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of weighted Bergman space over bidisk
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Abstract. In this paper, we study the invariant subspace and reducing
subspace of the weighted Bergman space over bidisk. The minimal reducing
subspace of Toeplitz operator TzN = TzN

1 zN
2

is completely described, and

Beurling-type theorem of some invariant subspace of the weighted Bergman
space over bidisk is also obtained.

1. Introduction.

Let dA denote Lebesgue area measure on the unit disk D, normalized so
that the measure of D equals 1. For α > −1, we denote the measure dAα by
dAα(z) = (α + 1)(1 − |z|2)αdA(z). The weighted Bergman space A2

α(D) consists
of analytic functions f

f(z) =
∞∑

n=0

anzn

in the unit disk D such that

‖f‖2α =
∞∑

n=0

ωn|an|2 < ∞,

where ωn = n!Γ(2+α)
Γ(2+α+n) . If en(z) =

√
1

ωn
zn, then {en(z)} is an orthonormal basis

for A2
α(D).
It is easy to see that A2

α(D) is a Hilbert space with inner product

〈f, g〉 =
∫

D

f(z)g(z)dAα(z), f, g ∈ A2
α(D).
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Let Q be the Bergman orthogonal projection from L2(D) onto A2
α(D). For a

bounded measurable function f ∈ L∞(D), the Toeplitz operator with symbol f is
defined by Tfh = Q(fh), for h ∈ A2

α(D). It is clear that Tf : A2
α(D) → A2

α(D) is
a bounded linear operator.

The unit bidisk D2 and the torus T 2 are the cartesian products of two copies of
D and of T , respectively. Observe that T 2 is only a small part of the boundary ∂D2.
T 2 is usually called the distinguished boundary of D2. The weighted Bergman
space A2

α(D2) is then the space of all holomorphic functions in L2(D2, dvα), where
dvα(z) = dAα(z1)dAα(z2). For multi-index β = (β1, β2), let

eβ =

√
1

wβ1wβ2

zβ ,

then {eβ}β is an orthnormal basis for A2
α(D2).

Let P be the Bergman orthogonal projection from L2(D2) onto A2
α(D2). For a

bounded measurable function f ∈ L∞(D2), the Toeplitz operator with symbol f is
defined by Tfh = P (fh), for h ∈ A2

α(D2). It is clear that Tf : A2
α(D2) → A2

α(D2)
is a bounded linear operator.

For the general theory of the weighted Bergman space on the unit disk and
bidisk, readers refer to [3], [9] and [6].

One of the reasons that invariant subspaces in Bergman spaces A2
α have at-

tracted so much attention in recent years is that they are closely related to an
old open problem in Operator Theory. More specifically, the invariant subspace
problem (of whether every bounded linear operator on a separable Hilbert space
of infinite dimension has a nontrivial invariant subspace) is equivalent to the fol-
lowing question about invariant subspaces of the Bergman space A2

α: Given two
invariant subspaces I and J of A2

α with I ⊂ J and dim(J ª I) = ∞, does there
exist another invariant subspace M of A2

α lying strictly between I and J? See [4]
for an explanation and references.

It is well known that the multiplication operator Mz on A2
α(D) possesses a

very rich structure theory, although its definition seems simple-minded. It poses
many serious questions to be answered, such as the understanding of its invariant
subspace. We mention here the work [1]. The study of invariant subspace of
general analytic multiplication operators has also picked up momentum, see [5]
for example. One of the problems we will be concerned with in this paper is
Beurling-type theorem of weighted Bergman space over bidisk.

Besides the structure of the invariant subspaces, the understanding of invari-
ant subspace lattice is also helpful to the invariant subspace problem. In [10],
Kehe Zhu got a complete description of the reducing subspaces of multiplication
operators on Bergman space induced by z2 and by Blaschke products with two
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zeros in D. In [7], Michael Stessin and Kehe Zhu extended the result in [10] to
the reducing subspaces of weighted unilateral shift operators of finite multiplicity.
In [2] and [8], Kunyu Guo, Shunhua Sun, Dechao Zheng and Changyong Zhong
developed a machinery and completely classified nontrivial minimal reducing sub-
spaces of the multiplication operator by a Blaschke product with order three and
four zeros respectively, on the Bergman space of the unit disk via the Hardy space
of the bidisk.

Motivated by [10], [7], [2] and [8], in this paper we investigate reducing sub-
space lattice of Toeplitz operator TzN = TzN

1 zN
2

in A2
α(D2) and obtain a complete

description of the minimal reducing subspaces of TzN in A2
α(D2).

Let us begin the study by doing some preparations.
We let E be a separable Hilbert space of infinite dimension, and {δj : j ≥ 0}

be the orthonormal basis for E, and we let L2(E) denote the E-valued weighted
Bergman space on the unit disk D, i.e.

L2(E) =
{

f : D → E | f =
∞∑

n=0

xnzn, ‖f‖2L2(E) =
∞∑

n=0

ωn‖xn‖2E < ∞
}

.

