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Abstract. A sublinear elliptic equation whose coefficient is singular on
the boundary is studied in any bounded domain 2 under the zero Dirichlet
boundary condition. It is proved that the equation has a unique positive
solution and infinitely many sign-changing solutions which belong to C* (ﬁ)
or C%(Q). Moreover, it is proved that the solutions have the higher order
regularity corresponding to the smoothness of the coefficient.

1. Introduction.

We study the existence of positive solutions and infinitely many solutions
without positivity for the sublinear elliptic equation under the Dirichlet condition,

—Au = h(x)|uP sgnu in Q,

(1.1)
u=0 on 0f.

Here 2 is a bounded domain in RY with smooth boundary 9 and the nonlinear
term is sublinear, i.e., 0 < p < 1 and h(x) is a measurable function in . We
study (1.1) when h(x) has singularity on the boundary. However, we expect the
existence of regular solutions of class C1(Q2) or C?(Q). The coefficient h(x) may
diverge to oo as z tends to the boundary but u(z) converges to zero owing to the
Dirichlet boundary condition. Then h(z)|u|P sgnu can be bounded or may belong
to a suitable L4(2) or to a Holder space. Accordingly, a solution lies in C*(Q) or
C?(Q). A study in this direction has been obtained by Senba, Ebihara and Furusho
[11] and by Hashimoto and Otani [6], [7]. They studied the problem in the case
where 2 = B is a unit ball and h(z) has a power singularity h(z) = (1 — |x|)~*.
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Then they proved the existence of positive radial solutions in C?(B) N C!(B). In
this case, (1.1) is reduced to the two point boundary value problem of the ordinary
differential equation. However, in this paper, we consider any bounded domain
with a general coefficient h(x). Then we prove the existence of positive solutions
and infinitely many solutions without positivity.

We sketch our idea to get results. We observe that a positive solution, if exists,
behaves like p(z) near the boundary. Here p(x) is a distance function defined by,

p(x) = dist(z, 0Q) = inf{|x — y| : y € IN}. (1.2)

In the right-hand side of the first equation in (1.1), we substitute p(x) instead of
u(x) and consider the equation

—Au = h(z)p(z)? in Q, (1.3)

with the zero Dirichlet boundary condition. By the regularity theorem of ellip-
tic equation, if the right-hand side of (1.3) lies in L(Q2) or in C?(Q), then the
solution belongs to W24(Q) or to C*?(Q), respectively. We prove that this as-
sertion is valid for (1.1) also. Indeed, we show that the condition hp? € LI(£2) or
hpP € C? () is necessary and sufficient for the existence and uniqueness of positive
solutions for (1.1) belonging to W24(2) or to C%(Q), respectively. Furthermore,
we prove the existence of infinitely many sign-changing solutions and obtain the
higher order regularity up to the C*°-regularity of a positive solution. Our tools
are mountain pass lemma and symmetric mountain pass lemma with the elliptic
regularity theorem.

This paper is organized into five sections. In Section 2, we state the main
results. In Section 3, we prove the existence and uniqueness of positive solutions.
In Section 4, we show the existence of infinitely many solutions without positivity.
In Section 5, we prove the C? or higher order regularity of solutions.

2. Main results.

In this section, we state main results. We assume that 92 is sufficiently
smooth. The exact definition of the smoothness will be stated in Section 5. We
first introduce two assumptions below.

(h1) Let h(z) be a measurable function in  such that
meas{z € Q: h(z) >0} >0, (2.1)

where meas(A) denotes the RY-Lebesgue measure of A.
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(h2) Suppose that h(z) > 0 a.e. in Q.

Under the assumption (hl) without (h2), we allow h(x) to change its sign in Q.
We denote by W™ 1(Q) the Sobolev space which consists of all v € L(f2) such
that all the distributional derivatives up to order m lie in L9(€2). Let W (Q)
denote the closure of C§°(Q) in W™4(Q). We call u a W24(Q)-solution if u €
W24(Q) N Wy Q) and it satisfies (1.1) in the distribution sense (hence satisfies
(1.1) a.e. in ). Define p(z) by (1.2) and let 0 < p < 1. We obtain a positive
solution and infinitely many solutions in a Sobolev space as below.

THEOREM 2.1.

(i) Suppose that (hl) holds and let hp? € L1(QY) with a certain ¢ > N. Then
(1.1) has a non-negative non-trivial W*4(Q)-solution.

(ii) Suppose that (hl) and (h2) hold and let ¢ > N. Then (1.1) has a unique
positive W24(Q)-solution if and only if hp? € L1(Q).

THEOREM 2.2.  Suppose that (h1) holds and let hp? € Li(Q) with a certain
q > N. Then (1.1) has a sequence {uy} of non-trivial W24(Q)-solutions whose
W24(Q))-norm converges to zero as k — oo.

REMARK 2.3. The assumption hp? € L(Q) allows h(z) to have singularity
on the boundary of Q because p =0 on 9. In Theorem 2.1(i), the uniqueness of
non-negative non-trivial solutions does not hold. Indeed, there is an example of
h(z) satisfying (h1) and hp? € L9(£2) but (1.1) has many non-negative non-trivial
solutions.

REMARK 2.4. The W?29(Q)-solutions obtained by Theorems 2.1 and 2.2
belong to C*(€2) because ¢ > N. Hashimoto and Otani [7] studied (1.1) when
is a unit ball B and h(xz) = (1 — |z|)~*. They proved that (1.1) has a radially
symmetric positive solution in C?(B)NC*(B) if 0 < a < p+1 and in C%(B)NC?(B)
with all @ € (0,(2—a)/(1—p))ifp+1<a<(p+1)/2+1. We see that Theorem
2.1 gives the same result as Hashimoto and Otani’s one for 0 < a < p+ 1. Indeed,
since 2 = B, p(x) is equal to 1 — |z|. Then the condition hp? € L(B) with a
certain ¢ > N is equivalent to a < p + 1. Therefore Theorem 2.1(ii) provides a
unique positive radial solution u(r) in W24(B), and hence in C'(B). Moreover,
u(r) belongs to C%(B) because h(r) € C[0,1) and u(r) is a solution of the ordinary
differential equation

-1
W P = 0, 1in (0,1).
r

We emphasize that our theorem is applicable to any bounded domain and to
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any coefficient h(z). Moreover, Theorem 2.1(ii) guarantees that our condition
hpP € L1(Q) is necessary and sufficient for a positive solution to exist uniquely in

W24(Q) N Wy ().

In Theorems 2.1 and 2.2, we have already obtained the W?4(Q)-solutions,
which are in C'(Q). Now we consider the C?(Q) regularity of solutions. Let
C?(Q)) denote the set of the Holder continuous functions on © with exponent 6.
We define C™%(Q) by the set of m times continuously differentiable functions
whose m-th order derivatives belong to C?(Q). Although h(z) is not defined on
09, we use the assumption hp? € C%(Q)) in the next theorem. This means that
hpP is continuous in  and can be extended on Q as a Holder continuous function
with exponent 6.

THEOREM 2.5.  Suppose that hp? € C%(Q) with a certain 6 € (0,1). Then
any W%4(Q)-solution with ¢ > N belongs to C%(2) with o = min(6, p).

