
c©2010 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 62, No. 4 (2010) pp. 1113–1136
doi: 10.2969/jmsj/06241113

On the expected volume of the Wiener sausage

Dedicated to Professor Yasunari Higuchi on his 60th birthday

By Yuji Hamana

(Received Mar. 23, 2009)
(Revised Aug. 19, 2009)

Abstract. We consider the expected volume of the Wiener sausage on
the time interval [0, t] associated with a closed ball. Let L(t) be the expected
volume minus the volume of the ball. We obtain that L(t) is asymptotically

equal to a constant multiple of t1/2 as t tends to 0 and that it is represented
as an absolutely convergent power series of t1/2 for any t > 0 in the odd
dimensional cases. Moreover, the explicit form of L(t) can be given in five and
seven dimensional cases.

1. Introduction.

In connection with heat conduction problems, the volume of the Wiener
sausage up to time t associated with a non-polar compact set has been inves-
tigated for a long time. The expected volume of the Wiener sausage is interpreted
as the total energy flow from the non-polar set. In the two dimensional case,
Spitzer [14] showed that the leading term is 2πt/ log t for large t. It is remark-
able that the leading term is independent of the non-polar set. In three or more
dimensional cases, the expected volume of the Wiener sausage is asymptotically
equal to t multiple of the capacity of the non-polar compact set as t →∞, which
can be found in Getoor [4] and Spitzer [14]. In addition, Le Gall [10] improved
these results and provided some lower terms.

Several results on limit theorems for the Wiener sausage have been established.
The law of large numbers was proved by Whitman in three or more dimensional
cases which is described in Itô-McKean [7] and by Le Gall [8] in the two dimen-
sional case. Le Gall [9] also established the central limit theorem. The results
concerning large deviations are given in van den Berg-Bolthausen-den Hollander
[2] and Hamana-Kesten [5].

In this article we will treat the Wiener sausage associated with a closed ball.
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For t > 0 let L(t) be the expected volume of the Wiener sausage up to time t from
which the closed ball is removed. Asymptotic behavior of L(t) as t → 0 can be
obtained by its Laplace transform and the Tauberian theorem. We can find that
the leading term of L(t) is a constant multiple of t1/2 and that the surface area of
the unit ball appears in the constant, which are described in Section 3.

On and after Section 4, we deal with odd dimensional cases. In the one
dimensional case, Berezhkovskii, Makhnovskii and Suris have investigated in [1].
In addition, we can easily calculate L(t) in this case. If the dimension is three,
Spitzer [14] has already given the form of L(t) explicitly. The main result in this
paper is that L(t) can be represented as an absolutely convergent power series of
t1/2 for any t > 0 in higher dimensional cases. In five and seven dimensional cases
in particular, we can give the explicit form of L(t). Section 6 is devoted to them.

2. Notation and preliminaries.

Let r > 0 be a fixed number. We use the notation D for {x ∈ Rd; ‖x‖ 5 r},
where ‖x‖ =

√
x2

1 + · · ·+ x2
d for x = (x1, . . . , xd) ∈ Rd. A Brownian motion on

Rd will be denoted by {B(t)}t=0. For t = 0 let

C(t) =
{
x ∈ Rd;x + B(s) ∈ D for some s ∈ [0, t]

}
,

which is called the Wiener sausage for {B(t)}t=0 associated with the set D on the
time interval [0, t]. A simple calculation shows that the expected volume of C(t)
is given by

∫

Rd

Px(τ 5 t)dx,

where τ is the first hitting time to D of {B(t)}t=0 and Px is the probability measure
of events related to the Brownian motion starting from x ∈ Rd. The notation |A|
will be used to denote the volume of a subset A in Rd, and then we have that

E|C(t)| = |D|+
∫

Rd\D
Px(τ 5 t)dx. (2.1)

According to the result in Hunt [6], Px(τ 5 t) is the unique solution of the
heat conduction problem

∂u

∂t
(t, x) =

1
2
∆u(t, x)
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for t > 0 and x ∈ Rd \D subject to the initial condition u(0, x) = 0 for x ∈ Rd \D

and the boundary condition u(t, y) = 1 for t > 0 and y ∈ D. Hence Px(τ 5 t) may
be interpreted as the temperature at time t at the point x ∈ Rd. We write L(t)
for the second term of the right hand side of (2.1). Then L(t) implies the total
energy flow in time t from the set D into the surrounding medium Rd \D.

In the one dimensional case, it is easy to see that

L(t) = 2
(

2
π

)1/2

t1/2

with the help of the fact that

Px(τ 5 t) =
∫ t

0

|x| − r√
2πs3

exp
[
− (|x| − r)2

2s

]
ds

for |x| > r, which is given in Itô-McKean [7, p. 25]. We remark that L(t) is
independent of r. In the three dimensional case, Spitzer [14] showed that

L(t) = 2πrt + 4(2π)1/2r2t1/2.

