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Abstract. Let (G, H) = (U(p, q), U(p− 1, q)× U(1)) and {Γn} a tower
of congruence uniform lattices in G. By the period integrals of automorphic
forms on Γ\G along Γn ∩H\H, we introduce a certain discrete measure dµH

Γn

on the H-spherical unitary dual of G. It is shown that the sequence of measures
dµH

Γn
with growing n converges in a weak sense to the Plancherel measure dµH

for the symmetric space H\G.

1. Introduction.

Let G be a connected reductive Lie group and Γ a lattice in G. Let dg be a
Haar measure on G. Then, the right regular action of G on the L2-space L2(Γ\G)
yields a unitary representation RΓ, which is a central object in the theory of au-
tomorphic representations. When Γ is cocompact, it is known that L2(Γ\G) is a
discrete direct sum of irreducible closed invariant subspaces with finite multiplici-
ties. For each π ∈ Ĝ, let VΓ,π be the π-isotypic component of L2(Γ\G) defined as
the image of the natural G-inclusion

IG(π | RΓ)⊗Hπ 3 T ⊗ v −→ T (v) ∈ L2(Γ\G).

Here, IG(π | RΓ) denotes the C-vector space of all the bounded G-intertwining
operators from Hπ to L2(Γ\G), whose dimension mΓ(π) ∈ N is the multiplicity
of π in RΓ.

Let H be a unimodular closed subgroup of G such that the inclusion Γ ∩
H\H ↪→ Γ\G has a closed image. Let dh be a Haar measure on H. Then, for a
smooth function φ ∈ L2(Γ\G)∞, the integral

∫

Γ∩H\H
φ(h) dh, φ ∈ L2(Γ\G)∞ (1.1)
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is often called the H-period of φ. When Γ is an arithmetic lattice, this kind of
integrals plays an important role in the study of automorphic L-functions. Our
point of view in this paper and also in [12] is to regard (1.1) as a linear functional
on the space V ∞

Γ,π with varying φ ∈ V ∞
Γ,π, which actually defines an H-invariant

distribution vector PH
Γ (π) of VΓ,π. Recall that an irreducible unitary representa-

tion π is said to be H-spherical if it admits a non-zero H-invariant distribution
vector. Suppose π ∈ Ĝ satisfies the stronger condition dimC(H −∞

π )H = 1. Then,
for a non zero element l0π ∈ (H −∞

π )H , there exists a unique T ∈ IG(π | RΓ)∗ such
that

PH
Γ (π) = T ⊗ l0π

under the identification V −∞
Γ,π

∼= IG(π | RΓ)∗⊗H −∞
π . The space IG(π | RΓ) has

a natural hermitian inner product (see Lemma 33). Let us define ‖PH
Γ (π)/l0π‖2 to

be the norm square of T with respect to the dual inner product on IG(π | RΓ)∗.
The number ‖PH

Γ (π)/l0π‖2 is closely related to the number P H
τ (Γ)π introduced in

[12] when (G,H) is a symmetric pair. Unlike the latter quantity, the former one
does not involve an irreducible representation τ of a maximal compact subgroup
of G. In this paper, continuing the case study [12] on the asymptotic properties of
P H

τ (Γ)π with shrinking Γ for the unitary symmetric pair (G,H) = (U(p, q), U(p−
1, q) × U(1)) (p, q ≥ 2), we investigate the limiting behavior of a certain discrete
measure dµH

Γ on the unitary dual Ĝ associated with the numbers ‖PH
Γ (π)/l0π‖2

(see 7.3). In this article, we consider a tower {Γn} of uniform lattices defined by
a principal congruence condition with respect to some Q-structure on G. Among
other things, we prove that a sequence of measures dµH

Γn
with growing n converges

in a weak sense to the Plancherel measure dµH for the symmetric space H\G
(Theorem 43).

Let us briefly explain the organization of this paper. The next Section 2 is a
preliminary, where, in the first place, we introduce the unitary group G ∼= U(p, q),
a maximal compact subgroup K and a symmetric subgroup H ∼= U(p−1, q)×U(1).
Then, recalling definitions made in [12], we give a realization of H ∩K-spherical
representations of K on the space of harmonic polynomials. In Section 3, we state
our substantial results (Theorems 8, 9, 11 and Corollary 10), whose proofs are given
in Section 5. Our main tool of investigation here is a form of relative trace formula,
which was developed in [12] to prove a discrete series analogue [12, Theorem 5] of
the limit formula given in Theorem 11. The key on which the remaining results rely
is Theorem 9, whose proof is given in the paragraph 5.1 by examining individual
terms of the relative trace formula in detail. Once Theorem 9 is obtained, the limit
formula (Theorem 11) is deduced by a similar argument as in DeGeorge-Wallach
[5] (see also [6] and [7]). In Section 6, we give an application of Corollary 10 to have
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an asymptotic formula of a certain counting function associated to Hodge-Laplace
eigenforms on an arithmetic quotient of U(p, q). We obtain a formula (6.1) which
resembles to the usual Weyl’s law for the Hodge-Laplacian on forms. In the final
section Section 7, we prove the main theorem (Theorem 43). Before that, following
[8], we recall the parametrization of H-spherical irreducible unitary representations
π of G, fix a normalization of H-invariant distribution vector for each π, define
the Fourier transform for functions in C∞c (H\G) and then give the Plancherel
measure describing the inversion formula of Fourier transform. Having these basic
materials in hands, we deduce Theorem 43 from Theorem 11 and [12, Theorem
5] by making a link between the two quantities ‖PH

Γ (π)/l0π‖2 and P H
τ (Γ)π with a

suitably chosen K-type τ . We should remark that our limit formulas Theorem 11
and Theorem 43 are still conditional when p+q−1 is odd. In the proof, we need to
assume the existence of a spectral gap on the eigenvalues of Laplacian on the ‘H-
distinguished’ automorphic forms in L2

τ (Γ\G/K) with varying Γ and with a fixed
K-type τ . The importance of this kind of spectral gap condition is observed by
Bergeron-Clozel [2] in a closely related context. Actually, in a geometric situation,
the averaged period of automorphic forms considered in this article and in [12] was
already considered by Bergeron ([1]). He proved the limit formula for a relative
discrete series representation for the symmetric pair (O(n, 1), O(k, 1)×O(n− k))
under a spectral gap hypothesis.

Finally, we should remark that the parallel argument is possible for real rank
one unitary groups, which are excluded from our consideration here only for sim-
plicity. The relevant spectral gap hypothesis at the end point of the complemen-
tary series is already established by Bergeron-Clozel [2, Theorem 3]. In particular,
Theorem 43, when extended to the real rank one case, is true unconditionally.

2. Preliminary.

2.0.
Let G be the unitary group of a non-degenerate hermitian form 〈 , 〉 on an

N -dimensional C-vector space W :

G = {g ∈ GLC(W ) | 〈gx, gy〉 = 〈x,y〉 for any x,y ∈ W}.

(Our convention is that a hermitian form 〈x,y〉 is anti-linear in y, i.e., 〈x, ay〉 =
ā 〈x,y〉 for any x,y ∈ W and for any a ∈ C.) We assume that the signature of
〈 , 〉 is (p+, q−) with inf(p, q) ≥ 2, N = p + q. The integer p + q− 1, which occurs
frequently in this paper, is denoted by ρ0, i.e.,

ρ0 = p + q − 1.
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Fix a negative definite subspace W− ⊂ W of maximal dimension and denote
by W+ the orthogonal complement of W− in W . Thus, dimC W− = q and
dimC W+ = p. Let I be the element of G defined by

I | W+ = id, I | W− = −id

and consider the positive definite hermitian form (v | u) = 〈v, I(u)〉 on W . Let
K be the stabilizer of W− in G; then K is a maximal compact subgroup of G

preserving the inner-product ( | ). The Cartan involution of G corresponding to K

is the inner automorphism θ(g) = IgI−1.
Let H = H` be a closed subgroup of G obtained as the stabilizer of a one

dimensional subspace ` ⊂ W+. Let J` be the element of G defined by

J` | ` = id, J` | `⊥ = −id.

Then H is the fixed point subgroup of the inner automorphism σ`(g) = J`gJ−1
` of

G. Note that σ` is an involution of G which commutes with θ. Thus, KH = H∩K

is a maximal compact subgroup of H. We have

G ∼= U(p, q), K ∼= U(p)× U(q), H ∼= U(p− 1, q)× U(1).

2.1. Automorphic forms and H-periods.
For a uniform lattice Γ ⊂ G and an irreducible unitary representation (τ, V )

of K, recall that L2
τ (Γ\G/K) is the Hilbert space of all the square integrable

functions φ : Γ\G −→ V possessing the K-equivariance φ(gk) = τ(k)−1φ(g),
k ∈ K ([12, 3.2]). Let Ωg be the Casimir element of G defined as an element of
U(gC) such that Ωg =

∑
j XjX

j for any R-basis {Xj} and {Xj} of g satisfying
2−1tr(XjX

i) = δij . For ν ∈ C, let Aτ (Γ; ν) denote the (ρ2
0 − ν2)-eigenspace

of the Laplacian ∆τ = −Ωg acting on L2
τ (Γ\G/K). Then, Aτ (Γ; ν) is a finite

dimensional subspace of C∞(G/K; τ)Γ. Let Sτ (Γ) be the set of all ν ∈ C such
that Re(ν) ≥ 0 and Aτ (Γ; ν) 6= {0}.

Definition. A uniform lattice Γ ⊂ G is said to be H-admissible if σ`(Γ) = Γ
and Γ is torsion free. ¤

Lemma 1. If Γ is an H-admissible lattice of G, then ΓH = Γ∩H is a uniform
lattice of H. In particular, the image of ΓH\H ↪→ Γ\G is compact. Moreover, the
natural map ΓH\H/KH −→ Γ\G/K is injective.

Proof. This is well-known as Jaffee’s lemma. For convenience, we give
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a proof. Let us show that HΓ is closed in G, which implies the first assertion.
Suppose a sequence gn = hnγn (n ∈ N) of points in HΓ converges to g ∈ G.
Then, g−1

n σ`(gn) = γ−1
n σ`(γn) converges to g−1σ`(g) in G on the one hand. On the

other hand, the points γ−1
n σ`(γn) belongs to the discrete set Γ by H-admissibility

of Γ. Hence, there exists n ∈ N such that γ−1
n σ`(γn) = g−1σ`(g), or equivalently

gγ−1
n ∈ H. Thus, g ∈ HΓ.

To prove the second assertion, suppose ΓhK = Γh1K for h, h1 ∈ H. Then
there exist γ ∈ Γ and k ∈ K such that h1 = γ h k. Since σ`(h1) = h1, we
obtain σ`(γ) hσ`(k) = γ h k, or equivalently γ−1σ`(γ) = hkσ`(k)−1h−1, which,
in turn, implies that γσ`(γ)−1 belongs to Γ ∩ hKh−1. Since Γ is torsion free,
Γ ∩ hKh−1 = {e}. Thus, γσ`(γ)−1 = e, or equivalently γ ∈ ΓH . In combination
with h1 = γhk, the relation γ ∈ ΓH yields k ∈ KH . ¤

For an H-admissible lattice Γ in G, the H-period integral of φ ∈ Aτ (Γ; τ) is
defined to be the function φH : G −→ V given by

φH(g) =
∫

ΓH\H
φ(hg) dḣ, g ∈ G.

We focus on the value φH(e) at the identity, which belongs to V H∩K ([12, Lemma
2]), and study the norm square of φH(e) collectively by taking summation over φ’s
belonging to an orthonormal basis B(ν) of Aτ (Γ; τ):

P H
τ (Γ; ν) =

∑

φ∈B(ν)

‖φH(e)‖2.

By [12, Lemma 3], this number is independent of the choice of B(ν). Note that
the set

SH
τ (Γ) = {ν ∈ Sτ (Γ) | P H

τ (Γ; ν) 6= 0}

is empty unless V H∩K 6= {0}.
2.2. H ∩ K-spherical representations of K.
An irreducible unitary representation of K having H ∩ K-fixed vectors is

realized on a space of certain harmonic polynomials; we recall the construction
briefly. Let us fix a basis {vj}1≤j≤N of W orthonormal with respect to ( | ) such
that W+ = 〈vj | 1 ≤ j ≤ p 〉C , W− = 〈vi+p | 1 ≤ i ≤ q 〉C and ` = C vp. Let
{xj} be the dual C-basis of {vj}, i.e., xj(vi) = δij . Let X = HomR(W,C) be the
C-vector space of all the R-linear maps from W to C. The complex conjugate
x̄ of x ∈ X is defined by x̄(v) = x(v), v ∈ W . Then, xj ’s, together with their
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complex conjugates x̄j (1 ≤ j ≤ N), form a C-basis of X, by which

(v | u) =
N∑

j=1

xj(v)x̄j(u), v, u ∈ W.

