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Abstract. We calculate the cuspidal class number of a certain quotient

curve of the modular curve X0ðMÞ withM square-free. For each factor r ofM, let

wr denote the Atkin-Lehner type involution of X0ðMÞ. Let M0 be a divisor of M,

and W0 the subgroup of the automorphism group of X0ðMÞ consisting of all wr
with r dividing M0. Our object is the quotient of X0ðMÞ by W0. In this paper, we

consider the case where M is odd.

1. Introduction.

As is well known, the cuspidal divisor class group of a modular curve is finite

(Manin [6], Drinfeld [2]). Concerning modular curves of type X0ðnÞ, X1ðnÞ, or
XðnÞ, the full cuspidal class numbers are calculated by several authors (Ogg [7],

Kubert and Lang [4], [5], Takagi [9], [10], [11], [12], [13]) though the choice of n

is restricted. Concerning the curve X1ðnÞ the order of a certain subgroup of the

cuspidal divisor class group is also calculated (Klimek [3], Kubert and Lang [4],

[5], Yu [14]) without any condition on n.

In this paper we consider another type of modular curves, which is a quotient

of the modular curve X0ðMÞ with M a square-free integer, and calculate its

cuspidal class number. More precisely, for each factor r of M, let wr denote the

Atkin-Lehner type involution of X0ðMÞ (Atkin-Lehner [1]). LetM0 be a divisor of

M, andW0 the subgroup of the automorphism group of X0ðMÞ consisting of all wr
with r jM0. Our object is the quotient curve of X0ðMÞ by W0. This work is a

continuation of [12].

In this paper, in order to avoid some complexity, we confine ourselves to

considering only the case where M is odd.

Our main results are Theorems 7.8 and 7.14. As a special case, we have the

following (Corollaries 7.9 and 7.15).
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THEOREM. Let p and q be distinct odd primes. Let X be the quotient curve of

the curve X0ðpqÞ by wq. Then the cuspidal class number h of X is equal to the

numerator of ð1=24Þðp� 1Þðq þ 1Þ or ð1=12Þðp� 1Þðq þ 1Þ according as
�p
q

�
¼ 1 or

�1, respectively. The cuspidal divisor class group of X is a cyclic group of order h

generated by the divisor class of Pq � P1.

In the theorem above, the symbol
�p
q

�
denotes the Legendre symbol. The

symbols Pq and P1 denote the cusps on X represented by 1=q and 1 respectively.

This theorem is related to a result by Ogg ([8, Corollary 1]), which proves

that the divisor P1 þ Pq � Pp � Ppq on X0ðpqÞ defines a divisor class of order

exactly equal to the numerator of ð1=24Þðp� 1Þðq þ 1Þ, where Px (x ¼ 1, p, q, pq)

denotes the cusp on X0ðpqÞ represented by 1=x. Note that the cusp Ppq coincides

with the cusp represented by 1.

The contents of the present paper are the following. In Sections 2–4, we

summarize some results of [12, Sections 1–4]. In Section 4 some new results are

added (Proposition 4.4 and Corollary 4.5). In Section 5 the value of �
ðpÞ
� at the

type s element �s is given. In Section 6 we determine the unit group on the

quotient curve of X0ðMÞ by W0 (Theorem 6.4). It is our first main theorem. In

Section 7 we divide the case into two (Cases I and II), and determine the cuspidal

class number in each case (Theorems 7.8, 7.14). They are our main theorems. In

Section 8 we determine the p-Sylow group of the cuspidal divisor class group for

the case p 6¼ 2; 3 (Theorem 8.1) and the case p ¼ 3 under certain conditions

(Theorem 8.5).

In the present paper we denote by Z, Q, C , 12 the ring of rational integers,

the field of rational numbers, the field of complex numbers, the two-by-two unit

matrix, respectively. For any prime number p we denote by Zp, Qp the ring of

p-adic integers, the field of p-adic numbers, respectively.

2. Transformation formulas for Siegel functions.

In this section we summarize some results of [12, Section 1]. It is assumed

that the reader is familiar with the contents of [9, Section 1].

2.1. The Principal congruence subgroup �ðIÞ of Gð
ffiffiffiffiffiffi
M

p
Þ.

Let M be a square-free integer ( 6¼ 1) fixed throughout the present paper. We

denote by T the set of all positive divisors of M, and regard it as a group with the

product defined by r � s ¼ rs=ðr; sÞ2 where ðr; sÞ denotes the greatest common

divisor of r and s (r; s 2 T ). Let O be the order defined by O ¼
P

r2T Z
ffiffiffi
r

p
. For any

two positive integers n andm such thatm is a divisor ofM, put I ¼ n
ffiffiffiffiffi
m

p
O. Then

the set I is an ideal of the order O. We assume that N ¼ nm 6¼ 1.
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Let �ðIÞ be the principal congruence subgroup of the group Gð
ffiffiffiffiffi
M

p
Þ. (For the

definitions of Gð
ffiffiffiffiffi
M

p
Þ and �ðIÞ, we refer to [9, Section 1.1].) Let FI be the field of

all automorphic functions with respect to the group �ðIÞ such that their Fourier

coefficients belong to the cyclotomic field kN ¼ Qðe2�i=NÞ. Let F1 be the field of all

automorphic functions with respect to the group Gð
ffiffiffiffiffi
M

p
Þ such that their Fourier

coefficients belong to Q. Then it is known ([9, Section 1 (1.15)]) that the field FI is

a Galois extension of F1, and its Galois group is isomorphic to the group

G Ið�Þ ¼ G I=f�1g, where G I denotes the group consisting of all elements � of

GL2ðO=IÞ which are of the form

� ¼
a
ffiffiffi
r

p
b
ffiffiffiffiffi
r�

p

c
ffiffiffiffiffi
r�

p
d
ffiffiffi
r

p

 !
ðmod IÞ ð2:1Þ

with a; b; c; d 2 Z, r 2 T , and r� ¼M=r. Since the element r of T above is

determined by the element �, we call it the type of �, and denote it by tð�Þ. We

denote by �ð�Þ the element of the Galois group GalðFI=F1Þ corresponding to �.

2.2. Some properties of Siegel functions.

Here we recall some properties of Siegel functions. For any element a ¼
ða1; a2Þ of the set Q2 � Z2, the Siegel function gað�Þ (� 2 H) is defined in [5]. (The

symbol H denotes the upper half plane.) It has the following q-product

gað�Þ ¼ �qð1=2ÞB2ða1Þ
� e2�ia2ða1�1Þ=2ð1� qzÞ

Y1
k¼1

ð1� qk� qzÞð1� qk� =qzÞ; ð2:2Þ

where q� ¼ e2�i� , qz ¼ e2�iz, z ¼ a1� þ a2, and B2ðXÞ ¼ X2 �X þ ð1=6Þ (the second
Bernoulli polynomial). If b ¼ ðb1; b2Þ 2 Z2, then we have gaþbð�Þ ¼ "ða; bÞgað�Þ,
where "ða; bÞ is a root of unity defined by

"ða; bÞ ¼ exp
2�i

2
ðb1b2 þ b1 þ b2 þ a1b2 � a2b1Þ

� �
: ð2:3Þ

If � 2 SL2ðZÞ, then we have gað�ð�ÞÞ ¼  ð�Þga�ð�Þ, where  denotes the character

of SL2ðZÞ appearing in the transformation formula for the square of the Dedekind

�-function. Explicitly the value of  ð�Þ with � ¼ a b
c d

� �
is given by

 ð�Þ ¼
ð�1Þðd�1Þ=2 exp

2�i

12
ðb� cÞdþ acð1� d2Þ
� 	� �

if d is odd,

�ið�1Þðc�1Þ=2 exp
2�i

12
ðaþ dÞcþ bdð1� c2Þ
� 	� �

if c is odd.

8>>><>>>: ð2:4Þ
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In particular, we note that  ð�12Þ ¼ �1. (It is known that the kernel of  is a

congruence subgroup of level 12 with index 12, and coincides with the

commutator subgroup of SL2ðZÞ.)

2.3. Modified Siegel functions with respect to the ideal I.

Here we define the modified Siegel functions with respect to the ideal I. Let r

be an element of T , and A
0 ðrÞ
I be the set of all row vectors u of the following form

u ¼
x

nðm; rÞ
ffiffiffi
r

p
;

y

nðm; r�Þ
ffiffiffiffiffi
r�

p
 �
; ð2:5Þ

where x and y are rational integers satisfying u =2 Z
ffiffiffi
r

p
� Z

ffiffiffiffiffi
r�

p
¼ ZðrÞ. We call the

element r of T above the type of u and denote it by tðuÞ. Put A0
I ¼

S
r2I A

0 ðrÞ
I

(disjoint). If u is an element of A0
I of type r, and � an element of Gð

ffiffiffiffiffi
M

p
Þ of type s

(r; s 2 T ), then the product u� is an element of A0
I of type r � s.

