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Abstract. Let (X, d, µ) be a metric measure space endowed with a dis-
tance d and a nonnegative Borel doubling measure µ. Let L be a non-negative
self-adjoint operator on L2(X). Assume that the semigroup e−tL generated
by L satisfies the Davies-Gaffney estimates. Let Hp

L(X) be the Hardy space
associated with L. We prove a Hörmander-type spectral multiplier theorem
for L on Hp

L(X) for 0 < p < ∞: the operator m(L) is bounded from Hp
L(X)

to Hp
L(X) if the function m possesses s derivatives with suitable bounds and

s > n(1/p− 1/2) where n is the “dimension” of X. By interpolation, m(L) is
bounded on Hp

L(X) for all 0 < p < ∞ if m is infinitely differentiable with suit-
able bounds on its derivatives. We also obtain a spectral multiplier theorem
on Lp spaces with appropriate weights in the reverse Hölder class.

1. Introduction.

Let (X, d, µ) be a metric measure space endowed with a distance d and a
nonnegative Borel doubling measure µ on X. Recall that a metric is doubling
provided that there exists a constant C > 0 such that for all x ∈ X and for all
r > 0,

V (x, 2r) ≤ CV (x, r) < ∞, (1.1)

where B(x, r) = {y ∈ X : d(x, y) < r} and V (x, r) = µ(B(x, r)). In particular, X

is a space of homogeneous type. A more general definition and further studies of
these spaces can be found in [CW1, Chapter 3].
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Note that the doubling property implies the following strong homogeneity
property,

V (x, λr) ≤ CλnV (x, r) (1.2)

for some C, n > 0 uniformly for all λ ≥ 1 and x ∈ X. The smallest value of the
parameter n is a measure of the dimension of the space. There also exist C and
N so that

V (y, r) ≤ C

(
1 +

d(x, y)
r

)N

V (x, r) (1.3)

uniformly for all x, y ∈ X and r > 0. Indeed, property (1.3) with N = n is a direct
consequence of the triangle inequality for the metric d and the strong homogeneity
property (1.2). When X is Ahlfors regular, i.e. V (x, r) ∼ rn uniformly in x, the
value N can be taken to be 0.

Suppose that L is a non-negative self-adjoint operator on L2(X). Let E(λ)
be the spectral resolution of L. For any bounded Borel function m : [0,∞) → C,
by using the spectral theorem we can define the operator

m(L) =
∫ ∞

0

m(λ)dE(λ). (1.4)

It is well known that the operator m(L) is bounded on L2(X). It is an interesting
problem to give sufficient conditions on m and L which imply the boundedness
of m(L) on various spaces on X. This has been a very active topic of harmonic
analysis and it was studied extensively. The reader is referred, in particular, to [A],
[AL], [B], [BK], [C], [DeM], [DOS], [Dz] and [FS] and the references therein.

The following shall be assumed throughout this article unless otherwise spec-
ified:

(H1) L is a non-negative self-adjoint operator on L2(X);
(H2) The operator L generates an analytic semigroup {e−tL}t>0 on L2(X) which

satisfies the Davies-Gaffney estimate. That is, there exist constants C, c > 0
such that for any open subsets U1, U2 ⊂ X,

∣∣〈e−tLf1, f2〉
∣∣ ≤ C exp

(
− dist(U1, U2)2

c t

)
‖f1‖L2(X)‖f2‖L2(X),

∀ t > 0, (1.5)
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for every fi ∈ L2(X) with supp fi ⊂ Ui, i = 1, 2, where dist(U1, U2) :=
infx∈U1,y∈U2 d(x, y).

Examples of families of operators for which condition (1.5) holds include semi-
groups generated by second order elliptic self-adjoint operators in divergence form
on the Euclidean spaces Rn, Schrödinger operators with real potentials and mag-
netic field (see, for example [Da1]). Condition (1.5) is well-known to hold for
Laplace-Beltrami operators on all complete Riemannian manifolds (see [Da1],
[Da2], [Ga]). In the more general setting of Laplace type operators acting on
vector bundles, condition (1.5) is proved in [Si]. Condition (1.5) also holds in the
setting of local Dirichlet forms (see for instance, [Stu]). In this case the metric
measure spaces under consideration are possibly not equipped with any differential
structure. However, the semigroups associated with these Dirichlet forms satisfy
usually Davies-Gaffney estimates with respect to an intrinsic distance.

We shall be working with an auxiliary nontrivial function φ with compact
support. Let φ be a non-negative C∞0 function on R such that

suppφ ⊆
(

1
4
, 1

)
and

∑

`∈Z

φ(2−`λ) = 1 for all λ > 0. (1.6)

For s ≥ 0, let [s] denote the integer part of s. Recall that Cs is the space of
functions m on R for which

‖m‖Cs =





s∑
k=0

sup
λ∈R

∣∣m(k)(λ)
∣∣ if s ∈ Z,

∥∥m([s])
∥∥

Lip(s−[s])
+

[s]∑
k=0

sup
λ∈R

∣∣m(k)(λ)
∣∣ if s /∈ Z

is finite.
The aim of this paper is to prove a Hörmander-type spectral multiplier the-

orem on Hardy spaces Hp
L(X) for p > 0, where Hp

L(X) is a new class of Hardy
spaces associated to L ([HLMMY] and [DL], see Section 2 below). The following
is the main result of this paper.

Theorem 1.1. Let L be a non-negative self-adjoint operator on L2(X) sat-
isfying the Davies-Gaffney estimate (1.5). Let φ be a non-negative C∞0 function
satisfying (1.6). If 0 < p ≤ 1 and the bounded measurable function m : [0,∞) → C

satisfies

Cφ,s = sup
t>0

‖φ(·)m(t·)‖Cs + |m(0)| < ∞ (1.7)
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for some s > n(1/p − 1/2), then m(L) is bounded on Hp
L(X), i.e., there exists a

constant C > 0 such that

‖m(L)f‖Hp
L(X) ≤ C‖f‖Hp

L(X).

If m satisfies (1.7) for all s > 0, then by interpolation and duality, m(L) is
bounded on Hp

L(X) for all 0 < p < ∞.

Remarks. We would like to list two consequences of Theorem 1.1.