Let P be the symmetric algebra of X; it is identified with the polynomial algebra
over C of the variables xj , x̄j (1 ≤ j ≤ N). For d ∈ N , let Vd be the set of all
P ∈ P with the following properties.

(1) P belongs to C[x1, . . . , xp; x̄1, . . . , x̄p].
(2) P is homogeneous in the sense that P (t1x, t2x̄) = td1t

d
2 P (x, x̄) holds for any

t1, t2 ∈ R×. Here, x = (xj)1≤j≤p and x̄ = (x̄j)1≤j≤p.
(3) P is harmonic, i.e.,

∑p
j=1 ∂j ∂̄jP = 0. Here, ∂j = ∂/∂xj and ∂̄j = ∂/∂x̄j .

The set Vd is a K-stable irreducible subspace of P. Let τd be the action of K on
Vd. Endowed with a K-invariant inner product, (τd, Vd) is a unitary representation
of K.

Lemma 2. (τd, Vd) is an irreducible representation of K and V H∩K
d 6= {0}.

Up to equivalence, the irreducible unitary representations of K having H ∩K-fixed
vectors are exhausted by {(τd, Vd) | d ∈ N}.

2.3. H-hyperbolic elements.
Recall that H is the stabilizer of a line ` ⊂ W+. Choosing a vector u such

that ` = Cu, we define a bi H-invariant function ξ` : G → R by

ξ`(g) =
∣∣∣∣
〈gu,u〉
〈u,u〉

∣∣∣∣, g ∈ G.

Note that ξ` is independent of the choice of u.

Definition. An element g ∈ G − H satisfying ξ`(g) > 1 is called H-
hyperbolic.

2.4. Construction of H-admissible lattices.
Let E be a subfield of C such that E/Q is a CM extension of finite degree,

and OE the ring of algebraic integers in E.
Let F be the maximal real subfield R ∩ E of E. Then, F is a totally real

extension of Q and E is a quadratic extension of F . Let ιν : F ↪→ R (1 ≤ ν ≤ dF )
be all the distinct embeddings of F to R such that ι1 is the natural inclusion.
Then, each ιν can be extended to embeddings of E to C in two ways; we choose
one of the extension and denote it by ιν also. From now on, we assume that there
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exists a C-basis {uj} of W satisfying the following conditions.

(a) The matrix Q = (〈ui,uj〉) has all its entries in OE .
(b) The hermitian matrix Q(ν) = (ιν〈ui,uj〉) ∈ MN (C) is positive definite if

2 ≤ ν ≤ dF , and is of signature (p+, q−) if ν = 1.

We fix such a basis {uj} once and for all, and let L be the OE-submodule of
W generated by {uj}. Thus, G ∼= U(Q(1)) ∼= U(p, q). The following lemma is
standard (cf. [4]).

Lemma 3. Suppose dF = [F : Q] ≥ 2. Then, ΓL = {g ∈ G | gL = L } is
a uniform lattice of G. For any OE-ideal I ,

ΓL (I ) = {γ ∈ ΓL | γv − v ∈ I L (∀v ∈ L )}

is a normal subgroup of ΓL of finite index.

Lemma 4. Suppose the basis {uj} is taken such that ` = Cu1. Then, for
any OE-ideal I0, there exists an OE-ideal I ⊂ I0 such that the lattice ΓL (I )
is H`-admissible.

Proof. This is well-know; for convenience we include a proof. By assump-
tion, we have L = (L ∩ `)⊕ (L ∩ `⊥), which implies that the automorphism J`

(see 2.0) preserves the lattice L . Hence σ(ΓL (I )) ⊂ ΓL (I ) for any ideal I .
The existence of I ⊂ I0 follows from [3, Proposition 17.6]. ¤

Lemma 5. Let γ ∈ ΓL (I ). Then γ ∈ H if and only if ξ`(γ) = 1.

Proof. Suppose ξ`(γ) = 1 with γ ∈ Γ. Then, there exists λ ∈ C(1) such
that 〈γu1,u1〉 = λ〈u1,u1〉. Since γu1 ∈ L , we have λ ∈ E×. Let γ̃ ∈ G(Q) be
the element such that pr1(γ̃) = λ−1γ. Thus, we have the relation 〈γ̃u1−u1,u1〉 =
0, which implies γ̃u1 = u1 (cf. [12, Lemma 32]). Hence, γu1 = λ u1, and γ ∈ H.

¤

For an OE-ideal I , let δ(I ) denote the minimal norm of varying elements
λ ∈ I − {0} regarded in the Euclidean space E ⊗Q R ∼= CdF .

Lemma 6. For any R > 0, there exists a constant c0 > 0 such that, if
δ(I ) > c0 then inf{ξ`(γ) | γ ∈ ΓL (I )−H} ≥ R.

Proof. In the proof of [12, Lemma 47], we showed that there exists a
constant C1 > 0 (independent of I ) such that the inequality

|〈γu1 − u1,u1〉|+ C1 ≥ δ(I )
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holds for any γ ∈ ΓL (I )−H. From this, we obtain the estimation

ξ`(γ) ≥ C2 + C3 δ(I ), (γ ∈ ΓL (I )−H)

with constants C2 ∈ R and C3 ∈ R+ independent of I . The assertion is now
obvious. ¤

Lemma 7. There exists a constant c1 > 0 such that ΓL (I )−H consists of
H-hyperbolic elements if δ(I ) > c1.

Proof. This follows from Lemmas 5 and 6. ¤

3. Results.

In this section, we fix d ∈ N and set τ = τd. For any H-admissible lattice Γ
in G, set

SH
τ (Γ)ct = SH

τ (Γ) ∩ {√−1R+ ∪ (0, ν0)
}
.

Here, R+ = [0,∞) and ν0 ∈ {0, 1} is the parity of the integer ρ0 = p + q − 1.
We remark that the subscript ct abbreviates “continuous”, which means that this
comes from the continuous part of the unitary dual of G. Then, SH

τ (Γ)ct is a
countable discrete subset of

√−1R+ ∪ (0, ν0).

3.1. Counting functions.
Let us define the counting function

NH
τ (Γ;x) =

∑

ν∈SH
τ (Γ)ct;|ν|2≤x

P H
τ (Γ; ν), x > 0. (3.1)

We also need

P̂ H
τ (Γ;T ) =

∑

ν∈SH
τ (Γ)ct

P H
τ (Γ; ν) eν2T , T > 0. (3.2)

Our first theorem gives an estimation of the counting function NH
τ (Γ;x) for large

x, which is uniform for Γ in an ‘H-admissible tower’.

Theorem 8. Let L =
⊕N

j=1 OE uj be an OE-lattice generated by a C-basis
{uj} of W such that ` = Cu1. Let {In}n∈N be a decreasing sequence of OE-
ideals such that limn→∞ δ(In) = +∞. Suppose ΓL (I0) is torsion free, and set
Γn = ΓL (In) for n ∈ N . Then, there exist constants C > 0 and n0 ∈ N such
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that

vol(Γn ∩H\H)−1P̂ H
τ (Γn;T ) ≤ C T−q, ∀T ∈ (0, 1), ∀n ≥ n0, (3.3)

vol(Γn ∩H\H)−1NH
τ (Γn;x) ≤ eC (1 + x)q, ∀x > 0, ∀n ≥ n0. (3.4)

We give a proof of Theorem 8 in 5.2 relying on the next Theorem 9 which yields
a more precise asymptotic behavior for individual counting function NH

τ (Γ;x) and
the associated P̂ H

τ (Γ;T ) with a fixed Γ.

Theorem 9. Let Γ be an H-admissible lattice in G such that

♥ : inf{ξ`(γ) | γ ∈ Γ− ΓH} > 1.

Then, there exists a smooth function R(T ) on (0, 1) satisfying

lim
T→+0

dm

dTm
R(T ) = 0, for any m ∈ N

such that

P̂ H
τ (Γ;T ) =

vol(ΓH\H)
2πqΓ(q)

q−1∑

j=0

j! bj T−j + R(T ), T ∈ (0, 1) (3.5)

with bj defined by

q−1∏

j=1

{(
s

2

)2

+
(

ρ0

2
+ d− j

)2}
=

q−1∑

j=0

bj s2j .

We have a large time estimate

P̂ H
τ (Γ;T )− P H

τ (Γ; 0) ≺ e−aT , T ≥ 1

for some constant a > 0.

A proof of Theorem 9 is given in 5.1.

Corollary 10. Let Γ be as in Theorem 9. Then,

NH
τ (Γ;x) ∼ vol(ΓH\H)

(4π)qΓ(q + 1)
xq, x → +∞.
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Proof. This is deduced from Theorem 9 by a Tauberian theorem. ¤

Remark 1. By Lemma 7 (2), any lattice ΓL (I ) constructed in Lemma 4
with sufficiently large δ(I ) satisfies the condition ♥ in the theorem.

Remark 2. For wave functions on real hyperbolic spaces, a result similar
to Corollary 10 is proved in [13] by the same method.

3.2. Spectral measures.
The discrete set SH

τ (Γ)ct yields a measure µH
τ (Γ) on R+ given by

µH
τ (Γ) =

∑

ν∈SH
τ (Γ)ct

P H
τ (Γ; ν)

vol(ΓH\H)
δν2

0−ν2 ,

where δν2
0−ν2 is the Dirac measure supported at the point ν2

0 − ν2. Let {Γn} be as
in Theorem 8. By (3.7), the measure µH

τ (Γ) with n ≥ n0 is actually a tempered
distribution on R+. Then, the following theorem asserts that the sequence of
measures {µH

τ (Γn)} approximates the measure µH
τ (tempered distribution) on R+

defined by

〈µH
τ , f〉 =

Γ(q − 1)
8(q − 1)πq+1

∫

R

f(ν2
0 + y2)

dy

|cd(
√−1y)|2 , f ∈ S (R+), (3.6)

where cd(s) = Γ(q − 1) Γ(s) Γ((s + σd)/2 + q)−1 Γ((s − σd)/2)−1 and dy is the
Lebesgue measure on R.

Theorem 11. Let L , {In}n∈N and Γn = ΓL (In) be as in Theorem 8. If
ρ0 is even, then

lim
n→∞

〈µH
τ (Γn), f〉 = 〈µH

τ , f〉 for any f ∈ S (R+). (3.7)

If ρ0 is odd and the following condition ♠(τ) is satisfied, then (3.7) is true.

♠(τ) : (∃ε ∈ (0, 1))(∀n ∈ N)(∀ν ∈ (1− ε, 1))(P H
τ (Γn; ν) = 0).

We prove Theorem 11 in 5.3.

Remark. Several equivalent forms of the condition ♠(τ) is given in
Lemma 41.
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4. Classification of double cosets.

In this section, we classify H-double cosets in G using the function ξ` defined
in the paragraph 2.3.

Lemma 12. The map ξ` : G → R+ induces an injection ξ̃` from H\(G −
H)/H into R+.

Proof. There exists a unitary character χ : H → C(1) such that h u =
χ(h)u for any h ∈ H. From this, it is obvious that ξ` is H-invariant both from left
and from right, and thus ξ̃` : H\(G−H)/H → R+ is well-defined by ξ̃`(HgH) =
ξ`(g). To show the injectivity of ξ̃`, let g1, g2 ∈ G − H satisfy ξ`(g1) = ξ`(g2),
and vi (i = 1, 2) the orthogonal projection of giu to `⊥. Since gi 6∈ H, we have
vi 6= 0. Moreover, a computation yields 〈vi,vi〉 = 〈u,u〉{1 − ξ`(gi)2}. Hence
〈v1,v1〉 = 〈v2,v2〉. By Witt’s theorem, there exists an element h ∈ U(`⊥) such
that h v1 = v2. Let h̃ ∈ G be the C-linear extension of h to W fixing the vector
u up to a scalar. Then, h̃g1 u = g2 u, which implies Hg1H = Hg2H. ¤

Recall the basis {vj}1≤j≤p+q fixed in 2.2. In particular, the vector vp spans
the line ` defining H, i.e.,

` = Cvp.