In order to make a study of the weighted Bergman space A2
α(D2), we identify

the space E with another copy of the Bergman space. Then L2(E) = A2
α(D)⊗E

will be identified with A2
α(D) ⊗ A2

α(D) = A2
α(D2). We do this in the following

way.
Let u be the unitary map from E to A2

α(D) such that

u(δj) = ej(z2), j ≥ 0.

Then U = I ⊗ u is a unitary from A2
α(D)⊗ E to A2

α(D)⊗A2
α(D) such that

U(ei(z1)δj) = ei(z1)ej(z2), i, j ≥ 0,

where I is the identity operator on A2
α(D).

A closed subspace M of A2
α(D2) is called an invariant subspace of the operator

A, if AM ⊆ M .
A closed subspace M of A2

α(D2) is called a reducing subspace of the operator
A, if M is an invariant subspace of both A and its adjoint A∗.

In Section 2, we study the minimal reducing subspace of TzN
1

, TzN
2

and TzN

over bidisk. And then, in Section 3, Beurling-type theorem of some special kind
of invariant subspace over bidisk is obtained.

We can now state our main result.
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Theorem 1.1. Suppose M is a reducing subspace of TzN in A2
α(D2), then

there exist nonnegative integers a, b, k, m with 0 ≤ m ≤ N − 1 and a, b ∈ {0, 1}
such that

Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

} ⊆ M.

In particular, M is minimal, if and only if,

M = Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

}
.

Theorem 1.2. Suppose −1 < α ≤ 0 and for any i = 1, 2, M is an invariant
subspace of Tzi

in A2
α(D2). Then M is generated by M ª Tzi

M , that is

M = [M ª Tzi
M ].

2. The reducing subspace of the weighted Bergman space over
bidisk.

Throughout this section we fix an integer N > 1, and consider the complete
description of the reducing subspaces of the operators TzN and TzN

i
(i = 1, 2) in

the weighted Bergman space A2
α(D2).

Note that for any f ∈ A2
α(D2),

f =
∞∑

n=0

zn
2 gn(z1), (z1, z2) ∈ D2,

where {gn}n are holomorphic functions in A2
α(D). It is the unique decomposition

with respect to

A2
α(D2) =

∞∑
n=0

⊕zn
2 A2

α(D).

Let the closed subspace zn
2 A2

α(D) be denoted by X
(1)
n , then we have

A2
α(D2) =

∞∑
n=0

⊕X(1)
n .

Since TzN
1

is an operator on A2
α(D2) and X

(1)
n are its invariant subspaces, TzN

1
is
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the direct sum of its restrictions to X
(1)
n (n = 0, 1, 2, . . .), i.e.

TzN
1

=
∞∑

n=0

⊕TzN
1
|X(1)

n .

Let Sn be the restriction of the operator TzN
1

to the closed subspace X
(1)
n .

First, we will give the description of the reducing subspaces of Sn in A2
α(D2), and

that is based on the following result, see Theorem 14 in [7] for details.
Suppose that MzN is the weighted unilateral shift operator on A2

α(D), then
Xn = Span{zn+kN : k = 0, 1, 2, . . .} (0 ≤ n ≤ N − 1) are the only minimal
reducing subspaces of MzN in A2

α(D). In particular, there are exactly 2N reducing
subspaces of MzN in A2

α(D), and they are simply the direct sum of these minimal
reducing subspaces.

Here and throughout the paper we use Span to denote the closed linear span
of a set in a Hilbert space.

Theorem 2.1. For any n = 0, 1, 2, . . ., X
(1)
n = zn

2 A2
α(D) is a closed subspace

of A2
α(D2). Then

Span
{
zn
2 zn1+α1N

1 : α1 = 0, 1, 2, . . .
}

(0 ≤ n1 ≤ N − 1)

are the only minimal reducing subspaces of Sn. In particular, there are exactly
2N reducing subspaces of Sn in X

(1)
n , and they are simply the direct sum of these

minimal reducing subspaces.

Proof. Let M ⊆ zn
2 A2

α(D) be a closed subspace in X
(1)
n , and

M0 =
{
f(z1) ∈ A2

α(D) : zn
2 f(z1) ∈ M

}
,

it is easy to see that M0 is a closed subspace in A2
α(D), and zn

2 M0 = M .
If M is a reducing subspace of Sn, for any f(z1) ∈ M0,

zn
2 MzN

1
f(z1) = zn

2 zN
1 f(z1) = Sn(zn

2 f(z1)) ∈ M,

zn
2 M∗

zN
1

f(z1) = P (zn
2 zN

1 f(z1)) = S∗n(zn
2 f(z1)) ∈ M,

so M0 is a reducing subspace of MzN
1

in A2
α(D).

Conversely, if M0 is a reducing subspace of MzN
1

in A2
α(D), similarly, M is a

reducing subspace of Sn in X
(1)
n .
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If M is minimal, we assume that M ′
0 is a nonzero proper reducing subspace

contained in M0. Then zn
2 M ′

0 ⊆ zn
2 M0 = M . It is a contradiction, since M is

minimal. So M0 is minimal in A2
α(D).

