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Abstract. The system of algebraic equations for the leading terms of
formal solutions to the Noumi-Yamada systems with a large parameter is stud-
ied. A formula which gives the number of solutions outside of turning points
is established. The number of turning points of the first kind is also given.

1. Introduction.

The aim of this article is to study the structure of the one-dimensional alge-
braic varieties associated with the Noumi-Yamada systems of differential equations
with a large parameter. The Noumi-Yamada systems, which will be denoted by
(NY )l (l = 2, 3, 4, . . . ) in this article, are discovered by M. Noumi and Y. Yamada
as higher-order generalizations of the Painlevé equations from the viewpoint of the
affine Weyl group symmetry of type A

(1)
l . In the pioneering work [T], Y. Takei in-

troduces a large parameter η for (NY )l to analyze them by using the exact WKB
analysis, namely, WKB analysis based on the Borel resummation. To be more
specific, Takei defines the notions of turning points and Stokes curves for (NY )l

and finds a relation of Stokes geometries between (NY )l and its underlying Lax
pair, which is similar to the case of traditional Painlevé equations. This result
suggests that the exact WKB analysis is effective in studying analytic properties
of solutions of (NY )l. The research of (NY )l in this direction is, however, only
in the early stage. Starting point of the research is to construct the so-called 0-
parameter solutions which are formal solutions expanded in power series in η−1.
Such solutions can be easily constructed once the leading terms are specified (see
Section 2.3). But the existence of the leading terms of the solutions is highly
nontrivial because we have to solve systems of algebraic equations. In fact, the
existence for general l is assumed in [T] but later the authors proved it for the even
l in [AH]. This article concerns not only the existence for general l but also the
number of the leading terms outside of the set of turning points and the number
of turning points of the first kind, which is introduced in [T]. Our main theorems
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(Theorems 6 and 7, Section 5) establish formulas which give these numbers.
One of the advantages of our analysis is to treat the system of algebraic

equations for the leading terms in a unified manner, although the appearance of
the system looks quite different for even l and for odd l. We consider the algebraic
variety defined by the system. Then we introduce a hyperbolic system (Section 3)
and we show that, for general l, the algebraic variety is isomorphic to the variety
defined by the hyperbolic system with some normalization. Since the hyperbolic
system has a simple form, we can analyze it easily (Section 4). The main tool of
counting the number of solutions for a fixed independent variable or that of turning
points of the first kind is the classical theorem of Bézout. We use one of the most
sophisticated forms of the theorem due to T. Suwa [S]. To use the theorem, we
have to consider our problems in the projective space. Hence it is necessary to
exclude the solutions at infinity to obtain the number of finite solutions. This part
requires careful analysis but our discussion is elementary (Section 5).

The authors would express their gratitude to Professor T. Suwa, who had
kindly explained his result to them. They also deeply appreciate valuable com-
ments and suggestions by Professor T. Kawai and Professor Y. Takei.

2. Preliminaries.

2.1. The Noumi-Yamada system (NY )l with a large parameter.
The Noumi-Yamada system (NY )l (l = 2, 3, . . . ) introduced in [NY1] and

[NY2] is a system of non-linear differential equations of (l+1)-unknown functions
u0(t), . . . , ul(t) of the variable t. We consider, in this paper, the system (NY )l

with a large parameter η according to [T], for which we can recover the original
one if we put η = 1. Let α̂j ∈ C[η−1] (0 ≤ j ≤ l) be a parameter satisfying

α̂0 + α̂1 + · · ·+ α̂l = η−1, (1)

where C[η−1] designates the set of polynomials of η−1 over C. We also denote
by αj ∈ C the leading term of α̂j (j = 0, 1, . . . , l), i.e. α̂j = αj + O(η−1). The
appearance of the system depends on the parity of l. If l = 2m is even, the system
(NY )2m with a large parameter η consists of (2m + 1)-differential equations

η−1 duj

dt
= uj(uj+1 − uj+2 + · · · − uj+2m) + α̂j (j = 0, 1, . . . , 2m), (2)

and the normalization condition defined by one equation

u0 + u1 + · · ·+ u2m = t. (3)
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If l = 2m + 1 is odd, the system (NY )2m+1 with a large parameter η consists of
(2m + 2)-differential equations





η−1 t

2
duj

dt
= uj

(
Πj +

1
2
η−1 − α̂even

)
+

1
2
α̂jt (j = 0, 2, . . . , 2m),

η−1 t

2
duj

dt
= uj

(
Πj +

1
2
η−1 − α̂odd

)
+

1
2
α̂jt (j = 1, 3, . . . , 2m + 1)

(4)

and the normalization condition defined by two equations

u0 + u2 + · · ·+ u2m =
t

2
, u1 + u3 + · · ·+ u2m+1 =

t

2
, (5)

where we set

Πj =
∑

1≤r≤s≤m

uj+2r−1uj+2s −
∑

1≤s≤q≤m

uj+2suj+2q+1,

α̂even = α̂0 + α̂2 + · · ·+ α̂2m, α̂odd = α̂1 + α̂3 + · · ·+ α̂2m+1.

(6)

Note that, throughout this paper, the indices of α̂j ’s and uj ’s are considered to be
cyclic mod l + 1.

Remark 1. In [T], the extra condition α̂even = α̂odd = 0 is assumed for the
sake of simplicity. Our discussion does not use this assumption.

2.2. A leading variety associated with (NY )l.
We introduce, in this subsection, the system of algebraic equations which the

leading term of a 0-parameter solution of (NY )l satisfies (see the next subsection
for the definition of 0-parameter solution). We also introduce the leading variety
associated with (NY )l, on which the Stokes geometry for (NY )l is defined.

Recall that αj ∈ C (0 ≤ j ≤ l) denotes the leading term of α̂j , for which

αtotal := α0 + α1 + · · ·+ αl = 0 (7)

is satisfied by (1). We define the polynomials Πj and fj (j = 0, 1, . . . , l) of the
variables u = (u0, . . . , ul) by, for even l = 2m,

Πj := uj+1 − uj+2 + · · · − uj+2m (j = 0, 1, . . . , l),

fj := ujΠj + αj (j = 0, 1, . . . , l)
(8)
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and, for odd l = 2m + 1,

Πj :=
∑

1≤r≤s≤m

uj+2r−1uj+2s −
∑

1≤s≤q≤m

uj+2suj+2q+1

(j = 0, 1, . . . , 2m + 1), (9)




fj := uj(Πj − αeven) +
1
2
αjt (j = 0, 2, . . . , 2m),

fj := uj(Πj − αodd) +
1
2
αjt (j = 1, 3, . . . , 2m + 1),

(10)

where we set αeven := α0 +α2 + · · ·+α2m and αodd := α1 +α3 + · · ·+α2m+1. We
also set

utotal :=
l∑

k=0

uk, ueven :=
m∑

k=0

u2k, uodd :=
m∑

k=0

u2k+1.

Let X be a complex affine space Ct ×Cl+1
u with a system of coordinates

(t, u) = (t, u0, . . . , ul), and let OX denote the sheaf of holomorphic functions on
X. We define the OX ideal

I :=





OX(f0, f1, . . . , fl, utotal − t) if l is even,

OX

(
f0, f1, . . . , fl, ueven − t

2
, uodd − t

2

)
if l is odd,

(11)

and the OX module

N :=
OX

I
. (12)

Then the leading variety V associated with (NY )l is, by definition, the support of
N , that is, the common zero set of functions belonging to the ideal I .

Note that, if l is odd, the hypersurface {t = 0} ⊂ X is exceptional in the
sense that the system (NY )l has regular singularity along t = 0 and the canonical
projection π |V : V → Ct is neither proper nor finite over t = 0. Hence we usually
consider the problem outside of {t = 0} if l is odd, and we introduce the following
notation for convenience:
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V̌ :=

{
V if l is even,

V \ {t = 0} if l is odd,

Čt :=

{
Ct if l is even,

Ct \ {0} if l is odd

(13)

and

π̌t : Čt ×Cl+1 → Čt (14)

being the canonical projection with respect to the variable t.

Since parameters satisfy αtotal = 0, we can easily see, for an even l = 2m,

f0 + f1 + · · ·+ fl = 0 (15)

and, for an odd l = 2m + 1,

f0 + f2 + · · ·+ f2m + αeven

(
ueven − t

2

)
= 0,

f1 + f3 + · · ·+ f2m+1 + αodd

(
uodd − t

2

)
= 0.

(16)

Hence, if we define (l + 1)-polynomials h0, . . . , hl by

{h0, . . . , hl} :=





{f0, . . . , fl−1, utotal − t} if l is even,
{

f0, . . . , fl−2, ueven − t

2
, uodd − t

2

}
if l is odd,

(17)

then we have I = OX(h0, h1, . . . , hl). It follows from Theorem 5 that {h0, . . . , hl}
forms a regular sequence over OX,p for any p ∈ V̌ .