For 1 ≤ j ≤ p and 1 ≤ i ≤ q, define the one parameter subgroup {a(j,i)
t | t ∈ R }

of G by

a
(j,i)
t (vj) = cosh tvj + sinh tvp+i,

a
(j,i)
t (vp+i) = cosh tvp+i + sinh tvj ,

a
(j,i)
t (u) = u,

(∀u ∈ v⊥j ∩ v⊥p+i

)
.

Set at = a
(p,1)
t . Then, G is a disjoint union of double cosets HatK with t ≥ 0 ([9,

Theorem 2.4]). It is easy to see that an element g ∈ G belongs to the double coset
HatK if and only if cosh2 t = 2−1{‖g−1vp‖2 + 1}.

Lemma 13. There exists g0 ∈ G such that g0u − u is a non-zero isotropic
vector in `⊥ for any u ∈ `− {0}.

Proof. Since the signature of `⊥ is ((p − 1)+, q−) and since we assume
inf(p, q) ≥ 2, the space `⊥ contains a non-zero isotropic vector, say e. A compu-
tation shows 〈vp + e,vp + e〉 = 〈vp,vp〉. Thus, by Witt’s theorem, there exists
g0 ∈ G such that g0 vp = vp + e. The element g0 has the required property. ¤
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Lemma 14. Let g ∈ G−H.

(1) If ξ`(g) > 1, then g ∈ HatH with the unique t > 0 such that cosh t = ξ`(g).
(2) If 0 ≤ ξ`(g) < 1, then g ∈ HkθH with the unique θ ∈ (0, π/2) such that

cos θ = ξ`(g). Here, kθ is the element of K defined by

kθvp−1 = cos θ vp−1 − sin θ vp,

kθvp = cos θ vp + sin θ vp−1,

kθw = w,
(
w ∈ v⊥p ∩ v⊥p−1

)
.

(3) If ξ`(g) = 1, then g ∈ Hg0H.

Proof. Let us show (1). If ξ`(g) > 1, then cosh t = ξ`(g) determines the
unique t > 0. Since ξ̃`(HatH) = cosh t = ξ̃`(HgH), we have HgH = HatH by
Lemma 12. The remaining assertions (2) and (3) are proved in the same way by
ξ̃`(HkθH) = | cos θ| and by ξ̃`(Hg0H) = 1. ¤

Corollary 15. The map ξ̃` : H\(G−H)/H → R+ is a bijection.

Proof. This follows from Lemmas 12 and 14. ¤

On the subgroup H, the function ξ` is equal to the constant 1. The com-
plement G −H is divided to three classes according to the values of ξ` on them.
An element g ∈ G, as well as the corresponding double coset HgH, is called H-
hyperbolic, H-elliptic or H-unipotent according to ξ`(g) > 1, ξ`(g) < 1 or ξ`(g) = 1,
respectively. In this article, we consider only those uniform lattices Γ such that
Γ− ΓH consists of H-hyperbolic elements.

5. Proofs.

Fix d ∈ N , and set σd = ρ0−2(q−d). Let Γ ⊂ G be an H-admissible uniform
lattice satisfying the condition ♥ in Theorem 9; thus, the whole Γ − ΓH consists
of H-hyperbolic elements.

In [12], for any α(s) ∈ C[s2], we introduced a Poincaré series

Φ̂(d)(α, T ; g) =
∑

γ∈ΓH\Γ
ϕ̂(d)(α, T ; γg), g ∈ G, T > 0,

which is absolutely convergent as was shown in [12, Lemma 20]. Here ϕ̂(d)(α, T ; g)
is the ‘relative heat kernel’ defined by the integral
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ϕ̂(d)(α, T ; g) =
1

2πi

∫ c+i∞

c−i∞
ϕ(d)

s (g)α(s)es2T sds, (g ∈ G−HK, T > 0) (5.1)

of the secondary spherical function ϕ
(d)
s : G − HK → Vd constructed in [12,

Proposition 6]. Recall that, for any T > 0, the function g 7→ ϕ̂(d)(α, T ; g) on
G−HK is extended to a smooth function on the whole group G ([12, Proposition
18]) whose value at the identity is evaluated in [12, Proposition 13]. Our main
tool of investigation is a version of ‘relative trace formula’, which is the identity

2
∑

ν∈SH
τ (Γ)

α(ν)eν2T P H
τ (Γ; ν)

=
Γ(q − 1)
‖θd‖2πq

{
vol(ΓH\H)(ϕ̂(d)(α, T ; e) | θd) + Rd(Γ;α, T )

}
, T > 0 (5.2)

obtained by computing the H-period integral

P̂ H
τ (Γ;α, T ) = ‖θd‖−2

∫

ΓH\H
(Φ̂(d)(α, T ;h) | θd)dḣ

in two ways ([12, Propositions 29 and 30]). Here, Rd(Γ;α, T ) is the ‘H-hyperbolic
term’ defined as

Rd(Γ;α, T ) =
∑

[γ]∈ΓH\(Γ−ΓH)/ΓH

vol(ΓH ∩ Γγ
H\H ∩Hγ) Îγ(T ), (5.3)

Îγ(T ) =
∫

H∩Hγ\H
(ϕ̂(d)(α, T ; γh) | θd)dγ ḣ (5.4)

with dγh a Haar measure of H ∩ Hγ (which will be specified later) and dγ ḣ =
dh/dγh is the quotient measure of dh by dγh.

5.1. Proof of Theorem 9.
By Lemma 14, for any γ ∈ Γ − ΓH , there exists a unique tγ > 0 such that

γ ∈ Hatγ H, and

inf{sinh tγ | γ ∈ Γ− ΓH} > 1. (5.5)

We analyze the right-hand-side of (5.2) in detail. Fix a C-basis {vj} as in 2.2
such that ` = Cvp.
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5.1.1. Computation of H-hyperbolic orbital integrals.
To study the H-orbital integrals (5.4), it is important to know about the

group H ∩Hat and the homogeneous space (H ∩Hat)\H for t > 0.

Lemma 16. Let J̃ be the element of H which fixes vj for j 6= p+1 and maps
vp+1 to −vp+1. Let t > 0. The group H ∩Hat is the fixed point subgroup of the
involution h 7→ J̃hJ̃−1 of H. If we set aH

r = a
(p−1,1)
r , then

H = (H ∩Hat)
{
aH

r | r ≥ 0
}

(H ∩K).

There exists an H-invariant measure dat
ḣ of (H ∩Hat)\H such that

∫

(H∩Hat )\H
f(h)dat

ḣ =
∫ ∞

0

∫

H∩K

f(aH
r k0)%H(r)drdk0,

f ∈ Cc((H ∩Hat)\H), (5.6)

where %H(r) = (sinh r)2p−3(cosh r)2q−1, dr is the Lebesgue measure and dk0 is the
Haar measure of H ∩K such that vol(H ∩K) = 1.

Proof. The first assertion is proved by a direct matrix computation by the
basis {vj}. The remaining assertions then result from [9, Theorems 2.4 and 2.5].

¤

Let γ ∈ Γ− ΓH . If we write

γ = h′γ atγ
hγ ,

(
h′γ , hγ ∈ H

)
,

then

H ∩Hγ = H ∩ h−1
γ a−1

tγ
Hatγ

hγ = h−1
γ

(
H ∩ a−1

tγ
Hatγ

)
hγ .

Thus, h 7→ h−1
γ h induces an H-isomorphism from (H∩Hatγ )\H onto (H∩Hγ)\H,

by which we transfer the measure datγ
ḣ fixed by Lemma 16 on the former space

to that on the latter space. By the transported measure dγ ḣ on (H ∩Hγ)\H, we
normalize the Haar measure dγh on H ∩Hγ so that dh/dγh = dγ ḣ. Having these
normalization of measures, using (5.6), we compute
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Îγ(T ) =
∫

(H∩H
atγ )\H

(
ϕ̂(d)(T ; atγ h) | θd

)
datγ

ḣ

=
∫ ∞

0

(
ϕ̂(d)(T ; atγ aH

r k0) | θd

)
%H(r)dr dk0

=
∫ ∞

0

(
ϕ̂(d)(T ; atγ

aH
r ) | θd

)
%H(r)dr

=
∫ ∞

0

{
1

2πi

∫ c+i∞

c−i∞

(
ϕ(d)

s (atγ
aH

r ) | θd

)
es2T sds

}
%H(r)dr (5.7)

by the H ∩K-invariance of θd to have the third equality and by the formula (5.1)
to have the last equality.

Lemma 17. Let t > 0 and r ∈ R. If at aH
r = havk with h ∈ H, v ∈ R and

k ∈ K, then

cosh2 v = 1 + sinh2 t cosh2 r, (5.8)

Proof. Set g = at aH
r . Then, by the decomposition G =

⋃
v≥0 HavK, we

can write g = havk with (h, v, k) ∈ H × [0,∞)×K. By g = at aH
r , we have

∥∥g−1vp

∥∥2 =
∥∥aH
−r(cosh t vp − sinh t vp+1)‖2

=
∥∥ cosh t vp − sinh t(cosh r vp+1 − sinh r vp−1)

∥∥2

= cosh2 t + (sinh t cosh r)2 + (sinh t sinh r)2

= cosh2 t + sinh2 t(cosh2 r + sinh2 r)

= cosh2 t + sinh2 t(2 cosh2 r − 1)

= 1 + 2 sinh2 t cosh2 r

on the one hand. On the other hand, by g ∈ HavK, we compute ‖g−1vp‖2 =
2 cosh2 v − 1. Thus, 2 cosh2 v − 1 = 1 + 2 sinh2 t cosh2 r, which gives us (5.8). ¤

For each r ∈ R, let kr ∈ K be an element of K such that atγ aH
r ∈ Havkr,

where v is the number determined by (5.8). Although kr is not unique, it turns
out that the vector τd(kr)θd is well defined as a continuous function in r. First by
[12, Formula (5.3)] and then by applying Lemma 17 to the last formula of Îγ(T ),
we continue as follows.
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Îγ(T ) =
∫ ∞

0

{
1

2πi

∫

Lc

{scd(s)}−1(cosh v)−(s+ρ0)

· F
(

s + σd

2
+ q,

s− σd

2
; s + 1;

1
cosh2 v

)
es2T sds

}

=
∫ ∞

0

Q0(T ; cosh2 v)(θd | τd(kr)θd)ρH(r) dr,

where, for m ∈ N , T > 0 and u > 1, we set

Qm(T ;u) =
1

2πi

∫

Lc

Bm(s;u)u−s/2 es2T ds,

Bm(s;u) = {scd(s)}−1s2m u−ρ0/2
2F1

(
s + σd

2
+ q,

s− σd

2
; s + 1;

1
u

)
.

Lemma 18. Let γ ∈ Γ be such that γ ∈ Hatγ
H with tγ > 0. Then, the

function T 7→ Îγ(T ) is of class C∞ on (0,∞), and

dm

dTm
Îγ(T ) =

∫ ∞

0

Qm

(
T ; 1 + sinh2 tγ cosh2 r

)
(θd | τd(kr)θd)ρH(r)dr

for any m ∈ N .

Proof. Fix c > σd. Set f(s) = |Γ((s + σd)/2 + q)Γ((s + σd)/2 + 1)−1|.
Then, by the estimation

∥∥ϕ(d)
s (av)

∥∥ ≺ f(s)(cosh v)−(c+ρ0), s ∈ c + iR, v ∈ R,

established in the proof of [12, Lemma 11], we have

∫ ∞

0

{ ∫ c+i∞

c−i∞

∣∣(ϕ(d)
s (ata

H
r ) | θd)

∣∣ ∣∣es2T s2m+1
∣∣ |ds|

}
%H(r)dr

≺
{ ∫

R

f(c + iy)(c2 + y2)(2m+1)/2e(c2−y2)T dy

}

·
{ ∫ ∞

0

(1 + sinh2 tγ cosh2 r)−(c+ρ0)/2%H(r)dr

}
. (5.9)

Here we use Lemma 17 and the obvious estimate |(τd(kr)θd | θd)| ≤ ‖θd‖2 for
k ∈ K. By Stirling’s formula, the function y 7→ f(c + iy) is of polynomial growth
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as |y| → ∞. Hence the first integral on the right-hand-side of the estimate (5.9)
is convergent. The second integral is also convergent provided c > ρ0. Thus, by
applying Fubini’s theorem to the expression (5.7), we have that T 7→ Îγ(T ) is of
class C∞ on T > 0 and its m-th derivative is given by

1
2πi

∫ c+i∞

c−i∞

{ ∫ ∞

0

(
ϕ(d)

s (atγ
aH

r ) | θd

)
%H(r)dr

}
s2m+1es2T ds.