Note that if 9 is smooth, then p(x) is also smooth near the boundary but it
is not differentiable at some points in . Indeed, p(z) is not differentiable at the
center of the maximal ball that is included in Q. To get the C°°(Q)-regularity of a
positive solution, instead of p(x), we employ an auxiliary function o(x) such that

_ 0
ceC™(Q), o>0inQ, o=0, 870 < 0 on 9. (2.2)
v

Here 9/0v denotes the outward normal derivative. It is well known that if 92 is
smooth enough, (2.2) is fulfilled by the solution e(x) of the equation,

—Ae=1inQ, e=0 on J9. (2.3)

THEOREM 2.6.  Suppose that (h1) and (h2) hold and o(x) satisfies (2.2).
Then there exists a unique positive solution in C™T29(Q) if and only if ho(z)?
is in C™%(Q). Especially, if 0 is of C* and he(x)P € C>(Q), then there is a
unique positive solution in C>°(€2).

REMARK 2.7. The condition ho(z)? € C™%(Q)) depends only on h(x) and
does not on the choice of o(z). Indeed, in Lemma 5.9, it will be proved that if oy
and o9 satisfy (2.2), then hot € C™9(Q)) is equivalent to hal € C™%(Q).

REMARK 2.8. Although Theorem 2.5 is valid for all solutions, Theorem
2.6 holds for a positive solution only and is not valid for sign-changing solutions.
Indeed, the assumption ho? € C19(Q2) does not guarantee the conclusion that a
sign-changing solution belongs to C3f(Q2). To see it, let N = 1 and = (0,1).
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Then (1.1) is rewritten as

"

—u" = h(x)lulPsgnu in (0,1), (2.4)

with ©(0) = u(1) = 0. We solve (2.3) with N =1 to get e(z) = (z — 2?)/2. We
define

Then h(z)e(z)? =1 € C*[0,1]. Because of Theorem 2.2 with Theorem 2.1(ii),
Problem (2.4) has a sign-changing solution u(x), which has an interior zero z.
Then u'(z) # 0. Indeed, if v/(z) = 0, then u = 0 on [0, 1]. This assertion, which
will be proved in Lemma 2.9, is not evident because the nonlinear term of (2.4)
is not Lipschitz continuous at u = 0. Since u(z) = 0, v/(z) # 0 and 0 < p < 1,
the right-hand side of (2.4) is not differentiable at z. Hence u does not belong to
3o, 1].

In the next lemma, we show that u(z) = «/(z) = 0 implies u = 0.

LEMMA 2.9. Let h(z) = ((z—2%)/2)7P and u be a solution of (2.4) in (0,1).
If u(z) = u/'(2) = 0 at some z € (0,1), then u identically vanishes.

PROOF. We define the energy,

1 1
E(z) = 51/(93)2 + mh(zﬂu(@\pﬂv
which has a derivative
() = —— I (@)lu(z)"+. (2.5)
p+1

Let a and b satisfy 0 < a < z < b < 1. Then there is a C > 0 such that
|h/(2)] < Ch(z) in [a,b]. Integrating (2.5) over (z,z) and using E(z) = 0, we get

E(x) = /m(p+ DR (8)[ul* dt

<¢ [+ noltia e [ B
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The Gronwall inequality shows E(x) < 0 on [z,b], and hence u(z) = 0 on [z,b].
Similarly, we see u(xz) = 0 on [a, z]. Since a and b are arbitrary, u = 0 on (0,1). O

ExXAMPLE 2.10. We give an example of h(z) satisfying the assumptions of
theorems. Let h(z) = e(z) *g(x), where 0 < o < p and g(x) satisfies (2.1). If
g # 0 on 09, then h(z) has a singularity on 9. If g € LI(R), g € C’(Q) or

g(x) € C*(Q) with o = p, then h(z) satisfies the assumption of Theorem 2.1, 2.5
or 2.6, respectively.

3. Positive solution.

In this section, we prove Theorem 2.1. Denote the L?(€)-norm by || - ||, and
the W24(Q)-norm by || - ||z, and the C*(Q)-norm by || - o1 We begin with
elementary but important inequalities.

LEMMA 3.1.

(i) If u € CY(Q) with uw=0 on 9N, then
u(@)| < [IVulloop(z) in Q. (3.1)
(ii) For any g > N, there is a positive constant a(q) such that
u(@)] < a(g)||ull2,q p(x), (3.2)

for z € Q and u € W9(Q) N W,9(Q).
(iii) For 1 < q < oo, there is a constant b(q) > 0 such that

[ull2,q < b(g)l|Aullg, (3.3)

for u e W9(Q) N W, Q).

Proor. Fix z € Q arbitrarily. Let r be the radius of the maximal ball
centered at z that is included in 2. Then B(z,r) C Q and p(z) = r. Hereafter,
B(z,r) denotes the ball centered at x with radius . Choose a point £ on dB(z,7)N
o). Put v(t) = u(te + (1 — ¢)€). Then v(0) = u(¢) = 0, v(1) = u(z) and
|x — &| = p(x). Therefore we have

1 1
u(z) = /0 V' (t)dt = /0 Vu(tr + (1 —t)§) - (x — &)dt,

which is estimated as
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u(@)] < [[Vulloolx — & = [[Vullsop()-

Thus we have (3.1). Let ¢ > N. By the Sobolev imbedding, we have a constant
a(g) > 0 such that [Jul[c1 @) < a(q)l|ull2,q- Then (3.1) leads to (3.2). The assertion
(iii) is a well known elliptic regularity theorem. O

To prove Theorems 2.1 and 2.2, we need the next proposition.

PROPOSITION 3.2.  Let h € L}, (Q) satisfy (2.1) and let ¢ > 0. Then there

loc

exist § > 0 and a sequence {¢p,}52, C C§°(Q) such that ¢, > 0, each support of
On s compact and included in Q\ Qs, the supports of ¢, and ¢, are disjoint for
n#m and

/h¢%dm>0 forn e N.
Q

Here Q5 is defined by
Qs = {z € Q: dist(x,00) < §}. (3.4)

The proof of the proposition above is based on the lemma below.

LEMMA 3.3.  Let D be an open subset of RN and let h € L*(D) satisfy (2.1)
with Q replaced by D. Then for any q > 0, there exists a non-negative function
¢ € C§°(D) satisfying

/ héldz > 0 (3.5)
D
ProOF. Note that h(z) may change its sign in D. Put
1 .
AE{xGD:§<h(x)<6} with 6 > 0.