Conversely, if M0 is minimal, similarly, M is minimal.
Thus M is a minimal reducing subspace of Sn in X

(1)
n , if and only if, M0 is a

minimal reducing subspace of MzN
1

in A2
α(D).

By Theorem 14 in [7], the result is proved. ¤

Throughout this paper, we denote Span{zn1+α1N
1 : α1 = 0, 1, 2, . . .} by M

(1)
n1 ,

and Span{zn2+α2N
2 : α2 = 0, 1, 2, . . .} by M

(2)
n2 .

Lemma 2.1. Let M be a reducing subspace of TzN
1

in A2
α(D2). If f ∈ M ,

g ∈ M⊥,

f(z1, z2) =
∞∑

p=0

fp(z2)z
p
1 , g(z1, z2) =

∞∑
q=0

gq(z2)z
q
1 ,

then for any p, q ≥ 0, fp(z2)z
p
1 ∈ M , gq(z2)z

q
1 ∈ M⊥.

Proof. Assume that M is a reducing subspace of TzN
1

. For m,n ≥ 0, we
firstly consider the orthogonal decomposition of zn

2 zm
1 with respect to M . Let

zn
2 zm

1 = α(z1, z2) + β(z1, z2),

where α(z1, z2) ∈ M , β(z1, z2) ∈ M⊥, and α(z1, z2) =
∑∞

k=0 αk(z2)zk
1 be the

multiple Fourier series of α. Let PM be the orthogonal projection from A2
α(D2)

onto M . Then we have

T ∗zN
1

TzN
1

(
zn
2 zm

1

)
= P

(
zn
2 zm+N

1 zN
1

)
= zn

2 Q
(
zm+N
1 zN

1

)

= zn
2

∞∑

k=0

〈
Q

(
zm+N
1 zN

1

)
,

zk
1

‖zk
1‖

〉
zk
1

‖zk
1‖

= zn
2

∞∑

k=0

1
ωk

〈
zm+N
1 , zk+N

1

〉
zk
1

=
ωm+N

ωm
zn
2 zm

1

=
ωm+N

ωm
(α + β),
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PMT ∗zN
1

TzN
1

(
zn
2 zm

1

)
= PM

(
ωm+N

ωm
(α + β)

)
=

ωm+N

ωm
α,

and

PMT ∗zN
1

TzN
1

(α + β) = PMT ∗zN
1

TzN
1

α + PMT ∗zN
1

TzN
1

β

= T ∗zN
1

TzN
1

α

= P

( ∞∑

k=0

αk(z2)zk+N
1 zN

1

)

=
∞∑

k=0

αk(z2)Q
(
zk+N
1 zN

1

)

=
∞∑

k=0

ωk+N

ωk
αk(z2)zk

1 .

It follows that

ωm+N

ωm
α =

∞∑

k=0

ωk+N

ωk
αk(z2)zk

1 ,

or

∑

k 6=m

(
ωk+N

ωk
− ωm+N

ωm

)
αk(z2)zk

1 = 0.

Since ωk+N

ωk
6= ωm+N

ωm
when k 6= m, we get αk(z2) = 0, ∀k 6= m.

That is α(z1, z2) = αm(z2)zm
1 , and β(z1, z2) = (zn

2 −αm(z2))zm
1 . Since ‖α‖2+

‖β‖2 = ‖zn
2 zm

1 ‖2, it is easy to see that ‖αm(z2)‖2 ≤ ‖zn
2 ‖2.

Therefore there exists a sequence of functions {αn,m(z2)}n,m ⊆ A2
α(D) such

that

‖αn,m(z2)‖2 ≤ ‖zn
2 ‖2,

and

zn
2 zm

1 = αn,m(z2)zm
1 +

(
zn
2 − αn,m(z2)

)
zm
1
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is the unique orthogonal decomposition of zn
2 zm

1 with respect to M .
For any function f ∈ M , f =

∑∞
p=0 fp(z2)z

p
1 , it is easy to check that

fp(z2)z
p
1 =

∞∑
n=0

ap,nzn
2 zp

1 =
∞∑

n=0

ap,nαn,p(z2)z
p
1 +

∞∑
n=0

ap,n(zn
2 − αn,p(z2))z

p
1 .

Let hp(z2) =
∑∞

n=0 ap,nαn,p(z2), then

‖hp(z2)‖2 ≤
∞∑

n=0

|ap,n|2‖αn,p(z2)‖2 ≤
∞∑

n=0

|ap,n|2‖zn
2 ‖2 = ‖fp(z2)‖2 < ∞,

and

fp(z2)z
p
1 = hp(z2)z

p
1 + (fp(z2)− hp(z2))z

p
1 ,

where hp(z2)z
p
1 ∈ M , and (fp(z2)− hp(z2))z

p
1 ∈ M⊥.

So f has the unique orthogonal decomposition with respect to M :

f =
∞∑

p=0

hp(z2)z
p
1 +

∞∑
p=0

(fp(z2)− hp(z2))z
p
1 .

Since f ∈ M ,
∑∞

p=0(fp(z2) − hp(z2))z
p
1 = 0. Then for any p = 0, 1, . . .,

fp(z2) = hp(z2), that implies fp(z2)z
p
1 ∈ M .