Let u ¼ a1
ffiffiffi
r

p
; a2

ffiffiffiffiffi
r�

p� �
be an element of A0

I of type r (a1; a2 2 Q), and put

u� ¼ ða1; a2Þ (2 Q2 � Z2). Then we define the modified Siegel function guð�Þ
(� 2 H) with respect to the ideal I by

guð�Þ ¼ gu�

ffiffiffiffiffi
r

r�

r
� �


 �
: ð2:6Þ

For an element v ¼ b1
ffiffiffi
r

p
; b2

ffiffiffiffiffi
r�

p� �
of ZðrÞ (b1; b2 2 Z), write v� ¼ ðb1; b2Þ (2 Z2).

For elements u 2 A
0 ðrÞ
I and v 2 ZðrÞ, we put

"ðu; vÞ ¼ "ðu�; v�Þ: ð2:7Þ

Let

� ¼
a
ffiffiffi
s

p
b
ffiffiffiffiffi
s�

p

c
ffiffiffiffiffi
s�

p
d
ffiffiffi
s

p

 !
ð2:8Þ

be an element of G
ffiffiffiffiffi
M

p� �
of type s (a; b; c; d 2 Z, s 2 T ). For an element r of T , we

put

�ðrÞ ¼
aðr; sÞ bðr; s�Þ
cðr�; s�Þ dðr�; sÞ

 !
: ð2:9Þ

Then the matrix �ðrÞ belongs to SL2ðZÞ.
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Now we have the following transformation formulas for the modified Siegel

functions ([12, Proposition 1.1]).

PROPOSITION 2.1. Let u be an element of A0
I of type r.

(1) Let v 2 ZðrÞ. Then guþvð�Þ ¼ "ðu; vÞguð�Þ.
(2) Let � 2 Gð

ffiffiffiffiffi
M

p
Þ. Then guð�ð�ÞÞ ¼  rð�Þgu�ð�Þ, where  rð�Þ ¼  ð�ðrÞÞ.

(3) Let � 2 �ðIÞ. Then guð�ð�ÞÞ ¼ "uð�Þ rð�Þguð�Þ, where "uð�Þ ¼ "ðu; vÞ with v ¼
u�� uð2 ZðrÞÞ.

Since the number "ðu; vÞ (respectively  rð�ÞÞ in this proposition is a 2Nth

root (respectively a 12th root) of unity, the function g
½2N;12�
u depends only on the

residue class of u modulo ZðrÞ, and is invariant under the exchange u! �u. (The
symbol ½2N; 12� denotes the least common multiple of 2N and 12.) Moreover, the

function g
½2N;12�
u belongs to the function field FI and has no zeros and poles on the

upper half plane H.

3. Modular units on the curve X0ðMÞ and its quotient curves.

In this section we summarize some results of [12, Sections 2, 3].

3.1. The modular curve X0ðMÞ and its quotient curves.

LetM be the square-free integer fixed in the present paper. Let �0ðMÞ be the
subgroup of SL2ðZÞ consisting of all elements of the form a b

c d

� �
with c � 0

(modM). Let � be a Fuchsian group of the first kind. We denote by X� the

complete nonsingular curve associated with the compactification of the quotient

space �nH. When � ¼ �0ðMÞ, the curve X� is written as X0ðMÞ. Let fð�Þ (� 2 H)

be an automorphic function with respect to �. If the function fð�Þ has no zeros

and poles on H, we call f as a modular unit with respect to � and also a modular

unit on the curve X�.

Let T0 be a subgroup of T . Let �T0 be the subgroup of Gð
ffiffiffiffiffi
M

p
Þ consisting of all

elements such that their types belong to T0. When T0 ¼ f1g (¼ 1), the group �1 is

isomorphic to �0ðMÞ; more precisely,

�1 ¼
1 0

0
ffiffiffiffiffi
M

p
 !�1

�0ðMÞ
1 0

0
ffiffiffiffiffi
M

p
 !

: ð3:1Þ

Hence, if � ¼ �1, then the curve X�1
(¼ X1) is isomorphic to the modular curve

X0ðMÞ. In general, if � ¼ �T0 , then the curve X�T0 (¼ XT0) is a quotient curve of

X1 by a subgroup of the automorphism group of X1. This subgroup can be

described as follows. Since the group �1 is a normal subgroup of �T0 with
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�T0=�1 ¼� T0, to each element r of T0 there exists an automorphism of the curve

X1, whose corresponding automorphism of the curve X0ðMÞ is the Atkin-Lehner

involution wr. Moreover, the subgroup consisting of all wr with r 2 T0 is

isomorphic to the group T0. Hence, the curve XT0 is isomorphic to the quotient

curve of X0ðMÞ by the group consisting of all Atkin-Lehner involutions wr with

r 2 T0.

3.2. Cuspidal prime divisors.

We use the notation in [9, Section 1]. Let GAþ be the adele group associated

with Gð
ffiffiffiffiffi
M

p
Þ, and U its unit subgroup. Let UT0 be the subgroup of U consisting of

all elements such that their types belong to T0. Put S ¼ Q� 	
ffiffiffiffiffi
M

p

 UT0 . Then

to this S corresponds the function field FS. For simplicity, we write FðT0Þ for this
field FS. Then the field CFðT0Þ is the field of all automorphic functions with

respect to the group �T0 , and Q is algebraically closed in FðT0Þ ([9, Proposition

1.6]). It can be shown in a similar way to [9, Proposition 1.7] that the field FðT0Þ is
the field of all automorphic functions with respect to �T0 such that their Fourier

coefficients belong to Q. In particular, we have FðT Þ ¼ F1 (for the definition of F1

see [9, Section 1]). The field FðT0Þ is an abelian extension of F1 such that the

Galois group is isomorphic to T=T0. The field Fð1Þ (T0 ¼ 1) is isomorphic to the

function field [¼ F0ðMÞ] which consists of all automorphic functions with respect

to �0ðMÞ such that their Fourier coefficients belong to Q. More precisely, we have

Fð1Þ ¼ f
�ffiffiffiffiffi
M

p

 � ���� fð�Þ 2 F0ðMÞ

 �
: ð3:2Þ

Let P1 denote the prime divisor of FðT0Þ defined by the q-expansion. Let P be

a prime divisor of FðT0Þ, and �P the valuation of P . For any element � of

GalðFðT0Þ=F1Þ (¼� T=T0), the prime divisor P� is defined by �P�ðh�Þ ¼ �P ðhÞ
(h 2 FðT0Þ). We can regard the prime divisor P�

1 as a prime divisor of CFðT0Þ, in
other words, a point on the curve XT0 . More precisely, let us denote by the same

symbol � the corresponding element of T=T0. Let � be any element of Gð
ffiffiffiffiffi
M

p
Þ

whose type belongs to the coset �. Then the prime divisor P�
1 corresponds to the

point on the curve XT0 represented by ��1ð1Þ. The set of the prime divisors P�
1

can be identified with the set of all the cusps on the curve XT0 . The group T=T0
and the set of all the cusps on the curve XT0 correspond bijectively by the

mapping � 7! P�
1. We call the prime divisors P�

1 the cuspidal prime divisors of

FðT0Þ.
Let D be the free abelian group generated by the cuspidal prime divisors of

FðT0Þ, and D0 the subgroup of D consisting of all elements with degree 0. Let F

(respectively FC ) be the group of all modular units in FðT0Þ (respectively
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CFðT0Þ). Then we have FC ¼ C�F , hence we can identify the divisor group

divðFÞ with the divisor group divðFCÞ, and the factor group

C ¼ D0=divðFÞ ð3:3Þ

with the cuspidal divisor class group on the curve XT0 .

Let R ¼ Z ½T=T0� be the group ring of T=T0, and R0 the additive subgroup of

R consisting of all elements with degree 0. Then the mapping P�
1 7! � defines an

isomorphism

’ : D ¼� R ð3:4Þ

and we have ’ðD0Þ ¼ R0.

3.3. The function f
ðpÞ
� and modular units.

Here we construct modular units in the field FðT0Þ by modified Siegel

functions. Let p be any prime factor of M, and put Ip ¼
ffiffiffi
p

p
O. Let R

ðrÞ
Ip

(r 2 T ) be

the subset of A
0ðrÞ
Ip

consisting of all elements u which are of the form u ¼
ð0; ðy=pÞ

ffiffiffiffiffi
r�

p
Þ or ððx=pÞ

ffiffiffi
r

p
; 0Þ according as p - r or p j r, where y (respectively x) is

an integer satisfying 1 � y � p=2 (respectively 1 � x � p=2).

When p ¼ 2 (this case occurs only whenM is even), the set R
ðrÞ
I2

contains only

one element u that is ð0; ð1=2Þ
ffiffiffiffiffi
r�

p
Þ or ðð1=2Þ

ffiffiffi
r

p
; 0Þ according as 2 - r or 2 j r. For

this element u, the Siegel function guð�Þ is a square of an automorphic function.