We fix § > 0 so small that meas(A) > 0. Define u(z) = h(z) on A and u(z) =0
in D\ A. Since u € L*®(D), we have a sequence {u,} C C§°(D) such that
0 <wu, <1/6in D, u, converges to u(z) a.e. in D and strongly in LP(D) for any
p € [1,00). Then the integral of hul over D \ A converges to zero because of the
Lebesgue convergence theorem. Hence
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/ hul dx —>/ h(z)tdz > 0.
D A

Thus we can fix n so large that u,, satisfies (3.5). The proof is complete. g

PROOF OF PROPOSITION 3.2. Let h € Li (Q) satisfy (2.1). Then we
choose a § > 0 so small that

meas{z € Q\ Qs : h(z) >0} > 0, (3.6)

where Qs is defined by (3.4). We claim the existence of {D,,}52 ; such that each
D,, is an open subset of Q\ Qs and D, N D,, =0 if n # m and the set of z € D,,
satisfying h(z) > 0 has a positive Lebesgue measure. This claim seems to be
known, but for the sake of completeness, we give a proof. By (3.6), there exists a
small ball B(zg,e) in 2\ Qs such that the set of x € B(x, €) satisfying h(x) > 0
has a positive Lebesgue measure. We put, for 0 <r < ¢

g(r) = / ht(z)dz, h'(x) = max(h(z),0).
B(zo,r)

Then g(¢) > 0. Choose a strictly increasing sequence {a, }52; such that

0<a; <ag <---< lim a, <g(e).
n—oo
Since ¢(r) is continuous, there exists an r, satisfying ¢g(r,) = a,. Then {r,} is
strictly increasing and bounded from above by €. Put D,, = B(zo, rn+1)\B(x0,7n)-
Then it is easy to verify that {D,}52 satisfy our claim. Choose ¢, € C5°(D,,)
by Lemma 3.3. This completes the proof. O

The uniqueness of positive solutions for a sublinear elliptic equation has al-
ready been proved by Brezis and Oswald [3]. However, since h(x) has a singularity
on 0N, their result is not applicable to our problem. To get the uniqueness, we
show the comparison theorem for positive solutions. To this end, we define a
supersolution and a subsolution of the equation

—Au = hlu|Psgnu in D, (3.7)
where D is a bounded open subset of RY. We put

Coo (D) ={p e C3°(D): 6 > 0},
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For u € L}, (D) satisfying hl|ul? € L},.(D), we call u a weak subsolution of (3.7) if

loc
/ (uA¢ + hlulP(sgnu)gp)dz > 0 for any ¢ € C3°(D)". (3.8)
D

We define a weak supersolution by the reverse inequality.

LEMMA 3.4. Let D be a bounded open subset of RN and h(x) be a non-
negative measurable function in D. Suppose that u,v € C(D), u,v > 0 in D,
hu? hv? € LY(D), u and v are a weak subsolution and a weak supersolution of
(3.7), respectively. If u <wv on 0D, then u <wv in D.

PROOF. Suppose that © < v on dD but u > v at some points in D. Then

E={zeD:ulx)>v(x)}#0. (3.9)

We use the same argument as in the proof of our result [9, Theorem 2.2]. Choose
a function J € C§°(RY) such that J(z) > 0 and

supp J C {x : |z| < 1}, / J(x)dzr = 1.
RN

Hereafter supp J denotes the support of J. To use a mollifier, we put J.(z) =
e~NJ(x/e) for € > 0. Denote the convolution of u and v by u*v. Put u. = J. *u
and v = J; ¥ v. Since u and v are a weak subsolution and a weak supersolution,
we have

—Au, < Jox f(r,u), —Ave > J.x f(,v), in D(e), (3.10)
where
f(z,s) = h(x)s?, D(e)={z € D :dist(z,0D) > ¢}.
For §,¢ > 0, we define
E(d,e) ={x € D(e) : uc(x) > ve(x) + d}.
By (3.9), there is a 69 > 0 such that E(d,g) # () for 6, € (0,80). If OE(d,¢) is not
smooth, by the Sard theorem we construct an approximate sequence F,(, €) with

smooth boundary. For the rigorous proof, we refer the readers to [9]. We suppose
that OFE(d,¢) is sufficiently smooth. Fix 6 € (0,dp) arbitrarily. Since u < v on
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0D, we choose gg € (0,dp) so small that ue — v. < §/2 on dD(e) for e € (0,e0).

Hence €y depends on . Fix € € (0,&¢) arbitrarily. Then dE(d,e) N dD(e) = 0.
This means

Ve = Ue — 0,

0
— — > . .
ey (ve —ue) >0 on OE(0,¢) (3.11)

Here 0/0v denotes the outward normal derivative. By (3.10), we get

/ (ueAve — veAug)dx < / ((Je * f( u))ve = (Je * f(-,0)ue)da. (3.12)
E(5,¢) E(d,e)

Since OE(4,¢) is smooth, we use the Green formula with (3.11) to get

/ (ueAve — veAug)dx
E(d,e)

:/ ua(ave —8u5>d8+5 auEds
OE(5,¢) ov ov OE(8,e) ov

>4 Au.dz > =6 Jo x f(-,u)dx
E(5,¢) E(6,¢)

> =0l f(-,u)ll 1 (py-

This inequality with (3.12) yields

o1y < / (e F(ruve — Je # F(0)us) da

E(,e)

Letting € — 04 and then § — 0+, we have

/ h(z)(uPv — uvP)dx > 0.
E

Since u >v >0, h >0in E and 0 < p < 1, it follows that h =0 in E. Then (3.8)
is reduced to

/ ulA¢pdx > 0, / vApdr <0,
E E

for ¢ € C§°(E)*t. Then u and v are called weakly subharmonic and weakly
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superharmonic in F, respectively. For such functions, the comparison theorem
holds (see [5, p. 23, p. 29]). Since u = v on OF, we get u < v in E. This contradicts
the definition of E. Consequently, we conclude that « < v in D if u <wvon dD. O

PROOF OF THEOREM 2.1. For each n € N, we define

n it h(z) >mn,
hn(z) =< h(z) if —n<h(x) <n, (3.13)
—n if h(z) < —n.

Then h,, € L>(Q). For u € H}(Q), we define

I,(u) = /Q (;|Vu|2 - p}rlhn(:c)|u|f’+1>dx. (3.14)

By the standard argument, we verify that I,,(-) is a C'-functional on H}(Q) and
satisfies the Palais-Smale condition. Since |h,(x)| < n, we have

1 n
I,(u) > = 2 _
() 2 5Iullf ~ 2

CPHY| Va5, (3.15)
where we have used the imbedding, ||u,+1 < C||Vull2. By (3.15) with 0 < p < 1,
I,,(u) is bounded from below. Therefore I,,(u) has a minimizer u,, € H}(Q) and
it becomes a critical point of I, i.e.,

I;L(un) =0, In(un) = ue%i(}r(lﬂ) In(u)-

Since |u,| € H(f) is also a minimizer, we rewrite |u,| as w,. Then u, is a
non-negative critical point, i.e., it is a non-negative weak solution of (1.1) with
h = h,,. Since h,, € L*>(Q), by the bootstrap argument with the elliptic regularity
theorem, we verify that u, belongs to W27 (Q) N Wy () for any r € [1,00). In
particular, u, € W29(Q) N Wol’q(ﬂ). We shall show a priori upper estimate for
I,,(u,). Note that h € L} () because hp? € L(Q). By Proposition 3.2 with
g = p+ 1, we take a non-negative function ¢; € C§°(€2) such that the integral
of hqﬁf“ over () is positive. By the Lebesgue convergence theorem, we choose an

ng € N such that

1
/ hn¢117+1d$ > */ hgbzfﬂdx >0 for n > ng.
Q 2 Q
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Then for ¢ > 0 and n > ng, we have

L(tén) < S vz — 2 [ norias
n 1) > 2 1]l2 2(p+1) 0 1 .