(a) If m satisfies (1.7) for some s > n/2, then m(L) is Hp
L(X) bounded for all

p ∈ [1,+∞).
(b) If m is a bounded analytic function on a sector

S0
µ = {z ∈ C : z 6= 0 and | arg(z)| < µ}

for some µ > 0, then m satisfies (1.7) for all s > 0. Hence m(L) is bounded
on Hp

L(X) for all 0 < p < ∞. An example is m(λ) = λiγ for some real value
γ. See Corollary 4.3.

The second main result is Theorem 5.2 (see Section 5) in which Lp-
boundedness of spectral multipliers of L is obtained with appropriate weights.

We remark that when the semigroup e−tL generated by L has a kernel pt(x, y)
satisfying a Gaussian upper bound, that is

∣∣pt(x, y)
∣∣ ≤ C

V (x,
√

t)
exp

(
− d2(x, y)

ct

)
(1.8)

for all t > 0, and x, y ∈ X, then m(L) is of weak type (1, 1) and bounded on Lp(X)
for p in (1,∞) (see [DOS] for instance). Note that in this case, the Hardy space
Hp

L(X) coincides with Lp(X) for every 1 < p < ∞. However, there are many im-
portant operators L which do not satisfy (1.8) but still satisfy (1.5), for example,
the Hodge Laplacian on Riemannian manifold with doubling measure ([AMR]).
The main contribution of this article is to obtain a Hörmander-type spectral mul-
tiplier theorem for Hardy spaces using only Davies-Gaffney type estimates (1.5)
in place of pointwise kernel bounds (1.8).

The paper is organized as follows. In Section 2, we recall some preliminary
results about Hardy space Hp

L(X) associated to an operator L. In Section 3, we
give a criterion for boundedness of m(L) on the Hardy spaces Hp

L(X) for 0 < p ≤ 1.
In Section 4, we prove our main result, Theorem 1.1, whose proof relies on Davies-
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Gaffney heat kernel estimates and finite propagation speed of the wave operator
to obtain estimates for the kernel of the operator m(L) away from the diagonal.
In Section 5, we obtain a spectral multiplier result for L on certain Lp spaces with
weights in an appropriate reverse Hölder class.

Throughout, the letter “C” and “c” will denote (possibly different) constants
that are independent of the essential variables.

Acknowledgements. The authors would like to thank the referee for help-
ful comment to improve the presentation of the paper.

2. Notation and preliminaries.

Let (X, d, µ) be a metric measure space endowed with a distance d and a
nonnegative Borel doubling measure µ. We first have the following time derivative
estimate of the semigroup {e−tL}t>0.

Proposition 2.1. Assume that the operator L satisfies (H1)–(H2). Then
for every K ∈ N , the family of operators

{(tL)Ke−tL}t>0

satisfies the Davies-Gaffney estimate (1.5) with c, C > 0 depending on K, n and
N in (1.2) and (1.3) only.

Proof. For the proof, see Proposition 2.1, [HLMMY]. ¤

2.1. Hardy spaces Hp
L(X) for p ≥ 1.

In order to define the Hardy spaces based upon these various operators, we
follow [AMR] and first define the L2 adapted Hardy space

H2(X) := R(L), (2.1)

that is, the closure of the range of L in L2(X). Then L2(X) is the orthogonal sum
of H2(X) and the null space N(L).

Consider the following quadratic operators associated to L

Sh,Kf(x) =
( ∫ ∞

0

∫

d(x,y)<t

∣∣(t2L)Ke−t2Lf(y)
∣∣2 dµ(y)

V (x, t)
dt

t

)1/2

, x ∈ X (2.2)

where f ∈ L2(X). We shall write Sh in place of Sh,1. For each K ≥ 1 and
1 ≤ p < ∞, we now define
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DK,p =
{
f ∈ H2(X) : Sh,Kf ∈ Lp(X)

}
, 1 ≤ p < ∞.

Definition 2.2. Let L be a non-negative self-adjoint operator on L2(X)
satisfying the Davies-Gaffney estimate (1.5).

( i ) For each 1 ≤ p ≤ 2, the Hardy space Hp
L,Sh

(X) associated to L is the
completion of the space D1,p in the norm

‖f‖Hp
L,Sh

(X) = ‖Shf‖Lp(X).

( ii ) For each 2 < p < ∞, the Hardy space Hp
L(X) associated to L is the com-

pletion of the space DK0,p in the norm

‖f‖Hp
L,Sh

(X) = ‖Sh,K0f‖Lp(X), K0 =
[
n

4

]
+ 1.

Under the assumption of Gaussian upper bounds (1.8) for the heat kernel of
the operator L, it was proved in [ADM] that Hp

L,Sh
(X) = Lp(X) for all 1 <

p < ∞. Note that, in the framework of the present paper, we only assume the
Davies-Gaffney estimates on the heat kernel of L, and hence for 1 < p < ∞, p 6= 2,
Hp

L,Sh
(X) may or may not coincide with the space Lp(X). However, it can be

verified that H2
L,Sh

(X) = H2(X) and the dual of Hp
L,Sh

(X) is Hp′

L,Sh
(X), with

1/p + 1/p′ = 1 (See Proposition 9.4 of [HLMMY]).
We also recall that the Hp

L(X) spaces (1 ≤ p < +∞) are a family of in-
terpolation spaces for the complex interpolation method (See Proposition 9.5 of
[HLMMY]).

2.2. The atomic Hardy spaces Hp
L,at,M(X) for p ≤ 1.

Let us describe the notion of a (p, 2,M)-atom, 0 < p ≤ 1, associated to
operators on spaces (X, d, µ). In what follows, assume that

M ∈ N and M >
n(2− p)

4p
, (2.3)

where the parameter n, thought of as a measure of the dimension of the space
X, is defined in (1.2). Let us denote by D(T ) the domain of an operator T . We
shall often just use B for B(xB , rB). Also given λ > 0, we will write λB for
the λ−dilated ball, which is the ball with the same center as B and with radius
rλB = λrB . We set

U0(B) = B, and Uj(B) = 2jB\2j−1B for j = 1, 2, . . . . (2.4)
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Definition 2.3. If 0 < p ≤ 1, a function a(x) ∈ L2(X) is called a (p, 2,M)-
atom associated to an operator L if there exist a function b ∈ D(LM ) and a ball
B of X such that

( i ) a = LMb;
( ii ) suppLkb ⊂ B, k = 0, 1, . . . , M ;
(iii) ‖(r2

BL)kb‖L2(X) ≤ r2M
B V (B)1/2−1/p, k = 0, 1, . . . , M .

