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Abstract. We study the time decay of scattering solutions to one-
dimensional Schrödinger equations and prove a weighted dispersive estimate
with stronger time decay than the case of unweighted estimates for the non-
resonant state. Furthermore asymptotic expansions in time of scattering so-
lutions are given. The key of the proof is the study of the Fourier properties
of the Jost functions. We improve the Fourier properties of the Jost functions
obtained by D’Ancona and Fanelli [2].

1. Introduction.

This paper is concerned with dispersive estimates for scattering solutions
e−itHPacu to Schrödinger equations

i∂tu = Hu,

where

H = − d2

dx2
+ V (x), x ∈ R

is a one-dimensional Schrödinger operator and Pac is the projection onto the abso-
lutely continuous subspace for H. We assume that V (x) is a real valued potential
such that V ∈ L1

1 at least. Here Lp
γ is the weighted Lp(R) space:

Lp
γ :=

{
f | 〈x〉γf ∈ Lp(R)

}
, ‖f‖Lp

γ
:=

∥∥〈x〉γf
∥∥

Lp ,

where 1 ≤ p ≤ ∞, γ ∈ R and 〈x〉 stands for
√

1 + |x|2. Under the above con-
ditions, H is self-adjoint on L2(R) with form domain H1(R) and the absolutely
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continuous spectrum of H is the half line [0,∞), the singular continuous spectrum
of H is absent, and the eigenvalues of H are strictly negative.

In order to state our results, we introduce a few notations. The Jost functions
f±(λ, x) are the solutions to the equation

−f ′′(λ, x) + V (x)f(λ, x) = λ2f(λ, x), λ, x ∈ R

satisfying following asymptotic conditions

∣∣f±(λ, x)− e±iλx
∣∣ → 0 as x → ±∞.

It is well known (see [3]) that if V ∈ L1
1, then the Jost functions are uniquely

defined for all λ, x ∈ R. We denote by W (λ) their Wronskian

W (λ) := f+(λ, x) · ∂xf−(λ, x)− ∂xf+(λ, x) · f−(λ, x).

W (λ) is independent of x and does not vanish for λ 6= 0.

Definition 1.1. We say that the potential V is of generic type if W (0) 6= 0
and is of exceptional type if W (0) = 0. We also say that zero is a resonance of H

if the potential V is of exceptional type.

We note that V is of exceptional type if and only if there exist a non trivial
bounded solution to the equation Hf = 0. Hence the trivial potential V ≡ 0 is of
exceptional type. Our main result is the following:

Theorem 1.2. Let m be a positive integer. Suppose that V ∈ L1
2m and V

is of generic type, or V ∈ L1
2m+2 and V is of exceptional type. Let

s =

{
2m− 1 if V is of generic type,

2m if V is of exceptional type.

Then
∥∥〈x〉−s(e−itHPac − Pm−1)u

∥∥
L∞ ≤ C|t|−1/2−m

∥∥〈x〉su∥∥
L1 (1.1)

for all t 6= 0, where Pm−1 is given by

Pm−1 =
m−1∑

j=0

t−1/2−jCj−1.
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Furthermore, the coefficients Cj−1 satisfy the following :

(1) If V is of generic type, then C−1 ≡ 0, rankCj−1 ≤ 2j and

∥∥〈x〉−2j+1
Cj−1u

∥∥
L∞ ≤ C

∥∥〈x〉2j−1
u
∥∥

L1 , j = 1, 2, . . . , m− 1.

In particular, we have

∥∥〈x〉−1
e−itHPacu

∥∥
L∞ ≤ C|t|−3/2

∥∥〈x〉u∥∥
L1 , t 6= 0.

(2) If V is of exceptional type, then rankCj−1 ≤ 2j + 1 and

∥∥〈x〉−2j
Cj−1u

∥∥
L∞ ≤ C

∥∥〈x〉2j
u
∥∥

L1 , j = 0, 1, . . . , m− 1.

Remark 1.3. The coefficients Cj−1 can be computed explicitly. More pre-
cisely, the integral kernel of Cj−1 can be written in the form:

1√
4πij!(4i)j

(
∂

∂λ

)2j

(T (λ)f−(λ, x)f+(λ, y))
∣∣∣∣
λ=0

,

where f± are the Jost functions and T (λ) := −2iλ/W (λ). For example, if V is of
exceptional type, then

C−1u =
1√
4πi

〈u, f0〉f0,

where f0 is a non trivial bounded solution to the equation Hf = 0 normalized as

lim
x→+∞

1
2
(|f0(x)|2 + |f0(−x)|2) = 1,

(see Section 4).

Theorem 1.2 immediately implies that an asymptotic expansion of e−itHPac

in B(L2
s, L

2
−s). Here B(X, Y ) denotes the Banach space of bounded operators

from X to Y .

Corollary 1.4. Let m be a positive integer. Suppose that V ∈ L1
2m and V

is of generic type, or V ∈ L1
2m+2 and V is of exceptional type. Let
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s >





2m− 1
2

if V is of generic type,

2m +
1
2

if V is of exceptional type.

Then e−itHPac has the following asymptotic formula in B(L2
s, L

2
−s) :

e−itHPac =
m−1∑

j=1

t−1/2−jCj−1 + O(t−1/2−m), t →∞,

where Cj−1 are given by Theorem 1.2.