We can express square roots of the function guð�Þ as products of modified Siegel

functions with respect to the ideal 2
ffiffiffi
2

p
O. For definiteness, we denote by

ffiffiffiffiffi
gu

p ð�Þ
one of the square roots defined by

ffiffiffiffiffi
gu

p ð�Þ ¼
gð0;

ffiffiffi
r�

p
=4Þð�Þ � gð ffiffirp

=2;
ffiffiffi
r�

p
=4Þð�Þ � c if 2 - r,

gð
ffiffi
r

p
=4;0Þð�Þ � gð ffiffirp

=4;
ffiffiffi
r�

p
=2Þð�Þ � ð�cÞ if 2 j r,

(
ð3:5Þ

where c ¼ exp½2�i� ð7=16Þ�.
For an element u of R

ðrÞ
Ip
, we define the function bguð�Þ by

bguð�Þ ¼ guð�Þ if p 6¼ 2,ffiffiffiffiffi
gu

p ð�Þ if p ¼ 2.

(
ð3:6Þ

Now, for each prime factor p of M and each coset � 2 T=T0, we define the

function f
ðpÞ
� ð�Þ by
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f ðpÞ� ð�Þ ¼
Y
r2�

Y
u2RðrÞ

Ip

bguð�Þ
8><>:

9>=>;: ð3:7Þ

Then we have the following proposition ([12, Proposition 2.1]).

PROPOSITION 3.1. Let p be a prime factor ofM, and � a coset in T=T0. Then

the function f
ðpÞ
�

� �12p
is a modular unit contained in the function field FðT0Þ.

Moreover, if we identify GalðFðT0Þ=F1Þ with T=T0, then for an element � 2 T=T0,

we have

f ðpÞ�

� �12p ��
¼ f ðpÞ��

� �12p
:

3.4. The function h� and modular units.

Here we construct another type of modular units in the field FðT0Þ by the

Dedekind �-function �ð�Þ. Let Hð�Þ be the function defined by

Hð�Þ ¼ �
�ffiffiffiffiffi
M

p

 �

¼ t1=24
Y1
n¼1

ð1� tnÞ; ð3:8Þ

where t ¼ exp
h
2�i�=

ffiffiffiffiffi
M

p i
.

Now, for each coset � 2 T=T0, we define the function h�ð�Þ by

h�ð�Þ ¼
Q

r2� Hðr�ÞQ
s2½1�Hðs�Þ ; ð3:9Þ

where the symbol ½1� denotes the unit element of T=T0, namely, ½1� ¼ T0. In

particular, we have h½1�ð�Þ ¼ 1. In general, we denote by ½r� (r 2 T ) the coset rT0.

About the relation between f
ðpÞ
� ð�Þ and h�ð�Þ, we have the following

proposition ([12, Proposition 2.3]).

PROPOSITION 3.2.

(1) Let p be a prime factor of M, and � a coset in T=T0. Then we have

fðpÞ� ð�Þ ¼
h½p��ð�Þ
h�ð�Þ

� c1;

where c1 is a nonzero constant. In particular, f
ðpÞ
½1� ð�Þ ¼ h½p�ð�Þ � c1.
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(2) Let pi (i ¼ 1; . . . ; k) be prime factors of M. Then we have

h½p1����½pk�ð�Þ ¼ f
ðp1Þ
½p2����½pk�ð�Þ � f

ðp2Þ
½p3����½pk�ð�Þ � � � � � f

ðpkÞ
½1� ð�Þ � c2;

where c2 is a nonzero constant.

By Propositions 3.1 and 3.2, we see that the function ðh�Þ12M is a modular

unit in the field FðT0Þ. Later in Corollary 4.5 we shall see some stronger

statements concerning the powers of f
ðpÞ
� and h�.

3.5. The divisors of f
ðpÞ
� and h�.

Put DQ ¼ D Q and RQ ¼ RQ. Then we can extend the isomorphism

(3.4) to an isomorphism DQ ¼� RQ, which we also denote by ’. Since the functions

f
ðpÞ
�

� �12p
and ðh�Þ12M are contained in the field FðT0Þ, their divisors are well

defined. We denote by div f
ðpÞ
�

� �
and divðh�Þ the elements of DQ defined by

div f ðpÞ�

� �
¼

1

12p
div f ðpÞ�

� �12p
 �
; divðh�Þ ¼

1

12M
div ðh�Þ12M
� �

: ð3:10Þ

Let 	 be the element of RQ defined by

	 ¼
1

24

X
�2T=T0

X
r2�

r

 !
� ¼

1

24

Y
pjM

ð1þ p½p�Þ; ð3:11Þ

where p runs through all prime factors of M. Then we have the following

propositions ([12, Proposition 2.4, Lemma 3.1]).

PROPOSITION 3.3. Let p be a prime factor of M, and � a coset in T=T0.

(1) ’ div f
ðpÞ
�

� �� �
¼ �ð½p� � 1Þ	.

(2) ’ divðh�Þ
� �

¼ ð�� 1Þ	.

PROPOSITION 3.4. The element 	 is invertible in the algebra RQ.

3.6. The group of modular units.

In [12, Section 3], we proved that every modular unit in the field FðT0Þ can be

expressed by the functions h�. Namely, we have the following theorem ([12,

Theorem 3.3]).
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THEOREM 3.5. Let gð�Þ be any modular unit in the field FðT0Þ. Then there

are rational integers mð�Þ (� 2 T=T0, 6¼ ½1�) and a rational number c 6¼ 0 such that

gð�Þ ¼ c �
Y

�2T=T0;6¼½1�
h�ð�Þmð�Þ;

and moreover this expression is unique.

4. The characters �
ðpÞ
� and ��.

In order to calculate the cuspidal class number, we need to determine the

group F of all modular units in the function field FðT0Þ. The determination

reduces to the determination of the characters �
ðpÞ
� and �� of the group �T0 . In this

section we recall some results of [12, Section 4] and add some new results

(Proposition 4.4 and Corollary 4.5).

4.1. Definition of �
ðpÞ
� and ��.

Let p be a prime factor of M, and � a coset in T=T0. Since the functions

f
ðpÞ
�

� �12p
and ðh�Þ12M are automorphic functions with respect to the group �T0 , we

can define the characters �
ðpÞ
� and �� of �T0 by the following equations:

f ðpÞ� �ð�Þð Þ ¼ �ðpÞ
� ð�Þ � f ðpÞ� ð�Þ; ð4:1Þ

h� �ð�Þð Þ ¼ ��ð�Þ � h�ð�Þ ð4:2Þ

(for all � 2 �T0).

Let gð�Þ be a function of the form

gð�Þ ¼
Y

�2T=T0;6¼½1�
h�ð�Þmð�Þ; ð4:3Þ

where mð�Þ are rational integers (� 2 T=T0, 6¼ ½1�). Then the function gð�Þ belongs
to the group F of the modular units in the field FðT0Þ if and only if the following

equation holds for all � 2 �T0 : Y
�2T=T0;6¼½1�

��ð�Þ
� 	mð�Þ¼ 1: ð4:4Þ

Thus, taking account of Theorem 3.5, in order to determine the group F of the

modular units, we need to know the character ��. Let � ¼ ½p1� � � � ½pk�, where pi
(i ¼ 1; . . . ; k) are prime factors of M. Then, by (2) of Proposition 3.2, we have
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��ð�Þ ¼ �
ðp1Þ
½p2����½pk�ð�Þ � �

ðp2Þ
½p3����½pk�ð�Þ � � � � � �

ðpkÞ
½1� ð�Þ ð4:5Þ

(for all � 2 �T0). We shall first determine the character �
ðpÞ
� , and next the

character �� by the relation (4.5).

4.2. Generators of the factor group �T0=� �ð fMO).

Put e ¼ 2 or 4 according as M is odd or even. Also, put

eM ¼ 2e � 3 �
Y

pjM;6¼2;3

p; ð4:6Þ

where p runs through all prime factors of M satisfying p 6¼ 2; 3. Then we have the

following proposition ([12, Lemma 4.2]).

PROPOSITION 4.1. Let p be a prime factor ofM, and � a coset in T=T0. Then

the characters �
ðpÞ
� and �� of �T0 are trivial on the group ��ð eMOÞ.