This equality can be also obtained directly by the following well-known formula:

Px(τ 5 t) =
r(‖x‖ − r)

‖x‖
∫ t

0

1√
2πs3

exp
[
− (‖x‖ − r)2

2s

]
ds

for ‖x‖ > r. (See Le Gall [10].) In higher dimensional cases, although there is not
such a useful explicit formula, the Laplace transform of τ can be computed. For
x ∈ Rd let µx be the probability distribution of τ under Px. Since µx is equal to
the distribution of the first hitting time to r of the d dimensional Bessel process
starting from ‖x‖, we have that

∫

R+

e−λtdµx(t) =
‖x‖−νKν(‖x‖

√
2λ)

r−νKν(r
√

2λ)
(2.2)

for λ > 0 and ‖x‖ = r, where R+ = {t ∈ R; t = 0}, ν = d/2 − 1 and Kµ is the
modified Bessel function of the second kind of order µ. This formula can be found
in Borodin-Salminen [3, p. 387] and Itô-McKean [7, p. 129]. We note that Kµ is
also called the Macdonald function of order µ.

In general, Kµ is the function defined on C for each complex number µ. In
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this paper, however, we need the value of Kµ(x) only in the case that x and µ

are real satisfying with x > 0. The remainder of this section is devoted to some
properties of modified Bessel functions, which are given in Magnus-Oberhettinger-
Soni [11]. Since Kµ coincides with K−µ for µ ∈ R, it is enough to consider the case
that µ = 0. For each µ = 0 and integer M = 1 we have the following asymptotic
expansion of Hankel type:

Kµ(x) =
√

π

2x
e−x

[ M−1∑
m=0

(µ + 1/2)m(µ−m + 1/2)m

(2x)mm!
+ O(x−M )

]
(2.3)

as x tends to ∞, where

(a)m =

{
a(a + 1) · · · (a + m− 1) if m = 1,

1 if m = 0

for a ∈ R. This immediately yields that

lim
x→∞

xµKµ′(x) = 0, (2.4)

lim
x→∞

Kµ(x)
Kµ′(x)

= 1 (2.5)

for µ, µ′ = 0. The following formula with respect to indefinite integrals is quite
useful for calculating the Laplace transform of L:

∫
xµ+1Kµ(x)dx = −xµ+1Kµ+1(x) + C, (2.6)

where C is an arbitrary constant. In the case that µ is a half integer, we can
express Kµ explicitly and obtain that

Kn+1/2(x) =
√

π

2x
e−x

[ n∑
m=0

〈n,m〉
(2x)m

]
(2.7)

for each integer n = 0. For simplicity, we have used the following notation:

〈n,m〉 =





(n + m)!
m!(n−m)!

if n = m,

0 if n < m.
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Throughout this paper, for a suitable function f , the notation L [f ] implies
the Laplace transform of f and the inverse Laplace transform of f is denoted by
L −1[f ].

3. Asymptotic behavior of L(t) as t is small.

Applying the Tauberian theorem, we can obtain asymptotic behavior of L(t)
as t tends to 0 if the behavior of L [L](λ) for large λ is provided. In fact, we can
supply the explicit form of L [L](λ) for λ > 0.

Proposition 3.1. We have that

L [L](λ) =
cd

λ3/2

Kν+1(r
√

2λ)
Kν(r

√
2λ)

(3.1)

for λ > 0, where cd = Sd−1r
d−1/

√
2 and Sd−1 is the surface area of d− 1 dimen-

sional unit sphere.

Proof. For s, t ∈ R let χ(s, t) be 1 if s 5 t and 0 otherwise. Then we have
that

L [L](λ) =
∫

R+

e−λt

[ ∫

Rd\D

[ ∫

[0,t]

dµx(s)
]
dx

]
dt

=
∫

R+

[
e−λt

∫

Rd\D

[ ∫

R+

χ(s, t)dµx(s)
]
dx

]
dt

for λ > 0. By the Fubini theorem, the last triple integral is equal to

∫

Rd\D

[ ∫

R+

[ ∫

R+

e−λtχ(s, t)dt

]
dµx(s)

]
dx =

∫

Rd\D

[
1
λ

∫

R+

e−λsdµx(s)
]
dx.

Therefore, by (2.2) and the change of variables formula,

L [L](λ) =
1
λ

∫

Rd\D

‖x‖−νKν(‖x‖
√

2λ)
r−νKν(r

√
2λ)

dx

=
Sd−1

λr−νKν(r
√

2λ)

∫ ∞

r

ρd−ν−1Kν

(
ρ
√

2λ
)
dρ,

which is equal to
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Sd−1

λr−νKν(r
√

2λ)
√

2λ
d−ν

∫ ∞

r
√

2λ

yd−ν−1Kν(y)dy. (3.2)

Recall that ν = d/2− 1, and then it follows that d− ν− 1 = ν +1. Applying (2.4)
and (2.6) to the integral in (3.2), we obtain that

∫ ∞

r
√

2λ

yd−ν−1Kν(y)dy =
(
r
√

2λ
)ν+1

Kν+1

(
r
√

2λ
)
,

which yields (3.1). ¤

Applying (2.5) to (3.1),

L [L](λ) =
cd

λ3/2
+ o

(
1

λ3/2

)

as λ →∞. The Tauberian theorem yields that

L(t) =
2cd√

π
t1/2 + o(t1/2)

as t → 0. This means that we have finished to give a proof of the following.