In the case µ(X) < ∞ the constant function having value [µ(X)]−1/p is also
considered to be an atom.

Recall that the spaces Hp(X) when p < 1 (see for example, [FS] and [CW2])
are not spaces of functions on X but spaces of distributions. In the present setting
we need to use an appropriate space of linear functionals to define the Hardy
spaces. In order to do this we follow the approach in [HLMMY] and [HM]
to introduce adapted Lipschitz spaces Λα,s

L (X), α > 0 and s ∈ N , associated to
an operator L on the space X. Let φ = LMν be a function in L2(X), where
ν ∈ D(LM ). For ε > 0 and M ∈ N , we introduce the norm

‖φ‖Mp,2,M,ε
0 (L) = sup

j≥0

[
2jεV (x0, 2j)1/p−1/2

M∑

k=0

∥∥Lkν
∥∥

L2(Uj(B0))

]

where B0 is the ball centered at some x0 ∈ X with radius 1. We set

M p,2,M,ε
0 (L) =

{
φ = LMν ∈ L2(X) : ‖φ‖Mp,2,M,ε

0 (L) < ∞}
.

Let
(
M p,2,M,ε

0 (L)
)∗ be the dual of M p,2,M,ε

0 (L), and let At denote either (I+t2L)−1

or e−t2L. We claim that if f ∈ (
M p,2,M,ε

0 (L)
)∗, then the distribution (I −At)Mf

belongs to L2
loc(X). Indeed, if ϕ ∈ L2(B) for some ball B, it follows from the

Davies-Gaffney estimate (1.5) that (I − At)Mϕ ∈ M p,2,M,ε
0 (L) for every ε > 0.

Thus,

∣∣〈(I −At)Mf, ϕ〉
∣∣ =

∣∣〈f, (I −At)Mϕ〉
∣∣

≤ Ct, rB dist(B,x0)‖f‖(Mp,2,M,ε
0 (L))∗‖ϕ‖L2(B)V (B)1/2−1/p. (2.5)

Since B was arbitrary, the claim follows. Similarly, (t2L)Me−t2Lf ∈ L2
loc(X).

In order to define the adapted Λα,s
L (X) spaces, we need one more space. For

any 0 < p ≤ 1 and M ∈ N , we set
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EM,p =
⋂
ε>0

(
M p,2,M,ε

0 (L)
)∗

. (2.6)

Definition 2.4. Let L be an operator satisfying (H1)–(H2). For α ≥ 0 and
an integer s ≥ [nα/2], an element ` ∈ EM,(α+1)−1 is said to belong to Λα,s

L (X) if

[
1

µ(B)1+2α

∫

B

∣∣(I − (I + r2
BL)−1)s`(x)

∣∣2dµ(x)
]1/2

≤ C (2.7)

where B is any ball in X and C depends only on `. Let <α,s(`) be the infimum of
all C for which (2.7) holds. The norm of ` in this space is denoted by

‖`‖Λα,s
L (X) =

{<α,s(`), if µ(X) = ∞,

<α,s(`) +
∣∣ ∫

X
|`(x)|2dµ(x)

∣∣, if µ(X) < ∞.

In the sequel, we will often write BMOL(X) in place of Λ0,1
L (X), the adapted space

of functions with bounded mean oscillations on X.

In this case the mapping ` → ‖`‖Λα,s
L (X) is a norm. We shall see that this

definition is independent of the choice of M > [n(2− p)/4p] (up to “modding out”
elements in the null space of the operator LM , as these are annihilated by (I −
(I + r2

BL)−1)s). Compared to the classical definition (see, for example, [CW2]),
in (2.7) the resolvent (I + r2

BL)−1 plays the role of averaging over the ball, and
the power M > [n(2− p)/4p] provides the necessary “L-cancellation”.

Definition 2.5. Given 0 < p ≤ 1 and M > n(2− p)/4p. Let f ∈
(Λ1/p−1,M

L (X))∗. An atomic (p, 2,M)-representation of f is a series f =
∑

j λjaj

where {λj}∞j=0 ∈ `p, each aj is a (p, 2,M)-atom, and the sum converges in L2(X).
Set

Hp
L,at,M (X) := {f : f has an atomic (p, 2,M)-representation},

with the norm given by

‖f‖Hp
L,at,M (X)

= inf
{( ∞∑

j=0

|λj |p
)1/p

: f =
∞∑

j=0

λjaj is an atomic (p, 2,M)-representation
}

.
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The atomic Hardy space Hp
L,at,M (X) is then defined as the completion of

Hp
L,at,M (X) in (Λ1/p−1,M

L (X))∗ with respect to this norm.

In this case the mapping h → ‖h‖Hp
L,at,M (X), 0 < p < 1, is not a norm and

d(h, g) = ‖h − g‖Hp
L,at,M (X) is a quasi-metric. For p = 1, the mapping h →

‖h‖Hp
L,at,M (X) is a norm and H1

L,at,M (X) is a Banach space. It also follows easily
from the above definitions that

Hp
L,at,M2

(X) ⊆ Hp
L,at,M1

(X) (2.8)

whenever 0 < p ≤ 1 and two integers Mi ∈ N , i = 1, 2, with [n(2− p)/4p] ≤ M1 ≤
M2 < ∞. A basic result concerning these spaces is the following proposition.

Proposition 2.6. If an operator L satisfies conditions (H1) and (H2), then
for every 0 < p ≤ 1 and every integer M ∈ N with M > [n(2− p)/4p],

Hp
L,at,M (X) = Hp

L,at,M0
(X),

where M0 = min{M ∈ N : M > [n(2− p)/4p]}.

We next describe the notion of a (p, 2,M, ε)-molecule associated to an operator
L which satisfies (H1)–(H2).