We fix ¢ > 0 so small that the right-hand side is negative, and then denote the
right-hand side by —c¢, which is independent of n. Therefore

I, (uy) = Hiérgz) I(u) < —c<0 forn>ny. (3.16)

We show that |luy||2,q is bounded. Applying (3.2) to the right-hand side of
(1.1) with h = h,,, we have

|Aun| < a(g)”|un

13,417l p(2)” < a(g)||unll3 o[A(x)|p(z)"-

Taking the L%-norm of both sides and using (3.3), we get

[unllz.q < (@) Aunllq < al@)Pb(@)[[hp"[lqllun 3,4

or equivalently
1—
lunll2y” < a(g)?b(@) [P |lq-

Since 0 < p < 1, |Jup]|2,q is bounded as n — oco. We extract a subsequence (again
denoted by {u,}) from {w,} which weakly converges to a certain limit us in
W24(Q)NW, (). Since W24(Q) is compactly imbedded in C*(Q), u,, converges
to Uy strongly in C1(2). We show that us is a W24(Q2)-solution of (1.1). Using
Lemma 3.1, we get

i | < ([ Vunl[B[h(2)]p” < Clh(@)|p(z)? € LI(S),

with some C' > 0. Let ¢ € C§°(Q2) be any test function. By the Lebesgue
convergence theorem, we see

/hnuﬁqﬁd:ﬂ — / hul_¢dxr as n — oo. (3.17)
Q )

Since uy, is a weak solution of (1.1), we have
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/Vun~V¢da? = / hnub ddx.
Q Q

Letting n — oo, we get

/ (Vuoo Vo — huﬁogb)da: =0.
Q

Thus ue, is a W24(Q)-solution of (1.1). Since u, > 0, us is also non-negative.
Letting n — oo in (3.16), we get I(us) < —c < 0, where I(-) is defined by (3.14)
with h,, replaced by h. Accordingly, u., is a non-trivial and non-negative solution.
Thus we get the assertion (i).

We show (ii). Assume that (h1l) and (h2) hold. Let hp? € L(2). In the
proof of (i), we have already obtained a W?%4(Q)-solution s, such that us > 0
and ue, Z 0. Since h > 0 in 2 by (h2), we have

—Atoo = h(z)ub, >0 in Q.

From the strong maximum principle, it follows that u., > 0 in 2. The uniqueness
of positive solutions follows directly from Lemma 3.4.

Conversely, assume that (1.1) has a positive W29(Q)-solution u(z). Then
u € CY(Q) and we have

—Au = h(z)u? >0 in Q.

By Hopf’s maximum principle, du/0v < 0 on 9. Hence there are constants
d,co > 0 such that du/dv < —cg in 4, where € is defined by (3.4). Since
Op/Ov = —1 on 0N and uw > 0 in Q, there is a § > 0 such that u(z) > dp(z) in Q.
Since u € W24(2), we have

0 < 6Php(z)? < h(z)u(z)? = —Au € LI(Q).
Consequently, hp(z)? € LI(Q2) and the proof is complete. O

4. Infinitely many solutions.

In this section, we prove Theorem 2.2. Throughout this section, we assume
that (h1) holds and hp? € L9(€2). Our method is based on the symmetric mountain
pass lemma, which needs a notion of Krasnoselskii’s genus. We define it as below.

DEFINITION 4.1. Let H be a Banach space and A a subset of H. A is said
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to be symmetric if © € A implies —x € A. For a closed symmetric set A not
containing the origin, we define a genus v(A) of A by the smallest integer k& such
that there exists an odd continuous mapping from A to R*\ {0}. If there does not
exist such a finite k, we define y(A) = co. For an empty set 0, we put () = 0.
Let Ty denote the family of closed symmetric subsets A such that 0 ¢ A and
v(A4) > k.

ASSUMPTION 4.2. Let H be an infinite dimensional Banach space and let
I € C1(H, R) satisfy (I1) and (I2) below.

(I1) I(w) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-
Smale condition (PS),

(PS) any sequence {uy} in H such that I(uy) is bounded and I'(uy) — 0 in H*
as k — oo has a convergent subsequence.

(I2) For each k € N, there exists an Ay € I'y such that sup,c 4, I(u) <O0.

Under the assumption above, we define ¢ by

ck = Alglik 216131(10. (4.1)

We state the symmetric mountain pass lemma due to Ambrosetti and Rabinowitz
[2] and Clark [4]. We refer the readers to [8], [10] and [12] also.

LeMMA 4.3 ([2], [4], [10]). Suppose that Assumption 4.2 holds. Then each
¢k is a critical value of I(u) and ¢, < cxy1 <0 for k € N and {ci} converges to
zero. Moreover, if cp = cgpp1 = -+ = Cphtp = ¢, then y(K.) > p+ 1. Here K, is
defined by

K.={ueH:I'(u)=0, I(u) = c}.
If we would define d,, , for I,,(u) such as in (4.1) by

dpx = inf sup I, (u),
ok A€l uGIf)l n( )

then we need a uniform estimate d;, < d,, 1 < dj, < 0 with two sequences d;, d,
which are independent of n and converge to zero as k — oo. If we could prove
the existence of d; and dy, then a critical point Un,i Of Ip(u) corresponding to
dy, ;, converges to a limit us 1 as n — oo along a subsequence. Furthermore, o
becomes a critical point of I(u) which satisfies d;, < I(uoo) < d. Here I(u) is
defined by (3.14) with h,, replaced by h. Thus we can get infinitely many critical
points if there exist d; and dj,. However, it is hard to prove the existence of dy,.
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Therefore, instead of I,,(u), we introduce a new functional J,(u), for which we
shall get a uniform estimate in Lemma 4.6. Moreover, we shall show that a critical
point of J,(u) becomes that of I,,(u). Recall a(q) and b(q) defined by (3.2) and
(3.3), respectively. We define R, Ry > 0 by

Ry = (4a(q)"b(q)[he"]l,) """, R = a(g)Ro. (4.2)
Choose Gy(t) € C}(R) such that Go(t) is even and

Go(t)=1 for |t| <1, Go(t) =0 for |t| > 2,
4.3
—2<G(t) <0 for1<t<2. (*3)

We define G(t) = Go(R™'t), where R is defined by (4.2). Then G € C3(R), G is

even and

Gt)=1 if[t| <R, G(t)=0 if |t| > 2R, (4.4)
0<GE#) <1, —-4<tG'(t)<0 forte R. (4.5)

We define

H=HNQ), W=W>(Q)nW,9Q),

In(u) = /Q (;IVW - pj_lhn(x)G<ZEg>|u|p+l>dx, (49)

where h,(z) is defined by (3.13). Then H is a Hilbert space and W a Banach
space, which are equipped with the norms,

lullzr = [Vulle,  lullw = [ull2,q-

Note that J,(u) are well defined on both H and W since h,, and G are bounded.
We use a notation J,(u, H) or J,(u, W) when we consider it as a functional on H
or W respectively.

LEMMA 4.4.