Corollary 3.2. We have that

L(t) =

√
2
π

Sd−1r
d−1t1/2 + o(t1/2) (3.3)

as t → 0.

The first term of the right hand side of (3.3) is the brief energy flow from
a ball of which the temperature is kept at one when the ball is thrown into the
medium with temperature zero.

By (2.3), Proposition 3.1 also yields that L [L](λ) can be represented as a
power series of λ−1/2 if λ is sufficiently large. Hence we would like to expect that
L(t) can be represented as a power series of t1/2 if t is sufficiently small. However
this argument is not correct in general. In virtue of the fact that Kµ has the
explicit form like (2.7) if µ is a half integer, L [L](λ) can be represented as a
rational function of λ1/2. This implies that the inverse Laplace transform of L [L]
can be calculated in principle. In the next section, we will supply a representation
of L(t).
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4. Power series representation of L(t).

In this section we will consider odd dimensional cases. Since the explicit form
of L(t) has been obtained in the one and three dimensional cases, it is sufficient
to consider higher dimensional cases. The purpose of this section is to establish
the following theorem.

Theorem 4.1. If d is odd and more than or equal to five, we have that

L(t) = cd

∞∑
n=1

α(d)
n tn/2 (4.1)

for any t > 0 and that the right hand side of (4.1) converges absolutely, where
{α(d)

n }∞n=1 is the sequence of real numbers defined by

α(d)
n =

β
(d)
n−1

(
√

2r)n−1Γ (n/2 + 1)
. (4.2)

Here Γ is the gamma function and the sequence {β(d)
n }∞n=0 is determined by

1
2k

〈
d− 1

2
, k

〉
=

k∑

j=0

1
2k−j

〈
d− 3

2
, k − j

〉
β

(d)
j (4.3)

for k = 0.

Remark. It follows from (4.3) that

β
(d)
0 = 1, β

(d)
1 =

d− 1
2

, β
(d)
2 =

(d− 1)(d− 3)
8

, β
(d)
3 = − (d− 1)(d− 3)

8
.

Moreover, in general, we obtain that

β(d)
n =

1
2n

n∑

j=1

j∑
m=1

(−1)m
∑

k1+···+km=j

k1=1,...,km=1

〈
d− 3

2
, k1

〉
· · ·

〈
d− 3

2
, km

〉〈
d− 1

2
, n− j

〉

+
1
2n

〈
d− 1

2
, n

〉

for n = 1.
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Before proving Theorem 4.1, we consider L(t) in the five and seven dimen-
sional cases. It is not difficult to see from (4.3) that β

(5)
0 = 1, β

(5)
1 = 2, β

(5)
n =

(−1)n for n = 2 and that β
(7)
0 = 1, β

(7)
1 = β

(7)
2 = 3, β

(7)
3 = −3 and each β

(7)
n for

n = 4 is determined by β
(7)
k+2 = −3(β(7)

k+1 + β
(7)
k ), that is,

β(7)
n = −1

2

[(−3−√3 i

2

)n−1

+
(−3 +

√
3 i

2

)n−1]
,

where i denotes the imaginary unit. By Theorem 4.1, these yield that if d = 5,

L(t) = S4

[√
2
π

r4t1/2 + r3t +
1
3

√
2
π

r2t3/2 − 1
8
rt2 +

1
15

√
2
π

t5/2 − · · ·
]

and that if d = 7,

L(t) = S6

[√
2
π

r6t1/2 +
3
2
r5t +

√
2
π

r4t3/2 +
3
8
r3t2 +

3
16

rt3 − · · ·
]
.

We note that the right hand side does not have the term of t5/2 if d = 7. In
addition, we can obtain the explicit form of L(t) in the five and seven dimensional
cases. They will be discussed in Section 6.

The remainder of this section is devoted to the proof of Theorem 4.1. We first
supply one lemma concerning the inverse Laplace transform.

Lemma 4.2. Let f be a function whose Laplace transform exists. Then the
inverse Laplace transform of λ−3/2L [f ](λ1/2) is equal to

∫ t

0

[
1√
πw

∫ ∞

0

e−u2/4wf(u)du

]
dw. (4.4)

Proof. We can prove (4.4) by combining three formulae with respect to
inverse Laplace transforms, which we can find in Prudnikov-Brychkov-Marichev
[13].

The first one is that the inverse transform of λ−1/2L [f ](λ1/2) is

1√
πt

∫ ∞

0

e−u2/4tf(u)du.

The second one is that the inverse transform of λ−1 is 1, and the last one is that
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the inverse transform of L [f ] ·L [g] is

∫ t

0

f(t− w)g(w)dw.