Definition 2.7. Let 0 < p ≤ 1, 0 < ε and M ∈ N . A function m(x) ∈
L2(X) is called a (p, 2,M, ε)-molecule associated to L if there exist a function
b ∈ D(LM ) and a ball B such that

( i ) m = LMb;
( ii ) For every k = 0, 1, 2, . . . , M and j = 0, 1, 2, . . . , there holds

∥∥(r2
BL)kb

∥∥
L2(Uj(B))

≤ r2M
B 2−jεV (2jB)1/2−1/p,

where the annuli Uj(B) were defined in (2.4).

Given any ε > 0 and M ≥ 1, it is clear that every (p, 2,M)-atom is a
(p, 2,M, ε) molecule. We note that if φ ∈ M p,2,M,ε

0 (L) with norm 1, then φ is
a (p, 2,M, ε)-molecule adapted to B0. Conversely, if m is a (p, 2,M, ε)-molecule
adapted to any ball, then m ∈ M p,2,M,ε

0 (L). Moreover, we have the following re-
sult. For its proof, we refer to Theorem 5.1 of [HLMMY] for p = 1, and Section
3 of [DL] for p < 1.
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Proposition 2.8. Suppose 0 < p ≤ 1 and M ≥ [n(2− p)/4p]. If
m is (p, 2,M, ε)-molecule associated to L, then m ∈ Hp

L,at,M (X). Moreover,
‖m‖Hp

L,at,M (X) is independent of m.

We recall the following natural analogue of the Fefferman-Stein duality result
([FS]).

Proposition 2.9. The dual of H1
L,at,M is the space BMOL(X). If 0 < p < 1

and α = 1/p − 1, then for every integer M > [n(2− p)/4p], Λα,M
L (X) is the dual

of Hp
L,at,M (X).

For the proof of Proposition 2.9 when p = 1, we refer the reader to Theo-
rem 2.7 of [HLMMY] where it is proved that the dual of H1

L,at,M is the space
BMOL(X). For p < 1, we refer to Section 3, [DL].

Consequently, from Proposition 2.9 one may write Λα
L(X) in place of Λα,fM

L (X)
when M̃ ∈ N with M̃ > [n(2α + 1)/2] as these spaces are all equivalent, and hence
define

Λα
L(X) := Λα,fM

L (X), M̃ >

[
n(2α + 1)

4

]
.

2.3. A characterization of Hp
L,at,M(X) in terms of square function.

In Section 2.1, the Hardy spaces Hp
L,Sh

(X) were defined for p ≥ 1. Now
consider the case 0 < p < 1. The space Hp

L,Sh
(X) is defined as the completion of

{
f ∈ H2(X) : ‖Shf‖Lp(X) < ∞}

in the norms given by the Lp norm of the square function; i.e.,

‖f‖Hp
L,Sh

(X) = ‖Shf‖Lp(X), 0 < p < 1.

Then the “square function” and “atomic” Hp spaces are equivalent if the param-
eter M > [n(2− p)/4p]. In fact, we have the following result.

Proposition 2.10. Suppose 0 < p ≤ 1 and M > [n(2− p)/4p]. Then we
have Hp

L,at,M (X) = Hp
L,Sh

(X) for 0 < p ≤ 1. Moreover,

‖f‖Hp
L,at,M

≈ ‖f‖Hp
L,Sh

,

where the implicit constants depend only on M , n and N in (1.2) and (1.3) only.
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Proof. For the proof, see Section 3, [DL]. ¤

It follows from Proposition 2.6 that one may write Hp
L,at(X) in place of

Hp
L,at,M (X), when M > [n(2− p)/4p], as these spaces are all equivalent.

Definition 2.11. The Hardy space Hp
L(X), 0 < p ≤ 1, is the space

Hp
L(X) := Hp

L,Sh
(X) = Hp

L,at(X) := Hp
L,at,M (X), M >

[
n(2− p)

4p

]
.

3. A criterion for boundedness of spectral multipliers on Hp
L(X).

As mentioned before, we shall give a criterion that allows us to derive esti-
mates on Hardy spaces Hp

L(X). This generalizes the classical Calderón-Zygmund
theory and we would like to emphasize that the conditions imposed involve the
operator and its action on some functions but not its kernel.

The main result of this section is the following theorem.

Theorem 3.1. Let L be a non-negative self-adjoint operator on L2(X) sat-
isfying the Davies-Gaffney estimate (1.5). Let m be a bounded Borel function.
Suppose that 0 < p ≤ 1 and M > n(2− p)/4p. Assume that there exist constants
D > n(1/p− 1/2) and C > 0 such that for every j = 2, 3 . . . ,

∥∥m(L)(1− e−r2
BL)Mf

∥∥
L2(Uj(B))

≤ C2−jD‖f‖L2(B) (3.1)

for any ball B with radius rB and for all f ∈ L2(X) with supp f ⊂ B. Then the
operator m(L) extends to a bounded operator on Hp

L(X). More precisely, there
exists a constant C > 0 such that for all f ∈ Hp

L(X)

‖m(L)f‖Hp
L(X) ≤ C‖f‖Hp

L(X). (3.2)

Proof. We first note that since Hp
L(X)∩L2(X) is dense in Hp

L(X), we can
define m(L) on Hp

L(X)∩L2(X). Once we can show Hp
L(X) boundedness of m(L)

on this dense set, the operator m(L) can be extended on Hp
L(X).

To prove Theorem 3.1, we claim that there exists a constant ε = D−n(1/p−
1/2) > 0 such that, for every (p, 2, 2M)-atom a associated to a ball B of X,
m(L)a is a constant multiple of a (p, 2,M, ε)-molecule associated to the ball B.
The conclusion of the theorem is then an immediate consequence of Proposition 2.9
and L2-boundedness of m(L).