Then, by the computation after Lemma 17, we have the conclusion. ¤

Lemma 19. Given u0 > 1, we have the estimation

|Bm(s;u)| ≺ (1 + |s|2)m+(q−1)/2u−ρ0/2, u > u0, Re(s) > σd + 1. (5.10)

Proof. Set α = (s + σd)/2 + q and β = (s − σd)/2. By the integral
representation

2F1

(
α, β;α + β − q + 1;

1
u

)
=

Γ(α + β − q + 1)
Γ(β)Γ(α− q + 1)

∫ 1

0

tβ(1− t)α−q

(
1− t

u

)−α

dt,

which is valid if Re(α− q + 1) > 0 and Re(β) > 0 ([11, p. 54]), we obtain

Bm(s;u) = u−ρ0/2s2m Γ(α)
Γ(α− q + 1)

∫ 1

0

tβ−1

(
1− t

u

)−q
( 1− t

1− t

u

)α−q

dt,

Re(s) > σd.

Since 0 < 1− t < 1− t/u < 1 for 0 < t < 1 and u > 1, we have

0 < tRe(β)−1

(
1− t

u

)−q
( 1− t

1− t

u

)Re(α)−q

< t−1/2

(
1− 1

u0

)−q

,

t ∈ (0, 1), u ∈ (u0,+∞)

provided Re(α)− q ≥ 0 and Re(β) > 1/2, or equivalently Re(s) > σd + 1. Thus,

|Bm(s;u)| ≺ u−ρ0/2|s2mΓ(α)Γ(α− q + 1)−1|
∫ 1

0

t−1/2dt

= 2u−ρ0/2

∣∣∣∣s2m

q−1∏

j=1

(α− j)
∣∣∣∣
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for any u > 1 and for Re(s) > σd + 1. This proves the estimation (5.10). ¤

Lemma 20. Given u0 > 1 and A > 0, there exists T0 > 0 and L0 > 0 such
that

|Qm(T ;u)| ≺ T−(3N0+1/2)u−(A+ρ0)/2 exp
(
− L2

0

8T

)
,

T ∈ (0, T0), u ∈ [u0,+∞). (5.11)

Here N0 = [m + (q + 1)/2].

Proof. For u > 1, set L(u) = log u1/2. We show that the numbers L0 =
L(u0) and T0 = L0/ max(2σd + 2, 16A) meet the requirement. If u ≥ u0 and
T < T0, then the number c = (2T )−1L(u) satisfies c > σd + 1. With this choice of
c, we have

Qm(T ;u) =
1
2π

∫

R

Bm(c + iy;u) exp(−(c + iy)L(u)) exp((c + iy)2T )dy

=
∫

R

Bm

(
L(u)
2T

+ iy;u
)

exp
(
− L(u)2

4T
− Ty2

)
dy

=
∫

R

Bm

(
L(u)
2T

+
iy√
T

;u
)

exp
(
− L(u)2

4T
− y2

)
dy√
T

.

Set N0 = [m + (q + 1)/2]. Then, by applying the estimate (5.10), we have

|Qm(T ;u)|

≺ exp
(
− L(u)2

4T

)
u−ρ0/2

∫

R

(
1 +

∣∣∣∣
L(u)
2T

+
iy√
T

∣∣∣∣
2)N0 e−y2

dy√
T

≤ exp
(
− L(u)2

4T

)
u−ρ0/2

{
1 +

L(u)2

4T 2

}N0 ∫

R

(
1 +

y2

T

)N0 e−y2
dy√

T

= exp
(
− L(u)2

4T

)
u−ρ0/2

{
1 +

L(u)2

4T 2

}N0 N0∑

j=0

(
N0

j

)
T−(j+1/2)

∫

R

y2je−y2
dy.

Hence,

|Qm(T ;u)| ≺ T−(N0+1/2) exp
(
− L(u)2

4T

)
u−ρ0/2

{
1 +

L(u)2

4T 2

}N0

,

u > 1, T ∈ (0, T0). (5.12)
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Furthermore, if u ∈ [u0,∞) and T ∈ (0, T0), then 0 < L(u) ≤ L(u0) and T < T0 <

L(u0)/16A; thus the exponential factor in the majorant of (5.12) is estimated as

exp
(
− L(u)2

4T

)
= exp

(
− L(u)2

8T

)
exp

(
− L(u)2

8T

)

≤ exp
(
− L(u0)2

8T

)
exp

(
− L(u0)L(u)

8T0

)

≤ exp
(
− L2

0

8T

)
u−A. (5.13)

From (5.12), together with (5.13) and the obvious estimation

{
1 +

L(u)2

4T 2

}N0

≺ T−2N0uA/2, T ∈ (0, T0), u ∈ [u0,∞),

we have the conclusion. ¤

Lemma 21. For m ∈ N , there exist positive constants L0, T0, N0 ∈ N and
λ > 2ρ0 such that

∣∣∣∣
dm

dTm
Îγ(T )

∣∣∣∣ ≺ T−(N0+1/2) exp
(−L2

0

8T

)
(sinh tγ)−λ, γ ∈ Γ− ΓH , T ∈ (0, T0).

Proof. By (5.5), we can apply Lemma 20 to obtain the estimation

∣∣Qm(T ; 1 + sinh2 tγ cosh2 r)
∣∣

≺ T−(3N0+1/2) exp
(
− L2

0

8T

)
(1 + sinh2 tγ cosh2 r)−(A+ρ0)/2

for T ∈ (0, T0), γ ∈ Γ− ΓH and r ∈ (0,∞). By this, together with the inequality
|(θd|τd(kr)θd)| ≤ ‖θd‖2, we have, from Lemma 18,

∣∣∣∣
dm

dTm
Îγ(T )

∣∣∣∣

≺
∫ ∞

0

|Qm(T ; 1 + sinh2 tγ cosh2 r)|(θd | τd(kr)θd)|ρH(r)dr
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≺ T−(3N0+1/2) exp
(
− L2

0

8T

){ ∫ ∞

0

(1 + sinh2 tγ cosh2 r)−(A+ρ0)/2

· (sinh r)2p−3(cosh r)2q−1dr

}

≺ T−(3N0+1/2) exp
(
− L2

0

8T

)
(sinh tγ)−(A+ρ0), T ∈ (0, T0), γ ∈ Γ− ΓH ,

provided the integral
∫∞
0

(sinh r)2p−3(cosh r)−A−ρ0+2q−1dr is convergent, or equiv-
alently A > ρ0 − 2. Since A can be taken arbitrary, we are done. ¤

Lemma 22. For any λ > 2ρ0,

∑

γ∈Γ−ΓH

vol
(
ΓH ∩ Γγ

H\H ∩Hγ
)
(sinh tγ)−λ < +∞.

Proof. Let Ξ : G → R+ be the function defined in [12, 6.1]. From def-
inition, Ξ(katk) = (cosh 2t)1/2 ≤ 21/2 cosh t for any (h, k) ∈ H × K and for any
t ∈ R.

By [12, Lemmas 21 and 22], the series

Pλ(g) =
∑

γ∈ΓH\Γ
Ξ(γg)−2λ, g ∈ G

converges absolutely and locally uniformly on G if λ > ρ0, defining a continu-
ous function in g. Thus, the integral

∫
ΓH\H Pλ(h)dh is finite. By a standard

computation, we have

∫

ΓH\H
Pλ(h)dh

=
∑

γ∈ΓH\Γ/ΓH

vol
(
ΓH ∩ Γγ

H\H ∩Hγ
) ∫

H∩Hγ\H
Ξ(γh)−2λdh

≥
∑

γ∈ΓH\(Γ−ΓH)/ΓH

vol
(
ΓH ∩ Γγ

H\H ∩Hγ
) ∫

H∩Hγ\H
Ξ(γh)−2λdh.

For each γ ∈ Γ− ΓH , by (5.6) and by Lemma 17,
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∫

H∩Hγ\H
Ξ(γh)−2λdh

=
∫

H∩H
atγ \H

Ξ(atγ h)−2λdh

=
∫ ∞

0

Ξ
(
atγ

aH
r

)−2λ
%H(r)dr

≥
∫ ∞

0

(21/2 cosh v)−2λ%H(r)dr

= 2−λ

∫ ∞

0

(
1 + sinh2 tγ cosh2 r

)−λ(sinh r)2p−3(cosh r)2q−1dr

≥ 2−λ(1 + sinh2 tγ)−λ

∫ ∞

0

(cosh2 r)−λ(sinh r)2p−3(sinh r)2q−1dr

= (1 + sinh2 tγ)−λJ(λ).

Here,

J(λ) = 2−λ

∫ ∞

0

(cosh r)−2λ+2q−1(sinh r)2p−3dr,

which is convergent if λ > ρ0 − 1. Thus,

∑

γ∈ΓH\(Γ−ΓH)/ΓH

vol
(
ΓH ∩ Γγ

H\H ∩Hγ
)
(1 + sinh2 tγ)−λ < +∞

if λ > ρ0. By (5.5), we are done. ¤

Lemma 23. For m ∈ N , there exist positive constants L0, T0, N0 such that

∣∣∣∣
dm

dTm
Rd(Γ, 1;T )

∣∣∣∣ ≺ T−N0 exp
(−L2

0

8T

)
, T ∈ (0, T0).

Proof. This follows from Lemmas 21 and 22. ¤

Corollary 24. For any m ∈ N ,

lim
T→+0

dm

dTm
Rd(Γ, 1;T ) = 0.

Proof. Obvious by Lemma 23. ¤
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5.1.2. The identity term.
By [12, Proposition 13],

‖θd‖−2
(
ϕ̂(d)(T ; e) | θd

)
=

1
4(q − 1)π

∫

R

e−y2T dy

|cd(iy)|2 + r(T ), T > 0 (5.14)

with some C∞-function r(T ) on R, whose exact form is unimportant for our
purpose here.

Lemma 25. For y ∈ R− {0},

∣∣cd(
√−1y)

∣∣2 =
Γ(q − 1)2

2πy

q−1∏

j=1

{(
y

2

)2

+
(

ρ0

2
+ d− j

)2}−1

·





tanh
(

πy

2

)
, (ν0 = 0),

coth
(

πy

2

)
, (ν0 = 1).

Proof. This is deduced from cd(s) = Γ(q−1)Γ(s)Γ((s+σd)/2+q)−1Γ((s−
σd)/2)−1 by a direct computation. ¤

For T > 0 and for n ∈ N , set

I+
n (T ) =

∫

R

e−Tx2
x2n+1 tanh

(
πx

2

)
dx,

I−n (T ) =
∫

R

e−Tx2
x2n+1 coth

(
πx

2

)
dx.

Let us introduce a convenient notation. For given functions a(T ) and b(T )
on T > 0, if the difference a(T )− b(T ) has a C∞ extension to a neighborhood of
T = 0, we write

a(T ) ≡ b(T ) mod C∞(T = 0).

Lemma 26. Let n ∈ N . Then,

I±n (T ) ≡ n!T−(n+1) mod C∞(T = 0).
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Proof. We have I+
n (T ) = J1

0 (T ) + J∞1 (T ) with

Jb
a(T ) = 2

∫ b

a

e−Tx2
x2n+1 tanh

(
πx

2

)
dx.

It is obvious that the function J1
0 (T ) is of class C∞ on R. A computation shows

that the function

F (x) =
−1
2

T−(n+1)
n∑

j=0

n!
j!

T jx2je−Tx2

is a primitive function of x 7→ x2n+1e−Tx2
, i.e., F ′(x) = x2n+1e−Tx2

. Hence,
applying integration by parts to the integral J∞1 (T ), we have

J∞1 (T ) = 2[F (x)]∞1 − 2
∫ ∞

1

F (x)
π

2
1

cosh2

(
πx

2

)dx

= T−(n+1)
n∑

j=0

n!
j!

T je−T tanh
(

π

2

)
+

π

2
T−(n+1)

n∑

j=0

n!
j!

T j

∫ ∞

1

x2je−Tx2

cosh2

(
πx

2

)dx

= T−(n+1)
n∑

j=0

n!
j!

{
tanh

(
π

2

) ∞∑
m=0

(−T )m

m!