2.3. A construction of a 0-parameter solution for (NY )l.
Let u(t) = (u0(t), . . . , ul(t)) be a formal power series of η−1 in the form

u(t) = u(0)(t) + u(1)(t)η−1 + u(2)(t)η−2 + u(3)(t)η−3 + · · · . (18)

Here we set u(k)(t) = (u(k)
0 (t), . . . , u(k)

l (t)) and u
(k)
j (t) (k = 0, 1, 2, . . . ; j =

0, 1, . . . , l) are multi-valued holomorphic functions over Čt except for a finite num-
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ber of exceptional points. We say that u(t) is a 0-parameter formal solution of
(NY )l if it satisfies (NY )l as a formal power series of η−1.

We briefly explain how to construct such a 0-parameter formal solution, which
does not necessarily exist for an arbitrary parameter of (NY )l. We introduce
several subsets of the space of parameters (α0, α1, . . . , αl) to describe a condition
which assures the existence of a 0-parameter solution.

Let Al ⊂ Cl+1 denote the space of allowable parameters

{
(α0, α1, . . . , αl) ∈ Cl+1;α0 + α1 + · · ·+ αl = 0

}
, (19)

and let Ae
l denote the set Al ∩ {αeven = 0}. We define, for 0 ≤ i ≤ l,

El
i :=

{
(α0, α1, . . . , αl) ∈ Al;α(i; 0)α(i; 1) · · ·α(i; l − 1) = 0

}
, (20)

where α(i; k) designates αi + αi+1 + · · ·+ αi+k, and we set

El
cup :=

⋃

0≤i≤l

El
i, El

cap :=
⋂

0≤i≤l

El
i. (21)

Note that the set El
cup (resp. El

cup ∩ Ae
l) is a proper analytic subset in Al (resp.

Ae
l). In what follows, we assume that α := (α0, α1, . . . , αl) belongs to Al \ El

cup.
By putting (18) into (2) and (3) (resp. (4) and (5)) when l is even (resp. odd),

we find that the leading term u(0)(t) of (18) is a common zero point of functions
belonging to the ideal I defined by (11). Hence we see that u(0)(t) is the leading
term of a 0-parameter solution if and only if

(
t, u(0)(t)

)
=

(
t, u

(0)
0 (t), . . . , u(0)

l (t)
) ∈ V̌ .

Existence of the leading term of a 0-parameter solution is established by
[AH]. As we will see later (the first statement of Theorem 6 in Section 5.2),
u(0)(t) can be solved as a multi-valued holomorphic function of the variable t with
branching points of finite degree, moreover, it is still bounded near the branching
points. We also note that the leading term u(0)(t) should be unique as a multi-
valued holomorphic function because we will prove that V̌ is connected (the second
statement of Theorem 5 in Section 5.1).

Let H ′ denote the Jacobian matrix ∂(h0, . . . , hl)/∂(u0, . . . , ul) of the poly-
nomials h0, . . . , hl given in (17), and D := det(H ′). Then the set of branching
points of u(0)(t) is clearly contained in π̌t(V̌ ∩ {D = 0}). The function D is not
identically zero on V̌ , in particular, the set π̌t(V̌ ∩{D = 0}) is finite. This follows
from Theorem 7 which will be proved in Section 5.3.
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Now we construct the lower order term u(k)(t) (k ≥ 1). By the normalization
condition (3) (resp. (5)) and the differential equations except for one corresponding
to j = 2m in (2) (resp. ones corresponding to j = 2m and j = 2m + 1 in (4))
when l is even (resp. odd), we can obtain the following recursive relations:

H ′(u(0))u(k+1) = R(k)

(
t, u(0), . . . , u(k),

du(k)

dt

)
(k = 0, 1, 2, . . . ). (22)

Here R(k) consists of polynomials of the variables t, u(0), . . . , u(k) and du(k)/dt.
Since D = det(H ′) does not vanish on V̌ except for finite points as we have already
noted, we can successively determine u(k)(t) by (22).

Hence, outside of π̌t(V̌ ∩ {D = 0}), we can construct a 0-parameter formal
solution of (NY )l for a parameter whose leading term with respect to η−1 belongs
to Al \ El

cup. Each branch of the 0-parameter solution u(t) at a non-branching
point t = t0 is called a germ of the 0-parameter solution at t = t0. The number
of germs of the 0-parameter solution will be given by the second statement of
Theorem 6.

A point in π̌t(V̌ ∩{D = 0}) is called a turning point of the first kind of (NY )l.
Note that a point in V̌ ∩ {D = 0} itself is also called a turning point of the first
kind in this paper, which is, geometrically, nothing but a ramification point for
the projection π̌t |V̌ : V̌ → Č. We finally note that a formula for the number of
turning points of the first kind will be also given in Theorem 7.

2.4. Some notes for a turning point of the first kind.
In the previous subsection, a turning point of the first kind is defined as a

ramification point for the projection π̌t |V̌ : V̌ → Č. Our definition is slightly
different from the original definition by [T], which we briefly explain from now on.

Let us consider the characteristic polynomial on the leading variety V̌ defined
by

Λ(λ, t, u) := det
(

λI − ∂(f0, . . . , fl)
∂(u0, . . . , ul)

)∣∣∣∣
V̌

, (t, u) ∈ V̌ . (23)

Note that the polynomials f0, . . . , fl (not h0, . . . , hl) are used here. The explicit
forms of Λ(λ, t, u) is given in [T]:

Λ(λ, t, u) =

{
λΛ̃(λ, t, u) if l = 2m,
(
λ2 − α2

even

)
Λ̃(λ, t, u) if l = 2m + 1,

(24)

where Λ̃ is an even polynomial of λ, which is a key feature of the characteristic
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polynomial of (NY )l. Since [T] assumes αeven = 0, we will give the proof of (24)
in Section 4 (Theorem 3). It follows from (24) that the equation Λ̃(λ, t, u) = 0 of
the unknown variable λ has m-pairs of roots λ = ±λ1(t, u), . . . ,±λm(t, u) on V̌ .

Then a turning point of the first kind is, by the original definition, a point
t = t0 at which some pair of roots merges, that is, λk(t0, u(t0)) = −λk(t0, u(t0))
holds for some k. Clearly this is equivalent to saying that it is a zero point of
Λ̃(0, t, u(t)).

The equivalence of our definition and the original one immediately comes from
the following lemma which is easily proved (see the proof of Theorem 3):

Lemma 1. We have the equality

Λ̃(0, t, u) = D (25)

for (t, u) ∈ V̌ . Here D was given in the previous subsection, which is the Jacobian
for the polynomials h0, . . . , hl.

2.5. An intersection multiplicity number.
We briefly recall the definition of an intersection multiplicity number and its

properties that are frequently used in this paper. Let X be an n-dimensional
complex manifold and OX the sheaf of holomorphic functions on X, and let M
(resp. N ) be a coherent OX module on X. We denote by [M ] (resp. [N ]) the
analytic cycle defined by M (resp. N ).

Let p be a point in supp(M )∩ supp(N ). We assume that the supports of M
and N intersect properly at p, i.e., the point p is isolated in supp(M)∩ supp(N).
Then the intersection multiplicity number of [M ] and [N ] at p is defined by

mul([M ], [N ]; p) :=
∑

k≥0

(−1)k dimC

(
Tork

OX
(M ,N )p

)
.

In particular, for analytic subsets V and W that intersect properly at p, we define
the intersection multiplicity number of V and W at p by

mul(V, W ; p) := mul
([

OX

IV

]
,

[
OX

IW

]
; p

)
,

where IV (resp. IW ) denotes the defining ideal of V (resp. W ).

Let Y be a complex curve in X and p ∈ Y , and let f ∈ OX,p that
does not vanish identically on Y . Then the intersection multiplicity number
mul(Y, [OX/OX(f)]; p) coincides with the degree of zero point of the holomorphic
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function f |Y at p. This is a special case of the following general result.
Let f1, f2, . . . , fn ∈ OX,p and set, for 1 ≤ l < n,

M =
OX

OX(f1, f2, . . . , fl)
, N =

OX

OX(fl+1, fl+2, . . . , fn)
.

If f1, f2, . . . , fn form a regular sequence over OX,p, then we have

mul([M ], [N ]; p) = dimC

(
M ⊗

OX

N
)

p
= dimC

(
OX

OX(f1, . . . , fn)

)

p

.

