two of them are Sp(2;R)-conjugate to h, h−1, h′, h′−1 respectively.
If g is Sp(2;R)-conjugate to h (resp. h′), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =





4 · ∏
p∈D(5;12)

2 · ∏
p∈D(7;12)

2

∏
p∈D(5;12)

2 · ∏
p∈D(7;12)

2.

If g is Sp(2;R)-conjugate to h′ (resp. h), then

∏
p

cp(g, Rp,Op) =
∏
p

cp(g−1, Rp,Op) =





2 · ∏
p∈D(5;12)

2 · ∏
p∈D(7;12)

2

2 · ∏
p∈D(5;12)

2 · ∏
p∈D(7;12)

2.

( II ) the case where D1(11; 12) 6= ∅
( i ) the case where 2 - D1 and 3 - D1 :

The number of G-conjugacy classes which appear in the first sum of
Theorem 4.1 is 2]D1(11;12)+1. They are Sp(2;R)-conjugate to h, h−1, h′,
h′−1. All of them satisfy
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∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2.

( ii ) the case where “2 | D1 and 3 - D1” or “2 - D1 and 3 | D1”:
The number of G-conjugacy classes which appear in the first sum of
Theorem 4.1 is 2]D1(11;12)+2. They are Sp(2;R)-conjugate to h, h−1, h′,
h′−1. In each case, 2]D1(11;12)−1 G-conjugacy classes satisfy

∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2 · 2,

2]D1(11;12)−1 G-conjugacy classes satisfy

∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2.

(iii) the case where 2 | D1 and 3 | D1 :
The number of G-conjugacy classes which appear in the first sum of
Theorem 4.1 is 2]D1(11;12)+3. They are Sp(2;R)-conjugate to h, h−1, h′,
h′−1. In each case, 2]D1(11;12)−1 G-conjugacy classes satisfy

∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2 · 22,

2]D1(11;12) G-conjugacy classes satisfy

∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2 · 2,

2]D1(11;12)−1 G-conjugacy classes satisfy

∏
p

cp(g, Rp,Op) =
∏

p∈D(5;12)

2 ·
∏

p∈D(7;12)

2 ·
∏

p∈D1(11;12)

2.

5. The contribution of non-semi-simple conjugacy classes.

In this section, we evaluate I(Γ(u))k,j and I(Γ(qu))k,j , i.e. the contributions
of non-semi-simple conjugacy classes (cf. Section 1). We prove I1, I2 and I3 of
Theorem 3.1. Since the class number of O is one, any maximal two-sided ideal
A can be written as A = Oπ = πO for some π ∈ O. By taking conjugation by
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(
π 0
0 π−1

) ∈ G, we may regard Γ = G ∩ (
O A

A−1 O

)
.

We put

P =
{(

a 0
0 a−1

)(
1 b
0 1

) ∣∣∣∣ a ∈ B×, b ∈ B0

}
.

Then P is the unique parabolic subgroup of G up to G-conjugation since we
consider the case where B 6= M2(Q) in this paper. We can prove that Γ\H2

has only one 0-dimensional cusp, up to equivalence, in the same way as [Ara81,
Proposition 2]. Arakawa proved Lemma 5.1 below in his master thesis [Ara75,
Proposition 7].

Lemma 5.1. We have G = P · Γ.

Proof. We take any γ =
(

a b
c d

) ∈ G. There are some γ, δ ∈ O such
that c−1d = π−1γ−1δ. We can assume that there are some u, v ∈ O such that
γu + δv = 1. If we put

τ :=
(

v − π−1uvγπ π−1u(1− vδ)
γπ δ

)
,

then we have τ ∈ Γ and στ−1 ∈ P . ¤

By using Lemma 5.1, we can prove Proposition 5.2 below in the same way
that Hashimoto proved it when D2 = 1 in [Has84, Lemma 1.2].

Proposition 5.2. If γ is an element of Γ(u) t Γ(qu), then γ is Γ-conjugate
to an element of the form:

γ(a, b) =
(

a 0
0 a

)(
1 b
0 1

)
,

where a ∈ O× is a root of unity and b ∈ A0 − {0}.