+
π

2

∫ ∞

1

x2j

cosh2

(
πx

2

)
∞∑

m=0

(−T )m

m!
x2mdx

}
T j

= T−(n+1)
∞∑

m=0

(−1)m
n∑

j=0

n!
j!

{
tanh

(
π

2

)
+

π

2

∫ ∞

1

x2(j+m)

cosh2

(
πx

2

)dx

}
Tm+j

m!

= T−(n+1)
∞∑

l=0

∑

j+m=l
j,m∈N ,j≤n

(−1)mn!
j!m!

{
tanh

(
π

2

)
+

π

2

∫ ∞

1

x2l

cosh2

(
πx

2

)dx

}
T l.

Apply the obvious relation

∑

j+m=l
j,m∈N ,j≤n

(−1)mn!
j!m!

=
n!
l!

l∑
m=0

(−1)m

(
l

m

)
= δl,0 n!, 0 ≤ l ≤ n
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to the last formula of J∞1 (T ), we have

J∞1 (T ) ≡ T−(n+1)n!

{
tanh

(
π

2

)
+

π

2

∫ ∞

1

dx

cosh2

(
πx

2

)
}

= T−(n+1) n!

(mod C∞(T = 0)).

Thus, I+
n (T ) = J1

0 (T ) + J∞1 (T ) ≡ n!T−(n+1) (mod C∞(T = 0)). The integral
I−n (T ) is treated in a similar way. ¤

Proposition 27. We have

‖θd‖−2
(
ϕ̂(d)(T ; e) | θd

) ≡ 1
2Γ(q)Γ(q − 1)

q−1∑

j=0

bj j!T−j mod C∞(T = 0).

Here, bj (0 ≤ j ≤ q − 1) is the family of constants defined by

q−1∏

j=1

{(
s

2

)2

+
(

ρ0

2
+ d− j

)2}
=

q−1∑

j=0

bj s2j .

Proof. This follows from (5.14) by Lemmas 25 and 26. ¤

5.1.3. Proof of Theorem 9.
The small-time asymptotic (3.5) follows from (5.2) combined with Corol-

lary 24 and Lemma 26. The large time estimation is easier to prove. Indeed,
let ν1 ∈ SH

τ (Γ)ct − {0} be the element with smallest norm; then,

P̂ H
τ (Γ;T ) =

∑

ν∈SH
τ (Γ)ct−{0}

P H
τ (Γ; ν) + P H

τ (Γ; 0)

≤ e−|ν1|2T/2 P̂ H
τ

(
Γ;

T

2

)
+ P H

τ (Γ; 0)

for any T > 0. ¤

5.2. Proof of Theorem 8.
Let {In}n∈N be as in Theorem 8. Then, by Lemma 7, there exists n0 ∈ N

such that Γn = ΓL (In) with n ≥ n0 satisfies the condition ♥ in Theorem 9. We
have a uniform bound of the magnitude of the H-hyperbolic term for such a Γn.
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Lemma 28. There exists a constant T0 such that the estimate

|Rd(Γn; 1, T )|
vol(Γn ∩H\H)

≺ 1, n ≥ n0, T ∈ (0, T0)

holds.

Proof. By [12, Lemmas 40 and 41], we have the expression

Rd(Γn; 1, T )
vol(Γn ∩H\H)

≤
∑

[ξ]

v
(
Γn0/Γn; [ξ]

)vol(Γn0,H ∩ Γξ
n0,H\H ∩Hξ)

vol(Γn0,H\H)
Îξ(T )

with

v
(
Γn0/Γn; [ξ]

)
=

∑

[γ]∈j−1
n [ξ]

[Γn0,H ∩ Γγ
n0,H : Γn,H ∩ Γγ

n,H ]
[Γn0,H : Γn,H ]

for any [ξ] belonging to the image of the natural map

jn : Γn,H\(Γn − Γn,H)/Γn,H −→ Γn0,H\(Γn0 − Γn0,H)/Γn0,H .

Since v(Γn0/Γn; [ξ]) ≤ 1 by [12, Lemma 43], we obtain the inequality

|Rd(Γn; 1, T )|
vol(Γn ∩H\H)

≤ 1
vol(Γn0 ∩H\H)

·
∑

[ξ]∈Γn0,H\(Γn0−Γn0,H)/Γn0,H

vol
(
Γn0,H ∩ Γξ

n0,H\H ∩Hξ
)∣∣Îξ(T )

∣∣,

for any n ≥ n0, whose right-hand-side is independent of n. By using Lemmas 21
and 22 to bound the right-hand-side, we have the conclusion. ¤

Proof of Theorem 8. The estimate (3.3) results from (5.2) combined
with Lemmas 27 and 28 immediately. Let x > 0. For ν ∈ SH

τ (Γ)ct, the inequality
|ν|2 ≤ x gives us

ν2

1 + x
≥ ν2

x
≥ −1

since ν2 is a negative real number. By this, we have
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e−1
∑

ν∈SH
τ (Γn)ct;|ν|2≤x

P H
τ (Γn; ν) ≤

∑

ν∈SH
τ (Γn)ct;|ν|2≤x

P H
τ (Γn; ν)eν2(1+x)−1

≤ P̂ H
τ (Γn; (1 + x)−1)

≤ Cvol(Γn ∩H\H)(1 + x)q

for any n ≥ n0 using (3.3). This completes the proof of (3.4). ¤

5.3. Proof of Theorem 11.
In this section, we prove Theorem 11 using Theorem 8.

Lemma 29. Let f ∈ S (R+) be of the form f(x) = e−xT β(x) with some
T > 0 and β(x) ∈ C[x]. Suppose ♠(τd) when ρ0 is odd. Then, (3.7) is true.

Proof. Set α(s) = β(s2). Then, the estimation given in [12, Lemma 39]
is valid for ϕ(d)(α, T ; g) as it is. Hence by the same reasoning as [12, Proposition
49], we have

lim
n→∞

Rd(Γn;α, T )
vol(Γn ∩H\H)

= 0.

In combination with this, (5.2) yields that the limit of

∑

ν∈SH
τ (Γ)

e−(ν2
0−ν2)T α(ν)

P H
τ (Γn; ν)

vol(Γn ∩H\H)
(5.15)

as n →∞ exists and is equal to the number

Γ(q − 1)
2πq

‖θd‖−2
(
ϕ̂(d)(α, T ; e) | θd

)
e−ν2

0T , (n →∞). (5.16)

By [12, Proposition 4], (5.15) is expressed as a sum of 〈µH
τ (Γn), f〉 and the terms

λk(Γn)α(σd − 2k) for k ∈ Z, inf(0, d− q) ≤ k ≤ [σd/2], where

λk(Γn) =
P H

τ (Γn;σd − 2k)
vol(Γn ∩H\H)

e{(σd−2k)2−ν2
0}T .

Consider the case when ρ0 is even. Then, by [12, Theorem 5], we have

lim
n→∞

λk(Γn) = δ(k > 0)
Γ(σd − k + q)Γ(q + k)(σd − 2k)
Γ(σd − k + 1)Γ(q)Γ(k + 1)πq

e{(σd−2k)2−ν2
0}T (5.17)
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for inf(0, d − q) ≤ k ≤ [σd/2]. Here, δ(k > 0) denotes an element of {0, 1} which
equals 1 if and only if k > 0. Hence we obtain

lim
n→∞

〈
µH

τ (Γn), f
〉

= e−ν2
0T

{
Γ(q − 1)

2πq
‖θd‖−2

(
ϕ̂(d)(α, T ; e) | θd

)

−
[σd/2]∑

k=0

Γ(σd − k + q)Γ(q + k)(σd − 2k)
Γ(σd − k + 1)Γ(q)Γ(k + 1)πq

e(σd−2k)2T α(σd − 2k)
}

.

By [12, Proposition 13], the right-hand-side of the equality is

Γ(q − 1)
8(q − 1)πq+1

√−1

∫
√−1R

α(ν)e−(ν2
0−ν2)T dν

|cd(ν)|2 = µH
τ (f).

This complete the proof.
When ρ0 is odd, [12, Theorem 5] gives us the formula (5.17) only for inf(0, d−

q) ≤ k < [σd/2]. However, by using the assumption ♠(τd), we can extend the
formula to k = [σd/2] as follows. By [12, Corollary 38], we have the inequality

lim sup
n→∞

λk(Γn) ≤ Γ(σd − k + q)Γ(q + k)(σd − 2k)
Γ(σd − k + 1)Γ(q)Γ(k + 1)πq

(5.18)

for k = [σd/2] without using ♠(τd). Let us show the converse inequality. The
assumption ♠(τd) yields the inclusion

SH
τ (Γn)ct ⊂ {ν ∈ C | 0 ≤ Re(ν) < 1− ε},

which ensures that the proof [12, Proposition 51] goes through with c0 = 1− ε/2
in the argument. Consequently, we have the same conclusion as [12, Proposition
51] with c = 1− ε. Then, in the same way as [12, Proposition 52], we deduce

lim inf
n→∞

λk(Γn) ≥ Γ(σd − k + q)Γ(q + k)(σd − 2k)
Γ(σd − k + 1)Γ(q)Γ(k + 1)πq

(5.19)

for k = [σd/2]. Now, the formula (5.17) for k = [σd/2] follows from (5.18) and
(5.19).

Having established (5.17) for inf(0, d−q) ≤ k ≤ [σd/2], we have the conclusion
by the same argument as in the case when ρ0 is even. ¤
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Lemma 30. There exists a constant A > 0 and N1 > 0 such that

sup
n∈N

∣∣〈µH
τ (Γn), f〉

∣∣ ≤ A sup
x∈R+

∣∣f(x)(1 + xN1)
∣∣, ∀f ∈ S (R+). (5.20)

Proof. Since

∣∣〈µH
τ (Γn), f〉∣∣

≤
∑

ν∈SH
τ (Γn)ct

P H
τ (Γn; ν)

vol(Γn ∩H\H)
(
1 + |ν2

0 − ν2|N1
)−1 · sup

x∈R+

∣∣f(x)(1 + xN1)
∣∣,

it suffices to show that there exists N1 ∈ N such that supn∈N Q
(N1)
n < +∞, where

Q(N1)
n =

∑

ν∈SH
τ (Γn)ct

P H
τ (Γn; ν)

vol(Γn ∩H\H)
(1 + |ν2|N1)−1.

We start from the expression of Q
(N1)
n as a Stieltjes integral:

Q(N1)
n = vol(Γn ∩H\H)−1

∫ +∞

0

(1 + x2N1)−1dNH
τ (Γn;x).

We have limx→∞(1 + x2N1)−1NH
τ (Γn;x) = 0 if 2N1 > q by (3.3). Then, by

integration-by-parts,

vol(Γn ∩H\H)Q(N1)
n

=
[
(1 + x2N1)−1NH

τ (Γn;x)
]∞
0

+
∫ +∞

0

NH
τ (Γn;x)

2N1x
2N1−1

(1 + x2N1)2
dx

= 2N1

∫ +∞

0

NH
τ (Γn;x)

x2N1−1

(1 + x2N1)2
dx

≤ 2N1 eCvol(Γn ∩H\H)
∫ ∞

0

(1 + xq)
x2N1−1

(1 + x2N1)2
dx.

Here, we use (3.3) to obtain the last inequality. Thus,

sup
n∈N

Q(N1)
n ≤ 2N1 C

∫ ∞

0

(1 + xq)
x2N1−1

(1 + x2N1)2
dx,
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which implies supn∈N Q
(N1)
n < +∞ if 2N1 > q. ¤

Lemma 31. There exists a constant A > 0 and N1 > 0 such that

∣∣〈µH
τ , f〉∣∣ ≤ A sup

x∈R+

∣∣f(x)(1 + xN1)
∣∣, ∀f ∈ S (R+). (5.21)

Proof. This is obvious by definition (3.6) of µH
τ (f) and by Lemma 25. ¤

Proof of Theorem 11. We follow the proof of [5, Theorem 9.1]. We
choose sufficiently large A > 0 and N1 > 0 such that the estimations (5.20) and
(5.21) are valid. Let f ∈ S (R+) and take an arbitrary ε > 0. Then, by [5, Lemma
9.3], there exists T > 0 and β(x) ∈ C[x] such that

sup
x∈R+

|f(x)− f0(x)|(1 + xN1) <
ε

3A

with f0(x) = e−xT β(x). By applying Lemma 29 to f0(x), we have n0 such that

∣∣〈µH
τ (Γn)− µH

τ , f0

〉∣∣ ≤ ε

3

for any n ≥ n0. By the estimations (5.20) for the function f − f0,

sup
n∈N

∣∣〈µH
τ (Γn), f − f0

〉∣∣ ≤ A sup
x∈R+

{|f(x)− f0(x)|(1 + xN1)
} ≤ A · ε

3A
=

ε

3
.