Hence, in order to determine the characters �
ðpÞ
� and ��, it is sufficient to

determine their values for some elements of �T0 which generate the factor group

�T0=� �ð eMOÞ.
For each prime factor q of eM and an element s of T0, we define the elements

�q, 
q, �q and �s as follows. Let �q, 
q and �q be elements of �T0 of type 1 which

satisfy the following congruences:

�q �
1

ffiffiffiffiffi
M

p

0 1

 !
ðmod qfOÞ; � 12 ðmod q�f eMOÞ; ð4:7Þ


q �
1 0ffiffiffiffiffi
M

p
1

 !
ðmod qfOÞ; � 12 ðmod q�f eMOÞ; ð4:8Þ

�q �
d�1 0

0 d

 !
ðmod qfOÞ; � 12 ðmod q�f eMOÞ; ð4:9Þ

where f is a positive integer such that qf k eM, and d is a positive integer such that

d is a primitive root mod q or equal to 5 according as q 6¼ 2 or q ¼ 2. Let �s be an

element of �T0 of type s which satisfies the following congruences for every prime

factor q of eM with qf k eM:
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�s �

s�1
ffiffiffi
s

p
0

0
ffiffiffi
s

p

 !
ðmod qfOÞ if ðq; sÞ ¼ 1,

0 �
ffiffiffiffiffi
s�

p

s��1
ffiffiffiffiffi
s�

p
0

 !
ðmod qfOÞ if ðq; sÞ 6¼ 1.

8>>>>><>>>>>:
ð4:10Þ

Then the set of the elements �q, 
q, �q and �s generates the factor group

�T0=� �ð eMOÞ, where s runs through a subset of T0 which generates the group T0.

Though the element �q depends on the choice of d, we do not indicate the

dependence in its notation because as we shall see in the following subsection the

values of �
ðpÞ
� and �� at the element �q do not depend on d.

4.3. The values of �
ðpÞ
� and �� at the elements �q, �q and �q.

The values of �
ðpÞ
� and �� at the elements �q, 
q and �q are given in the

following propositions ([12, Propositions 4.1, 4.2]). The symbols �p and �� there

are defined as follows. Let p be a prime factor of M, and � a coset in T=T0. Then

�p ¼ 1 or ð�1ÞjT0j according as p 6¼ 2 or p ¼ 2. If � ¼ ½p1� � � � ½pk� where pi are prime

factors of M, then �� ¼ �p1 � � � � ��pk .

PROPOSITION 4.2. Let p be a prime factor ofM, and � a coset in T=T0. Then

for each prime factor q of eM, we have the following:

�ðpÞ
� ð�qÞ ¼

�p exp �
2�i

8

X
s2½p��

s�
X
r2�

r

0@ 1A24 35 if q ¼ 2,

�p exp
2�i

6

X
s2½p��

s�
X
r2�

r

0@ 1A24 35 if q ¼ 3,

1 if q 6¼ 2; 3,

8>>>>>>>>><>>>>>>>>>:

�ðpÞ
� ð
qÞ ¼

�p exp
2�i

8

X
s2½p��

s� �
X
r2�

r�

0@ 1A24 35 if q ¼ 2,

�p exp �
2�i

6

X
s2½p��

s� �
X
r2�

r�

0@ 1A24 35 if q ¼ 3,

1 if q 6¼ 2; 3,

8>>>>>>>>><>>>>>>>>>:
�ðpÞ
� ð�qÞ ¼

ð�1ÞjT0j if q ¼ p,

1 if q 6¼ p.

(
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PROPOSITION 4.3. Let � be a coset in T=T0. Then for each prime factor q ofeM, we have the following:

��ð�qÞ ¼

�� exp �
2�i

8

X
s2�

s�
X
r2½1�

r

0@ 1A24 35 if q ¼ 2,

�� exp
2�i

6

X
s2�

s�
X
r2½1�

r

0@ 1A24 35 if q ¼ 3,

1 if q 6¼ 2; 3,

8>>>>>>>>><>>>>>>>>>:

��ð
qÞ ¼

�� exp
2�i

8

X
s2�

s� �
X
r2½1�

r�

0@ 1A24 35 if q ¼ 2,

�� exp �
2�i

6

X
s2�

s� �
X
r2½1�

r�

0@ 1A24 35 if q ¼ 3,

1 if q 6¼ 2; 3,

8>>>>>>>>><>>>>>>>>>:
��ð�qÞ ¼

�1 if T0 ¼ 1 and q j �,
1 otherwise.



In the expression for ��ð�qÞ in Proposition 4.3 with T0 ¼ 1, the coset � is

identified with its unique representative. As a consequence of these propositions,

we have the following.

PROPOSITION 4.4. Let p be a prime factor of M, and � a coset in T=T0.

(1) The character �
ðpÞ
� takes its values in the group of 24th roots of unity, in the

group of 12th roots of unity if T0 6¼ 1 or p 6¼ 2, and moreover in the group of 6th

roots of unity if M is odd and T0 6¼ 1.

(2) The character �� takes its values in the group of 24th roots of unity, in the

group of 12th roots of unity ifM is odd or T0 6¼ 1, and moreover in the group of 6th

roots of unity if M is odd and T0 6¼ 1.

PROOF. (1) In the following we use Proposition 4.2. If T0 ¼ 1, then the

element �1 (s ¼ 1) belongs to �ð eMOÞ, hence �
ðpÞ
� ð�1Þ ¼ 1. By the definition of �s

the element �2s can be written as a product of elements �q modulo ��ð eMOÞ.
Hence, if T0 6¼ 1, we have �

ðpÞ
� �2s
� �

¼ 1, therefore �
ðpÞ
� ð�sÞ ¼ �1. SinceP

s2½p�� s
� �

P
r2� r

� ¼
P

s2½p��� s�
P

r2�� r with �� ¼ �½M�, we have �
ðpÞ
� ð
2Þ ¼

�
ðpÞ
�� ð�2Þ

n o�1
. Thus, it is sufficient to consider the value of �2. The 24th roots
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part of the statement is obvious. Let us assume p 6¼ 2. Since p2 � 1 ðmod8Þ, we
have

P
s2½p�� s ¼

P
r2� p � r �

P
r2� pr ðmod8Þ, henceX

s2½p��
s�

X
r2�

r � ðp� 1Þ
X
r2�

r ðmod8Þ: ð4:11Þ

This implies that the term on the left of the congruence (4.11) is even. Next, let us

assume p ¼ 2. Let �0 (respectively �00) be the set of all r 2 � such that r is odd

(respectively even). Since 2 � r ¼ 2r or r=2 according as r 2 �0 or �00, the difference

2 � r� r is always odd. HenceX
s2½2��

s�
X
r2�

r ¼
X
r2�

ð2 � r� rÞ � jT0j ðmod2Þ: ð4:12Þ

This implies that if T0 6¼ 1, then the term on the left of the equation (4.12) is even.

Thus,
P

s2½p�� s�
P

r2� r is even if T0 6¼ 1 or p 6¼ 2, which proves the 12th roots

part of the statement. If M is odd and T0 6¼ 1, then the equation (4.11) implies

that
P

s2½p�� s�
P

r2� r is a multiple of 4, which proves the 6th roots part of the

statement. (2) This follows from (1) and the relation (4.5). �

COROLLARY 4.5. Let p be a prime factor of M, and � a coset in T=T0.

(1) The unit groupF of FðT0Þ contains the 24th power of f
ðpÞ
� , the 12th power of f

ðpÞ
�

if T0 6¼ 1 or p 6¼ 2, and moreover the 6th power of f
ðpÞ
� if M is odd and T0 6¼ 1.

(2) The unit group F of FðT0Þ contains the 24th power of h�, the 12th power of h� if

M is odd or T0 6¼ 1, and moreover the 6th power of h� if M is odd and T0 6¼ 1.

5. Calculation of the value of �
ðpÞ
� at �s.

In this section we calculate the value of �
ðpÞ
� at �s. For our later use, it is

sufficient to consider the case where p 6¼ 2 and ðp; sÞ ¼ 1. Since �
ðpÞ
� ð�1Þ ¼ 1, we

can assume that s 6¼ 1, hence T0 6¼ 1. Therefore, in the Subsections 5.1–5.4, we

assume that

p 6¼ 2; ðp; sÞ ¼ 1; s 6¼ 1: ð5:1Þ

5.1. Decomposition into two parts.

By the definition (3.7) of f
ðpÞ
� ð�Þ we have

f ðpÞ� �sð�Þð Þ ¼
Y
r2�

Y
u2RðrÞ

Ip

gu �sð�Þð Þ

8><>:
9>=>;; ð5:2Þ
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where Ip ¼
ffiffiffi
p

p
O. Since gu �sð�Þð Þ ¼  r �sð Þgu�s �ð Þ by Proposition 2.1, we have the

decomposition into two parts:

f ðpÞ� �sð�Þð Þ ¼
Y
r2�

Y
u2RðrÞ

Ip

 rð�sÞ

8><>:
9>=>; �

Y
r2�

Y
u2RðrÞ

Ip

gu�sð�Þ

8><>:
9>=>;: ð5:3Þ

5.2. The  part.

LEMMA 5.1.  rð�sÞ ¼ ð�1Þ
1
2fðr

�;sÞ�1g if ðs; 2Þ ¼ 1,

�i � ð�1Þ
1
2fðr;s

�Þ�1g if ðs; 2Þ 6¼ 1.