Dispersive estimates for Schrödinger equations have been studied by many
authors. Journé, Soffer and Sogge [12] proved usual dispersive estimates:

∥∥e−itHPacu
∥∥

L∞ ≤ C|t|−d/2‖u‖L1 , (1.2)

in dimension d ≥ 3, under the suitable decay and regularity assumptions for V .
Such estimates are very important since (1.2) implies Strichartz estimates which
can be applied to prove well-posedness for nonlinear Schrödinger equations. Weder
[22] proved (1.2) for d = 1 under the assumption that V ∈ L1

γ for some γ > 5/2,
or else that V ∈ L1

γ , γ > 3/2 and V is of generic type. Later, Goldberg and Schlag
[9] proved (1.2) under the assumption that V ∈ L1

2, or else that V ∈ L1
1 and V is

of generic type. In dimensions d ≥ 2 dispersive estimates (1.2) have recently been
proved under various assumptions on the potential V and the assumption that
zero is neither an eigenvalue nor a resonance of H. Schlag [17] proved dispersive
estimates in dimension two. In dimension three, dispersive estimates was proved
by Rodnianski and Schlag [16], Goldberg and Schlag [9], Yajima [24], Goldberg
[6], [7] and Vodev [19]. In higher dimension Journé, Soffer and Sogge [12], Yajima
[23] and Vodev [20] proved dispersive estimates. When zero is either an eigenvalue
or a resonance of H, Erdoğan and Schlag [4] and Yajima [24] proved dispersive
estimates in dimension three. Moreover Erdoğan and Schlag [5] proved dispersive
estimates for matrix Schrödinger operators in dimension three. On the other hand,
Yajima [23], Weder [22], Artbazar and Yajima [1] and D’Ancona and Fanelli [2]
proved the Lp-boundedness of wave operators which implies (1.2). The time decay
t−1/2 in d = 1 is not integrable at infinity and is unsuitable for applying to NLS.
We hence are interested in a dispersive estimate whose time decay is integrable
at infinity. Schlag [18] first proved the estimate (1.1) with m = 1 under the
assumptions V ∈ L1

4 and V is of generic type. Goldberg [8] also proved (1.1) with
m = 1 under the assumptions that V ∈ L1

3 and V is of generic type, or else that
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V ∈ L1
4 and V is of exceptional type. Compared to his results, our assumptions

on the potential V (x), which are used in Theorem 1.2, are weaker. The following
non self-adjoint matrix Schrödinger operators

H = H0 + V :=



− d2

dx2
+ 1 0

0
d2

dx2
− 1


 +

(
U W
−W −U

)

are considered by Krieger and Schlag [14]. Here U and W are real-valued functions.
Such a system arises in the study of the stability or instability of the standing wave
to the NLS

i∂tu + ∂2
xu = −F (|u|2)u

where F is a non negative function. Krieger and Schlag proved some dispersive
estimates with time decay t−1/2 or t−3/2 for the system H under suitable assump-
tions for the potentials and the spectrum of H (e.g., U , W and all derivatives are
exponentially decaying and ±1 are not resonances of H ). The proof for the matrix
case is similar for the scalar case. We hence expect that the decay and regularity
assumptions for the potentials U and W can be relaxed and similar expansions to
(1.1) hold for the system H , but it is not clear to the author at the moment.

On the other hand, asymptotic expansions of e−itHPac as t → ∞ in
B(L2

s(R
d), L2

−s(R
d)) were proved by Jensen and Kato [11] (d = 3), Jensen

[10] (d ≥ 5) and Murata [15] (d ≥ 1). Here H = −4 + V in L2(Rd) with
|V (x)| ≤ C〈x〉−σ for sufficiently large σ > 0. Compared to the result [15], our
assumptions on the potential V (x) are weaker and the weight in the generic case
is better.

We give here the outline of the proof. We may assume that t > 0 without
loss of generality. To prove Theorem 1.2, we use the spectral decomposition of
eitHPac:

〈
e−itHPacu, v

〉
=

∫ ∞

0

e−itλd〈Eac(λ)u, v〉

where Eac(λ) is the absolutely continuous part of the spectral measure of H. Since
d〈Eac(λ)u, v〉 satisfies the Stone formula, namely

d〈Eac(λ)u, v〉 =
1

2πi
〈(R(λ + i0)−R(λ− i0))u, v〉dλ,
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we obtain

〈
e−itHPacu, v

〉
=

1
2πi

∫ ∞

0

e−itλ〈(R(λ + i0)−R(λ− i0))u, v〉dλ,

where R(λ±i0) := limε→+0(H−(λ±iε))−1 are the boundary value of the perturbed
resolvent. In order to make the change of variables λ 7→ λ2, we define an extended
resolvent as follows

Rλ :=

{
R(λ2 + i0), λ > 0,

R(λ2 − i0), λ < 0.
(1.3)

Using this definition, we have

〈
e−itHPacu, v

〉
=

1
πi

∫

R

e−itλ2
λ〈Rλu, v〉dλ.

Let K̃(λ, x, y) be the integral kernel of −2iλRλ. Applying the stationary phase
method, we have

1
2π

∫

R

e−itλ2
K̃(λ, x, y)dλ

=
1√
4πi

m−1∑

j=0

t−1/2−j

j!(4i)j

(
∂2j

λ K̃
)
(0, x, y) + t−1/2−mS̃m(t, K̃).

To estimate the remainder, we split the propagator into high and low energy parts.
We prove dispersive estimates for the high energy part in Section 2. In Section
3, we study some properties of the Jost functions. We give the proof of the low
energy part in Section 4.

Acknowledegments. The author expresses gratitude to Professor Shu
Nakamura for much of comments and suggestions. He also thanks the anonymous
referee for careful reading the manuscript and for giving useful comments.