Let us prove the claim. By the definition of (p, 2, 2M)-atom, there exists a
function b ∈ D(L2M ) such that a = L2Mb satisfies (ii) and (iii) in Definition 2.3.
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By spectral theory, one may write

m(L)a = LM
[
m(L)LMb

]
. (3.3)

From the definition of (p, 2,M, ε)-molecule, it remains to show that for k =
0, 1, . . . , M and for all j = 1, 2, . . . ,

∥∥(
r2
BL

)k[
m(L)LMb

]∥∥
L2(Uj(B))

≤ Cr2M
B 2−jεV (2jB)1/2−1/p. (3.4)

We now prove estimate (3.4). Note that m(L) is bounded on L2(X). For ev-
ery k = 0, 1, . . . , M , it follows from (iii) in Definition 2.3 that ‖LM+kb‖L2(B) ≤
Cr

2(M−k)
B V (B)1/2−1/p. We can write for j = 0, 1, 2,

∥∥(
r2
BL

)k[
m(L)LMb

]∥∥
L2(Uj(B))

≤ r2k
B

∥∥m(L)LM+kb
∥∥

L2(X)

≤ Cr2k
B

∥∥LM+kb
∥∥

L2(B)

≤ Cr2M
B V (B)1/2−1/p.

Assume now that for j ≥ 3. Following (8.7) and (8.8) in [HM], we write

I = 2
(

r−2
B

∫ √
2rB

rB

sds

)
· I

= 2r−2
B

∫ √
2rB

rB

s(I − e−s2L)Mds +
M∑

j=1

Cj,Mr−2
B

∫ √
2rB

rB

se−js2Lds, (3.5)

where Cj,M ∈ R are some constants depending on j, M only. However, ∂se
−js2L =

−2jsLe−js2L and therefore,

2jL

∫ √
2rB

rB

se−js2Lds = e−jr2
BL − e−2jr2

BL = e−jr2
BL(I − e−jr2

BL)

= e−jr2
BL(I − e−r2

BL)
j−1∑

i=0

e−ir2
BL. (3.6)

Applying the procedure outline in (3.5)–(3.6) M times, we have for every x ∈ X,
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(
r2
BL

)k[
m(L)LMb(x)

]

= 2Mr2k
B

(
r−2
B

∫ √
2rB

rB

s(I − e−s2L)Mds

)M

m(L)(LM+kb)(x)

+
M∑

`=1

r
2(k−`)
B L−`(I − e−r2

BL)`

(
r−2
B

∫ √
2rB

rB

s(I − e−s2L)Mds

)M−`

×
(2M−1)`∑

j=1

C(`, j, M)e−jr2
BLm(L)(LM+kb)(x)

=
M∑

`=0

G
(k)
`,M,rB

(x) (3.7)

for some constants C(`, j, M) ∈ R.
Now, let us estimate {G(k)

`,M,rB
}M

`=0 by examining ` in three cases.

Subcase (1.1). ` = 0 and k = 0, 1, 2, . . . , M .

First, we set PM,rB
(L) = r−2

B

∫√2rB

rB
s(I − e−s2L)Mds. From (3.7), we have

G
(k)
0,M,rB

(x) =
∞∑

i=0

2Mr2k
B

∫ √
2rB

rB

(
s

rB

)2

PM−1
M,rB

(L)

× ([
m(L)(1− e−s2L)M (LM+kb)

]
χUi(B)

)
(x)

ds

s
.

It follows from condition (1.5) that the operator PM−1
M,rB

(L) satisfies L2 off-diagonal
estimates, and there exist some constants c, C > 0 such that for every i, j =
0, 1, 2, . . .

∥∥PM−1
M,rB

(L)f
∥∥

L2(Uj(B))
≤ Ce−dist(Uj(B),Ui(B))2/cr2

B‖f‖L2(Ui(B))

≤ Ce−c2|j−i|‖f‖L2(Ui(B)),

where in the last inequality we have used the fact that dist(Uj(B), Ui(B)) ≥
C2|j−i|rB for every j, i ≥ 0. Hence,
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∥∥G
(k)
0,M,rB

∥∥
L2(Uj(B))

≤ 2Mr2k
B

∞∑

i=0

∫ √
2rB

rB

(
s

rB

)2

× ∥∥PM−1
M,rB

(L)
([

m(L)(1− e−s2L)M (LM+kb)
]
χUi(B)

)∥∥
L2(Uj(B))

ds

s

≤ Cr2k
B

∞∑

i=0

e−c2|j−i|
∫ √

2rB

rB

∥∥m(L)(1− e−s2L)M (LM+kb)
∥∥

L2(Ui(B))

ds

s
.

Note that for every s ∈ [rB ,
√

2rB ], we have that U0(B) = B ⊂ B(xB , s) and
Ui(B) ⊂ Ui−1(B(xB , s))∪Ui(B(xB , s)) for i ≥ 1. Those, in combination with the
condition (3.1), give for every s ∈ [rB ,

√
2rB ],

∥∥m(L)(1− e−s2L)M (LM+kb)
∥∥

L2(Ui(B))
≤ C2−iD

∥∥LM+kb
∥∥

L2(B)

≤ C2−iDr
2(M−k)
B V (B)1/2−1/p. (3.8)

From the doubling property (1.2) again, we have that V (2jB) ≤ C2jnV (B). This,
together with (3.8), shows

∥∥G
(k)
0,M,rB

∥∥
L2(Uj(B))

≤ Cr2k
B

∞∑

i=0

e−c2|j−i|
2−iDr

2(M−k)
B V (B)1/2−1/p

≤ Cr2k
B 2−jDr

2(M−k)
B V (B)1/2−1/p

≤ Cr2M
B 2−j(D−n(1/p−1/2))V (2jB)1/2−1/p. (3.9)

Subcase (1.2). ` = M and k = 0, 1, 2, . . . , M . In those cases, one has

∣∣G(k)
M,M,rB

(x)
∣∣

≤ C

(2M−1)M∑
u=1

r
2(k−M)
B

∞∑

i=0

∣∣e−ur2
BL

([
m(L)(I − e−r2

BL)M (Lkb)
]
χUi(B)+

)
(x)

∣∣.