(i) Ifllull2,q < Ro, then L,(u, W) = Jy(u, W).

(ii) Jn(-) is a Cl-functional on H and W.

(iii) Jp (-, H) satisfies the Palais-Smale condition.

(iv) For eachn € N fized, J,(-, H) is bounded from below.

—

i
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(v) Foranyk € N, there exists an Ay, € Ty, such that the supremum of Jy,, (u, H)
on Ay, is negative. Here T, is defined by Definition 4.1 with H = H}(Q).

PrOOF. We show (i). Let ||ull2, < Ro. Then |u(z)| < Rp(x) in Q by (3.2)
with (4.2). Hence G(u(z)/p(x)) =1 and L,(u, W) = J,(u, W).
We prove (ii). Put

1 s
F,(x,8) = ——h,(2)G| — )|s/PTt. 4.7
(525 = @G (55 o (4.1
Then J,(u) is rewritten as
1 2
In(u) = §|Vu| — Fo(z,u) |dx. (4.8)
Q

Denote the partial derivative of F,(z,s) with respect to s by f,(x,s). Then

s |S|P+1

Ful@,5) :hn(x)G(;jgc))|s|psgns+Z)ilhn(x)G’(p(xJ e a9)

We show that F),(z, s) and f,(z, s) are bounded on Q x R. Let p be the maximum
of p(z) on Q. If |s| > 2Rp, then |s|/p(z) > 2R, and hence G(s/p(z)) = 0. If
|s| < 2Rp, then we use |G| <1 to get

|Fulz,s)] < n(p+1)""(2Rp)P .

Thus F,(z, s) is bounded on Q x R. In the same way, we see that the first term
on the right-hand side in (4.9) is bounded. Let us show that the second term is
bounded. If |s| > 2Rp, then G’(s/p(x)) vanishes. Let |s| < 2Rp. Since [tG'(t)| < 4
by (4.5), we have

|s|PT1 4n

p(x) ~p+1

4n
P < 2RD)P.
P < = (2p)
Thus f,(z, s) is bounded. Then J,(u) is a C'-functional on H and has a derivative
J!(u)v = / (Vu- Vo — f(z,u)v)d. (4.10)
Q

In the same way, we see that J, € C'(W,R). By the standard argument, we
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verify that J,(u, H) satisfies the Palais-Smale condition on H. Since F,(z,s) is
bounded, J,(u) is bounded from below.

We show (v). Fix n € N arbitrarily. By Proposition 3.2 with ¢ = p + 1, we
have a 6 > 0 and functions {¢;}52; in C§°(€2) such that ¢; > 0, ¢; has a compact

support included in £\ Qs, the supports of ¢; and ¢; are disjoint for i # j and

/ hnd?daz > 0. (4.11)
Q

After replacing ¢; by ¢;/[|Vi|l2, we can assume that ||V¢;|l2 = 1. Since the
supports of ¢; are disjoint to each others, we have

(i, 05) a1 = (Vi, Vi) = 0y,

where (-, )2 denotes the L?-inner product and §;; stands for Kronecker’s symbol,
ie, d;; =1ifi=jand §;; = 01if ¢ # j. Accordingly, {¢;} forms an orthonormal
system in H (but not a complete system). Let kK € N. We define

k k
Ak = {Zti¢i : Zt? = 042}, (412)
i=1 i=1

where a > 0 will be determined later on. Since Ay, is a (k — 1)-dimensional sphere,
the genus y(Ag) is equal to k because of Borsuk-Ulam’s theorem. Thus Ay € T'y.
Put

o= 55 o)

We claim

lu(z)| < Rp(z) for z € Q, u e Ay and a € (0, o). (4.13)

Let u = Zle ti; € Ag. Since supp ¢; is in Q\ Qs, u(z) vanishes in Qs and (4.13)
holds in Qs. For x € Q\ 5 and « € (0, a,), we have

lulloo = max [t:llldilloo < o max [|diflec < Rpl(z)

Hence we obtain (4.13). This gives us
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G(u(m)) =1 forzeQ, ue A, and a € (0,a). (4.14)

p(z)

Since any norm is equivalent to each other in a finite dimensional Banach space,
there is a C) > 0 independent of a such that

k 1/(p+1) k
(Z |ti|p+1) > Cl|Vulls  for u= Zti¢i' (4.15)

i=1 i=1

Put

B = min /hnqsf“dx > 0.
Q

1<i<k

Note that [|[Vulls = a for u € Ay and recall that the supports of ¢; are disjoint to
each others. Using (4.14) and (4.15), we obtain, for u € Ay

k
_ 1 2 1 +1 p+1
) = 51Vl = 3 R A

IA

1 Bk <
- V 2 n,k t'p+1
SIull = 5 S

1 ﬁmk +1 +1
< SIVull - 2ok optvalg
1 2 /Gn k +1
=-a®— 20t <0 4.16
5 P aPTh <0, (4.16)
provided that a > 0 is small enough. Thus we have (v). O

By Lemmas 4.3 and 4.4, we can define

Cnk = Aigk 21612 In(u, H). (4.17)

This is a critical value of J,, in H. J,(u) satisfies the Palais-Smale condition not
in W but in H. Therefore we applied Lemma 4.3 to J,, in H and obtained critical
values ¢, i, in (4.17). We explain our method to prove Theorem 2.2. First, we give
a lower estimate and an upper estimate of ¢, ; independent of n. Next, we prove
that any critical point of J,, in H belongs to W and becomes a critical point of
I, (u, W). Last, letting n — oo, we obtain infinitely many solutions of (1.1). To
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get the uniform estimates of ¢, i, we need the next lemma. For the proof, we refer
the readers to [10, Proposition 7.8].

LEMMA 4.5. Let X be a closed linear subspace of H whose codimension is
k—1. Then ANX #0 for AeTy.

LEMMA 4.6. Let ¢ be as in (4.17). Then there exist two sequences {c;}
and {Cr} such that both of them converge to zero and

¢, <enkp <C <0 forallne N. (4.18)

Proor. First, we show the existence of ¢,. We use the same argument as
in (4.16). Let §, {¢;} and Ay, be the same as in the proof of Lemma 4.4, where we
replace (4.11) by

/ h¢?Tdz >0 forie N.
Q

Let k € N. By the Lebesgue convergence theorem, there is an N(k) € N such
that

1
/ hngt ™ da > 5/ he?tlde >0 for 1 <i<k, n>N(k).
Q Q

Put

1
Br = min — / ho?dz.
Q

1<i<k 2

Then in the same way as in (4.16), we have
In(u) < 1(12 - ﬂcpﬂap*l for u € Ag, n > N(k).
=5 p+1 k ) =

Note that the right-hand side is independent of n. We fix a > 0 so small that the
right-hand side is negative, which is denoted by —aj < 0. Therefore,

sup Jy(u) < —ap <0,
u€eAy

which shows

Cnk <supJy(u) < —ap  for n > N(k).

k
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Since each ¢, with 1 < n < N(k) is negative by Lemma 4.4 (v), we define
C, = Sup,en Cn,k < 0.