2. The high energy estimates.

In this section we prove a weighted dispersive estimate for the high energy part
under assumptions on the potential V and weights that are employed in Theorem
1.2. The following proposition was essentially proved by Goldberg and Schlag [9],
but we give full details of the proof.
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Proposition 2.1. Suppose V ∈ L1
N , N ≥ 1 and set λ0 := ‖V ‖L1

N
. Let χ be

an even smooth cut-off function such that χ(λ) = 1 for |λ| ≤ λ0 and χ(λ) = 0 for
|λ| ≥ 2λ0. Then for u ∈ L2 ∩ L1

N ,

∥∥〈x〉−N
e−itH

(
1− χ

(√
H

))
u
∥∥

L∞ ≤ Ct−1/2−N
∥∥〈x〉Nu

∥∥
L1 , t > 0.

Proof. Set χ̃(λ) := 1−χ(λ). Let η be an even smooth function on R such
that η(λ) = 1 if |λ| ≤ 1, η(λ) = 0 if |λ| ≥ 2 and let χ̃L(λ) := η(λ/L)χ̃(λ) for
L ≥ 1. We want to show that

sup
L≥1

∣∣〈e−itH χ̃L

(√
H

)
u, v

〉∣∣ ≤ Ct−1/2−N
∥∥〈x〉Nu

∥∥
L1

∥∥〈x〉Nv
∥∥

L1

for all t > 0 and for any Schwartz functions u and v. We recall the Born series
expansion of the resolvent R(λ2 ± i0):

R(λ2 ± i0) =
∞∑

n=0

R0(λ2 ± i0)
(− V R0(λ2 ± i0)

)n
, ±λ > 0, (2.1)

where R0(λ2 ± i0) := (−d2/dx2 − (λ2 ± i0))−1 is the free resolvent which has the
distribution kernel

R0(λ2 ± i0)(x) = −eiλ|x|

2iλ
, ±λ > 0. (2.2)

Since
∥∥V R0(λ2 ± i0)

∥∥
L1→L1 ≤ (2|λ|)−1‖V ‖L1 , we have

∣∣〈R0(λ2 ± i0)(−V R0(λ2 ± i0))nu, v〉∣∣ ≤ ‖V ‖n
L1

(2|λ|)n+1
‖u‖L1‖v‖L1 .

Hence the series (2.1) converges in the sense of the operator norm from L1 to L∞,
provided |λ| ≥ λ0. Then using (1.3), (2.1) and (2.2), we can write the kernel of
Rλ explicitly as

Rλ(x, y) =
∞∑

n=0

1
(−2iλ)n+1

∫

Rn

eiλ(|x−x1|+
Pn

j=2 |xj−xj−1|+|xn−y|)

×
n∏

j=1

V (xj)dx1 . . . dxn
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which converges, provided |λ| ≥ λ0. Applying the above formula to the kernel of
Rλ, we have

〈
eitH χ̃L

(√
H

)
u, v

〉
=

1
πi

∞∑
n=0

1
(−2i)n+1

∫

Rn+3
e−itλ2+iλ

Pn
j=0 |xj+1−xj | χ̃L(λ)

λn

× u(x0)
n∏

j=1

V (xj)v(xn+1)dλdx0 . . . dxn+1.

In the previous equality summation and integration can be exchanged because
χ̃L(λ) are compactly supported. Let us consider the oscillatory integral

Φ(t, a) =
∫

R

e−itλ2+iaλ χ̃L(λ)
λn

dλ, a ∈ R.

Using integration by parts and the Fourier inversion formula, we have

Φ(t, a) =
1

(−2it)N

∫

R

e−itλ2
PN

λ

(
eiaλ χ̃L(λ)

λn

)
dλ

=
1√
4πit

1
(−2it)N

∫

R

e−|ξ|
2/4itF

[
PN

λ

(
eiaλ χ̃L(λ)

λn

)]
(ξ)dξ,

where Pλ = (∂/∂λ)(1/λ) and F is the Fourier transform with respect to λ. Thus
we obtain

|Φ(t, a)| ≤ Ct−1/2−N
∥∥FPN

λ (eiaλχ̃L(λ)λ−n)
∥∥

L1

≤ Ct−1/2−N
N∑

k=0

|a|N−k
∥∥F∂k

λ(χ̃L(λ)λ−n−N )
∥∥

L1 .

Since
∑n

j=0 |xj+1 − xj | ≤
∏n

j=1(1 + |xj |), if the estimate

sup
L≥1

sup
0≤k≤N

∥∥F∂k
λ(χ̃L(λ)λ−n−N )

∥∥
L1 ≤ CNnNλ−n−N

0 , n ≥ 0, (2.3)

holds true, then we conclude that
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sup
L≥1

∣∣〈eitH χ̃L

(√
H

)
u, v

〉∣∣

≤ Ct−1/2−N
∞∑

n=0

2−nnNλ−n−N
0

∥∥(1 + |x|)NV
∥∥n

L1

∥∥(1 + |x|)Nu
∥∥

L1

∥∥(1 + |x|)Nv
∥∥

L1

≤ Ct−1/2−N
∥∥〈x〉Nu

∥∥
L1

∥∥〈x〉Nv
∥∥

L1

for all t > 0. We now check (2.3). To prove this it is sufficient to show that

sup
L≥1

∥∥F (χ̃L(λ)λ−n)
∥∥

L1 ≤ λ−n
0 for all n ≥ 0. (2.4)

We note that since χ̃(λ) = 1−χ(λ) is not integrable, (2.4) with n = 0 hence holds
in the distribution sense. Let n = 0, then