3. A hyperbolic system with a normalization condition.

The appearance of the system of algebraic equations associated with the lead-
ing terms of (NY )2m seems completely different from that of (NY )2m+1. Indeed,
the former is defined by the second order algebraic equations with one normaliza-
tion condition while the latter is defined by the third order algebraic equations
with two normalization conditions. We will show in Theorems 1 and 2 that the
both systems of algebraic equations can be reduced to the same hyperbolic sys-
tem with a normalization condition. By these theorems, we can reduce problems
of the Stokes geometry for (NY )l to those for the hyperbolic system. Moreover,
as our hyperbolic system has a very simple form, we can easily investigate their
properties. As such applications, in subsequent sections, we give several important
results for the Stokes geometry of (NY )l where Theorems 1 and 2 are effectively
used.

We first define our hyperbolic system with a normalization condition. Let l ≥
2 be a natural number and let Xt,ξ designate the complex affine space Ct ×Cl+1

ξ

with a system of coordinates (t; ξ0, ξ1, . . . , ξl). We set

ξtotal := ξ0 + ξ1 + · · ·+ ξl

and

gk :=
1
4
(
ξ2
k+1 − ξ2

k

)
+ αk, k = 0, 1, . . . , l

with ξl+1 := ξ0 for convenience. Let OXt,ξ
denote the sheaf of holomorphic func-

tions on Xt,ξ. Then we define the OXt,ξ
ideal It,ξ of the hyperbolic system and

the OXt,ξ
module Nt,ξ by
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It,ξ := OXt,ξ
(g0, g1, . . . , gl, ξtotal − t) and Nt,ξ :=

OXt,ξ

It,ξ
,

respectively. We also set Vt,ξ := supp(Nt,ξ).

3.1. The system associated with the leading terms of (NY )2m.
Throughout the subsection l is assumed to be an even number 2m (m ≥ 1).

Let us consider the linear maps Ψ : Xt,ξ := Ct ×Cl+1
ξ → Xt,u := Ct ×Cl+1

u and
Φ : Xt,u → Xt,ξ defined respectively by

Ψ(t; ξ) =
(

t;
ξ0 + ξ1

2
,
ξ1 + ξ2

2
, . . . ,

ξk + ξk+1

2
, . . . ,

ξl + ξ0

2

)
(26)

and

Φ(t;u) =
(
t;ul + Πl, u0 + Π0, . . . , uk−1 + Πk−1, . . . , ul−1 + Πl−1

)
,

where Πk (k = 0, 1, . . . , l) was given in (8). As the equalities

Πi + Πi+1 = ui+1 − ui, i = 0, 1, . . . , l (27)

always hold, we have the following lemma:

Lemma 2. We have Ψ ◦ Φ = idXt,u
. In particular, Ψ and Φ are linear

isomorphisms.

Remark 2. When l is odd, the linear map Ψ does not give an isomorphism.

For a function ϕ(t, u) on Xt,u, we denote by Ψ∗(ϕ) the function ϕ(Ψ(t, ξ)) on
Xt,ξ. As Φ ◦Ψ = idXt,ξ

holds, we have

ξk+1 = Ψ∗(Πk + uk) = Ψ∗(Πk) + Ψ∗(uk).

This implies

Ψ∗(Πk) = ξk+1 −Ψ∗(uk) = ξk+1 − ξk+1 + ξk

2
=

1
2
(ξk+1 − ξk),

from which we have

Ψ∗(fk) = Ψ∗(uk)Ψ∗(Πk) + αk =
1
4
(
ξ2
k+1 − ξ2

k

)
+ αk = gk.
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We also see Ψ∗(utotal − t) = ξtotal − t. Hence we have obtained the following
theorem:

Theorem 1. The map Ψ gives an isomorphism between the analytic sets
V and Vt,ξ. Moreover Ψ−1N and Nt,ξ are isomorphic as π−1OCt

modules. Here
π : Xt,ξ → Ct is the canonical projection with respect to the variable t.

3.2. The system associated with the leading terms of (NY )2m+1.
Throughout this subsection we assume l to be an odd number 2m+1 (m ≥ 1).

Set

Ut,u := {(t, u) ∈ Xt,u; t 6= 0} ⊂ Xt,u (28)

and

Wt,u :=
{

(t, u) ∈ Ut,u;ueven − t

2
= 0, uodd − t

2
= 0

}
. (29)

Let OWt,u be the sheaf of holomorphic functions on the submanifold Wt,u, that is,

OWt,u =
OUt,u

OUt,u

(
ueven − t

2
, uodd − t

2

) .

We also define the corresponding sets in Xt,ξ respectively by

Ut,ξ :=
{
(t, ξ) ∈ Ct ×Cl+1

ξ ; t 6= 0
} ⊂ Xt,ξ (30)

and

Wt,ξ :=
{
(t, ξ) ∈ Ut,ξ; ξtotal − t = 0, τ(ξ)− 4αeven = 0

}
, (31)

where we set

τ(ξ) :=
∑

0≤k≤m

ξ2
2k −

∑

0≤k≤m

ξ2
2k+1. (32)

Note that Wt,ξ is smooth in Ut,ξ. Let OWt,ξ
denote the sheaf of holomorphic

functions on the submanifold Wt,ξ. By the definition, we have
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OWt,ξ
=

OUt,ξ

OUt,ξ
(ξtotal − t, τ(ξ)− 4αeven)

.

Let us recall the linear map Ψ : Ut,ξ → Ut,u defined by

Ψ(t; ξ0, ξ1, . . . , ξl) =
(

t;
ξ0 + ξ1

2
,
ξ1 + ξ2

2
, . . . ,

ξk + ξk+1

2
, . . . ,

ξl + ξ0

2

)
.

The map Ψ is not an isomorphism, however, we have the following:

Proposition 1. The analytic map Ψ |Wt,ξ
gives an isomorphism between

Wt,ξ and Wt,u.

Proof. Clearly we have Ψ(Wt,ξ) ⊂ Wt,u. We introduce the analytic map
Φ : Ut,u → Ut,ξ by





t = t,

ξ2k = u2k − 2
t
(Π2k − αeven) (k = 0, 1, . . . , m),

ξ2k+1 = u2k +
2
t
(Π2k − αeven) (k = 0, 1, . . . , m),

(33)

where Πk was given in (9). It follows from the equality
∑m

k=0 u2kΠ2k = 0 that
Φ(Wt,u) ⊂ Wt,ξ holds. Hence Φ |Wt,u

gives a morphism from Wt,u to Wt,ξ.

Let us show that Φ |Wt,u
and Ψ |Wt,ξ

are mutually reciprocal. We first prove
the identity Ψ |Wt,ξ

◦Φ |Wt,u
= IdWt,u

. Set

Π(1)
j =

∑

1≤r≤s≤m

uj+2r−1uj+2s, Π(2)
j =

∑

1≤s≤q≤m

uj+2suj+2q+1.

Then we have

Π(1)
2k+2 −Π(1)

2k

=
∑

1≤r≤s≤m

u2(k+r)+1u2(k+s+1) −
∑

1≤r≤s≤m

u2(k+r)−1u2(k+s)

=
∑

2≤r≤s≤m+1

u2(k+r)−1u2(k+s) −
∑

1≤r≤s≤m

u2(k+r)−1u2(k+s)
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=
( ∑

1≤r≤s≤m+1

u2(k+r)−1u2(k+s) − u2k+1

∑

1≤s≤m+1

u2(k+s)

)

−
( ∑

1≤r≤s≤m+1

u2(k+r)−1u2(k+s) − u2k

∑

1≤r≤m+1

u2(k+r)−1

)

= uoddu2k − uevenu2k+1.

In the same way, we have

Π(2)
2(k+1) −Π(2)

2k = uevenu2k+1 − uoddu2(k+1).

Thus we get

Π2(k+1) −Π2k = −2uevenu2k+1 + uodd(u2k + u2(k+1))

=
t

2
(u2k+2 − 2u2k+1 + u2k)

− 2u2k+1

(
ueven − t

2

)
+ (u2k+2 + u2k)

(
uodd − t

2

)
.

This implies

(Ψ ◦ Φ)2k+1(u)

=
1
2

(
u2k+2 + u2k − 2

t
(Π2k+2 −Π2k)

)

= u2k+1 +
1
t

(
2u2k+1

(
ueven − t

2

)
− (u2k+2 + u2k)

(
uodd − t

2

))
.

Since (Ψ ◦ Φ)2k(u) = u2k is easily confirmed, we have obtained Ψ |Wt,ξ
◦Φ |Wt,u

=
IdWt,u .

Next we will show Φ |Wt,u
◦Ψ |Wt,ξ

= IdWt,ξ
. We need the following lemma.

Lemma 3. We have

Ψ∗(Πk) =
1
4
(
ξtotal(ξk+1 − ξk) + (−1)kτ(ξ)

)
.