Thus the inverse transform of λ−1 · λ−1/2L [f ](λ1/2) is equal to (4.4). ¤

We are ready to prove Theorem 4.1. Let d = 2% + 3 for some positive integer
%. Recall that ν = d/2− 1 again, and then ν = % + 1/2. It turns that Proposition
3.1 implies that

L [L](λ) =
cd

λ3/2

K%+3/2(r
√

2λ)

K%+1/2(r
√

2λ)
. (4.5)

By a simple calculation, the equality (2.7) yields that

L [L](λ) =
cd

λ3/2

[
1 +

f%(r
√

2λ)
g%(r

√
2λ)

]

for some suitable polynomials f% and g% of degree % and %+1 respectively. There-
fore we obtain that

L [L](λ) =
cd

λ3/2
+

c̄d

(2r2λ)3/2

f%(
√

2r2λ)
g%(
√

2r2λ)
, (4.6)

where c̄d = 23/2r3cd. The inverse Laplace transform of the first term of the right
hand side of (4.6) is a constant multiple of t1/2. Therefore we now concentrate on
considering the remaining term.

Let h% be the inverse Laplace transforms of the second term of the right hand
side of (4.6). Then Lemma 4.2 shows that

h%(t) =
c̄d

2r2

∫ t/2r2

0

1√
πw

[ ∫ ∞

0

e−u2/4wL −1

[
f%

g%

]
(u)du

]
dw.

The partial fraction decomposition yields that f%(ξ)/g%(ξ) is the linear combination
of rational functions of the following three types:

pa
N (ξ) =

1
(ξ − a)N

, qa,b
N (ξ) =

1
{(ξ − a)2 + b2}N

, ra,b
N (ξ) =

ξ − a

{(ξ − a)2 + b2}N
,
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where a, b ∈ R with b > 0 and N is positive integer. We note that each denomi-
nator in pa

N (ξ), qa,b
N (ξ) and ra,b

N (ξ) is the factor of g%(ξ). Then h%(t) is the linear
combination of P a

N (t/2r2), Qa,b
N (t/2r2), Ra,b

N (t/2r2), where

P a
N (t) =

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4wL −1[pa
N ](u)du

]
dw,

Qa,b
N (t) =

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4wL −1[qa,b
N ](u)du

]
dw,

Ra,b
N (t) =

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4wL −1[ra,b
N ](u)du

]
dw.

It is easy to see that

L −1[pa
N ](t) =

eattN−1

Γ (N)
.

For α, t ∈ R with t > 0 and an integer m = 0 let

γα
m(t) =

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4w+αuumdu

]
dw.

Then P a
N (t) = γa

N−1(t)/Γ (N). Moreover, the representations of Qa,b
N and Ra,b

N can
be found as follows.

Lemma 4.3. We have that

Qa,b
N (t) = P a

2N (t) +
1

2N−1Γ (N)

∞∑
n=1

(−1)nb2n

(2n)!
(2n− 1)!!

(2n + 2N − 1)!!
γa
2N+2n−1(t), (4.7)

Ra,b
N (t) = P a

2N−1(t)

+
1

2N−1Γ (N)

∞∑
n=1

(−1)nb2n

(2n)!
(2n− 1)!!

(2n + 2N − 3)!!
γa
2N+2n−2(t). (4.8)

The proof of this lemma is postponed to Section 5. Lemma 4.3 implies that
it is sufficient to show that γα

m(t) is represented as a power series of
√

t for the
establishment of (4.1). Changing variables of the double integral on u and w in
γα

m(t) by x = u/2
√

w and y =
√

w,
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γα
m(t) = 2m+2

∫ √
t

0

[ ∫ ∞

0

e−x2+2αxyxmym+1dx

]
dy

= 2m+2

∫ √
t

0

[ ∫ ∞

0

e−x2
xmym+1

∞∑
n=0

(2αxy)n

n!
dx

]
dy.

Here 00 has been interpreted as 1. To change the order of the last double integral
and the summation, we need to show that

∞∑
n=0

∫ √
t

0

[ ∫ ∞

0

e−x2
xmym+1 (2|α|xy)n

n!
dx

]
dy (4.9)

converges. It is easy to obtain the convergence. Indeed, the monotone convergence
theorem yields that (4.9) is equal to

∫ √
t

0

ym+1

[ ∫ ∞

0

e−x2+2|α|xyxmdx

]
dy,

which is not larger than

√
t
m+2

∫ ∞

0

e−x2+2|α|√txxmdx.

Since this improper integral converges, we can conclude the convergence of (4.9).
Therefore, by the Fubini theorem,

γα
m(t) = 2m+2

∞∑
n=0

(2α)n

n!

√
t
m+n+2

m + n + 2

∫ ∞

0

e−x2
xm+ndx. (4.10)

By Lemma 4.3 and (4.10), we consequently obtain that each P a
N (t), Qa,b

N (t) and
Ra,b

N (t) is represented as a power series of t1/2. In order to conclude (4.1), we need
to show that these series converge absolutely for any t > 0. Indeed, it can be
proved in the following way.

For an integer m = 1 and real numbers α = 0, β > 0, t > 0 let

ξα
m(t) =

∞∑
n=0

(2α)n

n!