∥∥F χ̃L

∥∥
L1 ≤

∥∥F (η(·/L))
∥∥

L1

(
1 +

∥∥Fχ
∥∥

L1

)

=
∥∥Fη

∥∥
L1

(
1 +

∥∥Fχ
∥∥

L1

)
< ∞ (2.5)

uniformly in L ≥ 1 since χ ∈ C∞0 ([−2λ0, 2λ0]). Let n ≥ 1, then we have

∥∥F (χ̃L(λ)λ−n)(ξ) · ξ2
∥∥

L∞ ≤ ∥∥(χ̃Lλ−n)′′
∥∥

L1 ≤ Cλ−n
0

where C is independent of n and L. Moreover, we obtain that

∥∥F (χ̃L(λ)λ−1)
∥∥

L∞ ≤ ∥∥F χ̃L

∥∥
L1

∥∥λ−1
∥∥

L∞ < ∞,
∥∥F (χ̃L(λ)λ−n)

∥∥
L∞ ≤ ∥∥χ̃L(λ)λ−n

∥∥
L1 ≤ Cλ−n

0 , n ≥ 2.

We hence have

∣∣F (χ̃L(λ)λ−n)(ξ)
∣∣ ≤ Cλ−n

0

1
1 + |ξ|2 , n ≥ 1 (2.6)

uniformly in L ≥ 1. (2.4) follows from (2.5) and (2.6). ¤

3. Jost functions.

In this section, we collect results on the Jost functions f±(λ, x) needed later
and improve the Fourier properties of f± obtained by Deift and Trubowitz [3],
D’Ancona and Fanelli [2]. Given a potential V ∈ L1

1, the Jost functions f±(λ, x)
are the unique solutions to the equation
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−f ′′(λ, x) + V (x)f(λ, x) = λ2f(λ, x)

satisfying the asymptotic conditions

∣∣f±(λ, x)− e±iλx
∣∣ → 0 as x → ±∞. (3.1)

We recall a few properties of the Jost functions. f±(λ, x) satisfies f±(λ, x) =
f±(−λ, x). Using the Jost functions and their Wronskian, the kernel of the resol-
vent Rλ can be written by

Rλ(x, y) =





f+(λ, y)f−(λ, x)
W (λ)

for x < y,

f−(λ, y)f+(λ, x)
W (λ)

for x > y.

(3.2)

f+(λ, x) and f+(−λ, x) are independent for λ 6= 0 since their Wronskian

W [f+(λ, ·), f+(−λ, ·)] := f+(λ, x) · ∂xf+(−λ, x)− ∂xf+(λ, x) · f+(−λ, x)

= lim
x→+∞

[
eiλx(−iλ)e−iλx − iλeiλxe−iλx

]

= −2iλ 6= 0.

Similarly W [f−(λ, ·), f−(−λ, ·)] = 2iλ. These imply the relations

T (λ)f−(λ, x) = R1(λ)f+(λ, x) + f+(−λ, x),

T (λ)f+(λ, x) = R2(λ)f−(λ, x) + f−(−λ, x),
(3.3)

where T (λ), R1(λ) and R2(λ) are the transmission and reflection coefficients, re-
spectively. The modified Jost functions are given by m±(λ, x) := e∓iλxf±(λ, x).
The m±(λ, x) are the unique solutions to the Volterra integral equations

m±(λ, x) = 1±
∫ ±∞

x

Dλ(±(y − x))V (y)m±(λ, y)dy,

where Dλ(x) =
∫ x

0
e2iλzdz. It is well known that if V ∈ L1

1, then m±(·, x) − 1
belongs to the Hardy space H2± and if in addition V ∈ L1

2, then m±(λ, x) ∈
C1(R2) (see [3]). Moreover the following two lemmas hold (see [3], [13] and [1]).

Lemma 3.1. Let N ∈ N , N ≥ 2 and suppose V ∈ L1
N . Then ∂k

λm±(λ, x)
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exist for 0 ≤ k ≤ N − 1 and are continuous in (λ, x) ∈ R2. Moreover, m±(λ, x)
satisfy

∣∣∂k
λm±(λ, x)

∣∣ ≤ C(1 + max(∓x, 0))k+1, (λ, x) ∈ R2, 0 ≤ k ≤ N − 1.

Lemma 3.2. Suppose V ∈ L1
1, at least. Then the followings hold :

(1)
1

T (λ)
=

W (λ)
−2iλ

= 1− 1
2iλ

∫

R

V (σ)m+(λ, σ)dσ,

R1(λ)
T (λ)

=
W [f−(λ, ·), f+(−λ, ·)]

−2iλ
=

1
2iλ

∫

R

e−2iλσV (σ)m−(λ, σ)dσ,

R2(λ)
T (λ)

=
W [f−(−λ, ·), f+(λ, ·)]

−2iλ
=

1
2iλ

∫

R

e2iλσV (σ)m+(λ, σ)dσ.

(2)
|T (λ)|2 + |Rj(λ)|2 = 1, j = 1, 2,

R1(λ)T (λ) + R2(λ)T (λ) = 0,

T (λ) = T (−λ), Rj(λ) = Rj(−λ), j = 1, 2.

(3) (The generic case) Suppose that V is of generic type and V ∈ L1
N , N ≥ 1.

Then T , R1 and R2 ∈ CN−1(R) and for 1 ≤ k ≤ N − 1,

∣∣∂k
λT (λ)

∣∣ +
∣∣∂k

λR1(λ)
∣∣ +

∣∣∂k
λR2(λ)

∣∣ ≤ C〈λ〉−1, λ ∈ R. (3.4)

Furthermore, we have

T (λ) = αλ + o(1), α 6= 0, λ → 0,

R1(0) = R2(0) = −1.