(
PROOF. Put

�s ¼
a
ffiffiffi
s

p
b
ffiffiffiffiffi
s�

p

c
ffiffiffiffiffi
s�

p
d
ffiffiffi
s

p

 !
: ð5:4Þ

Assume ðs; 6Þ ¼ 1. In the definition (4.10) of �s, putting q ¼ 2 and 3, we have

as � d � 1 ðmod 2e � 3Þ and b � c � 0 ðmod2e � 3Þ. Hence, dðr�; sÞ � ðr�; sÞ ðmod 4Þ
and bðr; s�Þ � cðr�; s�Þ � 0 ðmod12Þ. Combining these results with  rð�sÞ ¼
 �

ðrÞ
s

� �
and the equation (2.4), we have  rð�sÞ ¼ ð�1Þð1=2Þfðr

�;sÞ�1g. (Note that

dðr�; sÞ is odd.) The other cases ðs; 6Þ ¼ 2, 3, 6 can be treated similarly. �

In the decomposition (5.3), the  part is given as follows.

LEMMA 5.2.

Y
r2�

Y
u2RðrÞ

Ip

 rð�sÞ

8><>:
9>=>; ¼

exp
2�i

2
� 1
2
ðp� 1Þ � 1

2

X
r2�

fðr�; sÞ � 1g
" #

if ðs; 2Þ ¼ 1,

exp
2�i

2
�
1

2
ðp� 1Þ �

1

2

X
r2�

ðr; s�Þ
" #

if ðs; 2Þ 6¼ 1.

8>>>>><>>>>>:
PROOF. By the facts that  rð�sÞ does not depend on u and that R

ðrÞ
Ip

��� ��� ¼
ð1=2Þðp� 1Þ, the case ðs; 2Þ ¼ 1 follows immediately from Lemma 5.1. Next, we

have
Q

r2�
Q

u2RðrÞ
Ip

ð�iÞ
 �

¼ exp 2�i=2 � ð1=2Þðp� 1Þ � ð1=2ÞjT0j½ �. (Since T0 6¼ 1, the

number j�j ¼ jT0j is even.) From this and Lemma 5.1, the case ðs; 2Þ 6¼ 1 follows

immediately. �
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5.3. The gu�s part with r 2 �ð1Þ.
Let us denote by �ð1Þ (respectively �ð2Þ) the set of all elements r 2 � with p - r

(respectively p j r). Here we assume r 2 �ð1Þ. In this case the element u of R
ðrÞ
Ip

is of

the form

u ¼ uð0; y; rÞ ¼ 0;
y

p

ffiffiffiffiffi
r�

p
 �
; ð5:5Þ

where y is an integer with 1 � y � ðp� 1Þ=2.
Let �s be written as in the equation (5.4). Then we have

uð0; y; rÞ�s ¼
cyðr�; s�Þ

p

ffiffiffiffiffiffiffiffiffi
r � s

p
;
dyðr�; sÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � sÞ

p �

 �

: ð5:6Þ

Since ðp; sÞ ¼ 1 and p - r, we have p j ðr�; s�Þ and r � s 2 �ð1Þ. Also by the definition

of �s and the assumption ðp; sÞ ¼ 1, we have d � 1 ðmod pÞ.
For each y (1 � y � ðp� 1Þ=2), we denote by kðyÞ the unique integer

satisfying 1 � kðyÞ � ðp� 1Þ=2 and

dyðr�; sÞ � �kðyÞ ðmod pÞ: ð5:7Þ

We call y to be of plus (respectively minus) type if the plus (respectively minus)

sign appears in the congruence (5.7). Note that if y1 6¼ y2, then kðy1Þ 6¼ kðy2Þ.
Let l be an integer satisfying

dyðr�; sÞ ¼ �kðyÞ þ pl: ð5:8Þ

Then we have

uð0; y; rÞ�s ¼ �uð0; kðyÞ; r � sÞ þ v; ð5:9Þ

where

v ¼
cyðr�; s�Þ

p

ffiffiffiffiffiffiffiffiffi
r � s

p
; l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � sÞ

p �

 �

: ð5:10Þ

Note that v 2 Zðr�sÞ. By Proposition 2.1 we have

guð0;y;rÞ�sð�Þ
¼ "ð�uð0; kðyÞ; r � sÞ; vÞ � g�uð0;kðyÞ;r�sÞð�Þ

¼
"ðuð0; kðyÞ; r � sÞ; vÞ � guð0;kðyÞ;r�sÞð�Þ if y is of plus type,

ð�1Þ � "ð�uð0; kðyÞ; r � sÞ; vÞ � guð0;kðyÞ;r�sÞð�Þ if y is of minus type.

(
ð5:11Þ
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In the equation (5.11) with y of minus type, we used the equalities (Proposition 2.1)

guð0;kðyÞ;r�sÞð�Þ ¼ guð0;kðyÞ;r�sÞð �12ð Þð�ÞÞ ¼  r�sð�12Þ � g�uð0;kðyÞ;r�sÞð�Þ ð5:12Þ

and the fact  r�sð�12Þ ¼  ð�12Þ ¼ �1.

LEMMA 5.3. With the notation above, we have

"ð�uð0; kðyÞ; r � sÞ; vÞ ¼ exp
2�i

2
fyþ kðyÞg

� �
:

PROOF. Suppose that y is of plus type. By the definition, we have

"ðuð0; kðyÞ; r � sÞ; vÞ ¼ exp½2�i=2 � ��, where

� ¼ cyðr�; s�Þ
p

� lþ cyðr�; s�Þ
p

þ l� kðyÞ
p

� cyðr
�; s�Þ
p

:

If we put q ¼ p in the definition (4.10) of �s, we have c � 0 ðmod pÞ. Since

ðr�; s�Þ=p 2 Z, we have � 2 Z. First, assume ðs; 2Þ ¼ 1. If we put q ¼ 2 in the

definition of �s, we have c � 0 ðmod2Þ and d � 1 ðmod2Þ. Thus, � � l ðmod2Þ.
Since p and dðr�; sÞ are odd, the equation (5.8) implies l � yþ kðyÞ ðmod 2Þ. This
proves the case. Next, assume ðs; 2Þ 6¼ 1. If we put q ¼ 2 in the definition of �s, we

have c � 1 ðmod2Þ and d � 0 ðmod2Þ. Since ðr�; s�Þ=p is an odd integer, we have

� � ylþ yþ l� kðyÞ � y ðmod 2Þ. Since p is odd and d is even, the equation (5.8)

implies l � kðyÞ ðmod 2Þ. Thus we have � � yþ kðyÞ ðmod2Þ. This completes the

proof of the case where y is of plus type. In the proof above, if we exchange kðyÞ by
�kðyÞ, we obtain � � y� kðyÞ ðmod 2Þ. Since y� kðyÞ � yþ kðyÞ ðmod 2Þ, we have

the proof of the case where y is of minus type. �

Let us denote by ]fy : �g the number of y which is of minus type.

LEMMA 5.4. We have

ð�1Þ]fy:�g ¼
ðr�; sÞ
p


 �
;

where the symbol on the right term denotes the Legendre symbol.

PROOF. As was noticed above, we have d � 1 ðmod pÞ. Hence, by the

equation (5.7), yðr�; sÞ � �kðyÞ ðmod pÞ. This implies
Qðp�1Þ=2

y¼1 fyðr�; sÞg �
ð�1Þ]fy:�gQðp�1Þ=2

y¼1 kðyÞ ðmod pÞ. Since
Qðp�1Þ=2

y¼1 y �
Qðp�1Þ=2

y¼1 kðyÞ ðmod pÞ, we have
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ðr�; sÞðp�1Þ=2 � ð�1Þ] y:�f g ðmod pÞ. On the other hand, it is well known that

ðr�; sÞðp�1Þ=2 � ðr�; sÞ
p

� �
ðmod pÞ. Therefore, ð�1Þ]fy:�g � ðr�; sÞ

p

� �
ðmod pÞ. Since

p 6¼ 2, this congruence implies the equality. �

In the decomposition (5.3), the gu�s part with r 2 �ð1Þ is given as follows.

LEMMA 5.5.

Y
r2�ð1Þ

Y
u2RðrÞ

Ip

gu�sð�Þ

8><>:
9>=>; ¼

Y
r2�ð1Þ

ðr�; sÞ
p


 �
�
Y
r2�ð1Þ

Y
u2RðrÞ

Ip

guð�Þ

8><>:
9>=>;:

PROOF. Let r be an element of �ð1Þ. By the equation (5.11) and Lemmas

5.3–5.4, we haveY
u2RðrÞ

Ip

gu�sð�Þ ¼
Y
y:þ

guð0;y;rÞ�sð�Þ �
Y
y:�

guð0;y;rÞ�sð�Þ

¼
Y
y:þ

exp
2�i

2
fyþ kðyÞg

� �
� guð0;kðyÞ;r�sÞð�Þ

�
Y
y:�

ð�1Þ exp
2�i

2
fyþ kðyÞg

� �
� guð0;kðyÞ;r�sÞð�Þ

¼ ð�1Þ]fy:�g � exp
2�i

2

X
y

yþ
X
y

kðyÞ
( )" #

�
Y
y

guð0;kðyÞ;r�sÞð�Þ

¼
ðr�; sÞ
p


 �
�
Y

u2Rðr�sÞ
Ip

guð�Þ;

where y : þ (respectively y : �) means that y is of plus (respectively minus) type.