√
t
m+n+1

m + n + 1

∫ ∞

0

e−x2
xm+n−1dx,
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ηα,β
m (t) =

∞∑
n=1

∞∑

k=0

β2n

(2n)!
(2n− 1)!!

(2n + 2m− 1)!!
22m+2n+1 (2α)k

k!

×
√

t
2m+2n+k+1

2m + 2n + k + 1

∫ ∞

0

e−x2
x2m+2n+k−1dx,

ζα,β
m (t) =

∞∑
n=1

∞∑

k=0

β2n

(2n)!
(2n− 1)!!

(2n + 2m− 3)!!
22m+2n (2α)k

k!

×
√

t
2m+2n+k

2m + 2n + k

∫ ∞

0

e−x2
x2m+2n+k−2dx.

It is sufficient to show that

ξα
m(t) 5





K1t
m+1/2e4α2t if α 6= 0 and t = 1/4α2,

K2 if α 6= 0 and t < 1/4α2,

K3t
(m+1)/2 if α = 0,

(4.11)

ηα,β
m (t) 5

{
K4t

2m+1/2e4(α+β)2t if t = 1/4(α + β)2,

K5 if t < 1/4(α + β)2,
(4.12)

ζα,β
m (t) 5

{
K6t

2m−1/2e4(α+β)2t if t = 1/4(α + β)2,

K7 if t < 1/4(α + β)2.
(4.13)

Here K1, K2, K3, K4, K5, K6 and K7 are some suitable constants, which are all
independent of t. In order to see them, the following lemma is quite useful.

Lemma 4.4. Let m = 0 be a given integer. For a real number α > 0 there
exist constants A1 and A2, which are independent of α, such that

∞∑
n=0

αn

n!

∫ ∞

0

e−x2
xm+ndx 5

{
A1α

m+1eα2
if α = 1,

A2 if α < 1.
(4.14)

Proof. It is well-known that, for an integer p = 1

∫ ∞

0

e−x2
xpdx =





k!
2

if p = 2k + 1,

(2k − 1)!!
√

π

2k+1
if p = 2k.
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With the help of the inequality

(2k − 1)!!
2k

5 (2k)!!
2k

= k!

for each k = 1, we can easily see that

∫ ∞

0

e−x2
xpdx 5

[p

2

]
! (4.15)

for any p = 1, where the notation [x] means the largest integer that is less than or
equal to x ∈ R. By the fact that

∫ ∞

0

e−x2
dx =

√
π

2
5 1,

it turns that (4.15) holds for p = 0.
We first consider the case that α = 1. Let m = 2h+1 for some integer h = 0.

The left hand side of (4.14) is

∞∑

k=0

α2k

(2k)!

∫ ∞

0

e−x2
x2h+2k+1dx +

∞∑

k=0

α2k+1

(2k + 1)!

∫ ∞

0

e−x2
x2h+2k+2dx. (4.16)

Applying (4.15), the first term of (4.16) is dominated by

∞∑

k=0

α2k (h + k)!
(2k)!

. (4.17)

Since

(h + k)!
(2k)!

=
1

(h + k + 1) · · · (2k)
5 1

(k − h)!

if k = h + 1, a bound of (4.17) is

h∑

k=0

α2k (h + k)!
(2k)!

+
∞∑

k=h+1

α2k

(k − h)!
5 (h + 1)(2h)!α2h + α2heα2

. (4.18)

The second term of (4.16) is dominated by
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∞∑

k=0

α2k+1 (h + k + 1)!
(2k + 1)!

. (4.19)

An estimate of (4.19) can be obtained in the same fashion as (4.17). Indeed, with
the help of the inequality that

(h + k + 1)!
(2k + 1)!

5 1
(k − h)!

for k = h + 1, we have that (4.19) is bounded by

h∑

k=0

α2k+1 (h + k + 1)!
(2k + 1)!

+
∞∑

n=h+1

α2k+1

(k − h)!
, (4.20)

which is not larger than

(h + 1)(2h + 1)!α2h+1 + α2h+1eα2
.

Therefore we obtain (4.14) if m is an odd integer.
If m = 2h for some integer h = 0, in virtue of (4.15), the left hand side of

(4.14) is dominated by

∞∑

k=0

α2k (h + k)!
(2k)!

+
∞∑

k=0

α2k+1 (h + k)!
(2k + 1)!

5 2α
∞∑

k=0

α2k (h + k)!
(2k)!

,

which is not larger than a constant multiple of α2h+1 exp(α2). This implies (4.14)
for p = 2h.

In the case that α < 1, we may estimate the left hand side of (4.18) if m =
2h + 1 and (4.20) if m = 2h. It is obvious that they are bounded. ¤

From now on, we will write C1, . . . , C6 for suitable constants which are inde-
pendent of t. We first estimate ξα

m(t), ηα,β
m (t) and ζα,β

m (t) in the case that α > 0.
Since

ξα
m(t) 5

√
t
m+1

∞∑
n=0

(2α
√

t)n

n!