If γ ∈ Γ(u), then a = ±1 and the principal polynomial of γ is f1(x) = (x−1)4

or f1(−x). We put I1 = I(Γ(u))k,j . If γ ∈ Γ(qu), then a is a primitive 4-th, 3-rd, or
6-th root of unity and the principal polynomial of γ is f6(x) = (x2 + 1)2, f7(x) =
(x2 +x+1)2 or f7(−x) respectively. We denote by I2 (resp. I3) the contribution of
elements of Γ(qu) whose principal polynomial is f6(x) (resp. f7(±x)). We evaluate
I1 in Subsection 5.1, and I2 and I3 in Subsection 5.2 and 5.3. We use the notation
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γ(θ, t) :=




cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ







1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1


 .

We summarize some lemmas which are used in Subsection 5.2. These lemmas
were proved in the case of D2 = 1 by Hashimoto [Has84]. The following lemmas
are easy generalizations of them and can be proved in the almost same method, so
we omit the proof. Let a be a primitive 3-rd or 4-th or 6-th root of unity. We put
F := Q(a) and denote by OF the ring of integers of F and by d the discriminant
of F . F is isomorphic to Q(

√−1) or Q(
√−3).

Lemma 5.3. Let γ be an element of Γ of the form γ(a, b) in Proposition 5.2.
Then we have

(1) If β is an element of B× such that βa = aβ, then we have B = F ⊕ Fβ.
(2) If we express b ∈ A0 as b = x

√
d + yβ (x ∈ Q, y ∈ F ), then the Jordan

decomposition γ(a, b) = γs · γu is given by

γs =
(

a 0
0 a

)(
1 yβ
0 1

)
, γu =

(
1 x

√
d

0 1

)
.

Lemma 5.4. If we put, for a fixed a as above,

C(a) :=
{
x−1ax | x ∈ B×}

,

then we have

]
(
(C(a) ∩O)/ ∼O×

)
=

∏

p|D

(
1−

(
F

p

))
.

Lemma 5.5. Let γi = γ(ai, bi) (i = 1, 2) be two elements of Γqu of the form
of Proposition 5.2. If γ1 and γ2 are Γ-conjugate, then a1 and a2 are O×-conjugate.

Lemma 5.6. Let γi = γ(a, bi) (i = 1, 2) be two elements of Γ(qu) of the form
of Proposition 5.2. We put

LA(a) := {a−1za− z | z ∈ A0}.

Then γ(a, b1) and γ(a, b2) are Γ-conjugate if and only if b1 − b2 ∈ LA(a).
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5.1. The contribution I1.
In this subsection, we evaluate the contribution I1. We define the following

four subsets of Γ:

F1 :=
{(

12 S
02 12

) ∣∣∣∣ S ∈ SM2(R),detS 6= 0, S : definite
}
∩ Γ,

F2 :=
{(

12 S
02 12

) ∣∣∣∣ S ∈ SM2(R),detS 6= 0, S : indefinite,−det S 6∈ (Q×)2
}
∩ Γ,

F3 :=
{(

12 S
02 12

) ∣∣∣∣ S ∈ SM2(R),det S 6= 0, S : indefinite,−det S ∈ (Q×)2
}
∩ Γ,

F4 :=
{(

12 S
02 12

) ∣∣∣∣ S ∈ SM2(R),det S = 0
}
∩ Γ,

where we denote by SM2(R) the set of all symmetric matrices of degree 2 over R.
We denote by C(u) the set of all Γ-conjugacy classes of Γ(u). We can prove the
following proposition by Proposition 5.2.

Proposition 5.7. We can decompose C(u) as

C(u) =
4⊔

i=1

( ⊔

γ∈Fi/∼Γ

{{γ}Γ
})

,

where Fi/ ∼Γ denotes a complete system of representatives of Γ-conjugacy classes
of Fi and {γ}Γ denotes the Γ-conjugacy class represented by γ.