We have used the equality
P

y y ¼
P

y kðyÞ. Since ðp; sÞ ¼ 1 and p - r, we have

p - r � s, namely r � s 2 �ð1Þ. This implies that if r runs through all the elements of

�ð1Þ, then so does r � s. Hence the equality of the lemma follows. �

LEMMA 5.6. The number j�ð1Þj of the elements of �ð1Þ is even, and we have

Y
r2�ð1Þ

ðr�; sÞ
p


 �
¼

s

p


 �1
2 �

ð1Þj j
:
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PROOF. Since s 6¼ 1, if r 2 �ð1Þ, then r � s 2 �ð1Þ and r � s 6¼ r. This implies

that the set �ð1Þ is a disjoint union of several pairs fr; r � sg, hence j�ð1Þj is even,

and we can express the set �ð1Þ as a disjoint union of two subsets �
ð1Þ
1 and �

ð1Þ
2 such

that r 2 �
ð1Þ
1 if and only if r � s 2 �

ð1Þ
2 . Now it is easy to see that for any elements

t1; t2 2 T the following equality holds:

ðt1; t2Þðt1 � t2; t2Þ ¼ t2: ð5:13Þ

If we put t1 ¼ r� and t2 ¼ s in the equation (5.13) and notice that r� � s ¼ ðr � sÞ�,
we have ðr�; sÞððr � sÞ�; sÞ ¼ s. Using this relation, we have

Y
r2�ð1Þ

ðr�; sÞ
p


 �
¼
Y
r2�ð1Þ

1

ðr�; sÞ
p


 � ððr � sÞ�; sÞ
p


 � �
¼
Y
r2�ð1Þ

1

s

p


 �
¼ s

p


 � �
ð1Þ
1j j
:

Since �
ð1Þ
1

��� ��� ¼ ð1=2Þ �ð1Þ
�� ��, the proof is completed. �

5.4. The gu�s part with r 2 �ð2Þ.
Here we assume r 2 �ð2Þ, namely p j r. In this case the element u of R

ðrÞ
Ip

is of

the form

u ¼ uðx; 0; rÞ ¼
x

p

ffiffiffi
r

p
; 0


 �
; ð5:14Þ

where x is an integer with 1 � x � ðp� 1Þ=2.
As before, let �s be written as in the equation (5.4). Then we have

uðx; 0; rÞ�s ¼
axðr; sÞ

p

ffiffiffiffiffiffiffiffiffi
r � s

p
;
bxðr; s�Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � sÞ

p �

 �

: ð5:15Þ

Since ðp; sÞ ¼ 1 and p j r, we have p j ðr; s�Þ and r � s 2 �ð2Þ. By the definition

of �s and the assumption ðp; sÞ ¼ 1, we have a � s�1 ðmod pÞ.
For each x (1 � x � ðp� 1Þ=2), we denote by kðxÞ the unique integer

satisfying 1 � kðxÞ � ðp� 1Þ=2 and

axðr; sÞ � �kðxÞ ðmod pÞ: ð5:16Þ

We call x to be of plus (respectively minus) type if the plus (respectively minus)

sign appears in the congruence (5.16). Note that if x1 6¼ x2, then kðx1Þ 6¼ kðx2Þ.
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Let l be an integer satisfying

axðr; sÞ ¼ �kðxÞ þ pl: ð5:17Þ

Then we have

uðx; 0; rÞ�s ¼ �uðkðxÞ; 0; r � sÞ þ v; ð5:18Þ

where

v ¼ l
ffiffiffiffiffiffiffiffiffi
r � s

p
;
bxðr; s�Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � sÞ

p �

 �

: ð5:19Þ

As before, we have v 2 Zðr�sÞ, and by Proposition 2.1

guðx;0;rÞ�sð�Þ

¼
"ðuðkðxÞ; 0; r � sÞ; vÞ � guðkðxÞ;0;r�sÞð�Þ if x is of þ type,

ð�1Þ � "ð�uðkðxÞ; 0; r � sÞ; vÞ � guðkðxÞ;0;r�sÞð�Þ if x is of � type.

(
ð5:20Þ

LEMMA 5.7. With the notation above, we have

"ð�uðkðxÞ; 0; r � sÞ; vÞ ¼ exp
2�i

2
fxþ kðxÞg

� �
:

PROOF. Since the proof is similar to that of Lemma 5.3, we only sketch it.

Suppose that x is of plus type. We have "ðuðkðxÞ; 0; r � sÞ; vÞ ¼ exp½2�i=2 � �� where

� ¼ l �
bxðr; s�Þ

p
þ lþ

bxðr; s�Þ
p

þ
ksrðxÞ
p

�
bxðr; s�Þ

p
:

Putting q ¼ p in the definition of �s, we have b � 0 ðmod pÞ. Since ðr; s�Þ=p 2 Z, we

have � 2 Z. First, assume ðs; 2Þ ¼ 1. By the definition of �s, we have b � 0 ðmod 2Þ
and a � 1 ðmod 2Þ. Hence, � � l ðmod2Þ. Since p and aðr; sÞ are odd, the equation

(5.17) implies l � xþ kðxÞ ðmod2Þ. This proves the case. Next, assume ðs; 2Þ 6¼ 1.

By the definition of �s, we have b � 1 ðmod2Þ and a � 0 ðmod 2Þ. Since ðr; s�Þ=p is

an odd integer, we have � � lxþ lþ xþ kðxÞx ðmod2Þ. Since p is odd and a is

even, we have l � kðxÞ ðmod2Þ by the equation (5.17). This completes the case of

plus type. Exchanging kðxÞ by �kðxÞ, we have the proof for minus type x. �

32 T. TAKAGI



Let us denote by ]fx : �g the number of x which is of minus type.

LEMMA 5.8. We have

ð�1Þ]fx:�g ¼
sðr; sÞ
p


 �
;

where the symbol on the right term denotes the Legendre symbol.

PROOF. Since the proof is similar to that of Lemma 5.4, we only sketch it.

Since a � s�1 ðmod pÞ, we have fs�1ðr; sÞgðp�1Þ=2 � ð�1Þ]fx:�g ðmod pÞ the same as

Lemma 5.4. Since ðs�1Þðp�1Þ=2 � sðp�1Þ=2 ðmod pÞ, we have the result. �

In the decomposition (5.3), the gu�s part with r 2 �ð2Þ is given as follows.

LEMMA 5.9.

Y
r2�ð2Þ

Y
u2RðrÞ

Ip

gu�sð�Þ

8><>:
9>=>; ¼

Y
r2�ð2Þ

sðr; sÞ
p


 �
�
Y
r2�ð2Þ

Y
u2RðrÞ

Ip

guð�Þ

8><>:
9>=>;:

PROOF. Let r be an element of �ð2Þ. Then, the same as the proof of

Lemma 5.5, we have

Y
u2RðrÞ

Ip

gu�sð�Þ ¼
sðr; sÞ
p


 �
�
Y

u2Rðr�sÞ
Ip

guð�Þ

using the equation (5.20) and Lemmas 5.7–5.8. If r runs through �ð2Þ, so does r � s.
Thus we have the proof. �

LEMMA 5.10. The number �ð2Þ
�� �� of the elements of �ð2Þ is even, and we have

Y
r2�ð2Þ

sðr; sÞ
p


 �
¼ s

p


 �1
2j�

ð2Þj
:

PROOF. Similarly to the proof of Lemma 5.6, we can show that the set �ð2Þ is

a disjoint union of two subsets �
ð2Þ
1 and �

ð2Þ
2 such that r 2 �

ð2Þ
1 if and only if

r � s 2 �
ð2Þ
2 , whence j�ð2Þj is even. Setting t1 ¼ r and t2 ¼ s in the equation (5.13),

we have ðr; sÞðr � s; sÞ ¼ s. Thus, we have
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Y
r2�ð2Þ

sðr; sÞ
p


 �
¼
Y
r2�ð2Þ

1

sðr; sÞ
p


 �
sðr � s; sÞ

p


 � �
¼
Y
r2�ð2Þ

1

s3

p


 �
¼

s

p


 � �
ð2Þ
1j j
:

Since �
ð2Þ
1

��� ��� ¼ ð1=2Þj�ð2Þj, the proof is completed. �

5.5. The value of �
ðpÞ
� at the element �s.

The value �
ðpÞ
� ð�sÞ with p 6¼ 2 and ðp; sÞ ¼ 1 is given as follows. Since

�
ðpÞ
� ð�sÞ ¼ 1 if s ¼ 1, we consider the case s 6¼ 1, whence T0 6¼ 1 and T0j j is even.