Similarly, for any function g ∈ M⊥, g =
∑∞

q=0 gq(z2)z
q
1 , then gq(z2)z

q
1 ∈ M⊥,

∀q = 0, 1, . . .. So the proof is completed. ¤

Theorem 2.2. For any function f = f(z2) ∈ A2
α(D), and each integer n1

with 0 ≤ n1 ≤ N − 1, let

f(z2)M (1)
n1

= Span
{
f(z2)zn1+α1N

1 : α1 = 0, 1, 2, . . .
}
,

then {f(z2)M
(1)
n1 } are the only minimal reducing subspaces of TzN

1
in A2

α(D2).
Every reducing subspace of TzN

1
in A2

α(D2) contains a minimal reducing subspace.

Proof. By Theorem 14 in [7], it is obvious that for any nonnegative integer
n1 with 0 ≤ n1 ≤ N−1, and any f(z2) ∈ A2

α(D), f(z2)M
(1)
n1 is a reducing subspace

of TzN
1

in A2
α(D2).

In the following, we are going to prove that for any reducing subspace M of
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TzN
1

, there exist a function f(z2) ∈ A2
α(D) and a nonnegative integer n1 such that

f(z2)M
(1)
n1 ⊆ M .

For any nonzero function f(z1, z2) ∈ M ,

f(z1, z2) =
∞∑

n=0

fn(z2)zn
1 ,

by Lemma 2.1, for any n, fn(z2)zn
1 ∈ M . For any n = 0, 1, 2, . . ., there are two

nonnegative integers n1, α1 such that

n = n1 + α1N, (0 ≤ n1 ≤ N − 1).

Since f(z1, z2) 6= 0, there exists a nonnegative integer n such that fn(z2) 6= 0 and
fn(z2)zn1+α1N

1 ∈ M . We know that M is invariant under the operators TzN
1

and
T ∗

zN
1

, so

fn(z2)Span
{
zn1+lN
1 : l = 0, 1, 2, . . .

} ⊆ M,

i.e. fn(z2)M
(1)
n1 ⊆ M .

Assume that M is a minimal reducing subspace of TzN
1

in A2
α(D2). As is stated

above, there exists a reducing subspace f(z2)M
(1)
n1 of TzN

1
such that f(z2)M

(1)
n1 ⊆

M . It forces that M = f(z2)M
(1)
n1 .

Finally, we will prove that if M
(1)
n1 is a minimal reducing subspace of MzN

1
in

A2
α(D), 0 ≤ n1 ≤ N − 1, then for any f(z2) ∈ A2

α(D), f(z2)M
(1)
n1 is a minimal

reducing subspace of TzN
1

in A2
α(D2).

Assume that M is a nonzero proper minimal reducing subspace of TzN
1

con-

tained in f(z2)M
(1)
n1 for some n1. Let a closed subspace M ′ = {g(z1) ∈ A2

α(D) :
f(z2)g(z1) ∈ M}. It is obvious that M = f(z2)M ′ and M is minimal reducing
subspace of TzN

1
in A2

α(D2), if and only if, M ′ is a minimal reducing subspace of

MzN
1

in A2
α(D). We can see that M ′ ⊂ M

(1)
n1 . So it is a contradiction, since M

(1)
n1

is minimal. Thus f(z2)M
(1)
n1 is minimal.

In conclusion, we obtain that M is a minimal reducing subspace of TzN
1

in
A2

α(D2), if and only if, for some function f(z2) ∈ A2
α(D) and nonnegative integer

n1 with 0 ≤ n1 ≤ N − 1, M = f(z2)M
(1)
n1 . Thus the proof is completed. ¤

Theorem 2.3. For any function f = f(z1) ∈ A2
α(D), and each integer n2

with 0 ≤ n2 ≤ N − 1,
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Span
{
f(z1)zn2+α2N

2 : α2 = 0, 1, 2, . . .
}

= f(z1)M (2)
n2

is the only minimal reducing subspace of TzN
2

in A2
α(D2). Every reducing subspace

of TzN
2

in A2
α(D2) contains a minimal reducing subspace.

Proof. The proof follows from the symmetry of z1, z2 and Theorem 2.2. ¤

Theorem 2.4. Suppose M is a reducing subspace of both TzN
1

and TzN
2

in
A2

α(D2), then there exist nonnegative integers n1, n2 with 0 ≤ n1, n2 ≤ N − 1
such that M

(1)
n1 ⊗ M

(2)
n2 ⊆ M . In particular, M is minimal, if and only if, M =

M
(1)
n1 ⊗M

(2)
n2 . And there are N2 minimal reducing subspaces in A2

α(D2).

Proof. If M is a reducing subspace of TzN
1

, for f =
∑∞

k=0 fk(z2)zk
1 ∈ M ,

by Lemma 2.1, for any k, fk(z2)zk
1 ∈ M . Since M is a reducing subspace of

TzN
2

, for fk(z2)zk
1 =

∑∞
l=0 ak,lz

l
2z

k
1 , by Lemma 2.1, for any k, l, ak,lz

l
2z

k
1 ∈ M .