(The exceptional case) Suppose that V is of exceptional type and V ∈ L1
N , N ≥ 2.

Then T , R1 and R2 ∈ CN−2(R) and (3.4) holds for 1 ≤ k ≤ N − 2. Furthermore,
as λ → 0, we have

T (λ) =
2a

1 + a2
+ o(1),

R1(λ) =
1− a2

1 + a2
+ o(1), R2(λ) =

a2 − 1
1 + a2

+ o(1),
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with a := limx→−∞ f+(0, x) 6= 0.

Since f±(λ, x) = e±iλxm±(λ, x), Lemma 3.1 implies

∣∣∂k
λf±(λ, x)

∣∣ ≤ C〈x〉k(1 + max(∓x, 0)), (λ, x) ∈ R2, 0 ≤ k ≤ N − 1. (3.5)

Using Lemma 3.2, we can improve the above estimates. More precisely we prove
that if λ 6= 0, then ∂k

λf±(λ, x) are bounded by 〈x〉k, at most. Furthermore if V is
of exceptional type or k is an odd number, then this holds for any λ ∈ R.

Lemma 3.3.

(1) Suppose that V is of generic type and V ∈ L1
N , N ≥ 1. Then

∣∣∂k
λ(T (λ)f±(λ, x))

∣∣ ≤ C〈x〉k, λ 6= 0, x ∈ R, 0 ≤ k ≤ N − 1.

If in addition N ≥ 2, then

∣∣∂k
λf±(0, x)

∣∣ ≤ C〈x〉k, x ∈ R,

for 1 ≤ k ≤ N − 1 and k odd.
(2) Suppose that V is of exceptional type and V ∈ L1

N , N ≥ 2, then

∣∣∂k
λf±(λ, x)

∣∣ ≤ C〈x〉k, (λ, x) ∈ R2, 0 ≤ k ≤ N − 2.

Proof. We give the proof for f+ only and the proof for f− is analogous.
Suppose V is of generic type. For λ 6= 0, the assertion follows from (3.3), (3.5)
and Lemma 3.2 (3). By (3.3),

−2iλf−(λ, x) = W (λ)R1(λ)f+(λ, x) + W (λ)f+(λ, x), λ ∈ R.

Since f+(·, x),W,R1 ∈ CN−1(Rλ) and W (0) 6= 0, R1(0) = −1, a direct computa-
tion yields

−2ik∂k−1
λ f−(0, x) =

k−1∑

j=0

(
k

j

)(
∂k−j

λ (WR1)(0) + (−1)j∂k−j
λ W (0)

)
∂j

λf+(0, x)

+ {−1 + (−1)k}W (0)∂k
λf+(0, x),

for 1 ≤ k ≤ N − 1. Hence ∂k
λf+(0, x) is a linear combination of f+(0, x),
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∂λf+(0, x), . . . , ∂k−1
λ f+(0, x) and ∂k−1

λ f−(0, x), provided k is an odd number. By
induction, we can see that for any 1 ≤ k ≤ N − 1 and k odd, ∂k

λf+(0, x) is a
linear combination of f±(0, x), ∂2

λf±(0, x), ∂4
λf±(0, x), . . . , and ∂k−1

λ f±(0, x). This
implies

∣∣∂k
λf±(0, x)

∣∣ ≤ C〈x〉k, x ∈ R.

We next consider the exceptional case. Suppose that V is of exceptional type.
Since f+(·, x), T, R1 ∈ CN−2(Rλ) and T (0) 6= 0, the assertion follows from (3.3),
(3.5) and Lemma 3.2, immediately. ¤

We next study Fourier properties of the Jost functions. Set

B±(ξ, x) :=
∫

R

e2iλξ(m±(λ, x)− 1)dλ.

Since m+(λ, x)− 1 ∈ H2±, the support of B+(ξ, x) with respect to ξ is contained
in the half line [0,∞). The function B+(ξ, x) satisfies the Marchenko equation:

B+(ξ, x) =
∫ ∞

x+ξ

V (σ)dσ +
∫ ξ

0

dζ

∫ ∞

x+ξ−ζ

V (σ)B+(ζ, σ)dσ (3.6)

and B−(ξ, x) also satisfies a corresponding equation. It is well known (see [3])
that if V ∈ L1

1, then the function B+(ξ, x) is well defined for ξ ≥ 0, x ∈ R and
satisfies the following estimates

|B+(ξ, x)| ≤ eγ(x)η(x + ξ), ξ ≥ 0, x ∈ R, (3.7)

where η(x) =
∫∞

x
|V (σ)|dσ, γ(x) =

∫∞
x

(σ − x)|V (σ)|dσ. B−(ξ, x) also satisfies a
similar inequalities. Moreover, we obtain the following lemma:

Lemma 3.4. Let N ∈ N , N ≥ 1 and suppose V ∈ L1
N . Then B±(ξ, x)

satisfy the estimates

∥∥B±(·, x)
∥∥

L1
N−1

≤ C(1 + max(∓x, 0))N , x ∈ R, (3.8)

where C depends on ‖V ‖L1
N
.

We set n±(λ, x) := (m±(λ, x) − m±(0, x))/λ and denote by C±(ξ, x) the
Fourier transform with respect to λ of n±:
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C±(ξ, x) =
∫

R

e2iλξn±(λ, x)dλ.

Then the following estimate holds for C± as well as B±. The proof is obvious by
Lemma 3.4 and we omit the details.