It follows from the condition (1.5) that the operators {e−ur2
BL}(2M−1)M

u=1 satisfy L2

off-diagonal estimate, and then
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∥∥G
(k)
M,M,rB

∥∥
L2(Uj(B))

≤ Cr
2(k−M)
B

∞∑

i=0

e−c2|j−i|∥∥m(L)(I − e−r2
BL)M (Lkb)

∥∥
L2(Ui(B))

≤ Cr
2(k−M)
B

∞∑

i=0

e−c2|j−i|
2−iD‖Lkb‖L2(B)

≤ Cr
2(k−M)
B 2−jDr

2(2M−k)
B V (B)1/2−1/p

≤ Cr2M
B 2−j(D−n(1/p−1/2))V (2jB)1/2−1/p. (3.10)

Subcase (1.3). ` = 1, 2, . . . , M − 1 and k = 0, 1, 2, . . . , M . In those cases,
one has

∣∣G(k)
`,M,rB

(x)
∣∣ ≤ Cr

2(k−M)
B

(2M−1)`∑

j=1

∞∑

i=0

∫ √
2rB

rB

∣∣(r2
BL

)M−`
e−jr2

BL
(
I − e−r2

BL
)`

× PM−`−1
M,rB

(L)
([

m(L)(1− e−s2L)M (Lkb)
]
χUi(B)

)
(x)

∣∣ds

s
.

Then we can use an argument similar to Subcase (1.1) again to obtain

∥∥G
(k)
`,M,rB

∥∥
L2(Uj(B))

≤ Cr2M
B 2−j(D−n(1/p−1/2))V (2jB)1/2−1/p.

This, together with estimates (3.9) and (3.10), gives the desired estimate (3.4).
The proof of Theorem 3.1 is complete. ¤

A natural question about Theorem 3.1 is how strong the assumption (3.1) is,
and its relation with the regularity condition on the kernel.

Proposition 3.2. Let L be a non-negative self-adjoint operator on L2(X)
satisfying the Davies-Gaffney estimate (1.5). Suppose 0 < p ≤ 1 and M >

n(2− p)/4p. Assume that the operator m(L)(I−e−r2
BL)M has an associated kernel

K
m(L)(I−e−r2

B
L)M

(x, y) which satisfies for every j = 2, 3, . . . ,

∫

2jrB≤d(x,y)<2j+1rB

∣∣K
m(L)(I−e−r2

B
L)M

(x, y)
∣∣2dµ(x) ≤ C

2−2jD

V (y, rB)
,

y ∈ X, (3.11)

where D > n(1/p − 1/2). Then m(L)(I − e−r2
BL)M satisfies condition (3.1) of



310 X. T. Duong and L. Yan

Theorem 3.1. More precisely, there exists a constant C > 0 such that for every
j = 2, 3 . . . ,

∥∥m(L)(1− e−r2
BL)Mf

∥∥
L2(Uj(B))

≤ C2−jD‖f‖L2(B)

for any ball B with radius rB and for all f ∈ L2(X) with supp f ⊂ B.

Proof. Let f ∈ L2(X) with supp f ⊂ B. Note that for every y ∈ B, we
have that V (y, rB) ∼ V (xB , rB). The Cauchy-Schwarz inequality, together with
the condition (3.11), gives for every j = 2, 3, . . . ,

∥∥m(L)(I − e−r2
BL)Mf

∥∥
L2(Uj(B))

=
{ ∫

Uj(B)

∣∣∣∣
∫

B

K
m(L)(I−e−r2

B
L)M

(x, y)f(y)dµ(y)
∣∣∣∣
2

dµ(x)
}1/2

≤ ‖f‖L2(B)

{ ∫

B

∫

2j−2rB≤d(x,y)<2j+1rB

∣∣K
m(L)(I−e−r2

B
L)M

(x, y)
∣∣2dµ(x)dµ(y)

}1/2

≤ C‖f‖L2(B)

0∑

i=−2

2−(j−i)D

{ ∫

B

V (y, rB)−1dµ(y)
}1/2

≤ C2−jD‖f‖L2(B).

This proves Proposition 3.2. ¤

4. Proof of Theorem 1.1.

Let L be an operator satisfying (H1)–(H2). Recall that, if L is a non-negative,
self-adjoint operator on L2(X), and EL(λ) denotes its spectral decomposition,
then for every bounded Borel function F : [0,∞) → C, one defines the operator
F (L) : L2(X) → L2(X) by the formula

F (L) :=
∫ ∞

0

F (λ)dEL(λ). (4.1)

In particular, the operator cos(t
√

L) is then well-defined on L2(X). Moreover, it
follows from Theorem 3.4 of [CS] that there exists a constant c0 such that the
Schwartz kernel Kcos(t

√
L) of cos(t

√
L) satisfies
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suppKcos(t
√

L)(x, y) ⊂ {
(x, y) ∈ X ×X : d(x, y) ≤ c0t

}
. (4.2)

More precisely, we have the following result.

Proposition 4.1. Let L be a non-negative self-adjoint operator acting on
L2(X). Then the finite speed propagation property (4.2) and Davies-Gaffney esti-
mate (1.5) are equivalent.

Proof. For the proof, we refer the reader to Theorem 2 in [S2] and Theo-
rem 3.4 in [CS]. See also [CGT] and [T]. ¤

By the Fourier inversion formula, whenever F is an even bounded Borel func-
tion with F̂ ∈ L1(R), we can represent F (

√
L) in terms of cos(t

√
L). More

specifically, by recalling (4.1) we have

F (
√

L) = (2π)−1

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt,

which, when combined with (4.2), gives

KF (
√

L)(x, y) = (2π)−1

∫

|t|≥c−1
0 d(x,y)

F̂ (t)Kcos(t
√

L)(x, y) dt, (4.3)

which will be often used in the sequel.

Proof of Theorem 1.1. We begin to prove Theorem 1.1 by using The-
orem 3.1. Observe that m satisfies the condition (1.7) if and only if the function
λ → m(λ2) satisfies the same property. For this reason, we shall consider m(

√
L)

rather than m(L). Notice that m(λ) = m(λ)−m(0) + m(0) and hence

m
(√

L
)

= (m(·)−m(0))
(√

L
)

+ m(0)I.

Replacing m by m−m(0), we may assume in the sequel that m(0) = 0. Let φ be
a function as in (1.6). We have for all λ > 0,

m(λ) =
∞∑

`=−∞
φ(2−`λ)m(λ) =

∞∑

`=−∞
m`(λ). (4.4)

This decomposition implies that the sequence
∑N

`=−N m`(
√

L) converges strongly
in L2(X) to m(

√
L). We shall prove that

∑N
`=−N m`(

√
L) is bounded on Hp

L(X)
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with its bound independent of N . This together with the strong convergence in
L2(X) and the fact that Hp

L(X) ∩ L2(X) is dense in Hp
L(X) imply the theorem.