Proof. Take an arbitrary {γ′}Γ ∈ Cu. By Proposition 5.2, we have some
x ∈ Γ such that x−1γ′x = ±(

1 b
0 1

)
, b ∈ A0−{0}. Identifying x−1γ′x and its image

by φ in Sp2(R), it is contained in some Fi, so we have

{γ′}Γ = {x−1γ′x}Γ ∈
⊔

γ∈Fi/∼Γ

{{γ}Γ
}
. ¤

However, especially in the case of our Γ, we have F3 = F4 = ∅ and

I1 = ck,j ·
2∑

i=1

vol
(
C0(γi; Γ)\C0(γi;Sp(2;R))

)

· lim
s→+0

∑

γ′∈Fi/∼

J0(γ′; s)
[C(γ′; Γ) : ±C0(γ′; Γ)]

,
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where γi is an any element of Fi (cf. [Wak, Theorem 3.1]). By using the formula
of [Wak, (e-2), (e-3)], we have

lim
s→+0

∑

γ′∈Fi/∼

J0(γ′; s)
[C(γ′; Γ) : ±C0(γ′; Γ)]

=





c−1
k,j ·

j + 1
22π

· 1
[Γ̃ : Γ̃+]

· vol(Γ̃+\H1)
vol(L)

i = 1

0 i = 2

Here, we define the notations as follows.
We define a lattice L in SM2(R) by

{(
12 X
02 12

) ∣∣∣∣ X ∈ L

}
=

{(
12 S
02 12

) ∣∣∣∣ S ∈ SM2(R)
}
∩ Γ.

We put

C0(γ1;Sp(2;R)) =
{(

12 S
02 12

) ∣∣∣∣ S ∈ SM2(R)
}

,

C0(γ1; Γ) = C0(γ1;Sp(2;R)) ∩ Γ =
{(

12 X
02 12

) ∣∣∣∣ X ∈ L

}

and

vol(L) := vol(C0(γ1; Γ)\C0(γ1;G(R))) =
∫

L\SM2(R)

dx11dx12dx22

for
(

x11 x12
x12 x22

) ∈ SM2(R). We put

Γ̃ =
{(

x 0
0 x−1

) ∣∣∣∣ x ∈ B×
}
∩ Γ, Γ̃+ =

{(
x 0
0 x−1

)
∈ Γ̃

∣∣∣∣ xx > 0
}

.

We can identify Γ̃+ as the subgroup of GL+(2;R) = {g ∈ GL(2;R) | det(g) > 0}
and we define

vol(Γ̃+\H1) =
∫

Γ̃+\H1

y−2dxdy
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for x + iy ∈ H1, where H1 is the upper half plane {z ∈ C|Im(z) > 0}.
It follows that we have

I1 =
j + 1
23π

· vol(Γ̃+\H1)
[Γ̃ : Γ̃+]

.

Noting that Γ̃ and Γ̃+ are independent on a choice of pairs (D1, D2) for a fixed
D, we see that the value I1 is also independent on it. Hence we have

I1 = 2−33−1(j + 1)
∏

p|D
(p− 1),

which is the same value as in [Wak, Theorem 6.1].

5.2. The contribution I2.
In this section, we evaluate the contribution I2. Let γ be an element of Γ(qu)

whose principal polynomial is f6(x) = (x2 + 1)2. Then γ is Sp(2;R)-conjugate to
an element of the form

γ

(
π

2
, s

)
=




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







1 0 s 0
0 1 0 s
0 0 1 0
0 0 0 1




(cf. Proposition 5.2) and corresponds to (f-3) of [Wak].
We denote by C6 the set of all Γ-conjugacy classes of Γ(qu) whose principal

polynomial is f6(x). Then we have the following proposition:

Proposition 5.8. We can decompose C6 into disjoint union of 4N subsets
as

C6 =
N⊔

i=1

4⊔

j=1

( ⊔

γ∈Fi,j

{{γ}Γ
})

,

where N :=
∏

p|D(1− (−1/p)) and Fi,j is defined as follows.