Corollary 3.5. Let N ∈ N , N ≥ 2 and suppose V ∈ L1
N . Then C±(ξ, x)

satisfy the estimates

∥∥C±(·, x)
∥∥

L1
N−2

≤ C(1 + max(∓x, 0))N , x ∈ R, (3.9)

where C depends on ‖V ‖L1
N
.

Remark 3.6. The estimates (3.8) with N = 1, 2 and (3.9) with N = 2 were
proved by D’Ancona and Fanelli [2].

Proof of Lemma 3.4. We prove the estimates for B+ only and the proof
for B− is similar. We first prove the case x ≥ 0. Since suppB+(·, x) ⊂ [0,∞), a
direct computation yields

∥∥ξN−1B+(ξ, x)
∥∥

L1(Rξ)
≤ eγ(x)

∫ ∞

0

ξN−1

∫ ∞

x+ξ

|V (σ)|dσdξ

=
1
N

eγ(x)

∫ ∞

x

(σ − x)N |V (σ)|dσ

≤ Ce
‖V ‖

L1
1‖V ‖L1

N

for all N ≥ 1, provided x ≥ 0. This implies (3.8) with x ≥ 0. The proof for x < 0
is by induction on N . Multiplying the Marchenko equation (3.6) by ξN−1 and
integrating in ξ from 0 to ∞, we have

∥∥ξN−1B+(ξ, x)
∥∥

L1(Rξ)

≤
∫ ∞

0

ξN−1dξ

∫ ∞

x+ξ

|V (σ)|dσ +
∫ ∞

0

ξN−1dξ

∫ ξ

0

dζ

∫ ∞

x+ξ−ζ

|V (σ)||B+(ζ, σ)|dσ

=: B1 + B2. (3.10)

It is clear that B1 is dominated by C‖V ‖L1
N
〈x〉N . Changing the order of integration

of B2, we obtain
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B2 =
∫ ∞

0

dζ

∫ ∞

x

dσ

∫ ζ+σ−x

ζ

ξN−1|V (σ)||B+(ζ, σ)|dξ

=
1
N

N∑

k=1

(
N

k

) ∫ ∞

0

dζ

∫ ∞

x

ζN−k(σ − x)k|V (σ)||B+(ζ, σ)|dσ.

If N = 1, then

B2 ≤
∫ ∞

x

(σ − x)|V (σ)|∥∥B+(·, σ)
∥∥

L1dσ.

Since

∫ 0

x

σ|V (σ)|∥∥B+(·, σ)
∥∥

L1dσ ≤ 0,

and
∥∥B+(·, σ)

∥∥
L1 is bounded uniformly in σ ≥ 0, we obtain

∥∥B+(·, x)
∥∥

L1 ≤ C‖V ‖L1
1
〈x〉+ C

∫ ∞

0

σ|V (σ)|dσ + 〈x〉
∫ ∞

x

|V (σ)|∥∥B+(·, σ)
∥∥

L1dσ

≤ C〈x〉+ 〈x〉
∫ ∞

x

|V (σ)|∥∥B+(·, σ)
∥∥

L1dσ.

We now can apply Gronwall’s lemma for x < 0, and have the bound (3.8) for
N = 1. For N ≥ 2, we see that

B2 ≤ C
N∑

k=2

∫ ∞

x

(σ − x)k|V (σ)|∥∥ζN−kB+(ζ, σ)
∥∥

L1(Rζ)
dσ

+ C

∫ ∞

x

(σ − x)|V (σ)|∥∥ζN−1B+(ζ, σ)
∥∥

L1(Rζ)
dσ

=: B21 + B22.

By hypothesis for the induction and the trivial inequality

(σ − x)k ≤ |x|k, x ≤ σ ≤ 0,

we have
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∫ 0

x

(σ − x)k|V (σ)|∥∥ζN−kB+(ζ, σ)
∥∥

L1(Rζ)
dσ ≤ C

∫ 0

x

|x|k|V (σ)|〈σ〉N−k+1dσ

≤ C‖V ‖L1
N−k+1

〈x〉k

for all 2 ≤ k ≤ N . By the inequality (σ − x)k ≤ C(|x|k + |σ|k) for 0 ≤ σ, we also
obtain

∫ ∞

0

(σ − x)k|V (σ)|∥∥ζN−kB+(ζ, σ)
∥∥

L1(Rζ)
dσ ≤ C‖V ‖L1

k
〈x〉k, 2 ≤ k ≤ N,

since
∥∥ζN−kB+(ζ, σ)

∥∥
L1(Rζ)

is bounded uniformly in σ ≥ 0. We thus have

B21 ≤ C

N∑

k=2

(‖V ‖L1
N−k+1

〈x〉k + ‖V ‖L1
k
〈x〉k)

≤ C
(‖V ‖L1

N

)〈x〉N . (3.11)

On the other hand, since

∫ 0

x

σ|V (σ)|∥∥ζN−1B+(ζ, σ)
∥∥

L1(Rζ)
dσ ≤ 0

and
∥∥ζN−1B+(ζ, σ)

∥∥
L1(Rξ)

is bounded uniformly in σ ≥ 0, B22 satisfies

B22 ≤ C

∫ ∞

0

σ|V (σ)|∥∥ζN−1B+(ζ, σ)
∥∥

L1(Rζ)
dσ

− C

∫ ∞

x

x|V (σ)|
∥∥ζN−1B+(ζ, σ)

∥∥
L1(Rζ)

dσ

≤ C
(‖V ‖L1

N

)
+ C〈x〉

∫ ∞

x

|V (σ)|∥∥ζN−1B+(ζ, σ)
∥∥

L1(Rζ)
dσ. (3.12)