PROPOSITION 5.11. Let p be a prime factor ofM, and � a coset in T=T0. Let

s be an element of T0. Assume that T0 6¼ 1 and s 6¼ 1. Also assume that p 6¼ 2 and

ðp; sÞ ¼ 1. Then we have

�ðpÞ
� ð�sÞ ¼

exp
2�i

2
�
1

2
ðp� 1Þ �

1

2

X
r2�

fðr�; sÞ � 1g
" #

�
s

p


 �1
2jT0j

if ðs; 2Þ ¼ 1,

exp
2�i

2
� 1
2
ðp� 1Þ � 1

2

X
r2�

ðr; s�Þ
" #

�
s

p


 �1
2jT0j

if ðs; 2Þ 6¼ 1.

8>>>>><>>>>>:
PROOF. This follows immediately from Lemmas 5.2, 5.5, 5.6, 5.9, 5.10 and

the following equalities:

s

p


 �1
2j�

ð1Þj
�
s

p


 �1
2j�

ð2Þj
¼

s

p


 �1
2 j�ð1Þjþj�ð2Þjð Þ

¼
s

p


 �1
2j�j

¼
s

p


 �1
2jT0j

:

�

6. Determination of the unit group F with T0 ¼ hM0i.

6.1. The values �
ðpÞ
� ð�qÞ and ��ð�qÞ with T0 ¼ hM0i.

For any divisor N ofM, we denote by hNi the subgroup of T consisting of all

factors r of N . Henceforth, we take a divisor M0 of M, and consider the case

T0 ¼ hM0i. Put M1 ¼M=M0. Then, for each coset � 2 T=T0, there exists a unique

factor r of M1 such that r is contained in �. We denote this integer r by r�. The

mapping � 7! r� gives an isomorphism from T=T0 to hM1i. Since the group T0 is

generated by the prime factors of M0, in order to determine the characters �
ðpÞ
�

and ��, it is sufficient to determine the values at the elements �q for all prime

factors q of M0 (cf. Propositions 4.2, 4.3).

PROPOSITION 6.1. Let T0 ¼ hM0i, p a prime factor of M, and � a coset in

T=T0. Assume that p is odd. Then for each odd prime factor q ofM0 ð6¼ 1Þ, we have
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�ðpÞ
� ð�qÞ ¼

1 if p ¼ q,

p

q


 �1
2jT0j

if p 6¼ q,

8><>:
where the symbol

�p
q

�
denotes the Legendre symbol.

PROOF. First, suppose that p ¼ q. Since this condition implies p 2 T0, the

function f
ðpÞ
� ð�Þ is a constant (Proposition 3.2). Hence, we have �

ðpÞ
� ð�qÞ ¼ 1. Next,

suppose that p 6¼ q. We prove first
P

r2�ðr�; qÞ ¼ ðq þ 1Þ � ð1=2ÞjT0j. Put

�� ¼ fr� j r 2 �g ð¼ � � ½M�Þ. Since q 2 T0, we have r� � q 2 �� for all r 2 �. Since

either r� or r� � q is prime to q and the other a multiple of q, half of the elements of

�� are prime to q and the others are multiples of q. From this the equality follows

immediately. By the use of this equality, we have

1

2
ðp� 1Þ � 1

2

X
r2�

fðr�; sÞ � 1g ¼
1

2
ðp� 1Þ � 1

2
ðq þ 1Þ � 1

2
jT0j � jT0j

 �
¼

1

4
ðp� 1Þðq � 1Þ �

1

2
jT0j:

Thus, by Proposition 5.11 and the law of quadratic reciprocity, we have

�ðpÞ
� ð�qÞ ¼ ð�1Þ

1
4ðp�1Þðq�1Þ �

q

p


 � �1
2jT0j

¼
p

q


 �1
2jT0j

:

�

PROPOSITION 6.2. Let T0 ¼ hM0i, and � a coset in T=T0. Assume that r� is

odd. Then for each odd prime factor q of M0 ð6¼ 1Þ, we have

��ð�qÞ ¼
r�

q


 �1
2jT0j

;

where the symbol
�rp
q

�
denotes the Legendre symbol.

PROOF. First, suppose that � ¼ T0. Then r� ¼ 1, hence the right term of the

equality is 1. On the other hand, we have h�ð�Þ ¼ 1, whence ��ð�qÞ ¼ 1. Thus the

equality holds. Next, suppose that � 6¼ T0. Let r� ¼ p1 � � � � � pl be the prime

factorization. Then pi 6¼ q for all i because r� is a factor of M1. Also the primes pi
are odd because r� is odd by the assumption. Thus, by the previous proposition

and the equation (4.5), we have
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��ð�qÞ ¼ �
ðp1Þ
½p2����½pl�ð�qÞ � �

ðp2Þ
½p3����½pl�ð�qÞ � � � � � �

ðplÞ
½1� ð�qÞ

¼ p1

q


 �1
2jT0j

�
p2

q


 �1
2jT0j

� � � � �
pl

q


 �1
2jT0j

¼
r�

q


 �1
2jT0j

:

�

6.2. Determination of the unit group F .

Now we determine the condition that a product of the functions h� is an

automorphic function with respect to the group �T0 . For simplicity, we denote by

SðM0Þ the sum of all factors of M0. Then SðM0Þ ¼
Q

qjM0
ð1þ qÞ, where q runs

through all prime factors of M0.

THEOREM 6.3. Let T0 ¼ hM0i. Assume that M is odd, M0 6¼ 1, and M1 6¼ 1.

Let mðrÞ be rational integers parametrized by all factors r 6¼ 1 of M1. Then the

function

gð�Þ ¼
Y

�2T=T0; 6¼½1�
h�ð�Þmðr�Þ

belongs to the group F of all modular units in the function field FðT0Þ if and only if

the integers mðrÞ satisfy the following conditions (1), (2) and (3):

(1) SðM0Þ �
P

rjM1; 6¼1fðr� 1Þ �mðrÞg � 0 ðmod 24Þ,
(2) if 3 jM1, then SðM0Þ �

P
rjM1;ðr;3Þ¼1fr �mð3rÞg � 0 ðmod 3Þ,

(3) if M0 is a prime integer q and there exists a prime factor p of M1 satisfying�p
q

�
¼ �1, then

Q
rjM1; 6¼1

�
r
q

�
mðrÞ ¼ 1.

PROOF. The condition that the function gð�Þ belongs to F is equivalent to

that the equation (4.4) holds in all the cases where � ¼ �q, 
q, �q with q prime

factors of eM, and �q with q prime factors of M0. Since ��ð�qÞ ¼ ��ð
qÞ ¼ 1 for

q 6¼ 2; 3, and ��ð�qÞ ¼ 1 for all q by Proposition 4.3, it is sufficient to consider the

cases � ¼ �2, �3, 
2, 
3, and �q (q jM0). Let � ¼ �2. Since
P

s2� s ¼P
rjM0

ðr � r�Þ ¼ r� � SðM0Þ for any coset �, we have by the proposition cited above

Y
�2T=T0; 6¼½1�

��ð�2Þmðr�Þ ¼ exp �
2�i

8
� SðM0Þ �

X
�2T=T0;6¼½1�

fðr� � 1Þ �mðr�Þg

24 35;
whence the equation (4.4) with � ¼ �2 is equivalent to

SðM0Þ �
X

rjM1;6¼1

fðr� 1Þ �mðrÞg � 0 ðmod 8Þ: ð6:1Þ
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Let � ¼ 
2. Similarly to the case above, since r�� ¼M1=r�, we have the

congruence

SðM0Þ �
X

rjM1; 6¼1

M1

r
�M1


 �
�mðrÞ

 �
� 0 ðmod 8Þ: ð6:2Þ

Since M is odd, we have r2 � 1 ðmod8Þ. Hence, M1=r�M1 � r2 �M1=r�
M1 �M1 � ðr� 1Þ ðmod8Þ. Since ðM1; 8Þ ¼ 1, the congruence (6.2) is equivalent

to (6.1). Similarly, the equation (4.4) with � ¼ �3 gives the congruence

SðM0Þ �
X

rjM1;6¼1

fðr� 1Þ �mðrÞg � 0 ðmod 3Þ; ð6:3Þ

and the one with � ¼ 
3 gives

SðM0Þ �
X

rjM1; 6¼1

M1

r
�M1


 �
�mðrÞ

 �
� 0 ðmod 3Þ: ð6:4Þ

The combination of the two congruences (6.1) and (6.3) coincides with the

condition (1) of the theorem. Assume 3 - M1. Then r2 � 1 ðmod 3Þ for r jM1,

whence the congruence (6.4) is equivalent to the congruence (6.3), and contained in

the condition (1). Next, assume 3 jM1. Then the summation in the congruence

(6.4) can be replaced by
P

fM1=r �mðrÞg where r runs through all factors of M1

with 3 j r. Put r ¼ 3r1 and M3 ¼M1=3. Then
P

fM1=r �mðrÞg �
P

fM3=r1 �
mð3r1Þg ðmod 3Þ, where r1 runs through all factors of M1 with ðr1; 3Þ ¼ 1. Since

r21 � 1 ðmod 3Þ, we have M3=r1 � r21 �M3=r1 �M3 � r1 ðmod 3Þ. Since ðM3; 3Þ ¼ 1,

this implies that the congruence (6.4) is equivalent to the condition (2) of the

theorem. Let � ¼ �q. Assume that M0 is composite. Then ð1=2ÞjT0j is even, hence
��ð�qÞ ¼ 1 for all q by Proposition 6.2. Next, assume that M0 is a prime integer q,

and that
�p
q

�
¼ 1 for all prime factors p of M1. Then again, ��ð�qÞ ¼ 1 for all q by

Proposition 6.2. Thus, in the result, we have the condition (3) of the theorem. �

By Theorems 3.5 and 6.3, we have the characterization of the unit group F .