Proof. First we compute Ψ∗(Π(1)
k ) directly:
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4Ψ∗
(
Π(1)

k

)
=

∑

1≤r≤m

(ξk+2r−1 + ξk+2r)
∑

r≤s≤m

(ξk+2s + ξk+2s+1)

=
∑

1≤r≤m

ξk+2r−1

∑

r≤s≤m

(ξk+2s + ξk+2s+1)

+
∑

1≤r≤m

ξk+2r

∑

r≤s≤m

(ξk+2s + ξk+2s+1)

=
( ∑

1≤r≤m

ξk+2r−1

∑

2r−1≤s≤2m+1

ξk+s −
∑

1≤r≤m

ξ2
k+2r−1

)

+
( ∑

1≤r≤m

ξk+2r

∑

2r≤s≤2m+1

ξk+s

)

=
( ∑

1≤r≤2m−1,r odd

ξk+r

∑

r≤s≤2m+1

ξk+s −
∑

1≤r≤m

ξ2
k+2r−1

)

+
( ∑

2≤r≤2m,r even

ξk+r

∑

r≤s≤2m+1

ξk+s

)

=
∑

1≤r≤2m

ξk+r

∑

r≤s≤2m+1

ξk+s −
∑

1≤r≤m

ξ2
k+2r−1.

In the same way, we have

4Ψ∗
(
Π(2)

k

)
=

∑

3≤r≤2m+2

ξk+r

∑

2≤s≤r

ξk+s −
∑

1≤r≤m

ξ2
k+2r+2.

Therefore we get

4Ψ∗
(
Π(1)

k

)
=

∑

1≤r≤2m+2

ξk+r

∑

r≤s≤2m+2

ξk+s − ξtotalξk −
∑

0≤r≤m

ξ2
k+2r−1,

4Ψ∗
(
Π(2)

k

)
=

∑

1≤r≤2m+2

ξk+r

∑

1≤s≤r

ξk+s − ξtotalξk+1 −
∑

0≤r≤m

ξ2
k+2r.

This entails the result. ¤

Now we come back to the proof for the proposition. By Lemma 3, we have

Ψ∗(Πk) =
t

4
(ξk+1 − ξk) +

1
4
(
(ξtotal − t)(ξk+1 − ξk) + (−1)kτ(ξ)

)
.
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Hence we get

Ψ∗
(

u2k − 2
t
(Π2k − αeven)

)

= ξ2k − 1
2t

(
(ξ2k+1 − ξ2k)(ξtotal − t) + (τ(ξ)− 4αeven)

)
,

Ψ∗
(

u2k +
2
t
(Π2k − αeven)

)

= ξ2k+1 +
1
2t

(
(ξ2k+1 − ξ2k)(ξtotal − t) + (τ(ξ)− 4αeven)

)
.

Hence we have obtained Φ |Wt,u ◦Ψ |Wt,ξ
= IdWt,ξ

. This completes the proof. ¤

Noticing αeven + αodd = 0, we have

Ψ∗(fk) = Ψ∗(uk)
(
Ψ∗(Πk)− (−1)kαeven

)
+ αk

t

2

=
ξk+1 + ξk

8
(
ξtotal(ξk+1 − ξk) + (−1)k(τ(ξ)− 4αeven)

)
+ αk

t

2

=
t

2

(
1
4
(
ξ2
k+1 − ξ2

k

)
+ αk

)

+
ξ2
k+1 − ξ2

k

8
(ξtotal − t) + (−1)k ξk+1 + ξk

8
(τ(ξ)− 4αeven).

Since Ψ∗ gives a sheaf isomorphism between Ψ−1OWt,u
and OWt,ξ

, we get

Ψ−1N

∣∣∣∣
Wt,ξ

= Ψ−1

(
OWt,u

OWt,u(f0, f1, . . . , f2m+1)

)∣∣∣∣
Wt,ξ

Ψ∗' OWt,ξ

OWt,ξ
(Ψ∗(f0),Ψ∗(f1), . . . ,Ψ∗(f2m+1))

∣∣∣∣
Wt,ξ

=
OWt,ξ

OWt,ξ
(g0, g1, . . . , g2m+1)

∣∣∣∣
Wt,ξ

=
OUt,ξ

OUt,ξ
(g0, g1, . . . , g2m+1, ξtotal − t)

∣∣∣∣
Wt,ξ

.

Hence we have obtained the following theorem:
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Theorem 2. The map Ψ gives an isomorphism between the analytic sets
V ∩ Ut,u and Vt,ξ ∩ Ut,ξ. Moreover the sheaves Ψ−1N |Wt,ξ

and Nt,ξ |Wt,ξ
on

Wt,ξ are isomorphic as π−1OCt
modules. Here π : Xt,ξ → Ct is the canonical

projection.

4. A characteristic polynomial on the leading variety.

Let us recall that the characteristic polynomial associated with (NY )l is given
by

Λ(λ, u) := det
(

λIl+1 +
∂(f0, . . . , fl)
∂(u0, . . . , ul)

)
.

As we have seen in the introduction, we need to know the concrete form of
Λ(λ, u) |V̌ to study the Stokes geometry of (NY )l. See also [T] and [AHU]
for the related topics. Its explicit form was first obtained by [T] for even l in
general and for odd l with an additional assumption αodd = αeven = 0. The result
of the previous section enables us to calculate it easily for both cases in general,
that is, for any l ≥ 2 with αtotal = 0. We first state the results.

Theorem 3. The characteristic polynomial Λ(λ, u) can be written in the
following form.

1. If l is an even number 2m, then we have

Ψ∗(Λ)(λ, ξ) =
1
2
(Λ+(λ, ξ) + Λ−(λ, ξ)),

where Λ±(λ, ξ) is given by

Λ+(λ, ξ) = (λ + ξ0)(λ + ξ1) · · · (λ + ξ2m),

Λ−(λ, ξ) = (λ− ξ0)(λ− ξ1) · · · (λ− ξ2m).

2. If l is an odd number 2m + 1, then, on Wt,ξ, we have

Ψ∗(Λ)(λ, ξ) =
(λ2 − α2

even)
t2λ

(Λ+(λ, ξ)− Λ−(λ, ξ)),

where Λ±(λ, ξ) is given by
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Λ+(λ, ξ) =
(

λ +
tξ0

2

)(
λ +

tξ1

2

)
· · ·

(
λ +

tξ2m

2

)(
λ +

tξ2m+1

2

)
,

Λ−(λ, ξ) =
(

λ− tξ0

2

)(
λ− tξ1

2

)
· · ·

(
λ− tξ2m

2

)(
λ− tξ2m+1

2

)
.

Proof. Let us prove the first claim. For a function ϕ, we denote by ∇uϕ

(resp. ∇ξϕ) the column vector

t(∂u0ϕ, ∂u1ϕ, . . . , ∂ul
ϕ)

(
resp. t(∂ξ0ϕ, ∂ξ1ϕ, . . . , ∂ξl

ϕ)
)

of size l + 1. We have

Ψ∗(Λ) = det
(
λI + (Ψ∗(∇uf0),Ψ∗(∇uf1), . . . ,Ψ∗(∇ufl))

)

= det
(
λI + (Φ′∇ξg0,Φ′∇ξg1, . . . ,Φ′∇ξgl)

)
.

As Ψ′ ◦ Φ′ = Id holds, we have

Ψ∗(Λ) =
1

det(Ψ′)
det

(
λΨ′ + (∇ξg0,∇ξg1, . . . ,∇ξgl)

)
.

We can easily calculate Ψ′ and det(Ψ′), and hence, we obtain

Ψ∗(Λ) =
1
2

det




λ− ξ0 λ + ξ0

λ + ξ1 λ− ξ1

λ + ξ2

...
. . .

λ− ξl−1

λ + ξl λ− ξl




.

This completes the proof for the first claim.

Now let us prove the second claim. The strategy of the proof is similar to
that for the first claim. However, in this case, the map Ψ gives an isomorphism
only on Wt,ξ. Hence, to overcome this difficulty, we need to prepare a lemma. Let
0 < d < n and (x1, . . . , xn) be a system of coordinates of Cn. Let iW : W ↪→ Cn

be a closed complex submanifold of complex dimension d whose defining ideal is
generated by (n− d)-holomorphic functions ϕ1, ϕ2, . . . , ϕn−d. We assume
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Dn−d(x) :=




∂xd+1ϕ1 . . . ∂xnϕ1

∂xd+1ϕ2 . . . ∂xn
ϕ2

... . . .
...

∂xd+1ϕn−d . . . ∂xn
ϕn−d



6= 0.