Let a1, . . . , aN be a complete system of O×-conjugacy classes of elements of
O of order 4. (cf. Lemma 5.4). There exist some xi ∈ Q>0 and βi ∈ O0 depending
on each ai such that Fi,j ’s are given as one of the following four cases. Here we
put
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δ(ai, γ1, γ2) :=
(

ai 0
0 ai

)(
1 γ1βi

0 1

)
·
(

1 γ2xiai

0 1

)
,

where the symbol “ · ” means the Jordan decomposition.

Case 1:

Fi,1 =
{
δ(ai, 0, l) | l ∈ Z − {0}}, Fi,2 =

{
δ(ai, 1, l) | l ∈ Z − {0}}

Fi,3 =
{
δ(ai, ai, l) | l ∈ Z − {0}}, Fi,4 =

{
δ(ai, 1 + ai, l) | l ∈ Z − {0}}

All elements of Fi,j are conjugate to γ(π/2, l) in Sp(2,R).

Case 2:

Fi,1 =
{
δ(ai, 0, 2l) | l ∈ Z − {0}}, Fi,2 =

{
δ(ai, 1, 2l) | l ∈ Z − {0}}

Fi,3 =
{

δ

(
ai,

1
2
ai, 2l + 1

)∣∣∣∣ l ∈ Z

}
, Fi,4 =

{
δ

(
ai, 1 +

1
2
ai, 2l + 1

)∣∣∣∣ l ∈ Z

}

All elements of Fi,1 and Fi,2 are conjugate to γ(π/2, l) in Sp(2,R). All elements
of Fi,3 and Fi,4 are conjugate to γ(π/2, l + (1/2)) in Sp(2,R).

Case 3:

Fi,1 =
{
δ(ai, 0, 2l) | l ∈ Z − {0}}, Fi,2 =

{
δ(ai, ai, 2l) | l ∈ Z − {0}}

Fi,3 =
{

δ

(
ai,

1
2
, 2l + 1

)∣∣∣∣ l ∈ Z

}
, Fi,4 =

{
δ

(
ai,

1
2

+ ai, 2l + 1
)∣∣∣∣ l ∈ Z

}

All elements of Fi,1 and Fi,2 are conjugate to γ(π/2, l) in Sp(2,R). All elements
of Fi,3 and Fi,4 are conjugate to γ(π/2, l + (1/2)) in Sp(2,R).

Case 4:

Fi,1 =
{
δ(ai, 0, 2l) | l ∈ Z − {0}}, Fi,2 =

{
δ(ai, 1, 2l) | l ∈ Z − {0}}

Fi,3 =
{

δ

(
ai,

1
2

+
1
2
ai, 2l + 1

)∣∣∣∣ l ∈ Z

}
, Fi,4 =

{
δ

(
ai,

1
2

+
3
2
ai, 2l + 1

)∣∣∣∣ l ∈ Z

}

All elements of Fi,1 and Fi,2 are conjugate to γ(π/2, l) in Sp(2,R). All elements
of Fi,3 and Fi,4 are conjugate to γ(π/2, l + (1/2)) in Sp(2,R).

Proof. We take an arbitrary {γ}Γ ∈ C6. By Proposition 5.2, we have
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γ ∼Γ

(
a 0
0 a

)(
1 b
0 1

)

for some a ∈ O of order 4 and b ∈ A0 − {0}. By taking Γ-conjugation, we may
have a = ai for some i ∈ {1, . . . , N}. Hence we have

C6 =
N⊔

i=1

Xi, Xi =
{{(

ai 0
0 ai

)(
1 b
0 1

)}

Γ

∣∣∣∣ b ∈ A0 − {0}
}

.

For each Xi, we simply put a = ai. By Lemma 5.6, each Xi can be decomposed
as

Xi =
⊔

b∈A0/LA(a)

{{(
a 0
0 a

)(
1 b
0 1

)}

Γ

}
.