There are nonnegative integers n1, n2, n
′
1, n

′
2 with 0 ≤ n1, n2 ≤ N − 1 such that

k = n1 + n′1N, l = n2 + n′2N , then

Span
{
z

n1+n′1N
1 z

n2+n′2N
2 : n′1, n

′
2 = 0, 1, 2, . . .

} ⊆ M, i.e. M (1)
n1

⊗M (2)
n2

⊆ M.

It is obvious that M
(1)
n1 ⊗M

(2)
n2 is a reducing subspace of both TzN

1
and TzN

2
.

If M is minimal, then M = M
(1)
n1 ⊗M

(2)
n2 .

It is easy to see that M
(1)
n1 ⊗M

(2)
n2 is a minimal reducing subspace. So there

are N2 minimal reducing subspaces of both TzN
1

and TzN
2

in A2
α(D2). ¤

Lemma 2.2. For any nonnegative integers m1,m2, l, N with l ≥ 1, N > 1.
If J 6= (m1,m2) or J 6= (m2,m1), where J = (j1, j2) is a multi-index, then
ωj1+lN ωj2+lN

ωm1+lN ωm2+lN
− 1 6= 0.

Proof. Without loss of generality, we might as well let m1 ≥ m2.
Let ∆ = ωj1+lN ωj2+lN

ωm1+lN ωm2+lN
.

For the sequence {ωn} is decreasing, if j1, j2 > m1, then ∆ − 1 < 0; if
m2 > j1, j2, then ∆− 1 > 0.

If j1 > m1 ≥ m2 > j2, and j1 −m1 = m2 − j2, then

∆ =
(j1 + lN) · · · (m1 + 1 + lN)(m2 + 1 + α + lN) · · · (j2 + 2 + α + lN)
(j1 + 1 + α + lN) · · · (m1 + 2 + α + lN)(m2 + lN) · · · (j2 + 1 + lN)

.

It is easy to calculate that for the function f(x, y) = (α+1+x)y
(α+1+y)x − 1,
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{
f(x, y) > 0, if y > x;

f(x, y) < 0, if y < x,

where α > −1. So ∆ > 1.
If j1 > m1 ≥ m2 > j2, and j1−m1 6= m2−j2, we will prove it by contradiction.
Suppose that ∆− 1 = 0. Let

H1(λ) =
(j1 + λ) · · · (m1 + 1 + λ)(1 + α + m2 + λ) · · · (2 + α + j2 + λ)
(1 + α + j1 + λ) · · · (2 + α + m1 + λ)(m2 + λ) · · · (j2 + 1 + λ)

− 1,

then H1(λ) is rational and holomorphic at infinity, and

lim
|λ|→∞

H1(λ) = 0.

Let H2(λ) = H1( 1
λ ), we can choose ρ small enough, for |λ| < ρ, H2(λ) is

holomorphic, and

lim
|λ|→0

H2(λ) = 0.

Then 0 is the removable singular point of H2(λ).
Since H2(λ) vanishes at all the points 1

lN (l = 1, 2, . . .) whose limit point is 0,
0 is the essential singular point of H2(λ). It is a contradiction. So H2(λ) ≡ 0, for
|λ| < ρ. Then H1(λ) ≡ 0, for |λ| > 1

ρ .
H1(λ) ≡ 0, if and only if, for any 0 ≤ n ≤ j1 − j2 −m1 + m2, the term λn’s

coefficient in the numerator of H1(λ) is zero. For the term λj1−j2−m1+m2−1, its
coefficient is

(1 + α)(j1 −m1 −m2 + j2) = 0,

then j1 −m1 = m2 − j2. It is a contradiction. So 4− 1 6= 0.
Similarly, we can prove the case: m1 > j1 > j2 > m2, 4 − 1 6= 0. So if

J 6= (m1,m2), then 4− 1 6= 0. And for the same reason, if J 6= (m2,m1), then
4− 1 6= 0. ¤

Lemma 2.3. Suppose M is a reducing subspace of TzN in A2
α(D2) and PM

is the orthogonal projection from A2
α(D2) onto M . For any nonnegative integers

k, m,

PM

(
zk
1 (z1z2)m

)
=

(
azk

1 + bzk
2

)
(z1z2)m,
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where a ∈ R, a− a2 = |b|2, and 0 ≤ a, |b| ≤ 1.

Proof. If M is a reducing subspace of TzN in A2
α(D2), the orthogonal

decomposition of zk
1 (z1z2)m with respect to M is

zk
1 (z1z2)m = f + g, f ∈ M, g ∈ M⊥.