Similarly, from (5.21), we have

∣∣〈µH
τ , f − f0

〉∣∣ ≤ ε

3
.

Therefore,

∣∣〈µH
τ (Γn)− µH

τ , f
〉∣∣

≤ ∣∣〈µH
τ (Γn), f − f0

〉∣∣ +
∣∣〈µH

τ (Γn)− µH
τ , f0

〉∣∣ +
∣∣〈µH

τ , f − f0

〉∣∣

≤ ε

3
+

ε

3
+

ε

3
= ε

if n ≥ n0. This completes the proof. ¤
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6. Application to geometry.

The symmetric spaces DG = G/K and DH = H/KH have invariant Kähler
structures such that the natural inclusion DH ↪→ DG is holomorphic isometry ([10,
2.1]). Let Γ be an H-admissible uniform lattice in G. Since Γ acts on DG = G/K

properly discontinuously without fixed points, the G-invariant Kähler structure
on DG is pushed down to the discrete quotient DΓ

G = Γ\DG. Similar remark is
applied to the action of ΓH on DH = H/KH to make the quotient DΓ

H = ΓH\DH

a Kähler manifold. Then, by Lemma 1, we have an holomorphic embedding of
Kähler manifolds

j : DΓ
H ↪→ DΓ

G

compatible with the inclusion DH ↪→ DG such that codimC(DΓ
G/DΓ

H) = q. Let
E[λ] be the λ-eigenspace of the Hodge-Laplace operator ∆ acting on A q,q(DΓ

G),
the space of C-valued C∞-differential forms on DΓ

G of type (q, q). Let ΛΓ be the
set of eigenvalues of ∆; then, ΛΓ is a countable discrete subset of non-negative real
numbers. Let us introduce a counting function N(DΓ

G/DΓ
H ;x) by setting

N
(
DΓ

G/DΓ
H ;x

)
=

∑

λ∈ΛΓ;λ≤x

{ ∑

β∈B(λ)

∣∣∣∣
∫

DΓ
H

j∗(?β)
∣∣∣∣
2}

, x > 0,

where B(λ) is an orthonormal basis of the finite dimensional Hilbert space E[λ] for
each λ ∈ ΛΓ, and ? : A q,q(DΓ

G) −→ A pq−q,pq−q(DΓ
G) is the Hodge star operator.

We have the base-free expression:

N
(
DΓ

G/DΓ
H ;x

)
=

∑

λ∈ΛΓ;λ≤x

‖Pλ‖2,

where ‖Pλ‖2 is the norm square of the linear form

Pλ : β 7→
∫

DΓ
H

j∗(?β)

on E[λ]. Corollary 10 yields an asymptotic formula of the counting function
N(DΓ

G/DΓ
H ;x):

Theorem 32. Suppose Γ satisfies the condition ♥ in Theorem 9. Then,
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N
(
DΓ

G/DΓ
H ;x

) ∼ vol(DΓ
H)

(4π)q Γ(q + 1)
xq, x → +∞. (6.1)

Proof. Let (τ, V ) denotes the finite dimensional representation of K on the
space of tensors

∧q
p∗+ ⊗C

∧q
p∗− (see [10, 3.2]). It contains an H ∩K-invariant

unit vector ητ = ?volp∩h (see [10, Lemma 3]). Take a family {(ρi, Fi) | i ∈ I}
of irreducible representations of K such that τ ∼= ⊕

i∈I ρi. Then, A q,q(DΓ
G) is

identified with C∞(G/K; τ)Γ ([10, 4.1]), and the latter space is decomposed as

C∞(G/K; τ)Γ ∼=
⊕

i∈I

C∞(G/K; ρi)Γ (6.2)

according to τ ∼= ⊕
i∈I ρi. Since the action of the Casimir element has a decom-

position ∆ =
⊕

i∈I ∆ρi
compatible with (6.2), we have

E[λ] =
⊕

i∈I

Aρi

(
Γ;

√
ρ2
0 − λ

)
(λ ∈ R+) and

ΛΓ =
⊔

i∈I

{
ρ2
0 − ν2 | ν ∈ Sρi(Γ)

}
. (6.3)

Let I0 be the set of indexes i ∈ I such that ητ has a non-zero projection η
(i)
τ to

Fi. Then, from (6.3), it is proved that

N
(
DΓ

G/DΓ
H ;x

)
=

∑

i∈I0

∥∥η(i)
τ

∥∥2 NH
ρi

(
Γ;x− ρ2

0

)
, x > ρ2

0.

Applying Corollary 10 to each ρi, we obtain

N
(
DΓ

G/DΓ
H ;x

) ∼
∑

i∈I0

∥∥η(i)
τ

∥∥2 vol(ΓH\H)
(4π)qΓ(q + 1)

xq, x → +∞.

Since 1 = ‖ητ‖2 =
∑

i∈I0
‖η(i)

τ ‖2 and vol(ΓH\H) = vol(DΓ
H), we obtain the desired

asymptotic formula (6.1). ¤

Remark. The resemblance of the formula (6.1) to Weyl’s law for the Hodge-
Laplacian on forms is evident.
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7. Limit formulas.

7.1. H-period invariants.
7.1.1.
For any continuous representation π on a separable Hilbert space Hπ of a Lie

group G, let H ∞
π be the space of smooth vectors of π; it is a G-invariant dense

subspace of Hπ carrying a Frechet space structure with respect to which the G-
action is differentiable. Then, the space of distribution vectors of π, denoted by
H −∞

π , is defined to be the topological dual of H ∞
π . The contragredient action of

G on H −∞
π is denoted by π′, i.e.,

〈π′(g) l, v〉 = 〈l, π(g)−1 v〉, l ∈ H −∞
π , v ∈ H ∞

π .

7.1.2.
Let G be a connected reductive Lie group with compact center and Γ a uniform

lattice in G. Fix a Haar measure dg of G and consider the right regular repre-
sentation RΓ of G on L2(Γ\G). For an irreducible unitary representation (π, Hπ)
of G, let VΓ,π be the π-isotypic component of L2(Γ\G). Then, by a fundamental
theorem of Gelfand, Graev and Piatetsuki-Shapiro, (a) L2(Γ\G) is decomposed
as a Hilbert direct sum of closed G-subspaces VΓ,π for varying π ∈ Ĝ, and, (b)
for each π, VΓ,π is a direct sum of finite, say mΓ(π), copies of π. The latter fact
(b) is equivalently said this way: For each π ∈ Ĝ, the space of all the bounded
G-intertwining linear operators from Hπ to L2(Γ\G), denoted by IG(π | RΓ), is
of finite dimension mΓ(π). This is because, by definition, VΓ,π is the image of the
natural G-isomorphism

IG(π | RΓ)⊗C Hπ 3 T ⊗ v −→ T (v) ∈ VΓ,π.

Lemma 33. There exists a hermitian inner product 〈 | 〉 on IG(π | RΓ) such
that T ∗ ◦T ′ = 〈T ′ | T 〉 idHπ for any pair (T, T ′) of elements of IG(π | RΓ), where
T ∗ denotes the adjoint of T . For T, T ′ ∈ IG(π | RΓ), 〈T ′ | T 〉 = 0 if and only if
Im(T ) and Im(T ′) are orthogonal in L2(Γ\G).

Proof. For T, T ′ ∈ IG(π | RΓ), the composite T ∗ ◦ T ′ belongs to
IG(π | π), which coincides with C idHπ

by Schur’s lemma. Thus, there corre-
sponds the unique scalar 〈T ′ | T 〉 such that T ∗ ◦ T ′ = 〈T ′ | T 〉 idHπ

. It is obvious
that 〈T | T ′〉 defines a hermitian form on IG(π | RΓ). Fix a non-zero unit vector
ξ0 ∈ Hπ. Then, 〈T | T 〉 = ‖T (ξ0)‖2 is a non-negative number, which is zero if and
only if T (ξ0) = 0. Since Hπ is irreducible, T (ξ0) = 0 if and only if T = 0. Thus,
the hermitian form is positive definite. The remaining assertion is obvious by the
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formula

〈T ′ | T 〉 〈ξ | η〉π = 〈T (ξ) | T (η)〉RΓ , ξ, η ∈ Hπ. ¤

Let H be a unimodular closed subgroup of G such that ΓH\H ↪→ Γ\G has the
compact image. Fix a Haar measure dh on H. Then, by assigning the integral over
the compact subset ΓH\H ↪→ Γ\G to each smooth function on Γ\G, we obtain a
linear functional PH

Γ on C∞(Γ\G) = L2(Γ\G)∞, which, indeed, is an H-invariant
distribution vector of the unitary representation RΓ:

〈
PH

Γ , φ
〉

=
∫

ΓH\H
φ(h)dh, φ ∈ L2(Γ\G)∞.

For each π ∈ Ĝ, let PH
Γ (π) be the image of PH

Γ by the restriction map
L2(Γ\G)−∞ −→ V −∞

Γ,π . Thus,

PH
Γ (π) ∈ (

V −∞
Γ,π

)H ∼= IG(π | RΓ)∗ ⊗C (H −∞
π )H .

Suppose π satisfies the condition

♣ : dimC

(
H −∞

π

)H = 1.

For a non-zero element l0π ∈ (H −∞
π )H , there exists a unique element PH

Γ (π)/l0π ∈
IG(π | RΓ)∗ such that

PH
Γ (π) =

(
PH

Γ (π)/l0π
)⊗ l0π,

when regarded in IG(π | RΓ)∗ ⊗C (H −∞
π )H . Let ‖PH

Γ (π)/l0π‖2 be the norm
square of the element PH

Γ (π)/l0π in the Hilbert space dual to IG(π | RΓ).

Lemma 34. Let VΓ,π =
⊕mΓ(π)

j=1 H
(j)

π be an irreducible decomposition to

closed G-invariant subspaces H
(j)

π , and choose a G-isometry Tj : Hπ → H
(j)

π for
each j. Then, there exists a unique system of scalars cj (1 ≤ j ≤ mΓ(π)) such
that

PH
Γ ◦ (

Tj | H ∞
π

)
= cj l0π (7.1)

for any j, and we have
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∥∥PH
Γ (π)/l0π

∥∥2 =
mΓ(π)∑

j=1

|cj |2.

Proof. The existence of {cj} results from the condition ♣. The system
{Tj} is an orthonormal basis of IG(π | RΓ); let {Ťj} be the dual basis of IG

(π | RΓ)∗. Then, by chasing definitions, we have

PH
Γ (π) =

mΓ(π)∑

j=1

cj Ťj ⊗ l0π,

or equivalently PH
Γ (π)/l0π =

∑
j cj Ťj . Since {Ťj} is an orthonormal basis of

IG(π | RΓ)∗, we are done. ¤

Lemma 35.

(1) If we replace (dh, dg) by (cdh, c′dg) with positive numbers c and c′, then
‖PH

Γ (π)/l0π‖2 is multiplied by c2/c′. If we replace the G-invariant inner prod-
uct on Hπ with a positive multiple, then the number ‖PH

Γ (π)/l0π‖2 is multi-
plied by the same constant.

(2) If a pair (π, l0π) and (π′, l0π′) are unitary equivalent, that is, if there exists an
G-isometry S : Hπ → Hπ′ such that l0π′ ◦ (S | H ∞

π ) = l0π, then

∥∥PH
Γ (π)/l0π

∥∥2 =
∥∥PH

Γ (π′)/l0π′
∥∥2

.