We can describe the structure of A0/LA(a) by the same way as Hashimoto [Has84]
as follows. From Proposition 2.5 of [Has84], we have

O0 =





Z · a + β

2
+ OF β if 2 - D,

Z · a + OF β if 2 - D

for some β. So we have O0∩F⊥ = OF β and A 0∩F⊥ is a OF -submodule of O0∩F⊥.
Since OF is P.I.D. and O0 ∩ F⊥ is a free OF -module of rank 1, A0 ∩ F⊥ is also a
free OF -module of rank 1. So we can write A0 ∩ F⊥ = OF β′ with some β′. Since
A0/(A0∩F⊥) is a torsion-free Z-module, A0∩F⊥ is a direct summand of A0, that
is, there exists some subZ-module M of A0 and we can write A0 = M⊕(A0∩F⊥).
The Z-module M is free of rank 1. A basis of M can be expressed as the form:
xa+yβ′ (x ∈ Q−{0}, y ∈ F ) because we have B0 = Qa+Fβ′ with β′ mentioned
above. So we can take ρ1 := xa + yβ′, ρ2 := β′ and ρ3 := aβ′ as a basis of A0.
From the relation −2yβ′ = a−1ρ1a − ρ1 ∈ LA(a) ⊂ A0 ∩ F⊥ = OF β′, we have
2y ∈ OF = Z + Za. We divide the situation into two cases according as y ∈ OF

of 6∈ OF .

( i ) The case of y ∈ OF . We can write ρ1 = xa + y1β
′ + y2aβ′ with some

y1, y2 ∈ Z. So by replacing ρ1, ρ1 = xa, ρ2 = β′, ρ3 = aβ′ forms a basis of
A0, that is

A0 = Zxa⊕Zβ′ ⊕Zaβ′.
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( ii ) The case of y 6∈ OF . We have y = y1 + y2a, 2y1, 2y2 ∈ Z and A0 =
Z · (xa + y1β

′ + y1aβ′) ⊕ Zβ′ ⊕ Zaβ′. So A0 is one of the following three
cases:

Case (ii a) A0 = Z ·
(

xa +
1
2
aβ′

)
⊕Zβ′ ⊕Zaβ′

Case (ii b) A0 = Z ·
(

xa +
1
2
β′

)
⊕Zβ′ ⊕Zaβ′

Case (ii c) A0 = Z ·
(

xa +
1
2
β′ +

1
2
aβ′

)
⊕Zβ′ ⊕Zaβ′.

In each case, the structure of LA(a) and A0/LA(a) are given as follows:

Case (i) :

LA(a) = {2mβ′ + 2naβ′ | m,n ∈ Z},

A0/LA(a) = {lxa | l ∈ Z} t {lxa + β′ | l ∈ Z} t {lxa + aβ′ | l ∈ Z}
t {lxa + β′ + aβ′ | l ∈ Z}.

Case (ii a) :

LA(a) = {2mβ′ + naβ′ | m,n ∈ Z},

A0/LA(a) = {lxa | l ∈ 2Z} t {lxa + β′ | l ∈ 2Z}

t
{

lxa +
1
2
aβ′

∣∣∣∣ l ∈ 2Z + 1
}
t

{
lxa + β′ +

1
2
aβ′

∣∣∣∣ l ∈ 2Z + 1
}

.

Case (ii b) :

LA(a) = {mβ′ + 2naβ′ | m,n ∈ Z},

A0/LA(a) = {lxa | l ∈ 2Z} t {lxa + aβ′ | l ∈ 2Z}

t
{

lxa +
1
2
β′

∣∣∣∣ l ∈ 2Z + 1
}
t

{
lxa +

1
2
β′ + aβ′

∣∣∣∣ l ∈ 2Z + 1
}

.

Case (ii c) :

LA(a) = {mβ′ + naβ′ | m,n ∈ Z},
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A0/LA(a) = {lxa | l ∈ 2Z} t {lxa + β′ | l ∈ 2Z}

t
{

lxa +
1
2
β′ +

1
2
aβ′

∣∣∣∣ l ∈ 2Z + 1
}

t
{

lxa +
1
2
β′ +

3
2
aβ′

∣∣∣∣ l ∈ 2Z + 1
}

.

Thus we have completed the proof of Proposition 5.8. ¤

The sets Fi,l’s are called families in [Has83], [Has84], [Wak], etc. For each
Fi,l, there exist gi,l ∈ Sp(2;R) and λ ∈ R with 0 ≤ λi,l < 1, such that

Fi,l = gi,l








0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







1 0 n + λi,l 0
0 1 0 n + λi,l

0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣

n ∈ Z

n + λi,l 6= 0





g−1
i,l .