Note that, by the assumption, we can take the variables (x1, . . . , xd) as a system
of local coordinates of W . For a function f on W , we denote by ∇df the column
vector t(∂x1f, ∂x2f, . . . , ∂xd

f) of size d. Let C be a square matrix of size d with
components in functions of the variables x, and we define the square matrix C̃ of
size n by

(
C 0
0 0

)
. Then the following lemma is easily proved:

Lemma 4. Let ρ1, . . . , ρd be d-functions on Cn. We have

det
(
C̃ + (∇nρ1, . . . ∇nρd,∇nϕ1, . . . ,∇nϕn−d)

)

= det(Dn−d) det
(
C + (∇di∗W (ρ1), . . . ,∇di∗W (ρd))

)
.

For a function f on Xt,u, we define the vector ∇uf of size 2m + 2 and ∇̌uf

of size 2m by

∇uf := t
(
∂u0f, ∂u1f, . . . , ∂u2m+1f

)
,

∇̌uf := t
(
∂u0f, ∂u1f, . . . , ∂u2m−1f

)
.

Let ei (0 ≤ i ≤ 2m + 1) be the column vector of size 2m + 2 such that its i-th
component is 1 and the other components are all zero, and we set

etotal =
2m+1∑

k=0

ek, eeven =
m∑

k=0

e2k, eodd =
m∑

k=0

e2k+1.

Using these notations, we rewrite the characteristic polynomial Λ(λ, u) in the form

det
(
λe0 +∇uf0, λe1 +∇uf1, . . . , λe2m+1 +∇uf2m+1

)
.

By noticing (16), this reduces to

det
(
{λek +∇ufk}2m−1

k=0 , λeeven +∇u

(
− αeven

(
ueven − t

2

))
,

λeodd +∇u

(
− αodd

(
uodd − t

2

)))
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=
(
λ2 − α2

even

)
det

(
{λek +∇ufk}2m−1

k=0 , ∇u

(
ueven − t

2

)
, ∇u

(
uodd − t

2

))
.

Then, applying the lemma to the closed embedding iWt,u
: Wt,u ↪→ Ut,u, we find

that Λ(λ, u) is equal to

(
λ2 − α2

even

)
det

({
λek + ∇̌ui∗Wt,u

(fk)
}2m−1

k=0

)
. (34)

As Ψ |Wt,ξ
◦Φ |Wt,u

= IdWt,u
and Ψ |∗Wt,ξ

(i∗Wt,u
(fk)) = (t/2)i∗Wt,ξ

(gk) hold for the
closed embedding iWt,ξ

: Wt,ξ ↪→ Ut,ξ, we have

∇̌ui∗Wt,u
(fk) =

t

2
∇̌u

(
Φ |∗Wt,u

(i∗Wt,ξ
(gk))

)
=

t

2
(Φ |Wt,u

)′∇̌ξi
∗
Wt,ξ

(gk).

Therefore we find that the second factor of (34) equals

det
(

λI2m + (Φ |Wt,u
)′

({
t

2
∇̌ξi

∗
Wt,ξ

(gk)
}2m−1

k=0

))
.

Now let us calculate the 2m× 2m matrix (Ψ |Wt,ξ
)′. Clearly we have, on Wt,ξ,

dξ0 + dξ1 + · · ·+ dξ2m+1 = 0,

m∑

k=0

ξ2kdξ2k −
m∑

k=0

ξ2k+1dξ2k+1 = 0.

As at least one of ξ2k + ξ2k+1 (k = 0, 1 . . . , 2m) never vanishes on Wt,ξ, we may
assume ξ2m + ξ2m+1 6= 0. Then we have

Ψ∗(duk) =
dξk + dξk+1

2
(k = 0, 1, . . . , 2m− 2),

Ψ∗(du2m−1) =
dξ2m−1 + dξ2m

2

=
1
2

(
dξ2m−1 −

2m−1∑

k=0

(ξ2m+1 + (−1)kξk)
ξ2m + ξ2m+1

dξk

)
.

Hence we obtain
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C(λ, ξ) := λ(Ψ |Wt,ξ
)′ =

λ

2




1 0 0 . . . 0 0 0 κ0

1 1 0 0 0 0 κ1

0 1 1 0 0 0 κ2

. . . . . .

. . . . . .

1 1 0 κ2m−3

0 1 1 κ2m−2

0 0 1 κ2m−1 + 1




.

Here we set κk = −(ξ2m+1 + (−1)kξk)/(ξ2m + ξ2m+1). It is easy to see

detC(1, ξ) =
ξtotal

22m(ξ2m + ξ2m+1)
.

Therefore, noticing (Ψ |Wt,ξ
)′(Φ |Wt,u

)′ = I2m, we see that the second factor of
(34) is equal to

det
(

C(λ, ξ) +
({

t

2
∇̌ξi

∗
Wt,ξ

(gk)
}2m−1

k=0

))

det C(1, ξ)
. (35)

Then, by applying the lemma to the closed embedding iWt,ξ
: Wt,ξ ↪→ Ut,ξ again,

the numerator of (35) can be reduced to

−
det

(
C̃(λ, ξ) +

({
t

2
∇ξgk

}2m−1

k=0

,∇ξξtotal,∇ξ
τ(ξ)
2

))

ξ2m + ξ2m+1
. (36)

Since the relation

1
ξ2m + ξ2m+1

(
ξ2m+1∇ξξtotal +∇ξ

τ(ξ)
2

)
+




κ0

κ1
...

κ2m−1

0
0




=




0
0
...
0
1
0




holds, by eliminating the variable λ in (2m− 1)-th column by using (2m)-th and
(2m + 1)-th columns, the numerator of (36) is written in the form
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1
42m

det




2λ− tξ0 0 . . . 0 1 ξ0

2λ + tξ1 2λ− tξ1 0 1 −ξ1

0 2λ + tξ2 . . . 0 1 ξ2

. . .
...

...
...

0 1 ξ2m−2

2λ− tξ2m−1 1 −ξ2m−1

2λ + tξ2m 1 ξ2m

0 1 −ξ2m+1




. (37)

Finally, by simple reductions of the matrix, (37) is equal to

1
42m+1tλ

det




2λ− tξ0 0 0 2λ + tξ0

2λ + tξ1 2λ− tξ1 . . . 0 0
0 2λ + tξ2 0 0

. . .
...

...
0 0

2λ− tξ2m 0
2λ + tξ2m+1 2λ− tξ2m+1




.

This completes the proof for the theorem. ¤

5. Formulas for the number of solutions and turning points of the
first kind.

In this section, we establish formulas which give the number of solutions and
that of turning points of the first kind. We first investigate properties of the variety
defined by the hyperbolic system with a normalization condition.

Let (t, ξ0, . . . , ξl; η) (resp. (ξ0, . . . , ξl; η)) be a system of homogeneous coor-
dinates of the projective space P l+2

t,ξ (resp. P l+1
ξ ), and we identify the space

Ct ×Cl+1
ξ (resp. Cl+1

ξ ) with the set {η 6= 0}. We define the homogeneous poly-
nomials

gk :=
1
4
(
ξ2
k+1 − ξ2

k

)
+ αkη2, k = 0, 1, . . . , l, (38)

and ξtotal := ξ0 + ξ1 + · · ·+ ξl on P l+1
ξ . We also define the ideals

It,ξ := OP l+2
t,ξ

(g0, g1, . . . , gl, ξtotal − t), Jξ := OP l+1
ξ

(g0, g1, . . . , gl), (39)
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and the modules

Nt,ξ :=
OP l+2

t,ξ

It,ξ
, Mξ :=

OP l+1
ξ

Jξ
. (40)

Set Vt,ξ := supp(Nt,ξ) and Zξ := supp(Mξ).

Let Ht,ξ be the hypersurface {ξtotal− t = 0} ⊂ P l+2
t,ξ and π : Ht,ξ → P l+1

ξ the
isomorphism defined by

π(t, ξ; η) = (ξ; η), (t, ξ; η) ∈ Ht,ξ.

Note that Vt,ξ ⊂ Ht,ξ holds. Clearly π gives the isomorphism between the analytic
sets Vt,ξ and Zξ, and it also induces the isomorphism of π−1OP l+1

ξ
modules

Nt,ξ |Ht,ξ
' OHt,ξ

OHt,ξ
(g0, g1, . . . , gl)

' π−1Mξ.

Hence all the properties for Nt,ξ can be reduced to those of Mξ and, in what
follows, we consider the problems on P l+1

ξ .

We set, for t̂ ∈ C ∪ {∞},

Ht̂ :=
{
(ξ; η) ∈ P l+1

ξ ; ξtotal = t̂η
}
. (41)

In particular, we have H0 = {ξtotal = 0} and H∞ = {η = 0}.
5.1. Smoothness and connectedness of Zξ.
We first give fundamental properties of the variety Zξ that are needed in

later subsections. Let us recall the definitions of the parameter space Al, El
cup,

etc. given in Subsection 2.3. Note that, for α ∈ Al, we have

g0 + g1 + · · ·+ gl = 0. (42)

Theorem 4. Let α be an element of Al.