7.1.3.
From now on, let H be a symmetric subgroup of G, i.e., there exists an

involution σ of G such that (Gσ)◦ ⊂ H ⊂ Gσ. Fix a maximal compact subgroup
K ⊂ G, whose Cartan involution commutes with σ. Then, H ∩K is a maximal
compact subgroup of H. For any irreducible representation (τ, V ) of K, the H ∩
K-invariant subspace (V ∗)H∩K is at most one dimensional. Recall that, for an
irreducible unitary representation π of G, we defined a positive number P H

τ (Γ)π

by

P H
τ (Γ)π =

∑

φ∈B

‖φH(e)‖2

with B an orthonormal basis of the finite dimensional Hilbert space Aτ (Γ)π =
(V ⊗C VΓ,π)K ([12, Section 1]). There is a case when the number ‖PH

Γ (π)/l0π‖2
is written in terms of P H

τ (Γ)π.
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Proposition 36. Suppose the condition ♣ on π. Let (τ, V ) be an irreducible
unitary representation of K contained in π | K with multiplicity 1. Let ι0 : V ∗ →
Hπ be a K-intertwining operator satisfying ‖ι0‖HS = 1, where ‖ ‖HS is the Hilbert-
Schmidt norm on IK(τ∗ | π). If l0π ∈ H ∞

π and θ̌τ ∈ (V ∗)H∩K satisfy the condition

l0π ◦ ι0(θ̌τ ) 6= 0,

then

∥∥PH
Γ (π)/l0π

∥∥2 =
‖θ̌τ‖2

|l0π ◦ ι0(θ̌τ )|2 P H
τ (Γ)π.

Proof. We set up an isomorphism

Aτ (Γ)π
∼= IG(π | RΓ)⊗IK(τ∗ | π)

by identifying T ⊗ ι belonging to the space in right-hand-side with the function φ

belonging to the space in the left-hand side so that

〈v̌, φ(g)〉 = (T ◦ ι(v̌)) (g), g ∈ G, v̌ ∈ V ∗.

When this holds, we write φ = [T ⊗ ι]. It is a straightforward matter to check
that, if φ = [T ⊗ ι] and φ′ = [T ′ ⊗ ι′], then

〈φ | φ′〉 = 〈T | T ′〉 (ι | ι′)HS,

where (ι | ι′)HS is the inner product associated with the Hilbert-Schmidt norm on
IK(τ∗ |π). Let {Tj} and {ια} be orthonormal basis of IG(π |RΓ) and IK(τ∗ |π),
respectively. Then, the associated functions φjα = [Tj ⊗ ια] afford an orthonormal
basis of Aτ (Γ)π. Let θτ ∈ V be the element defined by the relation (v | θτ ) =
〈θ̌τ , v〉 for any v ∈ V . By Lemma 34, there exists a system of scalars {cj} satisfying
(7.1). Now,

∫

ΓH\H
(φjα(h) | θτ )dh =

∫

ΓH\H

〈
θ̌τ , φjα(h)

〉
dh

=
∫

ΓH\H
(Tj ◦ ια(θ̌τ ))(h)dh

= PH
Γ ◦ Tj ◦ ια(θ̌τ ) = cj l0π ◦ ια(θ̌τ ),
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from which we have

|cj |2 =
∣∣∣∣
∫

ΓH\H
(φjα(h) | θτ )dh

∣∣∣∣
2∣∣l0π ◦ ια(θ̌τ )

∣∣−2

provided l0π ◦ ια(θ̌τ ) 6= 0. By assumption, the singleton {ι0} can be served as the
system {ια}. Then, by Lemma 34 and by the definition of P H

τ (Γ)π,

∥∥PH
Γ (π)/l0π

∥∥2 =
∑

j

∣∣∣∣
∫

ΓH\H
(φjα(h) | θτ )dh

∣∣∣∣
2∣∣l0π ◦ ι0(θ̌τ )

∣∣−2

=
∣∣l0π ◦ ι0(θ̌τ )

∣∣−2‖θ̌τ‖2
∑

j

∣∣∣∣
∫

ΓH\H
(φjα(h) | θτ )dh

∣∣∣∣
2

‖θτ‖−2

=
‖θ̌τ‖2

|l0π ◦ ι0(θ̌τ )|2 P H
τ (Γ)π

as desired. ¤

7.2. Plancherel formula.
Now, we return to our special setting in Section 2 and recall the Plancherel

formula of the symmetric space H\G proved by Faraut [8].
Let us first describe the H-spherical irreducible unitary representations π of

G that enter in the decomposition of L2(H\G), and for such a π, let us fix a basis
element of (H −∞

π )H and recall the Fourier transform f̂(π) of f ∈ C∞c (H\G) at
π.

7.2.1. H-spherical distribution vectors.
Let s ∈ C. Recall the space of C∞-vectors of πs, denoted by H ∞

s , consists of
all the complex valued C∞-functions ϕ on the cone C = {v ∈ W−{0} | 〈v,v〉 = 0}
satisfying ϕ(tv) = |t|−(s+ρ0)ϕ(v) for any t ∈ C× and for any v ∈ C ; any g ∈ G

acts on H ∞
s by the rule πs(g)ϕ(v) = ϕ(g−1v). If Re(s) > ρ0, let us define

u(s) : H ∞
s → C by the convergent integral

〈u(s), ϕ〉 =
1

Γ
(

s− ρ0

2
+ 1

)
∫

C0

|〈v,u`〉|s−ρ0 ϕ(v) dω(v), ϕ ∈ H ∞
s

([8, p. 395]), where u` is a unit vector of `, C0 = {v = (x;y) ∈ W+⊕W− | ‖x‖ =
‖y‖ = 1} and dω(v) is the K-invariant measure on C0 of total mass 1. Then, it
is known that the function s 7→ 〈u(s), ϕ〉 has a holomorphic continuation to the
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whole complex plane ([8, Proposition 5.3]), and defines an H-invariant distribution
vector u(s) of πs for any s ∈ C.

There constructed a meromorphic family of intertwining operators A 0
s :

H ∞
s −→ H ∞

−s such that

u(−s) ◦A 0
s = u(s) (7.2)

in an appropriate sense ([8, Theorems 6.2 and 7.4]). (A 0
s coincides with γ(−s)As

in the notation of [8].) From its explicit construction, we know that A 0
s is holo-

morphic on the set
√−1R ∪ (0, ν0) ∪ {σd | d ∈ N , σd > 0}.

• Unitary principal series: πν (ν ∈ √−1R). For ν ∈ √−1R, the representa-
tion (πν ,H ∞

π ) is unitarizable by the inner product

〈ϕ | ϕ′〉πν =
∫

C0

ϕ(v)ϕ̄′(v)dω(v)

([8, Proposition 5.1]). Thus, we obtain an irreducible unitary representation
πν on the completion of H ∞

ν by the inner product above.
Let l0πν

to be u(ν) for any ν ∈ √−1R. Then, (H −∞
ν )H = C l0πν

.
• Complementary series: πs (s ∈ (0, ν0)). The representations πs with 0 <

s < ν0 is unitarizable by the inner product

〈ϕ | ϕ′〉πs =
∫

C0

(A 0
s ϕ)(v)ϕ̄′(v)dω(v) (7.3)

on H ∞
s ([8, p. 416]). By completion H ∞

s yields an irreducible unitary
representation πs; the representations πs’s with 0 < s < ν0 afford the com-
plementary series of H\G, which is empty if ρ0 is even. Let l0πs

to be u(s)
for any s ∈ (0, ν0). Then, (H −∞

s )H = C l0πs
.

• Relative discrete series: δd (d ∈ N , σd = ρ0 + 2(d− q) > 0) (see [12, A.7]).
Recall that the representation (τd, Vd) occurs in (H ∞

σd
)K with multiplicity

one; let Vd be the smallest (g,K)-submodule of (H ∞
σd

)K containing τd.
Then, as a (g,K)-module, Vd is irreducible. Let V ∞

d be the closure of Vd in
H ∞

σd
and δd the action of G on V ∞

d .
– The case 0 ≤ d < q. In this case, A 0

s is holomorphic and is non-zero at
s = σd. We fix a G-invariant inner product on V ∞

d by

〈ϕ | ϕ′〉δd
=

∫

C0

(A 0
σd

ϕ)(v)ϕ̄′(v)dω(v).
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Let us define l0δd
: V ∞

d → C by

〈l0δd
, ϕ〉 = 〈u(σd), ϕ〉, ϕ ∈ V ∞

d .

– The case q ≤ d. In this case, (s − σd)−1A 0
s is holomorphic and is not

zero at s = σd. Set Ã 0
σd

= lims→σd
(s − σd)−1A 0

σd
. Then, we fix a

G-invariant inner product on V ∞
d by

〈ϕ | ϕ′〉δd
=

∫

C0

(Ã 0
σd

ϕ)(v)ϕ̄′(v)dω(v). (7.4)

Let us define l0δd
: V ∞

d → C by

〈
l0δd

, ϕ
〉

=
d
dν

∣∣∣∣
ν=σd

〈u(ν), ϕ〉, ϕ ∈ V ∞
d . (7.5)

Let Vd be the completion of V ∞
d by the inner products fixed above and

δd the action of G on Vd. Then, (δd,Vd)’s comprise a class of irreducible
unitary representations of G, called the relative discrete series of H\G. For
these representations, (V −∞

d )H = Cl0δd
.

Now, the representations listed above, together with the trivial representation
C, exhaust all the H-spherical irreducible unitary representations of G up to
equivalence ([8, Section IX]). For such a π, the multiplicity free condition ♣ in the
paragraph 7.1.2 is satisfied.

7.2.2. Fourier transforms.
Set SH = SH

ct∪SH
dis with SH

ct =
√−1R+∪(0, ν0) and SH

dis = {σd = ρ0−2q+2d |
d ∈ N , ρ0 − 2q + 2d > 0}. For ν ∈ SH , set

Πν =

{
πν , ν ∈ SH

ct ,

δd, ν = σd ∈ SH
dis.

Then the Fourier transform f 7→ f̂(ν), as a mapping from C∞c (H\G) to the space
of functions on the set SH , is characterized by

ϕ̂0(ν) =
〈
l0Πν

,Π′ν(ϕ)l0Πν

〉
, ν ∈ SH , ϕ ∈ C∞c (G).

Here, ϕ0(g) =
∫

H
ϕ(hg)dh for any ϕ ∈ C∞c (G) ([8, p. 396, p. 412]). We should

note that Π′ν(ϕ)l0Πν
is a smooth vector of Πν for any ϕ ∈ C∞c (G).
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7.2.3. Inversion formula.
Let

c(s) = 2πq/2Γ(p)Γ(q)1/2Γ(s)Γ
(

s + ρ

2

)−1

Γ
(

s + 2p− ρ0

2

)−1

Γ
(

s + 2q − ρ0

2

)

and, for any σd ∈ Sdis, let C(σd) be the first non-zero coefficient of the Laurent
expansion of c(s)−1c(−s)−1 at s = σd. Explicitly,

C(σd) =
1

πqΓ(p)2Γ(q)
·





σdΓ
(

ρ0 − σd

2

)
Γ
(

ρ0 + σd

2

)
, σd < ρ0,

2(−1)(σd−ρ)/2σdΓ
(

σd − ρ0

2
+ 1

)−1

Γ
(

ρ0 + σd

2

)
,

σd ≥ ρ0.

By regarding SH ⊂ C naturally, we endow the set SH with the induced topology
from C. Let D(SH) be the space of functions β : SH → C such that y 7→ β(iy)
is a Schwartz function on R+, such that x 7→ β(x) is C∞ on (0, ν0) and such
that β(σd) = 0 except for finitely many σd’s. Then, there exists a unique Radon
measure dµH on SH , called the Plancherel measure, satisfying

∫

SH

β(ν)dµH =
1
π

∫ ∞

0

β(iy)
dy

|c(iy)|2 +
∑

σd∈SH
dis

C(σd)β(σd), β ∈ D(SH).

Note that supp(dµH) ⊂ SH − (0, ν0).

Lemma 37. For any right K-finite function f ∈ C∞c (H\G), the Fourier
transform f̂ , regarded as a function on SH , belongs to the space D(SH).

The inversion formula represents the Dirac distribution on H\G supported at
the origin He as a superposition of Fourier transforms; in terms of the Plancherel
measure, it can be stated simply as

f(He) =
∫

SH

f̂(ν)dµH , f ∈ C∞c (H\G)K .

7.3. Introduction of K-types.
For any d ∈ N , set
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βd(s) =
Γ(p)

Γ
(

s + σd

2
+ 1

)
d−1∏

j=0

(
s− ρ0

2
− j

)
.