We define

C(Fi,l;Sp(2;R)) := gi,l








cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ







1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
θ, t ∈ R





g−1
i,l ,

C0(Fi,l;Sp(2;R)) := gi,l








1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
t ∈ R





g−1
i,l ,

C(Fi,l; Γ) := C(Fi,l;Sp(2;R)) ∪ Γ,

C0(Fi,l; Γ) := C0(Fi,l;Sp(2;R)) ∪ Γ.

Then, from (f-3) in [Wak], we have

I2 =
N∑

i=1

4∑

l=1

1
2
· vol(C0(Fi,l; Γ)\C0(Fi,l;Sp(2,R)))

[C(Fi,l; Γ) : ±C0(Fi,l; Γ)]

· (−2−3(−1)j/2) · (1−√−1 cot∗ πλi,l

)
,

where we put



1304 H. Kitayama

cot∗ πλ :=

{
0 if λ = 0,

cot πλ if 0 ≤ λ < 1.

We can verify that

C(Fi,l; Γ) = gi,l




±




1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1


 ,±




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
t ∈ Z





g−1
i,l ,

C0(Fi,l; Γ) = gi,l








1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
t ∈ Z





g−1
i,l

and

vol
(
C0(Fi,l; Γ)\C0(Fi,l;Sp(2;R))

)
= 1,

[C(Fi,l; Γ) : ±C0(Fi,l; Γ)] = 2.

Hence we have I2 = −4N · 2−5(−1)j/2.

5.3. The contribution I3.
In this section, we evaluate the contribution I3. We consider the contribution

of elements whose principal polynomials are f7(x) = (x2 + x + 1)2 and double it
to obtain I3. Let γ be an element of Γ(qu) whose principal polynomial is f7(x).
Then γ is Sp(2;R)-conjugate to an element of the form

γ

(
2π

3
, s

)
=




−1/2
√

3/2 0 0
−√3/2 −1/2 0 0

0 0 −1/2
√

3/2
0 0 −√3/2 −1/2







1 0 s 0
0 1 0 s
0 0 1 0
0 0 0 1




(cf. Proposition 5.2) and corresponds to (f-3) of [Wak].
We denote by C7 the set of all Γ-conjugacy classes of Γ(qu) whose princi-

pal polynomial is f7(x). By the same way as Proposition 5.8, we can prove the
following proposition:

Proposition 5.9. We can decompose C7 into disjoint union of 3N subsets
as
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C7 =
N⊔

i=1

3⊔

l=1

( ⊔

γ∈Fi,l

{{γ}Γ
})

,

where N :=
∏

p|D(1− (−3/p)) and Fi,j is defined as follows.

Let a1, . . . aN be a complete system of O×-conjugacy classes of elements of O

of order 3 (cf. Lemma 5.4). There exist some xi ∈ Q>0 and βi ∈ O0 depending on
each ai such that Fi,j ’s are given as one of the following two cases. Here we put

δ(ai, γ1, γ2) :=
(

ai 0
0 ai

)(
1 γ1βi

0 1

)
·
(

1 γ2xi

√−3
0 1

)
,

where the symbol “ · ” means the Jordan decomposition.

Case 1:

Fi,1 =
{
δ(ai, 0, n) | n ∈ Z − {0}}, Fi,2 =

{
δ(ai, 1, n) | n ∈ Z − {0}}

Fi,3 =
{
δ(ai, 2, n) | n ∈ Z − {0}},

All elements of Fi,l’s are Sp(2;R)-conjugate to γ(2π/3, n).

Case 2:

Fi,1 =
{
δ(ai, 0, 3n) | n ∈ Z − {0}}, Fi,2 =

{
δ

(
ai,

1 + 2a

3
, 3n + 1

)∣∣∣∣ n ∈ Z

}

Fi,3 =
{

δ

(
ai,

2 + a

3
, 3n + 2

)∣∣∣∣ l ∈ Z

}
,

All elements of each Fi,l are Sp(2;R)-conjugate to γ(2π/3, n + (l − 1)/3).