We now fix s > n(1/p − 1/2) in Theorem 1.1 and let M ∈ N such that
M > s/2. For every ` ∈ Z and r > 0, we set for λ > 0

Fr,M (λ) = m(λ)(1− e−(rλ)2)M , (4.5)

F `
r,M (λ) = m`(λ)(1− e−(rλ)2)M . (4.6)

We may write

m
(√

L
)
(1− e−r2L)M = Fr,M

(√
L

)
= lim

N→∞

N∑

`=−N

F `
r,M

(√
L

)
. (4.7)

Fix a ball B ⊂ X. For every b ∈ L2(X) with supp b ∈ B, we claim that for every
` ∈ Z and every j ≥ 3,

∥∥F `
rB ,M

(√
L

)
b
∥∥

L2(Uj(B))
≤ CCφ,s2−sj

(
2`rB

)−s min
{
1, (2`rB)2M

}‖b‖L2(B). (4.8)

This, in combination with (4.7), shows that for every j ≥ 3,

∥∥m
(√

L
)
(1− e−r2

BL)Mb
∥∥

L2(Uj(B))

≤ CCφ,s2−sj lim
N→∞

N∑

`=−N

(
2`rB

)−s min
{
1, (2`rB)2M

}‖b‖L2(B)

≤ CCφ,s2−sj

( ∑

`: 2`rB>1

(
2`rB

)−s +
∑

`: 2`rB≤1

(
2`rB

)2M−s
)
‖b‖L2(B)

≤ CCφ,s2−sj‖b‖L2(B) (4.9)

since s > n(1/p − 1/2) and M > s/2. We note that the last inequality follows
from the convergence of power series with common ratio 1/2.

Thus, the assumptions of Theorem 3.1 are satisfied, and the conclusion of
Theorem 1.1 is obtained.

It remains to prove our claim (4.8). First, we record a useful auxiliary result.
For a proof, see pp. 237–238 in [H] (see also [A]).

Lemma 4.2. Assume that the function f ∈ Ck(R) with compact support.
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Let A = k + ε with ε ∈ (0, 1) and

DA(f) = sup
{ |f (k)(t + h)− f (k)(t)|

hε
: h > 0, t ∈ R

}
.

Then for every λ > 0 there is an even bounded integrable function ψλ ∈ C(R) such
that for all t ∈ R

supp(ψ̂λ) ⊆ [−λ, λ] and
∣∣f(t)− (f ∗ ψλ)(t)

∣∣ ≤ CDA(f)λ−A,

where C is a constant that depends only on k.

Back to the proof of estimate (4.8). In the sequel, without loss of
generality we assume that the constant c0 in (4.2) equals 1, i.e., c0 = 1. From the
compact support property of φ, it follows that for every ` ∈ Z, suppF `

rB ,M (λ) ⊆
(2`−2, 2`). Fix ` ∈ Z. For each j, let λj = 2j−1rB and use Lemma 4.2 with
f = F `

rB ,M and k = [n(1/p−1/2)]. This insures the existence of an even, bounded,
integrable function ψj ∈ C(R) such that supp(ψ̂j) ⊆ [−2j−1rB , 2j−1rB ], and for
all λ ∈ R,

F `,j
rB ,M (λ) = F `

rB ,M (λ)− (
F `

rB ,M ∗ ψj

)
(λ)

satisfying

∣∣F `,j
rB ,M (λ)

∣∣ ≤ CDs

(
F `

rB ,M (t)
) · (2jrB

)−s

≤ CCφ,s2−sj min
{
1, (2`rB)2M

}(
2`rB

)−s
. (4.10)

Observe that the Fourier transforms of F `,j
rB ,M (λ) and F `

rB ,M (λ) agree on {ξ ∈ R :
|ξ| ≥ 2j−1rB}. From this and (4.3), it follows that the kernels of F `

rB ,M (
√

L) and
F `,j

rB ,M (
√

L) agree on the set {(x, y) : d(x, y) ≥ 2j−1rB}. Hence, for each j, we
have

∥∥F `
rB ,M

(√
L

)
b
∥∥

L2(Uj(B))
=

∥∥F `,j
rB ,M

(√
L

)
b
∥∥

L2(Uj(B))

≤ ∥∥F `,j
rB ,M

∥∥
L∞(R)

‖b‖L2(B)

≤ CCφ,s2−sj
(
2`rB

)−s min
{
1, (2`rB)2M

}‖b‖L2(B).
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This proves our claim (4.8). Hence, the proof of Theorem 1.1 is complete. ¤

In the next corollary, we give endpoint estimates for imaginary powers of
self-adjoint operators on Hardy spaces Hp

L(X).

Corollary 4.3. Let L be a non-negative self-adjoint operator on L2(X)
satisfying the Davies-Gaffney estimate (1.5). Then for every γ ∈ R, the operator
Liγ is bounded on Hp

L(X) with the norm

‖Liγ‖Hp
L(X)→Hp

L(X) ≤ Cε(1 + |γ|)n(1/p−1/2)+ε (4.11)

for every ε > 0, and Cε is a constant independent of γ.

Hence by interpolation and duality, Liγ extends to a bounded operator on
Hp

L(X) for all 0 < p < ∞.

Proof. We apply Theorem 1.1 with m(λ) = λiγ . It can be verified that
for s > n(1/p− 1/2),

sup
t>0

‖φ(·)m(t·)‖Cs ≤ C(1 + |γ|)s.