1. The complex dimension of every irreducible component of Zξ is one. The set
Zξ ∩H∞ consists of 2l-points and Zξ is smooth near every point in Zξ ∩H∞.

2. The multiplicity of the OP l+1
ξ

module Mξ is one along every irreducible compo-
nents of Zξ.

3. If α ∈ Al \ El
cup, then Zξ is smooth and connected.
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Proof. The first and the second claims are easy to see. We will show the
third claim. Assume α /∈ El

cup. Let p = (ξ0, . . . , ξl; 1) be a point in Zξ \H∞. We
first note that, since

ξ2
j − ξ2

i = −4α(i; j − i− 1) 6= 0 for i < j

holds, different coordinates ξi and ξj (i 6= j) never vanish simultaneously. Let us
consider, on Zξ \H∞, the l × (l + 1) matrix

2
(

∂gi

∂ξj

)

0≤i≤l−1,0≤j≤l

=




−ξ0 ξ1

−ξ1 ξ2

. . .

. . .

−ξl−1 ξl




.

The determinant of the above matrix without k-th column (0 ≤ k ≤ l) is given by

(−1)kξ0ξ1 · · · ξ̌k · · · ξl−1ξl. (43)

Hence, for every point p ∈ Zξ \H∞, there exists an index k such that (43) does
not vanish, and from which the smoothness of Zξ follows.

To show the connectedness of Zξ, it suffices to prove that of Zξ \H∞. Note
that Zξ \H∞ is parametrized by x ∈ C as

ξ0 = x, ξ1 = ±
√

x2 − β1, . . . , ξl = ±
√

x2 − βl, η = 1, (44)

where βk = 4α(0; k−1) (k = 1, . . . , l). Then the condition implies that all branch-
ing points {±√β1, . . . ,±

√
βl} with respect to x are mutually distinct, from which

the connectedness of Zξ \H∞ easily follows. ¤

We can easily obtain the counterparts of Theorems 1 and 2 in the original
space. Notation that appears in the following theorem was introduced in Subsec-
tion 2.2.

Theorem 5. Let α be an element of Al.

1. Every irreducible component of V̌ is of complex dimension one, and the multi-
plicity of N along each irreducible component of V̌ is one. In particular, the
polynomials h0, . . . , hl that were defined by (17) form a regular sequence over
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Op for any p ∈ V̌ .
2. If α ∈ Al \ El

cup, then V̌ is a smooth connected complex curve.

5.2. A formula for the number of solutions.
In this subsection, we show that the set of solutions satisfying the algebraic

equations associated with (NY )l consists of a finite number of points for a fixed
t = t̂ ∈ Čt. We also give a formula for the number of these points. To be more
precise, as we need to take the multiplicity of these points into account, the number
is given by

NSol(V̌ ; t̂ ) :=
∑

p∈V̌ ∩Yt̂

mul
(
V̌ , Yt̂; p

)
, (45)

where V̌ was defined by (13) and Yt̂ = π̌−1
t (t̂ ), and mul(V̌ , Yt̂; p) is the intersection

multiplicity number of V̌ and Yt̂ at p. Note that, in our case, the intersection
multiplicity number can be calculated by the formula

mul
(
V̌ , Yt̂; p

)
= dimC

(
N ⊗

OCt

OCt

OCt
(t− t̂ )

)

p

.

Here the module N was defined in Subsection 2.2. First we evaluate the number
of points in (Zξ ∩Ht̂) ∩Cl+1

ξ .

Proposition 2. Let t̂ be a point in Ct.

1. Assume either that l is even or that l is odd and t̂ 6= 0. If α ∈ Al, then Zξ ∩Ht̂

consists of a finite number of points, and we have

∑

p∈(Zξ∩Ht̂)\H∞
mul(Zξ,Ht̂; p) =

{
2l if l is even,

2l − lC[l/2] if l is odd.

2. Assume that l is odd and t̂ = 0. If α belongs to Al \ El
cap, then the number of

points in Zξ ∩H0 is also finite. The number satisfies the estimate

∑

p∈(Zξ∩H0)\H∞
mul(Zξ,H0; p) ≤ 2l − 2lC[l/2].

In particular, for a generic parameter α, the equality of the above estimate
holds.
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Proof. Set

φt̂(ξ) = ξtotal − t̂η.

We first show that Zξ and Ht̂ = {φt̂(ξ) = 0} intersect properly. Let {Zξ,i} be
a irreducible decomposition of Zξ. Since dim(Zξ,i) = 1 and dim(H∞) = l, the
set Zξ,i ∩H∞ is not empty. Moreover Zξ is smooth near Zξ ∩H∞. Therefore it
suffices to show the claim that φt̂(ξ) |Zξ

is not identically zero near every point in
Zξ ∩H∞.

Let p = (1, σ1, σ2, . . . , σl; 0) (σi = ±1) be a point in Zξ ∩ H∞. Then, in a
neighborhood of p, the analytic set Zξ can be parametrized by the sufficiently
small parameter s ∈ C as

η = s, ξ0 = 1,

ξ1 = σ1

√
1− β1s2, ξ2 = σ2

√
1− β2s2, . . . , ξl = σl

√
1− βls2,

(46)

where we set βk = 4α(0; k − 1) (k = 1, . . . , l) and we take a branch of the square
root so that it takes positive real values on the positive real axis. By putting (46)
into φt̂(ξ), we have

φt̂(s) = (1 + σ1 + · · ·+ σl)− t̂s− 1
2
(σ1β1 + · · ·+ σlβl)s2

− 1
4
(
σ1β

2
1 + · · ·+ σlβ

2
l

)
s4 − 3

8
(
σ1β

3
1 + · · ·+ σlβ

3
l

)
s6 − · · · . (47)

If l is even, then we have

1 + σ1 + · · ·+ σl ≡ 1 + 1 + · · ·+ 1 ≡ l + 1 ≡ 1 6= 0 mod 2,

from which the claim follows.
Assume that l is an odd number 2m + 1. If t̂ 6= 0, then the function φ(s)

is not identically zero by (47). Let us consider the case t̂ = 0. Since α does not
belong to El

cap, we may assume α /∈ El
0, that is, we suppose β1β2 · · ·βl 6= 0. If

1 + σ1 + σ2 + · · · + σl 6= 0, then the claim clearly holds. Hence we consider the
claim near a point that satisfies 1 + σ1 + σ2 + · · ·+ σl = 0. Then the claim is an
immediate consequence of the following lemma. Set

I+ = {k ∈ {1, 2, . . . , l};σk = 1},
I− = {k ∈ {1, 2, . . . , l};σk = −1}.
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Note that #I+ = m and #I− = m + 1 hold.

Lemma 5. Assume that σ1β
k
1 +σ2β

k
2 + · · ·+σlβ

k
l = 0 for any 1 ≤ k ≤ m+1.

Then there exists i0 ∈ I− such that βi0 = 0. Moreover there exists a bijective map
κ : I+ → I− \ {i0} that satisfies βi = βκ(i) for any i ∈ I+.

Proof. Let sk (k = 1, 2, . . . , r) denote the k-th fundamental symmetric
polynomial of r-independent variables y1, y2, . . . , yr, and set Sk = yk

1 +yk
2 + · · ·+yk

r

(k = 1, 2, . . . ). It follows from the well-known Newton formulas that we have

Sk + s1Sk−1 + s2Sk−2 · · ·+ sk−1S1 + ksk = 0, k < r,

Sk + s1Sk−1 + s2Sk−2 · · ·+ sk−rSk−r = 0, k ≥ r.

By applying these formulas to the set of variables {βk}k∈I+ and that of {βk}k∈I− ,
we can easily obtain the result. ¤

Since Zξ and Ht̂ properly intersect, by the theorem of Bézout (see T. Suwa
[S]), we have

∑

p∈Zξ∩Ht̂

mul(Zξ,Ht̂; p) = 2l.

If l is even, then the set (Zξ ∩ Ht̂) ∩ H∞ is empty. If l is odd, then the
set (Zξ ∩ Ht̂) ∩ H∞ consists of points that satisfy 1 + σ1 + σ2 + · · · + σl = 0.
The number of these points is lC[l/2]. Moreover, it follows from (47) that the
intersection multiplicity number of Zξ and Ht̂ is one if t̂ 6= 0 and greater than one
if t̂ = 0. Summing up, we obtain

∑

p∈(Zξ∩Ht̂)∩H∞

mul(Zξ,Ht̂; p) =

{
0 if l is even,

lC[l/2] if l is odd and t̂ 6= 0,

∑

p∈(Zξ∩Ht̂)∩H∞

mul(Zξ,Ht̂; p) ≥ 2lC[l/2] if l is odd and t̂ = 0.