By (3.10), (3.11) and (3.12), we obtain

〈x〉−N
∥∥ξN−1B±(ξ, x)

∥∥
L1(Rξ)

≤ C
(‖V ‖L1

N

)
+ C

∫ ∞

x

|V (σ)|〈σ〉N 〈σ〉−N
∥∥ζN−1B+(ζ, σ)

∥∥
L1(Rζ)

dσ.
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Applying the Gronwall’s lemma for x ≤ 0, we have

〈x〉−N
∥∥ξN−1B±(ξ, x)

∥∥
L1(Rξ)

≤ C
(‖V ‖L1

N

)
(3.13)

for x ≤ 0, N ≥ 2 and we conclude the proof. ¤

Using Lemma 3.4 and (3.4), we obtain the following Lemma which is a natural
generalization of Lemma 5 in [9].

Lemma 3.7. Let χ ∈ C∞0 (R).

(1) Suppose that V ∈ L1
N , N ≥ 1 and V is of generic type, then

F

(
χ

W

)
∈ L1

N−1.

(2) Suppose that V ∈ L1
N , N ≥ 2 and V is of exceptional type, then

F

(
λχ

W

)
∈ L1

N−2.

Here W (λ) is the Wronskian of the Jost functions.

Proof. We first prove the generic case. By Lemma 3.2 (1),

χ(λ)W (λ) = −2iλχ(λ) +
∫

R

V (σ)χ(λ)m+(λ, σ)dσ. (3.14)

Taking the Fourier transform with respect to λ of (3.14) and using the Minkowski
inequality, we have

∥∥F (χW )
∥∥

L1
N−1

≤ 2
∥∥F (λχ)

∥∥
L1

N−1
+

∫

R

|V (σ)|∥∥F (χm+(λ, σ))
∥∥

L1
N−1

dσ

≤ C‖V ‖L1
N

.

For the last inequality, we used Lemma 3.4 and support property of χ. Now
choosing a smooth cut-off χ̃ such that χχ̃ ≡ χ, we can realize that χ/W ≡ χ/χ̃W .
Since Fχ and F (χ̃W ) are in L1

N−1 and χ̃W does not vanish in suppχ, we can
apply Wiener’s lemma for ∂N−1

λ (χ/χ̃W ) and we conclude that F (χ/χ̃W ) ∈ L1
N−1.

For the exceptional case, we note that V is of exceptional type i.e. W (0) = 0
if and only if
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∫

R

V (σ)m+(0, σ)dσ = 0.

We set

p(λ) :=
1

T (λ)
=

W (λ)
−2iλ

= 1− 1
2iλ

∫

R

V (σ)m+(λ, σ)dσ

= 1− 1
2i

∫

R

V (σ)n+(λ, σ)dσ (3.15)

where n+(λ, x) = (m+(λ, x)−m+(0, x))/λ. Since T (λ) is continuous on R, p(λ) 6=
0 for all λ ∈ R. Taking the Fourier transform with respect to λ of (3.15) and using
the Minkowski inequality, we obtain

∥∥F (χp)
∥∥

L1
N−2

≤ ∥∥Fχ
∥∥

L1
N−2

+
1
2

∫

R

|V (σ)|∥∥F (χn+(λ, σ))
∥∥

L1
N−2

dσ

≤ C‖V ‖L1
N

.

For the last inequality, we use Corollary 3.5 and support property of χ. By a
similar argument as in the generic case, we can see that 2iλχ/W ≡ χ/χ̃p. Since
Fχ and F (χ̃p) are in L1

N−2 and χ̃p does not vanish in suppχ, we can apply
Wiener’s lemma and we conclude that F (χ/χ̃p) ∈ L1

N−2. ¤

Recall that f±(λ, x) = e±iλxm±(λ, x), T (λ) = −W (λ)/2iλ. By the same
argument as in the proof of Lemma 3.3, we obtain the following.

Corollary 3.8. Let χ ∈ C∞0 (R). Suppose that V ∈ L1
N , N ≥ 1. Then

∥∥F (χ(·)f±(·, x))
∥∥

L1
N−1

≤ C〈x〉N−1(1 + max(∓x, 0)), x ∈ R, (3.16)

Furthermore,

(1) If V is of generic type, then

∥∥F (χ(·)T (·)f±(·, x))
∥∥

L1
N−1

≤ C〈x〉N−1, x ∈ R.

(2) If V is of exceptional type and V ∈ L1
N , N ≥ 2, then

∥∥F (χ(·)f±(·, x))
∥∥

L1
N−2

≤ C〈x〉N−2, x ∈ R.
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4. The low energy estimates.

To complete the proof of Theorem 1.2, we prove the following.

Proposition 4.1. Let m be a positive integer and let χ be an even smooth
cut-off function such that χ(λ) = 1 close to zero. Suppose that V ∈ L1

2m and V is
of generic type, or else that V ∈ L1

2m+2 and V is of exceptional type. Let

s =

{
2m− 1 if V is of generic type,

2m if V is of exceptional type.

Then there exists an operator Pm−1 such that

∥∥〈x〉−s(
e−itHχ

(√
H

)
Pac − Pm−1

)
u
∥∥

L∞ ≤ Ct−1/2−m
∥∥〈x〉su∥∥

L1 , t > 0.