Let ν ∈ C. For any d ∈ N , the representation τd occurs in πν as a K-type
with multiplicity one; we fix a K-embedding ι

(ν)
d,d;0,0 : Vd ↪→ H ∞

ν as in [12, Lemma

A.3] and denote it by ι
(ν)
d for simplicity. We endow Vd with the inner-product

defined by

(v | w)τ =
∫

C0

[
ι
(ν)
d (v)

]
(v)[ι(ν)

d (w)](v)dω(v),

which is independent of ν. By examining the highest weight, it turns out that τd

is self-dual. Fix a K-isomorphism εd : V ∗
d → Vd and set ι̌

(ν)
d = ι

(ν)
d ◦ εd. Let θ′d

be the H ∩K-invariant tensor defined by [12, Lemma A.8] (and was denoted by
θd there), and θ̌′d ∈ (V ∗

d )H∩K the element corresponding to θ′d by the isomorphism
εd. Then, [12, Proposition A.13] yields the identity

u(ν) ◦ ι̌
(ν)
d (θ̌′d) = βd(ν)‖θ′d‖2. (7.6)

We need the value ‖θ′d‖2.

Lemma 38.

‖θ′d‖2 = dimC Vd.

Proof. From [12, Lemma A.8], (τd(k)θ′d | θ′d) = [ι(ν)
d (θ′d)](k

−1v′0) for any
k ∈ K. Thus,

‖θ′d‖2 =
∫

K

[
ι
(ν)
d (θ′d)

]
(kv′0)[ι

(ν)
d (θ′d)](kv′0)dk

=
∫

K

∣∣(τd(k)θ′d | θ′d)
∣∣2dk = (dim Vd)−1‖θ′d‖4

by the orthogonal relation for matrix coefficients of τd. ¤

Lemma 39. Let ν ∈ SH
ct . Then, for any d ∈ N ,

∥∥PH
Γ (πν)/l0πν

∥∥2 = βd(ν)−1βd(−ν)−1P H
τd

(Γ; ν).
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Proof. First assume ν ∈ √−1R+. Then, by definition of the inner product
on H ∞

ν and that on Vd, the map ι0 = (dim Vd)−1/2ι̌
(ν)
d satisfies ‖ι0‖HS = 1. With

this choice of ι0, we apply Proposition 36 to have

∥∥PH
Γ (πν)/l0πν

∥∥2 = |βd(ν)−1|2P H
τd

(Γ)πν
,

by using (7.6) and by Lemma 38. Note that |βd(ν)−1|2 = βd(ν)−1βd(−ν)−1 since
ν ∈ √−1R.

Let ν ∈ (0, ν0). Then, from (7.2) and (7.6), we have

A 0
ν ◦ ι

(ν)
d =

(
βd(ν)

βd(−ν)

)
ι
(−ν)
d . (7.7)

By this, we compute the inner product ‖ι(ν)
d (θ′d)‖2πν

following the definition
(7.3) of the G-invariant inner product to show the identity ‖ι(ν)

d (θ′d)‖2πν
=

(βd(ν)/βd(−ν))‖θ′d‖2. Thus, the map

ι0 = (dim Vd)−1/2

(
βd(−ν)
βd(ν)

)1/2

ι̌
(ν)
d

satisfies ‖ι0‖HS = 1. With this choice of ι0, we apply Proposition 36 to have

∥∥PH
Γ (πν)/l0πν

∥∥2 = βd(ν)−1βd(−ν)−1P H
τd

(Γ)πν

by using (7.6) and by Lemma 38.
It remains to show P H

τd
(Γ)πν = P H

τd
(Γ; ν). The inclusion Aτd

(Γ)πν ⊂ Aτd
(Γ; ν)

follows from the fact that Ωg acts on πν by the scalar ν2 − ρ2
0. Thus, P H

τd
(Γ)πν

≤
P H

τd
(Γ; ν). Suppose P H

τd
(Γ; ν) 6= 0 and fix an orthonormal basis {φj} of Aτd

(Γ; ν).
Then, for j such that φH

j (e) 6= 0, it is proved that φj ∈ Aτd
(Γ)πν

in the proof of
[12, Proposition 4]. Hence, P H

τd
(Γ; ν) = P H

τd
(Γ)πν . ¤

Lemma 40. Let σd ∈ SH
dis. Then,

∥∥PH
Γ (δd)/l0δd

∥∥2 = P H
τd

(Γ;σd) ·
{

βd(σd)−1βd(−σd)−1, 0 < σd < ρ0,

β′d(σd)−1βd(−σd)−1, ρ0 ≤ σd.

Proof. It suffices to prove the following two formulas.
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∥∥PH
Γ (δd)/l0δd

∥∥2 = P H
τd

(Γ)δd
·
{

βd(σd)−1βd(−σd)−1, 0 < σd < ρ0,

β′d(σd)−1βd(−σd)−1, ρ0 ≤ σd,
(7.8)

P H
τd

(Γ)δd
= P H

τd
(Γ;σd). (7.9)

We first consider the case ρ0 ≤ σd. Then, βd(−σd) 6= 0 and βd(s) has a simple
zero at s = σd. From the relation (7.7), we have

Ã 0
σd

ι
(σd)
d =

(
β′d(σd)

βd(−σd)

)
ι
(−σd)
d .

From (7.6) and by definition (7.5), we have

l0δd
◦ ι̌

(σd)
d = β′d(σd)‖θ′d‖2.

By these, we can confirm that the map

ι0 = (dim Vd)−1/2

(
βd(−σd)
β′d(σd)

)1/2

ι̌
(σd)
d ,

when regarded as the K-inclusion V ∗
d ↪→ V ∞

d , satisfies ‖ι0‖HS = 1 by the same
way as in the proof of Lemma 39. Having this choice of ι0, we apply Proposition 36
to obtain (7.8) using (7.6) and by Lemma 38. The case 0 < σd < ρ0 is settled
similarly. Indeed, we take

ι0 = (dim Vd)−1/2

(
βd(σd)

βd(−σd)

)1/2

ι̌
(σd)
d

and proceed the same way.
It remains to show (7.9). The inclusion Aτd

(Γ)δd
⊂ Aτd

(Γ;σd) is obvious by
the fact that Ωg acts on δd by the scalar σ2

d − ρ2
0. Thus, we have the inequality

P H
τd

(Γ)δd
≤ P H

τd
(Γ;σd). Fix an orthonormal basis {φj} of Aτd

(Γ;σd). For any
index j such that φH

j (e) 6= 0, let H (φj) be the closed G-subspace of L2(Γ\G)
generated by φj . Then, any irreducible subspace V of H (φj) is an H-spherical
irreducible unitary representation on which Ωg acts by the scalar σ2

d − ρ2
0. From

the list of equivalence classes of such representations recalled in 7.2.1, the rep-
resentation of G on V has to be equivalent to δd. Thus, φj ∈ Aτd

(Γ)δd
. This

completes the proof of (7.9). ¤
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7.3.1. Spectral gap hypothesis.
Lemma 41. Suppose ρ0 is odd, and let {Γn} be a sequence of H-admissible

lattices in G. Then, the following statements are equivalent to each other.

(1) The condition ♠(τd) is true for any d ∈ N .
(2) The condition ♠(τd) is true for some d ∈ N .
(3) The condition ♠(τ0) is true.
(4) The condition

(∃ε ∈ (0, 1))(∀n ∈ N)(∀ν ∈ (1− ε, 1))
(
P H

τ0
(Γn)πν = 0

)

is true.

Proof. It is obvious that (1) implies (3), and that (3) implies (2). The
equivalence of (3) and (4) follows from the identity P H

τ0
(Γ; ν) = P H

τ0
(Γ)πν

for
ν ∈ (0, ν0), which is proved in the proof of Lemma 39. It remains to show that (2)
implies (1). By Lemma 39, we have

βd(ν)−1βd(−ν)−1P H
τd

(Γn; ν) = βd′(ν)−1βd′(−ν)−1P H
τd′

(Γn; ν).

for any d, d′ ∈ N . Since βd(ν)−1βd(−ν)−1, for any d, does not have zeros or poles
on the interval (0, 1), we are done. ¤

Remark. The equivalent conditions in Lemma 41 are obviously implied by
the following ‘spectral gap hypothesis’ for the complementary series πν (0 < ν <

ν0).

(∃ε ∈ (0, 1))(∀n ∈ N)(∀ν ∈ (1− ε, 1))(mΓn(πν) = 0).

It is shown that this follows from Arthur’s conjecture ([2]).

7.4. Limit formula.
Lemma 42. Set SH(Γ) = {ν ∈ SH | ‖PH

Γ (Πν)/l0Πν
‖2 6= 0}. Then,

SH(Γ) = SH
τ0

(Γ)ct ∪
{
σd ∈ SH

dis | P H
τd

(Γ;σd) 6= 0
}
.

In particular, SH(Γ) is discrete.

Proof. This follows from Lemmas 39 and 40. ¤

Definition. For an H-admissible uniform lattice Γ in G, define a measure
dµH

Γ on SH by
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dµH
Γ =

∑

ν∈SH(Γ)

∥∥PH
Γ (Πν)/l0Πν

∥∥2

vol(Γ ∩H\H)
δν .

Theorem 43. Let L =
⊕N

j=1 OE uj be an OE-lattice generated by a C-
basis {uj} of W such that ` = Cu1. Let {In}n∈N be a sequence of OE-ideals
such that In+1 ⊂ In for any n ∈ N and limn→∞ δ(In) = +∞. Suppose ΓL (I0)
is torsion free, and set Γn = ΓL (In) for n ∈ N . Suppose the condition ♠(τd) is
satisfied for d ∈ N such that σd = 1 if ρ0 is odd. Then,

lim
n→∞

∫

SH

f(ν)dµH
Γn

=
∫

SH

f(ν)dµH for any f ∈ D(SH).

Proof. Let f ∈ D(SH). It suffices to show the formula for the two cases:
(a) supp(f) ⊂ SH

ct ∪ {ν0}; (b) supp(f) ⊂ SH
dis.

Case (a): The trivial representation τ0 occurs in the principal series representation
πν as a K-type with multiplicity 1. For x ∈ R+, let

√
ν0 − x denote the square

root of ν0 − x such that Re(
√

ν0 − x) ≥ 0, and set

B(x) = β0(
√

ν0 − x)−1β0(−
√

ν0 − x)−1,

F (x) = f(
√

ν0 − x).

Then, by f ∈ D(SH) and by Stirling’s formula, BF ∈ S (R+) is confirmed easily.
Applying Theorem 11, we have

lim
n→+∞

〈
µH

τ0
(Γn), BF

〉
=

〈
µH

τ0
, BF

〉
. (7.10)

Now, by Lemma 39,

〈
µH

τ0
(Γn), BF

〉
=

∑

ν∈SH
τ0

(Γn)ct

P H
τ0

(Γn; ν)
vol(Γn ∩H\H)

β0(ν)−1β0(−ν)−1f(ν)

=
∑

ν∈SH
τ0

(Γn)ct

∥∥PH
Γ (πν)/l0πν

∥∥2

vol(Γn ∩H\H)
f(ν)

=
∫

SH

f(ν) dµH
Γn

. (7.11)

On the other hand, by Lemma 44, we have
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〈
µH

τ0
, BF

〉
=

Γ(q − 1)
4(q − 1)πq+1

∫ ∞

0

f(iy) |β0(iy)|2 dy

|cd(iy)|2

=
1
π

∫ ∞

0

f(iy)
dy

|c(iy)|2

=
∫

SH

f(ν)dµH . (7.12)

By (7.10), (7.11) and (7.12), we are done.

Case (b): If the condition ♠(τd) for d ∈ N such that σd = 1 is satisfied, then each
point of SH

dis is isolated in
⋃

n supp(dµH
Γn

). Hence, it suffices to prove the formula
point-wisely on SH

dis. Let σd ∈ SH
dis. By [12, Theorem 55], we have the formula

lim
n→∞

P H
τd

(Γn;σd)
vol(Γn ∩H\H)

=
Γ(σd + q)
πqΓ(σd)

(7.13)

unless σd = 1, in which case it is also true by the condition ♠(τd) as was shown in
the proof of Lemma 29. By Lemmas 40 and 45, the formula (7.13) is equivalent to
the required limit formula with f being the characteristic function of the singleton
{σd}.

This completes the proof. ¤

Lemma 44.

βd(s)βd(−s) · cd(s)cd(−s) =
4πq

Γ(q − 1)
c(s)c(−s).

Proof. A direct computation. ¤

Lemma 45. For each σd ∈ SH
dis,

C(σd) =
Γ(σd + q)
πqΓ(σd)

·
{

βd(σd)−1βd(−σd)−1, 0 < σd < ρ0,

β′d(σd)−1βd(−σd)−1, ρ0 ≤ σd.

Proof. A direct computation. ¤
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