We shall show the existence of ¢;, and its convergence to zero. Define r by
1/q¢+ 1/r = 1. Then we claim that

1
In(u) > §||Vu||§ — Collull, for uw e H, (4.19)

where Cy = (2R)?P(p+1)"*||hp?||,. Note that u belongs to L"() if u € H because
q> N. Let u € H and put

D= {x cq: @l _ QR}.

Since G(u/p) =0 in Q\ D, we use the Holder inequality with |h,| < |h| to get
[l

/ |hn|u|p+1G<u)dm < H|h||u|pG(u>
Q P P/ llLa(D)

< ||h@2Rp)* || La(pyllull -y
= 2R)?||hp"[[qlull;- (4.20)

L (D)

Substituting this inequality into (4.6), we get (4.19). Let Ay and % be the k-th
eigenvalue and the eigenfunction of the problem,

—AY =X ) in =0 on 0S.
Let X be a closed linear subspace of H which is spanned by v; with & <1 < oc.

Then the codimension of X is k — 1. By Lemma 4.5, X N A # () for A € T'y.. Hence
by (4.19) we obtain

= inf J > inf J,
ek = Jof, supJn(w) 2 I Ju(u)

. 1
> int {319l - ol } (1:21)

We shall show that there are positive constants a and C' independent of k such
that

[lullr < CX || Vulls for u e X. (4.22)
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Recall that 1/¢+ 1/r =1 and ¢ > N, and note
Mellulls < ||Vul3  foru € X. (4.23)

If N > 2, then r < 2, and hence we have a C' > 0 such that

lull < Cllull> < A Vullo. (4.24)

Thus (4.22) holds. Let N = 1. If r < 2, then (4.24) is still valid. Let r > 2. Then
we have

HUIII=/Q\UIWSU§ lull 5 ull3- (4.25)

Since N = 1, H}(Q) is imbedded in L>®(R), i.e., |ulle < C||Vull2 with some
C > 0. Then (4.25) is rewritten as

lully < CT2 Va3 2 A [ Vull3 = CT2 A Va3,

which means (4.22). Consequently, (4.22) is valid for all N and r. By (4.21) with
(4.22), we have

. 1 —a
o> inf, {51Vl - oo vl

. 1 —a 1 —an2
= tlg(f) {2152 — CoCAy t} = 75(00(»,@ )"

We define ¢;, by the last term. Then it converges to zero as k — oo. (I

In the next lemma, we show that a critical point of J, (-, H) in H belongs to
W and becomes a critical point of I, (-, ).

LEMMA 4.7.  Let ug € H be a critical point of J,(-, H). Then ugy belongs to
W, |luoll2,qg < Ro, In(uo, W) = Jp(ug, W) and I, (uo, W) = 0.

PROOF. Let J/ (ug, H) = 0. By (4.10), ug is a H}(Q)-weak solution of
Aug = fular o). (4.26)

Since f,(z,s) is bounded on € x R, ug belongs to W2"(Q) N W, (Q) for any
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r € [1,00). In particular, ug € W. We rewrite f,,(z,uo) in (4.9) as

Ful,up) = hn(x)uopsgnuo{G(?) +(p+ 1)—1(;’(7;0) 7“,‘00} (4.27)

By (4.5), we have

1
4 < — G't) < .
4_G(t)+p+1tG(t)_1 forte R

By this inequality with Lemma 3.1, (4.27) is estimated as
[fu(@,u0)| < 4|haluo(2) 7 < da(q)?[|uoll 4 |h(x)]p(x)".

Using this inequality, we evaluate (4.26) as

2.4 < b(@)[|Auolly < 4a(g)"b(q)luoll?,,

||u0| hppllq-
This is reduced to
luoll2.q < (4a(q)?b(q)||he?]l) P = Ry.

Then |up(z)] < Rp(x) in Q by (3.2). Hence G(uo/p) = 1, G'(ug/p) = 0,

I, (ug, W) = Jp(uog, W) and fr(z,up) = hn|uol? sgnug. Then (4.26) is reduced
to

—Aug = hy|ug|? sgn ug.
Thus wug is a critical point of I, (-, W). O

We are now in a position to prove Theorem 2.2.

Proor or THEOREM 2.2. We take a critical point u,, ; € H corresponding
to ¢y k. 1€,

J,’l(un,k,H) =0, Ck < Jn(un,k) =cCpkp <G < 0. (4.28)
By Lemma 4.7, un i € W, ||tn k|24 < Ro and

I (unge, W) =0, cx <ILy(uni) = cnr < <O0. (4.29)
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Fix k € N. We extract a subsequence (again denoted by {un}) from {u, x}
which weakly converges to a limit ug in W29(Q) as n — oo. Since W?24(Q) is
compactly imbedded in C'(Q), {u,x} strongly converges to uy in C*(Q). Let
¢ € C§° () be any test function. We use the same method as in (3.17) to get

hn|un7k|p(sgnun,k)¢da:—>/h\uk|p(sgnuk)¢da§, (4.30)
Q Q

as n — oo. Since I}, (un k, W) = 0, we have

/Q (Vumk -V — hy(x) |, k|P (sgn umk)qﬁ)dac =0.

Letting n — oo, we get

/Q (Vuy, - Vo — h(z)|ug|P(sgnuy)¢)dx = 0. (4.31)

Thus uy, is a W29(Q)-solution of (1.1). Letting n — oo in (4.29), we have

1 1
< - 2o _— P ) e < @ < 0. 4.32
o < [ (5170~ bl o <o < (132)

Putting ¢ = ug in (4.31), we have

| Ml =
Q

Substituting this relation into (4.32), we obtain

1-p 2 =
< - < 0.
Crp > 2(p+ 1) ||VU;kH2 S <

Thus u, # 0 and ||[Vug||2 converges to zero as k — oco. To show that |ukll2,4
also converges to zero, we use the Gagliardo-Nirenberg inequality (see [1, p. 140,
Theorem 5.9]),

lulloo < Cllullf gllull™,

with 8 = Nq/(Nq+ 2g — 2N). Substituting Vuy instead of u, we have
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Uk|loo < Clluglg Uglly < ollVugl|ls ~ — 0,
IVurlloo < Cllurlg oI Vurlls™ < CRG|Vurllz™" — 0

as k — 0o. Thus the C*(Q)-norm of uy converges to zero. We use (3.1) to get
1Auelly < [[1Allurl?[l, < 1h0P ol Vg2 — O
Consequently, |lug|l2,4 converges to 0. O

5. Regularity.

In this section, we prove Theorems 2.5 and 2.6. To this end, we need the
exact definition of the smoothness of 0.

DEFINITION 5.1.  We say that 0 belongs to C™? if 92 is locally represented
as a graph of a C"-function. More precisely, for each zo € 052, we translate
and rotate the coordinate system such that zg = 0 and the inward unit normal
vector at g = 0 is equal to (0,...,0,1). Then there exist 7o > 0, an open
set V and a function ¢ such that V is an open neighborhood of g = 0, ¢ €
C™9(Byn_1(0,79), R) and

VN = {(z',¢(z") : ' € By_1(0,70)},
BN_l(O,T‘O) = {x/ € RNfl : |ﬂ§/| < 7"0}.