∫ ∞

0

e−x2
xm+n−1dx,

Lemma 4.4 immediately implies (4.11). Since (2n−1)!! 5 (2n+2m−1)!!, we have
that ηα,β

m (t) is dominated by
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C1t
m+1/2

∞∑
n=1

∞∑

k=0

(2β
√

t)2n

(2n)!
(2α

√
t)k

k!

∫ ∞

0

e−x2
x2m+2n+k−1dx. (4.21)

By the monotone convergence theorem, the double summation in (4.21) coincides
with

∫ ∞

0

∞∑
n=1

∞∑

k=0

(2βx
√

t)2n

(2n)!
(2αx

√
t)k

k!
e−x2

x2m−1dx. (4.22)

Note that

∞∑
n=1

(2βx
√

t)2n

(2n)!
5 e2βx

√
t.

Then (4.22) is not larger than

∫ ∞

0

e−x2+2(α+β)
√

txx2m−1dx =
∞∑

n=0

[2(α + β)
√

t]n

n!

∫ ∞

0

e−x2
x2m+n−1dx.

Therefore we immediately obtain (4.12) by Lemma 4.4. The estimate of ζα,β
m (t)

for m = 2 is the same as ηα,β
m (t), and thus the calculation is left to the reader. It

remains the estimate of ζα,β
1 (t). We have that

ζα,β
1 (t) 5 C2t

∞∑
n=1

∞∑

k=0

(2β
√

t)2n

(2n)!
(2α

√
t)k

k!

∫ ∞

0

e−x2
x2n+kdx.

Then the double sum in the right hand side is equal to

∫ ∞

0

∞∑
n=1

∞∑

k=0

(2β
√

t)2n

(2n)!
(2α

√
t)k

k!
e−x2

x2n+kdx 5
∫ ∞

0

e−x2+2(α+β)x
√

tdx,

which coincides with

∞∑
n=0

[2(α + β)
√

t]n

n!

∫ ∞

0

e−x2
xndx.

Therefore, by Lemma 4.4, we obtain that (4.21) is not larger than a constant
multiple of t3/2 exp[4(α + β)2t] if t = 1/4(α + β)2 and than a constant otherwise.
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We next consider the case that α = 0. It is easy to estimate ξ0
m(t). Indeed,

we have that

ξ0
m(t) =

√
t
m+1

m + 1

∫ ∞

0

e−x2
xm−1dx.

Since (2n− 1)!! 5 (2n + 2m− 1)!!, it follows from Lemma 4.4 that

η0,β
m (t) 5 C3t

m+1/2
∞∑

n=1

(2β
√

t)2n

(2n)!

∫ ∞

0

e−x2
x2m+2n−1dx,

which is dominated by

C3t
m+1/2

∞∑
n=0

(2β
√

t)n

n!

∫ ∞

0

e−x2
x2m+n−1dx.

Therefore, by Lemma 4.4, we conclude that

η0,β
m (t) 5 C4t

2m+1/2e4β2t

if t = 1/4β2 and that η0,β
m (t) 5 C5 if t < 1/4β2. This implies (4.12) for α = 0.

Moreover, we have that

ζ0,β
m (t) 5 C6t

m
∞∑

n=1

(2β
√

t)2n

(2n)!

∫ ∞

0

e−x2
x2m+2n−2dx.

The summation in the right hand side is dominated by

∞∑
n=0

(2β
√

t)n

n!

∫ ∞

0

e−x2
x2m+n−2dx.

Lemma 4.4 yields (4.13) for α = 0. We finish proving (4.11), (4.12) and (4.13).
It remains to give the proof of (4.2). Recall that d = 2% + 3 and that h%(t) is

represented as a linear combination of P a
N (t), Qa,b

N (t) and Ra,b
N (t). The estimates

(4.11), (4.12) and (4.13) yield that there are suitable positive constants κ1, κ2, κ3

and κ4 such that
∞∑

n=1

∣∣α(d)
n

∣∣tn/2 5 κ1t
κ2eκ3t
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for t > κ4. Therefore, we have that L [L](λ) is equal to

cd

∞∑
n=1

α(d)
n

∫ ∞

0

e−λttn/2dt = cd

∞∑
n=1

α
(d)
n Γ (n/2 + 1)

λn/2+1
(4.23)

for λ > κ3.
Let δ = max{|β(d)

0 |, |β(d)
1 |, . . . , |β(d)

%+1|}. Then it is obvious that

∣∣β(d)
j

∣∣ 5 δ[(2%− 1)!!e2]j (4.24)

for j = 1, 2, . . . , % + 1. For simplicity, we write γ for (2%− 1)!!e2. Since 〈n,m〉 = 0
if n < m, it follows from (4.3) that

%+2∑

j=2

〈%, % + 2− j〉
2%+2−j

β
(d)
j = 0,

which yields that

∣∣β(d)
%+2

∣∣ 5
%+1∑

j=2

〈%, % + 2− j〉
2%+2−j

∣∣β(d)
j

∣∣.