Let f =
∑

J aJzJ be the multiple Fourier series of f . For any l = 1, 2, . . .,

PMT ∗zlN TzlN (f + g) = T ∗zlN TzlN f =
∑

J

aJQ
(
zj1+lN
1 zlN

1

)
Q

(
zj2+lN
2 zlN

2

)

=
∑

J

aJ
ωj1+lNωj2+lN

ωj1ωj2

zj1
1 zj2

2 ,

and

PMT ∗zlN TzlN

(
zk
1 (z1z2)m

)
= PM

(
P

(
zk+m+lN
1 zlN

1 zm+lN
2 zlN

2

))

= PM

(
ωk+m+lNωm+lN

ωk+mωm
zk
1 (z1z2)m

)

= PM

(
ωk+m+lNωm+lN

ωk+mωm
(f + g)

)

=
ωk+m+lNωm+lN

ωk+mωm
f.

It follows that

ωk+m+lNωm+lN

ωk+mωm
f =

∑

J

aJ
ωj1+lNωj2+lN

ωj1ωj2

zj1
1 zj2

2 ,

then

f =
∑

J

aJ
ωj1+lNωj2+lN

ωk+m+lNωm+lN

ωk+mωm

ωj1ωj2

zj1
1 zj2

2 ,

or

∑

J

aJ

(
ωj1+lNωj2+lN

ωk+m+lNωm+lN

ωk+mωm

ωj1ωj2

− 1
)

zj1
1 zj2

2 = 0.
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Let ∆ = ωj1+lN ωj2+lN

ωk+m+lN ωm+lN

ωk+mωm

ωj1ωj2
. If ∆− 1 = 0, let

H1(λ) =
ωj1+λωj2+λ

ωk+m+λωm+λ

ωk+mωm

ωj1ωj2

− 1,

then H1(λ) is rational and holomorphic at infinity, and

lim
|λ|→∞

H1(λ) =
ωk+mωm

ωj1ωj2

− 1.

Let

H2(λ) =





ωk+mωm

ωj1ωj2
− 1, if λ = 0;

H1( 1
λ ), if λ 6= 0,

we can choose ρ small enough, for |λ| < ρ, H2(λ) is holomorphic, and

lim
|λ|→0

H2(λ) =
ωk+mωm

ωj1ωj2

− 1.

Then 0 is the removable singular point of H2(λ).
Since H2(λ) vanishes at all the points 1

lN (l = 1, 2, . . .) whose limit point is 0,
0 is the essential singular point of H2(λ). It is a contradiction. So H2(λ) ≡ 0, for
|λ| < ρ. And ωk+mωm

ωj1ωj2
= 1. Thus ∆− 1 = ωj1+lN ωj2+lN

ωk+m+lN ωm+lN
− 1 = 0. By Lemma 2.2,

J = (k + m,m) or J = (m, k + m).
So for any J 6= (k + m,m) or J 6= (m, k + m), ∆− 1 6= 0, then aJ = 0.
Thus f = azk

1 (z1z2)m+bzk
2 (z1z2)m, i.e. PM (zk

1 (z1z2)m) = (azk
1 +bzk

1 )(z1z2)m.
Since 〈f, zk

1 (z1z2)m − f〉 = 0, ‖f‖2 = 〈zk
1 (z1z2)m, f〉,

|a|2ωk+mωm + |b|2ωk+mωm = aωk+mωm,

(|a|2 + |b|2)ωk+mωm = aωk+mωm,

for ωk+mωm 6= 0, then a ∈ R, a− a2 = |b|2, and 0 ≤ a, |b| ≤ 1. ¤

Lemma 2.4. Suppose M is a reducing subspace of TzN in A2
α(D2). For any

function

f =
∑

J

aJzJ ∈ M,
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if there are nonnegative integers p, q > 0, ap,q 6= 0, then

(
z
|p−q|
1 + z

|p−q|
2

)
(z1z2)min{p,q} ∈ M, or zp

1zq
2 ∈ M.

Proof. For any function f =
∑

J aJzJ ∈ M ,

f =
∑

j1>j2

aj1,j2z
j1−j2
1 (z1z2)j2 +

∑

j1=j2

aj1,j2(z1z2)j1 +
∑

j1>j2

aj2,j1z
j1−j2
2 (z1z2)j2 .

Case 1: p = q.
According to Lemma 2.3, let k = 0, m = p, PM ((z1z2)p) = (a + b)(z1z2)p,

then (z1z2)p ∈ M or (z1z2)p ∈ M⊥.
If (z1z2)p ∈ M⊥, then 〈f, (z1z2)p〉 = ap,pω

2
p = 0, so ap,p = 0, it is a contradic-

tion with ap,p 6= 0. So (z1z2)p ∈ M .

Case 2: p 6= q.
By Case 1,

∑
j1=j2

aj1,j2(z1z2)j1 ∈ M . Let f0 = f −∑
j1=j2

aj1,j2(z1z2)j1 , it
is easy to see that f0 ∈ M .

By Lemma 2.3,

f0 = PM (f0)

=
∑

j1>j2

aj1,j2

(
cj1,j2z

j1
1 zj2

2 + dj1,j2z
j2
1 zj1

2

)
+

∑

j1>j2

aj2,j1

(
cj1,j2z

j2
1 zj1

2 + dj1,j2z
j1
1 zj2

2

)

=
∑

j1>j2

(
aj1,j2cj1,j2 + aj2,j1dj1,j2

)
zj1
1 zj2

2 +
∑

j1>j2

(
aj1,j2dj1,j2 + aj2,j1cj1,j2

)
zj2
1 zj1

2 ,

then

{
aj1,j2 = aj1,j2cj1,j2 + aj2,j1dj1,j2

aj2,j1 = aj1,j2dj1,j2 + aj2,j1cj1,j2 ,

i.e.