For each Fi,l, we define gi,l, λi,l, C(Fi,l;Sp(2;R)), C0(Fi,l;Sp(2;R)),
C(Fi,l; Γ) and C0(Fi,l; Γ) in the same way as in Subsection 5.2. Then, from (f-3)
in [Wak], we have

I3 =
N∑

i=1

3∑

l=1

·vol(C0(Fi,l; Γ)\C0(Fi,l;Sp(2,R)))
[C(Fi,l; Γ) : ±C0(Fi,l; Γ)]

· (−2−13−1[1,−1, 0; 3]j) ·
(
1−√−1 cot∗ πλi,l

)
.

We can verify that
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C(Fi,l; Γ) = gi,l

{
± γ(θ, t)

∣∣∣∣ θ = 0,
π

3
,
2π

3
, t ∈ Z

}
g−1

i,l ,

C0(Fi,l; Γ) = gi,l

{
γ(0, t) | t ∈ Z

}
g−1

i,l

and

vol
(
C0(Fi,l; Γ)\C0(Fi,l;Sp(2;R))

)
= 1, [C(Fi,l; Γ) : ±C0(Fi,l; Γ)] = 3.

Hence we have I3 = −3N · 2−13−2[1,−1, 0; 3]j .

6. Numerical examples.

In this section, we give some numerical examples of dimC Sk,j(Γ(D1, D2)) for
various D1, D2. The tables for D = D1 = 6, 10, 15 appeared in [Wak]. Our theo-
rem can not be applied for k ≤ 4. In the following tables, we formally substitute
k ≤ 4 in the formula of Theorem 3.1. Hashimoto conjectured that the dimension
of S4,0(Γ(D, 1)) (resp. S3,0(Γ(D, 1))) can be obtained by substituting k = 4 in
Theorem 3.1 (resp. by substituting k = 3 and adding +1). (Conjecture 4.3, 4.4 in
[Has84]. cf. [Ibu07b] in the split case).

(I) D = 2 · 3
(i) D1 = 2 · 3, D2 = 1

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 0 -1 2 0 4 2 8 5 15 10 25 15 34 26
2 -1 2 0 1 2 2 5 7 15 17 33 34 53 58 91 96
4 0 -1 0 2 4 6 14 19 35 42 67 77 114 126 179 200
6 -2 -1 1 5 9 17 30 40 65 82 118 145 195 224 299 341
8 -3 -2 2 7 19 27 49 67 106 131 188 223 298 346 448 514

(ii) D1 = 3, D2 = 2

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 0 0 2 1 3 4 7 5 9 11 17 14 21 24
2 0 1 0 1 0 1 3 6 7 10 18 23 29 36 52 61
4 0 -1 0 1 2 2 7 12 19 23 36 48 65 75 100 122
6 0 0 1 5 6 11 19 29 39 51 72 93 116 140 180 214
8 -1 -2 2 5 12 16 30 44 64 79 110 139 179 211 265 315
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(iii) D1 = 2, D2 = 3

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 0 0 1 1 3 2 4 6 6 7 12 11 14 19
2 0 1 0 0 0 1 1 3 4 7 10 14 18 25 31 39
4 1 0 0 2 1 3 7 8 13 20 24 34 45 53 69 86
6 0 -1 1 3 2 8 12 16 25 36 43 60 77 92 115 143
8 0 0 2 3 9 13 21 30 43 56 75 94 119 146 178 212

(iv) D1 = 1, D2 = 2 · 3
j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 0 -1 1 2 2 2 3 4 6 6 8 8 11 13
2 -1 2 0 0 0 0 1 2 2 4 5 9 10 15 18 22
4 1 0 0 1 1 1 4 5 7 11 15 19 26 32 40 50
6 0 0 1 3 1 6 7 11 17 21 27 38 46 58 70 86
8 0 0 2 1 8 8 12 19 27 34 47 56 72 89 109 127