Note that

〈%, % + 2− j〉 =
(%− j + 3) · · · (2%− j + 2)

(j − 2)!
5 (% + 1) · · · (2%)

(j − 2)!

for j = 2, 3, . . . , % + 1. Then we have that

∣∣β(d)
%+2

∣∣ 5
%+1∑

j=2

(2%)!
2%%!

2j−2

(j − 2)!
· δγj 5 δγ%+1(2%− 1)!!

∞∑

j=2

2j−2

(j − 2)!
,

which is less than or equal to δγ%+2. We can obtain (4.24) for j = 1 inductively.
Let h = 2 and assume (4.24) for each j 5 % + h. It follows from (4.3) that

%+h+1∑

j=h+1

〈%, % + h + 1− j〉
2%+h+1−j

β
(d)
j = 0.
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Since

〈%, % + h + 1− j〉 5 (% + 1) · · · (2%)
(j − h− 1)!

for j = h + 1, h + 2, . . . , % + h + 1, we have that

∣∣β(d)
%+h+1

∣∣ 5
%+h∑

j=h+1

(2%)!
2%%!

2j−h−1

(j − h− 1)!
· δγj 5 δγ%+h+1.

Hence, we can obtain that

∞∑

j=0

β
(d)
j xj

converges absolutely for |x| < 1/γ. It follows from (4.3) that

∞∑

k=0

〈% + 1, k〉
2k

xk =
∞∑

k=0

〈%, k〉
2k

xk
∞∑

j=0

β
(d)
j xj .

This implies that

K%+3/2(r
√

2λ)

K%+1/2(r
√

2λ)
=

∞∑

j=0

β
(d)
j

(r
√

2λ)j

for λ > 2r2/γ2. Hence, by (4.6), we obtain that L [L](λ) is equal to

cd

∞∑

j=1

β
(d)
j−1

(
√

2r)j−1

1
λj/2+1

(4.25)

for λ > 2r2/γ2. Comparing coefficients of (4.25) and the right hand side of (4.23),
we can conclude (4.2). This completes the proof of Theorem 4.1.

5. Proof of Lemma 4.3.

In this section, we will give a proof of Lemma 4.3 provided in the previous
section. We first give explicit forms of qa,b

N and ra,b
N . It follows from the general

formulae of inverse Laplace transforms
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L −1[qa,b
N ](t) =

√
πeat

bN−1/2Γ (N)

(
1
2
t

)N−1/2

JN−1/2(bt),

L −1[ra,b
N ](t) =

√
πeat

bN−3/2Γ (N)

(
1
2
t

)N−1/2

JN−3/2(bt),

where Jµ is the Bessel function of order µ. The Poisson expression of Bessel
functions,

Jµ(x) =
2√

πΓ (µ + 1/2)

(
1
2
x

)µ ∫ 1

0

(1− v2)µ−1/2 cos(xv)dv (5.1)

for µ ∈ C satisfying with Reµ > −1/2, is quite useful for calculating L −1[qa,b
N ]

and L −1[ra,b
N ]. Applying (5.1) for µ = N − 1/2, we have that, for N = 1

L −1[qa,b
N ](t) =

eatt2N−1

22N−2Γ (N)2

∫ 1

0

(1− v2)N−1 cos(btv)dv,

which coincides with

eatt2N−1

22N−2Γ (N)2

∫ 1

0

(1− v2)N−1
∞∑

n=0

(−1)n

(2n)!
(btv)2ndv. (5.2)

Since

∞∑
n=0

∫ 1

0

(1− v2)N−1 1
(2n)!

(btv)2ndv 5
∞∑

n=0

(bt)2n

(2n)!
5 ebt,

we can change the order of integral and summation in (5.2). Then L −1[qa,b
N ](t) is

equal to

eatt2N−1

22N−2Γ (N)2

∞∑
n=0

(−1)n(bt)2n

(2n)!

∫ 1

0

(1− v2)N−1v2ndv.

The formula

∫ 1

0

(1− v2)nvmdv =





2nn!(m− 1)!!
(m + 2n + 1)!!

if m = 1,

2nn!
(2n + 1)!!

if m = 1
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for an integer n = 1 immediately implies that

L −1[qa,b
N ](t)

=
eatt2N−1

2N−1Γ (N)

[ ∞∑
n=1

(−1)n(bt)2n

(2n)!
(2n− 1)!!

(2n + 2N − 1)!!
+

1
(2N − 1)!!

]
. (5.3)

By the same calculation, we have that, for N = 2

L −1[ra,b
N ](t)

=
eatt2N−2

2N−1Γ (N)

[ ∞∑
n=1

(−1)n(bt)2n

(2n)!
(2n− 1)!!

(2n + 2N − 3)!!
+

1
(2N − 3)!!