Set

E(1),l =
⋃

1+σ1+···+σl=0,
σi=±1

{
(α0, α1, . . . , αl) ∈ Al;σ1β1 + σ2β2 + · · ·+ σlβl = 0

}
. (48)

Note that E(1),l is a proper analytic subset in Al. We can easily see that, if
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α /∈ E(1),l, the equality holds in the above estimate. This completes the proof. ¤

As V̌ and Yt̂ intersect properly, (l + 2)-polynomials h0, . . . , hl and t− t̂ form
a regular sequence over Op for any p ∈ V̌ ∩ Yt̂. Hence the intersection multiplicity
number of V̌ and Yt̂ at p is calculated by

mul(V̌ , Yt̂; p) = dimC

(
N ⊗

OCt

OCt

OCt
(t− t̂ )

)

p

.

Let q = (t̂; ξ̂) be a point in Vt,ξ ∩ (Čt × Cl+1
ξ ). It follows form Theorems 1

and 2 that we have

dimC

(
N ⊗

OCt

OCt

OCt(t− t̂ )

)

Ψ(q)

= dimC

(
Nt,ξ ⊗

OCt

OCt

OCt
(t− t̂ )

)

q

= dimC

( OP l+2
t,ξ

OP l+2
t,ξ

(
g0, g1, . . . , gl, ξtotal − t, ξtotal − t̂η

)
)

q

= dimC

( OP l+1
ξ

OP l+1
ξ

(g0, g1, . . . , gl, φt̂)

)

ξ̂

.

This implies

NSol(V̌ , t̂ ) :=
∑

p∈V̌ ∩Yt̂

mul
(
V̌ , Yt̂; p

)
=

∑

q∈(Zξ∩Ht̂)\H∞
mult

(
Zξ,Ht̂; q

)
.

Hence we obtain

Theorem 6. Let α ∈ Al and t̂ ∈ Č.

1. The map π̌t |V̌ is proper and finite. Here π̌t is defined in (14) and π̌t |V̌ denotes
its restriction to V̌ .

2. We have the formula

NSol(V̌ , t̂ ) =

{
2l if l is even,

2l − lC[l/2] if l is odd.
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5.3. A formula for the number of turning points of the first kind.
Let Ju be the Jacobian det(∂(h0, . . . , hl)/∂(u0, . . . , ul)) and let Du (resp.

[Du]) be the zero set (resp. the analytic cycle) of Ju. Then a turning point
of the first kind is nothing but a point in Du ∩ V̌ . We show, in this subsection,
that the set Du ∩ V̌ consists of finite points, and we also give a formula for the
number NTp(V̌ ) of turning points of the first kind, that is, we evaluate

NTp(V̌ ) :=
∑

p∈V̌ ∩Du

mul(V̌ , [Du]; p). (49)

We first establish the corresponding results in P l+1
ξ . Let Dξ (resp. [Dξ])

be the zero set (resp. the analytic cycle) of Jξ := det(∂(g0, . . . , gl−1, ξtotal)/
∂(ξ0, . . . , ξl)). Note that, since Jξ is a homogeneous polynomial of the variables ξ,
Dξ and [Dξ] are well-defined in P l+1

ξ .

Proposition 3. Let α be a point in Al, and let us assume α /∈ El
cap if l is

odd. Then Zξ ∩Dξ is a finite set, and we have

∑

p∈(Zξ∩Dξ)\H∞
mul(Zξ, [Dξ]; p) = l2l, if l is even,

∑

p∈(Zξ∩Dξ)\H∞
mul(Zξ, [Dξ]; p) ≤ l2l − 2lC[l/2], if l is odd.

In particular, the equality holds for a generic parameter α when l is odd.

Remark 3. If l is odd and α belongs to Al
e \ El

cap, then we have

∑

p∈(Zξ∩Dξ)\H∞
mul(Zξ, [Dξ], p) ≤ l2l − 2lC[l/2] − 2. (50)

In particular, the equality holds for a generic point in Al
e.

Proof. By the direct calculation, we have

2lJξ =
l∑

k=0

ξ0ξ1 · · · ξ̌k · · · ξl.

Let p = (1, σ1, σ2, . . . , σl; 0) (σi = ±1) be a point in p ∈ Zξ ∩H∞. In a neighbor-
hood of p, the determinant 2lJξ can be written in the form
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ξ0ξ1 · · · ξl

(
1
ξ0

+
1
ξ1

+ · · ·+ 1
ξl

)
= ξ0ξ1 · · · ξlθ(ξ).

Then, by putting (46) into θ(ξ), we get

θ(s) = (1 + σ1 + · · ·+ σl) +
1
2
(σ1β1 + · · ·+ σlβl)s2

+
3
4
(
σ1β

2
1 + · · ·+ σlβ

2
l

)
s4 +

15
8

(
σ1β

3
1 + · · ·+ σlβ

3
l

)
s6 + · · · . (51)

Therefore the proof proceeds in the same way as that for Proposition 2. ¤

Next we show the claim given in Remark 3. As

αeven = β1 − β2 + β3 − β4 + β5 − · · · − βl−1 + βl (52)

holds, the set Al
e is contained in E(1),l. It follows from (51) and (52) that Jξ |Zξ

has zero of at least degree 4 at the point

(1,−1, 1,−1, . . . , 1,−1; 0) ∈ Zξ ∩H∞.

Therefore we have

∑

p∈(Zξ∩Dξ)∩H∞

mul(Zξ, [Dξ]; p) ≥ 2lC[l/2] + 2.

It is clear that the equality holds for a generic parameter. This implies (50).

We note the following fact. Let p be a point in X := Ct ×Cl+1
u and let

{ϕ0, ϕ1, . . . , ϕl} (resp. {ψ0, ψ1, . . . , ψl}) be a family of generators of the ideal I
at p. If each family of generators forms a regular sequence over OX,p, then we can
easily see

OX(ϕ0, ϕ1, . . . , ϕl, Ju,ϕ)p = OX(ψ0, ψ1, . . . , ψl, Ju,ψ)p.

Here Ju,ϕ is defined by det(∂(ϕ0, . . . , ϕl)/∂(u0, . . . , ul)) and Ju,ψ is also similarly
defined.

Taking the above fact into account, for a point q = (t̂; ξ̂) ∈ Vt,ξ ∩ (Čt×Cl+1
ξ ),

we have
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mul(V̌ , [Du]; Ψ(q)) = dimC

(
OX

I + OXJu

)

Ψ(q)

= dimC

( OP l+1
ξ

Jξ + OP l+1
ξ

Jξ

)

ξ̂

= mul
(
Zξ, [Dξ]; ξ̂

)
.

Hence we have obtained

NTp(V̌ ) :=
∑

p∈V̌ ∩Du

mul(V̌ , [Du]; p) =
∑

q∈G

mul(Zξ, [Dξ]; q).

Here we set

G :=

{
(Zξ ∩Dξ) ∩Cl+1

ξ for even l,

((Zξ ∩Dξ) \H0) ∩Cl+1
ξ for odd l.

Thanks to Proposition 3, if l is even, we can immediately obtain a formula for
the number of turning points of the first kind. However, if l is odd, we need to
consider a point in Zξ ∩ Dξ ∩ H0. In what follows, we will show the claim that
the set (Zξ ∩Dξ ∩H0)∩Cl+1

ξ is empty for a generic parameter. Note that the set
Zξ ∩Dξ ∩H0 is always non-empty.

To prove the claim, we need several preparations. Let πα : P l+1
ξ ×Al → Al be

the canonical projection with respect to the parameter space and Tξ,α ⊂ P l+1
ξ ×Al

an analytic subset defined by

{
(ξ; η;α) ∈ P l+1

ξ ×Al; g0 = g1 = · · · = gl = Jξ = ξtotal = 0
}
.

We set

T ξ,α := Tξ,α \ (H∞ ×Al) ⊂ P l+1
ξ ×Al.

We also define a proper analytic subset E(2),l in Al by

⋃
1+σ1+···+σl=0,

σi=±1

{
(α0, α1, . . . , αl) ∈ Al;σ1β

2
1 + σ2β

2
2 + · · ·+ σlβ

2
l = 0

}
.

Note that, by (52), the set E(2),l ∩Al
e is also a proper analytic subset in Al

e.
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Lemma 6. Assume α ∈ Al \E(2),l. Then the set (T ∩ (H∞ ×Al))∩ π−1
α (α)

is empty.