(II) D = 2 · 5
(i) D1 = 2 · 5, D2 = 1

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 0 -1 4 2 13 5 26 19 56 41 98 70 149 123
2 -2 3 0 3 9 12 28 39 82 99 170 185 285 316 470 513
4 0 -3 0 8 23 33 76 99 180 227 346 408 587 675 926 1051
6 -8 -7 3 18 46 83 150 203 330 423 607 742 1004 1173 1534 1771
8 -22 -12 3 31 88 141 246 347 532 684 955 1157 1522 1805 2302 2669

(ii) D1 = 5, D2 = 2

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 0 -1 2 3 7 7 15 16 30 32 53 55 84 88
2 -2 3 0 1 4 8 16 28 45 61 93 118 164 203 269 316
4 2 -1 0 5 13 21 45 64 102 140 201 253 344 418 539 643
6 -3 -4 3 11 25 53 88 128 196 259 355 456 592 721 909 1079
8 -12 -5 3 17 53 88 146 218 315 415 564 706 905 1105 1367 1616

(iii) D1 = 2, D2 = 5

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 0 0 2 2 4 5 8 10 14 17 23 28 35 42
2 -1 2 0 0 2 4 5 12 16 24 35 47 60 81 100 124
4 2 0 0 2 4 7 16 24 36 53 73 96 127 160 200 247
6 -1 -1 3 7 10 25 35 53 78 106 137 184 229 285 352 426
8 -3 -1 3 6 23 35 57 86 122 161 218 275 347 430 524 626
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(iv) D1 = 1, D2 = 2 · 5
j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 0 0 2 3 4 5 7 9 12 14 18 21 26 31
2 -1 2 0 0 1 2 3 7 9 14 20 28 35 48 59 73
4 2 0 0 1 2 3 9 13 20 30 42 55 74 93 117 145
6 0 0 3 6 7 17 23 34 50 66 85 114 141 175 215 260
8 -1 0 3 4 16 22 35 53 75 98 133 166 210 260 317 377

(III) D = 3 · 5
(i) D1 = 3 · 5, D2 = 1

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 1 0 9 8 34 29 86 85 183 178 331 318 536 531
2 -1 3 0 7 30 52 117 170 311 405 640 775 1120 1324 1821 2100
4 -3 -6 1 28 84 149 298 431 703 934 1357 1694 2316 2789 3644 4283
6 -29 -24 3 63 174 323 574 834 1281 1702 2373 2985 3936 4757 6044 7136
8 -79 -54 6 119 330 575 979 1416 2091 2756 3752 4681 6044 7305 9117 10746

(ii) D1 = 5, D2 = 3

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 1 1 3 6 15 17 30 50 63 86 126 150 194 254
2 0 2 0 4 9 24 44 75 115 172 239 327 429 555 699 869
4 3 -3 1 14 29 63 118 176 271 388 520 698 908 1134 1426 1751
6 -8 -10 3 32 64 137 229 344 503 705 927 1219 1559 1935 2384 2909
8 -24 -23 6 50 131 237 390 579 827 1121 1481 1899 2397 2960 3613 4343

(iii) D1 = 3, D2 = 5

j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -1 -1 1 1 5 6 11 15 24 32 45 58 78 98 124 152
2 0 2 0 2 5 14 24 43 65 98 137 187 245 319 401 499
4 1 -1 1 6 17 35 64 102 153 218 300 398 516 654 816 1001
6 -4 -2 3 20 42 83 133 206 295 409 543 711 901 1127 1384 1681
8 -12 -11 6 30 79 139 228 337 481 649 859 1099 1387 1712 2089 2509

(iv) D1 = 1, D2 = 3 · 5
j\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 -1 1 0 3 4 6 7 12 15 21 26 35 42 54 65
2 -1 3 0 1 2 6 9 18 25 39 54 75 96 128 159 198
4 3 0 1 4 8 13 28 41 61 88 121 158 208 261 326 401
6 -1 0 3 11 16 37 54 84 121 166 217 289 362 453 556 676
8 -3 -2 6 11 38 57 93 138 197 260 350 441 558 689 841 1004
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