{
(1− cj1,j2)aj1,j2 = dj1,j2aj2,j1 (1)

(1− cj1,j2)aj2,j1 = dj1,j2aj1,j2 . (2)

Put (1) in (2)× aj1,j2 , and put (2) in (1)× aj1,j2 , then
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{
dj1,j2a

2
j2,j1

= dj1,j2a
2
j1,j2

(1− cj1,j2)a
2
j1,j2

= (1− cj1,j2)a
2
j2,j1

.

If dj1,j2 = 1− cj1,j2 = 0, then PM (zj1
1 zj2

2 ) = zj1
1 zj2

2 ∈ M . So zp
1zq

2 ∈ M , since
ap,q 6= 0.

If either dj1,j2 or 1− cj1,j2 is not zero, then aj1,j2 = ±aj2,j1 .
If aj1,j2 = −aj2,j1 , put it in (1), we have cj1,j2 = 1 + dj1,j2 , then c2

j1,j2
=

|1 + dj1,j2 |2 > 1, it is a contradiction with Lemma 2.3. So aj1,j2 = aj2,j1 . Then

f0 =
∑

j1>j2

aj1,j2

(
zj1−j2
1 + zj1−j2

2

)
(z1z2)j2 .

We might as well let p > q, if (zp−q
1 + zp−q

2 )(z1z2)q = zp
1zq

2 + zq
1zp

2 ∈ M⊥, then

〈
f0, z

p
1zq

2 + zq
1zp

2

〉
= 0,

i.e.

∥∥zp
1zq

2 + zq
1zp

2

∥∥2
ap,q = 0,

so ap,q = 0, it is a contradiction. By Lemma 2.3, (zp−q
1 + zp−q

2 )(z1z2)q ∈ M .
Similarly, if q > p, (zq−p

1 + zq−p
2 )(z1z2)p ∈ M . ¤

Theorem 2.5. Suppose M is a reducing subspace of TzN in A2
α(D2), then

there exist nonnegative integers a, b, k, m with 0 ≤ m ≤ N − 1 and a, b ∈ {0, 1}
such that

Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

} ⊆ M.

In particular, M is minimal, if and only if,

M = Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

}
.

Proof. If M is a reducing subspace of TzN in A2
α(D2), then by Lemma 2.4,

for some nonnegative integers a, b, k, m with 0 ≤ m ≤ N − 1, and a, b ∈ {0, 1},
(
azk

1 + bzk
2

)
(z1z2)m ∈ M.
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We know that M is invariant under the operators TzN and T ∗zN , so

Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

} ⊆ M.

It is easy to see that Span{(azk
1 +bzk

2 )(z1z2)m+lN : l = 0, 1, 2, . . .} is a reducing
subspace of TzN in A2

α(D2). If M is minimal, then

M = Span
{
(azk

1 + bzk
2 )(z1z2)m+lN : l = 0, 1, 2, . . .

}
.

It is obvious that Span{(azk
1 + bzk

2 )(z1z2)m+lN : l = 0, 1, 2, . . .} is a minimal
reducing subspace. So it is the only minimal reducing subspace of TzN in A2

α(D2).
¤

3. Beurling-type theorem of the weighted Bergman space over
bidisk.

In this section we will show the Beurling-type theorem about invariant sub-
spaces of the weighted Bergman space over bidisk. The basis of our proof is the
following result which was obtained in the context of general Hilbert space; see
Theorem 6.14 in [3] for details.

Let H be a separable Hilbert space and let T : H → H be a bounded linear
operator satisfying:
(a) ‖Tx + y‖2 ≤ 2(‖x‖2 + ‖Ty‖2), x, y ∈ H;
(b)

⋂{TnH : n ≥ 0} = 0,

then we have
(i) T is one to one and has closed range, so that the operator T ∗T is invertible,
(ii) H = [E ] =

∨{Tnx : x ∈ E , n ≥ 0}, where E = ker(T ∗) = H ª TH.
In fact, under some assumption, we have that (i) implies (a).

Lemma 3.1. Let H be a separable Hilbert space and let T : H → H be a
bounded linear operator. If the operator T is one to one and has closed range, and
satisfies

TT ∗ + (T ∗T )−1 ≤ 2I,

then the operator T satisfies condition (a), that is

‖Tf + g‖2 ≤ 2(‖f‖2 + ‖Tg‖2), f, g ∈ H.
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Proof. Let g = (T ∗T )−
1
2 h in condition (a), then the condition (a) is equiv-

alent to the inequality

∥∥Tf + (T ∗T )−
1
2 h

∥∥2 ≤ 2(‖f‖2 + ‖h‖2).