]
. (5.4)

The proof is left to the reader. Since J−1/2 does not have the Poisson expres-
sion like (5.1), the same computation can not be applied to r1(t) unfortunately.
However, we can calculate it directly, and then have that

L −1[ra,b
1 ](t) = eat cos(bt) = eat

∞∑
n=0

(−1)n(bt)2n

(2n)!
. (5.5)

We are now ready to show (4.7) and (4.8). For N = 1 it follows from (5.3)
that Qa,b

N (t) is equal to

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4w eauu2N−1

2N−1Γ (N)

×
∞∑

n=1

(−1)n(bu)2n

(2n)!
(2n− 1)!!

(2n + 2N − 1)!!
du

]
dw (5.6)

+
∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4w eauu2N−1

2N−1Γ (N)
1

(2N − 1)!!
du

]
dw. (5.7)

In order to change the order of the double integral and the summation in (5.6), it
is necessary to see the convergence of

∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4w+auu2N−1
∞∑

n=1

(bu)2n

(2n)!
(2n− 1)!!

(2n + 2N − 1)!!
du

]
dw. (5.8)

Since (2n − 1)!! 5 (2n + 2N − 1)!! for n = 1, it is easy to obtain that (5.8) is
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bounded by γa+b
2N−1(t), which is equal to

2N+1

∫ √
t

0

[ ∫ ∞

0

e−x2+2(a+b)xyx2N−1y2Ndx

]
dy < ∞.

Therefore, (5.6) is equal to

1
2N−1Γ (N)

∞∑
n=1

(−1)nb2n

(2n)!
(2n− 1)!!

(2n + 2N − 1)!!

×
∫ t

0

1√
w

[ ∫ ∞

0

e−u2/4w+auu2N+2n−1du

]
dw.

This coincides with the second term of the right hand side of (4.7). It follows that
(5.7) is equal to

γa
2N−1(t)

2N−1(N − 1)!(2N − 1)!!
=

γa
2N−1(t)

(2N − 1)!
= P a

2N−1(t),

which is the first term of the right hand side of (4.7).
The computations of (5.4) and (5.5) are the same, and thus details of the

proof of (4.8) are left to the reader.

6. The five and seven dimensional cases.

This section is devoted to giving the formula for L(t) when d is five or seven.
For convenience, let β = 1/

√
2r2. If d = 5, it follows from (4.5) that

L [L](λ) =
c5√
λ

3

K5/2(
√

λ/β)

K3/2(
√

λ/β)
.

With the help of (2.7), we have that

K5/2(x)
K3/2(x)

= 1 +
3
x
− 1

x + 1
.

This implies that L [L](λ) is

c5

[
1
√

λ
3 +

3β

λ2
− β
√

λ
3
(
√

λ + β)

]
=

S4r
4

√
2

[
3β

λ2
+

1
βλ

− 1
β

1√
λ(
√

λ + β)

]
.
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The inverse Laplace transform of 1/
√

λ(
√

λ + β) is exp(β2t) erfc(β
√

t), where

erfc(z) = 1− 2√
π

∫ z

0

e−y2
dy

for z ∈ C. Therefore we obtain the following theorem.

Theorem 6.1. If d = 5, we have that

L(t) = S4r
4

[
3t

2r
+ r − r exp

(
t

2r2

)
erfc

(√
t

2r2

)]
.

The computation in the seven dimensional case is similar but more compli-
cated. If d = 7, it follows from (2.7) and (4.5) that L [L](λ) is equal to

c7√
λ

3

K7/2(
√

λ/β)

K5/2(
√

λ/β)
= c7

(
5β

λ2
+

1
3βλ

− 1
3β

1
λ + 3β

√
λ + 3β2

)
.

Therefore we need to give the inverse Laplace transform of

1
λ + 3β

√
λ + 3β2

.

We write f(λ) for this expression. Then we have that

f(λ) =
1

(
√

λ + a)2 + b2
,

where a = 3β/2 and b =
√

3β/2. Let g(λ) = f(λ2). Since

L −1[f ](t) =
1√
2πt3

∫ ∞

0

e−w2/4twL −1[g](w)dw,

L −1[g](t) =
1
b
e−at sin(bt),

then we have that

L −1[f ](t) =
1

b
√

2πt3

∫ ∞

0

e−w2/4twe−aw sin(bw)dw. (6.1)
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We can find in Prudnikov-Brychkov-Marichev [12, p. 90] that the integral in the
right hand side of (6.1) is

−i
√

πt3
[
(a + bi)e(a+bi)2t erfc((a + bi)

√
t)− (a− bi)e(a−bi)2t erfc((a− bi)

√
t)

]
.

Then the simple calculation shows the following theorem.

Theorem 6.2. If d = 7, we have that

L(t) = S6r
6

[
5t

2r
+

r

3
− 2r2

3
√

3πt3

∫ ∞

0

exp
(
− x2

4t
− ax

)
x sin(bx)dx

]

= S6r
6

[
5t

2r
+

r

3
−

(
1√
6
− i

)
exp

(
8 + 3

√
6 i

8r2
t

)
erfc

(
3
√

2 +
√

3 i

4r

√
t

)

−
(

1√
6

+ i

)
exp

(
8− 3

√
6 i

8r2
t

)
erfc

(
3
√

2−√3 i

4r

√
t

)]
.
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