Proof. Suppose that (T ∩ (H∞ × Al)) ∩ π−1
α (α) is non-empty. Then we

take a point (1, σ1, σ2, . . . , σl; 0; α) (σj = ±1) in (T ∩ (H∞ ×Al)) ∩ π−1
α (α). Note

that 1 + σ1 + · · ·+ σl = 0 is satisfied. By the definition, there exist sk ∈ C \ {0}
and αk = (α0,k, α1,k, . . . , αl,k) ∈ Al (k = 1, 2, . . . ) that satisfy

(ξ0,k, . . . , ξl,k; sk;αk) → (1, σ1, σ2, . . . , σl; 0; α) k →∞.

Here ξ0,k, . . . , ξl,k are given by (46) with s = sk. It follows from (47) with t̂ = 0
and (51) that we have

0 =
1
2
s4

k

(
(σ1β

2
1,k + · · ·+ σlβ

2
l,k) + 3(σ1β

3
1,k + · · ·+ σlβ

3
l,k)s2

k + · · · ). (53)

The condition α ∈ Al \ E(2),l implies there exists a positive δ > 0 such that
|σ1β

2
1,k + · · · + σlβ

2
l,k| > δ, which contradicts to (53) when k is sufficiently large.

Hence (T ∩ (H∞ ×Al)) ∩ π−1
α (α) is an empty set. ¤

Let us consider the set (T ∩ (Cl+1
ξ × Al)), for which we have the following

result.

Lemma 7. There exists α̂ ∈ Al such that α̂ /∈ E(2),l and

(
T ∩ (Cl+1

ξ ×Al)
) ∩ π−1

α (α̂) = ∅.

Moreover we can choose such an α̂ in Al
e.

Proof. Set, for a 6= 0,

α̂ = (α0, . . . , αl−4, αl−3, αl−2, αl−1, αl) =
1
4
(0, . . . , 0,−1,−a, 1, a).

Note that, because of α̂even = 0, we have α̂ ∈ Al
e ⊂ Al. Moreover, as

(β1, . . . , βl−3, βl−2, βl−1, βl) = (0, . . . , 0,−1,−(1 + a),−a),

we have α̂ /∈ E(2),l if α̂ does not belong to a finite number of exceptional points.
Let us consider a family of polynomials {g0, . . . , gl−3, gl−1, ξtotal, Jξ}. Note

that the family does not contain the polynomial gl−2 and gl. We also note that
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all the polynomials of the family do not depend on a, and hence, we regard these
polynomials as ones defined on Cl+1

ξ by setting η = 1. Let C ⊂ Cl+1
ξ denote the

set of the common zeros of polynomials belonging to the family, and set

φ := ξ2
l−1 − ξ2

l−2 = 4gl−2 + a.

Then, to show the claim, it suffices to prove that the image set φ(C) ⊂ C consists
of finite points. Indeed, it is easy to see (T ∩ (Cl+1

ξ × Al)) ∩ π−1
α (α̂) = ∅ if we

choose an α̂ determined by a that does not belong to φ(C).

Let B ⊂ Cl+1
ξ be the common zero set of polynomials g0, . . . , gl−3, gl−1, ξtotal,

that is, B is defined by the following system.

4g0 = ξ2
1 − ξ2

0 = 0,

. . .

4gl−4 = ξ2
l−3 − ξ2

l−4 = 0,

4gl−3 = ξ2
l−2 − ξ2

l−3 − 1 = 0,

4gl−1 = ξ2
l − ξ2

l−1 + 1 = 0,

ξtotal = ξ0 + ξ1 + · · ·+ ξl−1 + ξl = 0.

Therefore B can be parametrized by x ∈ C as

ξ0 = x, ξ1 = σ1x, . . . , ξl−3 = σl−3x,

ξl−2 = σl−2

√
1 + x2,

ξl−1 =
−1
2

(
1

τσ(x)
+ τσ(x)

)
, (54)

ξl =
1
2

(
1

τσ(x)
− τσ(x)

)
.

Here σk = ±1 (k = 1, 2, . . . , l − 2) and

τσ(x) := (1 + σ1 + · · ·+ σl−3)x + σl−2

√
1 + x2.

Set

k := (1 + σ1 + · · ·+ σl−3)σl−3.
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Note that k is an odd integer and satisfies −(l−2) ≤ k ≤ l−2, and that {τσ(x) = 0}
is a finite set. We also note that, on B, we have the equalities

ξtotal = kξl−3 + ξl−2 + ξl−1 + ξl = 0,

2lJξ,g = σ1σ2 · · ·σl−4x
l−3

(
(kξl−2 + ξl−3)ξlξl−1 + (ξl + ξl−1)ξl−2ξl−3

)
.

(55)

Let πx : Cl+1
ξ → Cx be the canonical projection with respect to the coordi-

nate ξ0. Since each irreducible component of B intersects π−1
x (0), it is enough to

consider the problem near π−1
x (0).

Case 1: On an irreducible component Bi of B that is described near π−1
x (0) by

(54) with k2 = 1. As B ∩ π−1
x (0) is a finite set, we may assume x 6= 0. We will

show that φ is constant on Bi ∩ {Jξ,g = 0}. It follows from (55) and k2 = 1 that
we have

(ξl + ξl−1)(−kξlξl−1 + ξl−2ξl−3) = 0.

Since ξl + ξl−1 = −τσ(x) and τσ(x) 6= 0 if k2 = 1, we have

ξl−2ξl−3 = kξlξl−1 = −k

4

(
1
τ2
σ

− τ2
σ

)
.

Hence we obtain

φ = ξ2
l−1 − ξ2

l−2

=
1
4

(
1
τ2
σ

+ τ2
σ + 2

)
− ξ2

l−2

=
1
4

(
2τ2

σ − 4kξl−2ξl−3 + 2
)
− ξ2

l−2

=
1
2

(
ξ2
l−2 + ξ2

l−3 + 1
)
− (ξ2

l−3 + 1)

=
1
2

(
ξ2
l−2 − ξ2

l−3 − 1
)

= 0.

Case 2: On an irreducible component Bi of B that is described near π−1
x (0) by

(54) with k2 6= 1. In this case, we will show Bi∩{Jξ,g = 0} is a finite set. To show
this, it suffices to prove that Jξ,g |Bi is not identically zero near π−1

x (0). Since
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ξl−2 = σl−2 +
σl−2

2
x2 + · · · ,

τσ(x) = σl−2 + kσl−3x +
σl−2

2
x2 + · · ·

hold, we have

(kξl−2 + ξl−3)ξlξl−1 = k2σl−3x +
(

kσl−2 − kσl−2

2
(k2 − 1)

)
x2 + · · · ,

(ξl−2 + kξl−3)ξl−2ξl−3 = σl−3x + kσl−2x
2 + · · · .

It follows from (55) that we get

(kξl−2 + ξl−3)ξlξl−1 + (ξl + ξl−1)ξl−2ξl−3

= (kξl−2 + ξl−3)ξlξl−1 − (ξl−2 + kξl−3)ξl−2ξl−3

= (k2 − 1)σl−3x− σl−2

2
k(k2 − 1)x2 + · · · .

This implies that Jξ |Bi
has zero of degree l− 2 if k2 6= 1, which shows the claim.

The proof has been completed. ¤

Since πα is a proper map, the set El
zero := πα(T ) is an analytic set in Al. If

we take an α̂ that satisfies the above two lemma, then we have α̂ /∈ El
zero. Hence

El
zero is a proper analytic subset in Al.

Finally, since the set (Zξ ∩ Dξ ∩ H0) ∩ Cl+1
ξ is empty if α̂ /∈ El

zero, we have
obtained the following theorem.

Theorem 7. Let α ∈ Al. Assume that α /∈ El
cap if l is odd. Then the

number of turning points of the first kind is finite and it satisfies

NTp(V̌ ) = l2l if l is even,

NTp(V̌ ) ≤ l2l − 2lC[l/2] if l is odd.

The equality holds for a generic parameter when l is odd.

We also have the following remark.

Remark 4. If l is odd and α ∈ Al
e \ El

cap, then we have the estimate

NTp(V̌ ) ≤ l2l − 2lC[l/2] − 2.
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In particular, the equality holds for a generic parameter in Al
e.

We finally give an example of Theorem 7. Let us consider the system (NY )3
(l = 3) whose leading terms of parameters are given by

α0 = 0.24 + 0.5
√−1, α2 = −α0, α1 = 0.5− 0.25

√−1, α3 = −α1.

Note that α ∈ Al
e \ El

cap is satisfied. By a numerical computation, we can find
mutually distinct 16-turning points of the first kind in the domain |t| < 10.0. It
follows Theorem 7 and its remark that the system has at most 16-turning points
of the first kind. Hence we can conclude that all the turning points are exhausted
by this numerical computation and they are located in the region |t| < 10.0.
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