Consider the operator R : H ⊕H → H defined by

R(f, h) = Tf + (T ∗T )−
1
2 h, (f, h) ∈ H ⊕H,

then we have

R∗(h) =
(
T ∗h, (T ∗T )−

1
2 h

)
, h ∈ H,

it follows that

RR∗ = TT ∗ + (T ∗T )−1.

Since

TT ∗ + (T ∗T )−1 ≤ 2I,

where I is the identity operator on H, then RR∗ ≤ 2I, thus ‖R‖ ≤ √
2.

For (f, h) ∈ H ⊕H, ‖R(f, h)‖2 ≤ (
√

2)2‖I(f, h)‖2, that is

∥∥Tf + (T ∗T )−
1
2 h

∥∥2 ≤ 2(‖f‖2 + ‖h‖2).

Thus the result is proved. ¤

Through describing the corresponding matrix of Tzi
(i = 1, 2), we have the

following theorem.

Theorem 3.1. Given −1 < α ≤ 0 and Tz1 is a bounded linear operator
on A2

α(D2), then Tz1T
∗
z1

+ (T ∗z1
Tz1)

−1 ≤ 2I, where I is the identity operator on
A2

α(D2).

Proof. For any n = 0, 1, 2, . . ., in the closed subspace X
(1)
n , the operator

Sn can be represented as a ℵ0 × ℵ0 matrix:
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Sn =




0 0 0 · · · 0 0 0 · · ·√
w1 0 0 · · · 0 0 0 · · ·
0

√
w2
w1

0 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

...
0 0 0 · · · 0 0 0 · · ·
0 0 0 · · ·

√
wm

wm−1
0 0 · · ·

0 0 0 · · · 0
√

wm+1
wm

0 · · ·
...

...
... · · · ...

...
...

. . .




,

then the operator S∗n has the matrix form as

S∗n =




0
√

w1 0 · · · 0 0 0 · · ·
0 0

√
w2
w1

· · · 0 0 0 · · ·
0 0 0 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

...
0 0 0 · · · 0

√
wm

wm−1
0 · · ·

0 0 0 · · · 0 0
√

wm+1
wm

· · ·
0 0 0 · · · 0 0 0 · · ·
...

...
... · · · ...

...
...

. . .




.

Thus the operators SnS∗n, (S∗nSn)−1 respectively have the matrix forms as

SnS∗n =




0 0 0 · · · 0 · · ·
0 w1 0 · · · 0 · · ·
0 0 w2

w1
· · · 0 · · ·

...
...

...
. . .

... · · ·
0 0 0 · · · wm

wm−1
· · ·

...
...

... · · · ...
. . .




,
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(S∗nSn)−1 =




1
w1

0 0 · · · 0 · · ·
0 w1

w2
0 · · · 0 · · ·

0 0 w2
w3

· · · 0 · · ·
...

...
...

. . .
... · · ·

0 0 0 · · · wm

wm+1
· · ·

...
...

... · · · ...
. . .




.

Therefore,

SnS∗n + (S∗nSn)−1 =




1
w1

0 0 · · · 0 · · ·
0 w1 + w1

w2
0 · · · 0 · · ·

0 0 w2
w1

+ w2
w3

· · · 0 · · ·
...

...
...

. . .
... · · ·

0 0 0 · · · wm

wm−1
+ wm

wm+1
· · ·

...
...

... · · · ...
. . .




.

It is easily concluded that wm

wm+1
+ wm

wm−1
≤ 2, m = 0, 1, 2, . . ., for −1 < α ≤ 0.

So

SnS∗n +
(
S∗nSn

)−1 ≤ 2Ĩ ,

where Ĩ is the restriction of the identity operator I to the closed subspace X
(1)
n .

Since

Tz1 =
∞∑

n=0

⊕Tz1 |X(1)
n =

∞∑
n=0

⊕Sn,

so Tz1T
∗
z1

+ (T ∗z1
Tz1)

−1 ≤ 2I, the result is proved. ¤

Theorem 3.2. Suppose −1 < α ≤ 0 and M is an invariant subspace of Tz1

in A2
α(D2). Then M is generated by M ª Tz1M , that is

M = [M ª Tz1M ].

Proof. According to Theorem 3.1 that
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Tz1T
∗
z1

+
(
T ∗z1

Tz1

)−1 ≤ 2I,

then by Lemma 3.1, condition (a) holds for Tz1 . Let T be the restriction of Tz1

to the invariant subspace M , then T satisfies condition (a) and (b), and therefore
the result is now immediate from Theorem 6.14 in [3]. ¤

Theorem 3.3. Suppose −1 < α ≤ 0 and M is an invariant subspace of Tz2

in A2
α(D2). Then M is generated by M ª Tz2M , that is

M = [M ª Tz2M ].

Proof. The proof follows from the symmetry of z1, z2 and Theorem 3.2. ¤

Corollary 3.1. Suppose −1 < α ≤ 0. If

M = [M ª Tz1M ]
⋂

[M ª Tz2M ],

then M is an invariant subspace of Tz in A2
α(D2).

Proof. It obviously follows from Tz = Tz1Tz2 and Theorem 3.2, Theorem
3.3. ¤
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