Definition 5.1 gives us a C™ "?-diffeomorphism from a neighborhood of z(
to a neighborhood of the origin. To prove it, we prepare cubic domains for r > 0,

C(r)={(z1,...,zn) : |z <r (1 <i < N)},
Ct(r)y={zeC(r): xy >0},
Co%ry={r e C(r): xx = 0}.

The next two propositions play the most important roles to get the regularity of
solutions.

PROPOSITION 5.2.  Let 90 € C™19. For any xg € 09, there exist v > 0,
an open neighborhood U of xo and a C™-diffeomorphism ® from U to C(r) such
that
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dUNQ) =CT(r), ®UNIN) =C%r), (5.1)
plx) =lyn| if ®(x) =y and xz € U. (5.2)
In many papers or books (c.f. [5, p.94]), the smoothness of 9 is defined by

the existence of ® satisfying (5.1) without (5.2). However, we need (5.2) in the
proof of Theorem 2.5.

PROOF OF PROPOSITION 5.2. Let 2y € 992 and T be the tangent space of
0f) at xg. By translating and rotating the coordinate system, we assume that
xo = 0 and

T ={(z1,...,zn) : xnx = 0}.

By Definition 5.1, there exist 79 > 0, ¢ € C™T1¢ and a neighborhood V of the
origin such that

Vnoo={.¢)) :y € R"", Iy <ro},
with ¢ = (y1,...,y~—1). Then ¢(0) = 0 and V¢(0) = 0. Put {(v') = (¢/,

9(
Then ((y') € Q2. We denote the inward unit normal vector at ((y’) by n
which is computed as

y'))-

),

AN 1 — —
n(y') = —|V¢(y/)|2 = 1( Gyrseoy—Pyn 1, 1). (5.3)

For t € R, we define
(') =) +tn(y). (5.4)

Since ¢ € C™FT19 4 lies in C™ 9. We shall show that the Jacobian of 1 is positive
at (0,t) for small |¢|. Let ¢; denote the i-th element of . Then

Uiy, t) = yi — ey, () (VO + 1)/ for 1<i <N -1,
Un (Y1) = oY) + (Ve + 1)1,
Since ¢(0) = 0 and V¢(0) = 0, we get

s
y;

(07 t) = §ij - t¢yiyj (0)7
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P O Y

t) = t) = t) = 1.
Hence the Jacobian is
o
t) =det( —tH). .
Sy 0:0) = det(1 ~ 1) (55)

Here I stands for the (N — 1) x (N — 1) unit matrix and H denotes the Hessian
matrix, whose (i, 7)-th element is (8%¢/dy;0y;)(0). We denote the eigenvalues of
H by A\; with 1 <4 < N — 1. Choose an orthogonal matrix S which diagonalizes
H into the form, S™*HS = diag(\1,...,Anx_1). Then (5.5) is computed as

2

det(I —tH) = det(I —tST'HS) = T (1 —1tX\). (5.6)

=1

Put A = max; |A;|. For |t| < 1/A, the Jacobian (5.6) is positive. Since 1 is smooth
in a neighborhood of (0,t), the Jacobian is positive near (0,t). Put = = ¢(y/, t).
By the inverse function theorem, (v, t) is a C"™?-function of z. We define (y',t) =
®(z) and put yy = t. Then ®(z) = y and ® is a C"™’-diffeomorphism from a
neighborhood of 2y = 0 to a neighborhood of the origin. By (5.4), we see that

[t| = |z — ¢(y)| = dist(x, Q) if |¢] is small.

Hence p(x) = dist(z,09) = |yn|. Choose an r > 0 small enough and put U =
®~1(C(r)). Then all the assertions of Proposition 5.2 hold. O

The proofs of Theorems 2.5 and 2.6 are based on the Schauder estimate with
the help of Proposition 5.2 and the proposition below.

PROPOSITION 5.3.  Let 0Q € C™+29 and o satisfy (2.2). If u € C™19(Q)
and w =0 on 9%, then u(z)/o(z) € C™9(Q).

To prove the proposition above, we begin with a function of one variable.

LEMMA 5.4. Let v € C™+1[0,1] with v(0) = 0. Then v(t)/t € C™[0,1] and

() \ ™ '
(t) = ¢kl / o * D ()rkdr for 0 <k < m. (5.7)
0

Here v®)(t) denotes the k-th derivative of v(t) and v\ (t) = v(t).
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PROOF. We use induction. Let m = 0 and suppose that v € C[0,1] with
v(0) = 0. Then v(t)/t € C[0,1] and (5.7) with k = 0 holds clearly.

We suppose that the lemma holds for v € C™[0,1] with v(0) = 0. Let
v € C™T1[0,1] with v(0) = 0. By the assumption of induction, we have v(t)/t €
Cc™=10,1] and

(”(t)> " /0 o (r)rm . (5.8)

t

Since v(t)/t is of class C™* 1 except for t = 0, we differentiate (5.8) to get

(”Ef)) " e /0 o (1) 4 (1)1, (5.9)

Integration by parts yields

T

t t
m/ U(m)(T)Tm_ldTZ/ U(m)(T)i(Tm)dT
0 0 d
t
— U(m)(t)tm _/ U(m+1)(T)deT.
0

Substituting this identity into (5.9), we obtain (5.7) with k = m. By assumption,
v(t)/t belongs to C™*1(0,1] N C™~1[0,1]. To show v(t)/t € C™[0,1], it is enough
to prove that (v(t)/t)™ has a limit as ¢ — 04. In (5.7) with k = m, letting
t — 0+ and using L’Hospital’s rule, we have

(m) (m+1) m
t t)t 1
lim v®) — lim ° ®) = v{mT(0).
t—0+ \_ t t—0+ (m+ 1)tm m+1

Thus v(t)/t € C™[0,1], and the proof is complete. O

We extend the lemma above to a Holder function of N-variables.

LEMMA 5.5.  Suppose that u € C™TL0(C+(r)) and u(z) = 0 for xx = 0.

Then (0% /0x%,) (u(x)/zn) € CO(CH(r)) for 0 <k < m.

PROOF. We use (5.7) with v(t) = u(z’,t) to get

oF (u(z' zN) pg [TV Oy
g (UELIN) )ikt 5.10
am?\, ( TN N 0 8:8?\,“ (@) ( )
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for x = (2/,zn) € CT(r). We put

V(x’ TN) = o* (u(m',xN)) ’ oMt

— , U@ zy) = ——u(@',zn).
ok o ( N) 5 ,;\?_1 ( N)
Then (5.10) is rewritten as

TN
V(z' zn) = x&kil/ Uz’ t)t*dt. (5.11)
0

Fixx = (2, 2n), y = (¢, yn) € CT(r) arbitrarily. We suppose that 0 < zn < yn.
If n > yn, we exchange x with y. Making the change of variable t = (xnx/yn)s,
we rewrite (5.11) as

/ k1 (Y 1 TN k
V(z',zn) = yy Ula',—s|s"ds. (5.12)
0 Yn

On the other hand, substituting (y', yx) into (5.11), we get

YN
V(Y yn) = y;V’H/ Uy, t)t"dt. (5.13)
0
Subtracting (5.13) from (5.12) and using the Hélder continuity of U, we obtain

|V(£L'/, xN) - V(yla yN)|

YN T
< y;vk‘l/ U(m’, Nt) - U(y',t)
0 YN
YN 0
gy;V’H/ C(m'—y’|a+’mt—t’ )tkdt
0 YN

<Cla' —y/|° + Clay —yn’.

thdt

Therefore V is Holder continuous in C*(r) with exponent 6. Hence it is uniquely

extended on C*(r) as a Holder continuous function. O

Although Lemma 5.5 deals with the partial derivative with respect to zy only,
we extend it to all derivatives up to order m.