Then the operator Liγ is bounded on Hp
L(X) with

‖Liγ‖Hp
L(X)→Hp

L(X) ≤ Cε(1 + |γ|)n(1/p−1/2)+ε (4.12)

for all ε > 0. This and fact that ‖Liγ‖L2(X)→L2(X) ≤ 1 imply by the Marcinkiewicz
interpolation theorem that Liγ extends to a bounded operator on Hp

L(X) for all
0 < p < ∞ with norm bounded by Cp,ε. This proves Corollary 4.3. ¤

5. Spectral multipliers and weights.

In this section we shall study weighted norm inequalities for spectral multipli-
ers associated to non-negative self-adjoint operators, under off-diagonal estimates
on the semigroup {e−tL}t>0. First, let us review some classical classes of weights.
A weight w is a non-negative locally integrable function. We say that w ∈ Ap,
1 < p < ∞, if there exists a constant C such that for every ball B ⊂ X

(
1
|B|

∫

B

w(x)dx

)(
1
|B|

∫

B

w1−p′(x)dx

)p−1

≤ C.
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The reverse Hölder classes are defined in the following way: w ∈ RHq, 1 < q < ∞,
if there is a constant C such that for every ball B ⊂ X

(
1
|B|

∫

B

wq(x)dx

)1/q

≤ C

(
1
|B|

∫

B

w(x)dx

)
.

5.1. Singular integrals and weights.
The following theorem is Theorem 3.7, [AM].

Theorem 5.1. Let 1 ≤ p0 < q0 ≤ ∞. Let T be a sublinear operator acting
on Lp0(X), {Ar}r>0 a family of operators acting from a subspace D of Lp0(X)
into Lp0(X). Assume that

(
1

V (B)

∫

B

∣∣T (I −ArB
)f

∣∣p0
dµ

)1/p0

≤
∑

j≥0

αj

(
1

V (2jB)

∫

2jB

|f |p0dµ

)1/p0

(5.1)

and

(
1

V (B)

∫

B

∣∣TArB
f
∣∣q0

dµ

)1/q0

≤
∑

j≥0

αj

(
1

V (2jB)

∫

2jB

|Tf |p0dµ

)1/p0

(5.2)

for all f ∈ D , and all ball B with radius rB, for some αj with
∑

j≥0 αj < ∞.
Then for all p0 < p < q0 and w ∈ Ap/p0 ∩ RH(q0/p)′ , there exists a constant C

such that

‖Tf‖Lp(w) ≤ C‖f‖Lp(w). (5.3)

Note that if w is any given weight so that w, w1−p′ ∈ L1
loc(X), then a given

linear operator T is bounded on Lp(w), 1 < p < ∞, if and only if its adjoint T ∗

(with respect to dµ) is bounded on Lp(w1−p′). Therefore,

T : Lp(w) → Lp(w), for all w ∈ Ap/p0 ∩RH(q0/p)′

if and only if

T ∗ : Lp′(w) → Lp′(w), for all w ∈ Ap′/q′0 ∩RH(p′0/p′)′ .
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5.2. Spectral multipliers, off-diagonal estimates and weights.
In this section, we assume the following condition.

(H3) Suppose 2 < q0 ≤ ∞. Assume that the analytic semigroup e−tL gener-
ated by L satisfies L2-Lq0 off-diagonal estimates: there exist coefficients {αj}j≥0

satisfying
∑

j≥0 αj < ∞ such that, for all balls B and for all function f ∈ L2(X),

(
1

V (B)

∫

B

∣∣e−r2
BL(f)

∣∣q0
dµ

)1/q0

≤
∑

j≥0

αj

(
1

V (2jB)

∫

2jB

∣∣f ∣∣2dµ

)1/2

. (5.4)

Then the following result holds.

Theorem 5.2. Let L be a non-negative self-adjoint operator on L2(X) sat-
isfying the Davies-Gaffney estimate (1.5) and assumption (H3). Let φ be a non-
negative C∞0 function satisfying (1.6), and assume that the bounded measurable
function m : [0,∞] → C satisfies

Cφ,s = sup
t>0

‖φ(·)m(t·)‖Cs + |m(0)| < ∞ (5.5)

for some s > n/2.

( i ) If q′0 < p < 2 and w ∈ Ap/q′0 ∩RH(2/p)′ ; or
( ii ) 2 < p < q0 and w ∈ Ap/2 ∩RH(q0/p)′ ,

then there exists a constant C such that

‖m(L)f‖Lp(w) ≤ C‖f‖Lp(w). (5.6)

Proof. We first note that (ii) can be obtained from (i) by a standard
duality argument. To prove (i), let us fix a p such that 2 < p < q0 and w ∈
Ap/2∩RH(q0/p)′ . Estimate (5.6) follows from Theorem 5.1, applied to Tf = m(L)f
and Ar = I−(I−e−r2L)M with M ∈ N and M > s/2. Note first that assumption
(H3) implies condition (5.2). To verify (5.1), it suffices to show that there exist
coefficients {αj}j≥0 satisfying

∑
j≥0 αj < ∞ such that for all balls B,

(
1

V (B)

∫

B

∣∣m(√
L

)
(I− e−r2

BL)Mf(y)
∣∣2dy

)1/2

≤
∑

j≥0

αj

(
1

V (2jB)

∫

2jB

|f |2dµ

)1/2

(5.7)

for all f ∈ L∞c (X) (i.e. bounded with compact support).
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The proof of (5.7) is almost identical to the one of Theorem 1.1. For any ball
B, we shall use the following decomposition

f =
∑

j≥0

fj , fj = fχUj(B),

where Uj(B) were defined in (2.4). Note that s > n/2 and M > s/2. We use an
argument in estimates (4.6), (4.7), (4.8) and (4.9) in the proof of Theorem 1.1 to
obtain

(
1

V (B)

∫

B

∣∣m(√
L

)
(I − e−r2

BL)Mf(y)
∣∣2dy

)1/2

≤ V (B)−1/2
∑

j≥0

∥∥m
(√

L
)
(I − e−r2

BL)Mfj

∥∥
L2(B)

≤ CCφ,sV (B)−1/2
∑

j≥0

2−sj

( ∑

`

(
2`rB

)−s min
{
1, (2`rB)2M

})
‖fj‖L2(X)

≤ C
∑

j≥0

2−sj

(
V (2j+1B)

V (B)

)1/2( 1
V (2j+1B)

∫

2j+1B

|f |2dµ

)1/2

≤ C
∑

j≥0

2−(s−n/2)j

(
1

V (2jB)

∫

2jB

|f |2dµ

)1/2

.

The desired estimate (5.7) is obtained for αj = 2−(s−n/2)j with
∑

j≥0 2−(s−n/2)j <

∞. This concludes the proof of Theorem 5.1. ¤
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