Moreover Pm−1 has the following expansion:

Pm−1 =
m−1∑

j=0

t−1/2−jCj−1, t > 0,

where the coefficients Cj−1 are given by

Cj−1u(x) =
1√

4πij!(4i)j

∫

R

(
∂2j

λ K
)
(0, x, y)u(y)dy,

K(λ, x, y) := T (λ)f+(λ, y)f−(λ, x),

and satisfy the conditions as in Theorem 1.2 and Remark 1.3.

Proof. We first consider the generic case. Set

G(λ, x, y) :=
K(λ, x, y)

λ
.

We start from the representation

〈
e−itHχ

(√
H

)
Pacu, v

〉
=

1
πi

∫

R

e−itλ2
λχ(λ)〈Rλu, v〉dλ

=
1
2π

∫

R2

( ∫

R

e−itλ2
λχ(λ)G̃(λ, x, y)dλ

)
u(y)v(x)dydx,
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where G̃(λ, x, y) denotes the kernel of −2iRλ and is given by

G̃(λ, x, y) =

{
G(λ, x, y) for x < y,

G(λ, y, x) for x > y.
(4.1)

Consider the integral

I(t, G) :=
1
2π

∫

R

e−itλ2
λχ(λ)G(λ, x, y)dλ

=
1

4πit

∫

R

e−itλ2
∂λ(χ(λ)G(λ, x, y))dλ. (4.2)

for x < y. The proof for the case x > y is analogous.
The case m = 1: It suffice to show that

|I(t, G)| ≤ Ct−3/2〈x〉〈y〉, x < y. (4.3)

Using the Fourier inversion formula, we obtain

|I(t, G)| ≤ Ct−3/2
∥∥(F∂λχ(·)G(·, x, y)

∥∥
L1

for all t > 0 and x < y, where F is the Fourier transform with respect to λ. By
Young’s inequality, Corollary 3.8 and Lemma 3.7 (1), we have

∥∥(F∂λχG)(·, x, y)
∥∥

L1 ≤ C〈x〉〈y〉, x < y.

The case m ≥ 2: Applying the stationary phase method to (4.2), we have

I(t, G) =
1√
πi

m−1∑

j=1

t−1/2−j

(j − 1)!(4i)j

(
∂2j−1

λ G
)
(0, x, y) + t−1/2−mSm−1(t, G),

where the remainder satisfies

|Sm−1(t, G)| ≤ C
∥∥(

F∂2m−1
λ χG

)
(·, x, y)

∥∥
L1 ≤ C〈x〉2m−1〈y〉2m−1,

by Lemma 3.7 (1) and Corollary 3.8. Considering the fact that

(
∂2j−1

λ G
)
(0, x, y) =

1
2j

(
∂2j

λ K
)
(0, x, y),
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(
∂2j

λ K
)
(0, x, y) =

(
∂2j

λ K
)
(0, y, x), x, y ∈ R, j = 1, 2, . . . , m,

we now define Cj−1 and Pm−1 by

Cj−1u(x) :=
1√

4πij!(4i)j

∫

R

(
∂2j

λ K
)
(0, x, y)u(y)dy, x ∈ R,

Pm−1 :=
m−1∑

j=0

t−1/2−jCj−1.

(4.4)

We then have

∣∣〈(e−itHχ(
√

H)Pac − Pm−1

)
u, v

〉∣∣ ≤ Ct−1/2−m
∥∥〈x〉2m−1

u
∥∥

L1

∥∥〈x〉2m−1
v
∥∥

L1 .

By the definition and Corollary 3.3 (1), we can see that rankCj−1 ≤ 2j, and

∥∥〈x〉−2j+1Cj−1u
∥∥

L∞ ≤ C
∥∥〈x〉2j−1u

∥∥
L1 .

In particular, C−1 ≡ 0. These complete the proof of the generic case.
We next consider the exceptional case. Suppose that V ∈ L1

2m+2 and V is of
exceptional type. By the stationary phase method, Lemma 3.7 (2) and Corollary
3.8, we have

1
2π

∫

R

e−itλ2
χ(λ)K(λ, x, y)dλ

=
1√
4πi

m−1∑

j=0

t−1/2−j

j!(4i)j
∂2j

λ K(0, x, y) + t−1/2−mSm(t,K)

and

|Sm(t,K)| ≤ C
∥∥(F∂2m

λ K)(·, x, y)
∥∥

L1 ≤ C〈x〉2m〈y〉2m,

for x < y. The same argument as in proof of the generic case implies

∥∥〈x〉−2m(
e−itHχ(

√
H)Pac − Pm−1

)
u
∥∥

L∞ ≤ Ct−1/2−m
∥∥〈x〉2m

u
∥∥

L1 ,

where Pm−1 is given by (4.4). Since T (0) 6= 0, rankCj−1 ≤ 2j + 1 and

∥∥〈x〉−2jCj−1u
∥∥

L∞ ≤ C
∥∥〈x〉2ju

∥∥
L1 .
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Finally, we define a function f0(x) by

f+(0, x) =

√
1 +

(
R2(0)
T (0)

+
1

T (0)

)2

f0(x),

where the coefficient follows from the asymptotic behavior of f+(0, x):

f+(0, x) →





1 as x → +∞,

R2(0)
T (0)

+
1

T (0)
as x → −∞,

(see (3.1), (3.3) and (3.4)). f0(x) is a bounded solution to the equation Hf = 0
and satisfies the normalized condition

lim
x→+∞

(|f0(x)|2 + |f0(−x)|2) = 2,

and C−1 can be written by

C−1u(x) =
1√
4πi

∫
T (0)f−(0, x)f+(0, y)u(y)dy

=
1√
4πi

∫
f0(y)u(y)dyf0(x).

We complete the proof. ¤
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