LEMMA 5.6.  Let u satisfy the assumption of Lemma 5.5. Then u(zx)/zy €

O (CH(r)).
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PrROOF. Let v = (71,...,7n) denote the multi-index whose elements are
non-negative integers. We use a notation,

ol

DV= ————
71 YN
Ox|' - 0z}

with |[v| =1+ +N.

Let |v| < m. We put v = (71, ..,78-1,0) and define v = D" u. Then
ve CmTECEY),

and v(z) = 0 for zxy = 0 because D" is a partial derivative with respect to the
variables x1,...,xny_1. Therefore Lemma 5.5 asserts that

TN

Observe that DY (u(x)/zn) = v(z)/xy. Then we obtain

Dw(u(@) o (v(z)) Nedtazzro)

TN I\ zn

Therefore u(z)/xy lies in C™¢(C+(r)). O
Combining Lemma 5.6 with Proposition 5.2, we obtain the next lemma.

LEMMA 5.7.  Let 0Q € C™ %29 in the sense of Definition 5.1 and let u be in
C™mHL9(Q) with w =0 on 9Q. Then u/p € C™%(Qy) with a small d > 0. Here Qg4
is defined by (3.4).

PRrROOF. Let zgp € 9. Define U, ® and r > 0 by Proposition 5.2. Then & is
a C™t19_diffeomorphism. Let u satisfy the assumption of the lemma. We define

v(y) = w(®(y)) for y € CT(r). Put w(z) = u(x)/p(z) and W(y) = v(y)/yn-

Then w(x) = W(y) if ®(x) = y and 2 € U N Q. Since v € C™TLI(CH(r))
and v(y) = 0 for yy = 0, W(y) belongs to C™%(C*(r)) by Lemma 5.6. Hence
w(z) = W(®(z)) also lies in C™?(U N Q). Since z is arbitrary, we have an open

neighborhood U(zg) of xg € 0 such that

o0 C U Ulzo), w(z)e C™?(U(xo)NQ).
o €N
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By the compactness of 92, we have a finite covering U (x;) with 1 < i < m. Hence
there is a d > 0 such that Qg is covered by the union of U(x;) with 1 < i < m.
Then w(z) € C™%(Qy). O

Since p ¢ C1(Q), Lemma 5.7 can not be altered so as to assert that u/p €
C™%(Q) with m > 1. However, the C%-regularity of u/p is assured, as is shown in
the next lemma.

LEMMA 5.8. Let 0Q € C3 and let u = 0 on 0Q. If u € CH9(Q), then
u/p € C%(Q). If u € C%(Q), then u(x)/p(x) is Lipschitz continuous on .

PROOF. By Lemma 5.7, u/p lies in C?(Q,4). Since p is Lipschitz continuous
on Q and p(z) > d in Q\ Qq, we have u/p € C?(Q). For 6 = 1, we define C"!(Q2)
by the set of u whose m-th derivatives are Lipschitz continuous on Q. Observing
the proofs of Lemmas 5.5-5.7, we can verify that these lemmas are valid for § = 1
also. Therefore u(x)/p(x) is Lipschitz continuous on Q if u € C?(Q). O

Using Lemma 5.7, we prove Proposition 5.3.

PROOF OF PROPOSITION 5.3. Let 012, o and u satisfy the assumptions of
the proposition. By Lemma 5.7, u/p, o/p € C™%(Qy4). Since do/0v < 0 on 91,
we have o(z)/p(x) > ¢y on © with some ¢g > 0. Then p/o € C™%(€Q,). Thus we
have

W w pd) e
o@ ~ pw o ¢ )

Since u, > 0 in Q \ 4, we have u/c € C™%(Q). O

PROOF OF THEOREM 2.5. Suppose that 90 € C*. Let u be a W24(Q)-
solution. By the Sobolev imbedding, u lies in C1#(Q) with 3 = 1 — N/q. Put
v(z) = u(x)/p(x), which belongs to C?(Q2) by Lemma 5.8. Then (1.1) is rewritten
as

—Au = h|u|P sgnu = hp”|v|P sgnv € C7(Q), (5.14)

where we have put v = min(, 3p). Since 9Q € C*, ® is a C3-diffeomorphism.
Then the Schauder estimate (see [5, Theorem 6.8]) means that u € C%7(Q). By
Lemma 5.8, v = u/p is Lipschitz continuous on Q. Then hpP|v[Psgnv € C%(Q)
with o = min(#, p). The Schauder estimate again gives that u € C%%(Q). O

In the next lemma, we show that the assumption ho? € C™(Q) in Theorem
2.6 does not depend on the choice of o(z).
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LEMMA 5.9. Let 01,09 satisfy (2.2). Then hal € C™%(Q) is equivalent to
hol € C™9(Q).

PROOF. By Proposition 5.3, 0o/0; lies in C™?%(Q). Since o2/01 > ¢y > 0
on () with a certain ¢y > 0, (02/01)? also belongs to C™%(Q). If hal € C™9(Q),
then we have

02 P 0/
hol =hol'| =) € C™%(Q).
g1
Replacing o1 with o3, we obtain the converse assertion. O

We conclude this paper by proving Theorem 2.6.

PrROOF OF THEOREM 2.6. The uniqueness of positive solutions has already
been proved in Theorem 2.1(ii). Let ho? € C™?(Q2). By Theorems 2.1 and 2.5,
(1.1) has a unique positive solution u in C>%(Q) with a = min(d, p). We shall
show that u has a regularity of class C™¥29(Q). Since u € C*%(Q), u/o belongs
to C1(Q2) by Proposition 5.3. Putting v(x) = u(z)/o(z), we have

—Au = hu? = hoPvP. (5.15)

Since v(z) > ¢y > 0 on Q with some cg, v(z)P also lies in C1*(Q). Then the
right-hand side of (5.15) belongs to C1*(Q). By the Schauder estimate, u has a
regularity of class C3%(Q). Then v = u/o(z) € C**(Q). Hence the right-hand
side of (5.15) belongs to C*%(Q) if m > 2. By the Schauder estimate again, u
is in C**(Q). Repeating this argument, we obtain v € C™¥2%(Q). Then the
right-hand side of (5.15) lies in C™%(Q) and therefore u € C™+2.9(Q).

Conversely, let u be a positive solution in C™*+29(Q)). Since o € C™+1.9((Q)
because of (2.2), o/u is in C™%(Q2). Moreover, since o/u has a positive lower
bound on Q, (¢/u)? also belongs to C™%(2). Therefore

P P
ho? = hu? <J> = —Au(g) € Cc™?(Q).

u u

This completes the proof. 1
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