THEOREM 6.4. Let T0 ¼ hM0i. Assume that M is odd, M0 6¼ 1, and M1 6¼ 1.

Then the group F of all modular units in the function field FðT0Þ consists of all

functions gð�Þ which have the form gð�Þ ¼ c
Q

�2T=T0; 6¼½1� h�ð�Þ
mðr�Þ, where c is a

nonzero rational number, and mðrÞ are rational integers parametrized by all

factors r 6¼ 1 of M1 such that the conditions (1), (2) and (3) of Theorem 6.3 are

satisfied.
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REMARK 6.5. If M1 ¼ 1, then the number of the cusps of the curve XT0 is

one. Therefore the unit group F consists of all nonzero rational numbers.

7. Calculation of the cuspidal class number with T0 ¼ hM0i.

In this section we calculate the cuspidal class number of the curve XT0 with

T0 ¼ hM0i. First in Section 7.1 we reduce the problem to one of purely algebraic

nature without the assumption T0 ¼ hM0i. After Section 7.2 we assume that

T0 ¼ hM0i. Because of the condition (3) of Theorem 6.3, we shall divide the

problem into two cases.

7.1. Reduction to an algebraic problem with T0 general.

In this Section 7.1 we make no assumptions on the group T0 except for

T0 6¼ T . Let R, R0, D, and C be the same as in Section 3.2. Let ’ : D ¼� R be the

isomorphism (3.4), and 	 the element of RQ defined by the equation (3.11).

We denote by IðT0Þ the subset of R0 consisting of all elements � ¼
P
mð�Þ �

ð�� 1Þ (� 2 T=T0; 6¼ ½1�, mð�Þ 2 Z) such that the function g�ð�Þ ¼
Q
h�ð�Þmð�Þ

(� 2 T=T0; 6¼ ½1�) belongs to the group F of all modular units in the function field

FðT0Þ. Then we have the following proposition.

PROPOSITION 7.1. For any T0 6¼ T , we have

’ðdivðFÞÞ ¼ IðT0Þ	:

PROOF. This follows immediately from (2) of Proposition 3.3 and

Theorem 3.5 �

By this proposition we have

C ¼� R0=IðT0Þ	: ð7:1Þ

Hence the cuspidal class number h of the curve XT0 is given by

h ¼ ½R0 : IðT0Þ	�: ð7:2Þ

Let A and B be two lattices of RQ, and C a lattice contained in A \ B. Then the

quotient ½A : C�=½B : C� does not depend on the choice of C. We denote this

number by ½A : B�. It satisfies the usual multiplicative property, namely

½A : B� ¼ ½A : D�½D : B�. In particular, by (7.2) above, we have h ¼ ½R0 : R0	� �
½R0	 : IðT0Þ	�. Since 	 is invertible (Proposition 3.4), we have ½R0	 : IðT0Þ	� ¼
½R0 : IðT0Þ�, thus
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h ¼ ½R0 : R0	� � ½R0 : IðT0Þ�: ð7:3Þ

On the value ½R0 : R0	�, we have the following.

PROPOSITION 7.2. For any T0 6¼ T , we have

½R0 : R0	� ¼
Y
 6¼1

1

24

Y
pjM

ðpþ ð½p�ÞÞ

8<:
9=;;

where  runs through all non-trivial characters of T=T0 and p all prime factors ofM.

PROOF. This can be proved the same as [12, Proposition 5.2]. �

Though the following proposition is not necessary in the calculation of h, we

include it because of interest.

PROPOSITION 7.3. For any T0 6¼ T , both of the sets IðT0Þ and IðT0Þ	 are

ideals of the ring R.

PROOF. First we consider the case of IðT0Þ	. Let � 2 GalðFðT0Þ=F1Þ, and P
a prime divisor of FðT0Þ. As was seen in Section 3.2, P� is cuspidal if and only if P

is. This implies that if g 2 F , then also g� 2 F . Let us identify the group T=T0
with GalðFðT0Þ=F1Þ. Then we have divðg�Þ ¼

P
�2T=T0 �P

�
1
ðg�Þ � P�

1. Hence,

’ðdivðg�ÞÞ¼
P

�2T=T0 �P
�
1
ðg�Þ � �¼

P
�2T=T0 �P

��
1
ðgÞ ��¼ � �

P
�2T=T0 �P

��
1
ðgÞ � ��

� �
¼

� � ’ðdivðgÞÞ. The relation � � ’ðdivðgÞÞ ¼ ’ðdivðg�ÞÞ implies that ’ðdivðFÞÞ is an
ideal of R. Thus, by Proposition 7.1, IðT0Þ	 is an ideal of R. The statement that

IðT0Þ is an ideal follows from this and the fact that 	 is invertible in RQ. �

7.2. The ideal IðT0Þ with T0 ¼ M0h i.
Hereafter we consider the case T0 ¼ M0h i as in Section 6.1. The following is a

restatement of Theorem 6.4.

THEOREM 7.4. Let T0 ¼ hM0i. Assume that M is odd, M0 6¼ 1, and M1 6¼ 1.

Then the ideal IðT0Þ coincides with the set of all elements � ¼
P
mðrÞ � ð½r� � 1Þ of

R0 (r jM1; 6¼ 1) such that mðrÞ are rational integers satisfying the conditions (1),

(2) and (3) of Theorem 6.3.

7.3. Calculation of the cuspidal class number: Case I.

Now we calculate the cuspidal class number of the curve XT0 with T0 ¼ hM0i.
By the relation (7.3) and Proposition 7.2, it is sufficient to consider the index

½R0 : IðT0Þ�. In this Section 7.3, we restrict ourselves to the case where the
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condition (3) on the ideal IðT0Þ stated in Theorem 7.4 is null. We call it Case I. In

other words, we assume that one of the following conditions is satisfied.

CASE I-1: M is odd, M0 is a prime q, M1 6¼ 1 and every prime factor p of M1

satisfies
�p
q

�
¼ 1.

CASE I-2: M is odd, M0 is composite, and M1 6¼ 1.

Let I1 be the subgroup of R0 consisting of all elements

� ¼
X

rjM1;6¼1

mðrÞ � ð½r� � 1Þ ð7:4Þ

such that mðrÞ are rational integers satisfying the condition (1) of Theorem 6.3.

We consider the indices ½R0 : I1� and ½I1 : IðT0Þ� separately.
LetM1 ¼ p1 � � � pk be the prime factorization ofM1, and � ¼ ðp1 � 1; . . . ; pk � 1Þ

the greatest common divisor.

LEMMA 7.5. Let � be as above. Then
P

rjM1
ðr� 1ÞZ ¼ �Z.

PROOF. The inclusion
P

rjM1
ðr� 1ÞZ � �Z is obvious. Put r0 ¼ r� 1 for

each factor r of M1. Let r ¼ pð1Þ � � � pðlÞ be the prime factorization of r 6¼ 1. Since

r0 ¼
Q

ið1þ p0ðiÞ Þ � 1 2 �Z, we have the reverse inclusion
P

rjM1
ðr� 1ÞZ � �Z.

This proves the lemma. �

Since M0 ( 6¼ 1Þ and M1 ( 6¼ 1Þ are odd, the numbers SðM0Þ and � are even

integers. Let d be the greatest common divisor of 6 and ð1=4Þ�SðM0Þ:

d ¼ 6;
1

4
�SðM0Þ


 �
: ð7:5Þ

LEMMA 7.6. Let d be as above. Then ½R0 : I1� ¼ 6=d.

PROOF. Let � be an element of R0 written as in the equation (7.4). Let

’ : R0 ! Z be the homomorphism defined by ’ð�Þ ¼ SðM0Þ �
P

fðr� 1Þ �mðrÞg
(r jM1; 6¼ 1). Then by Lemma 7.5, we have ’ðR0Þ ¼ SðM0Þ � �Z. Let � : Z !
Z=24Z be the homomorphism induced by the reduction modulo 24. Let

a ¼ ð24; �SðM0ÞÞ be the greatest common divisor. Then aZ ¼ 24Z þ �SðM0ÞZ.

This implies that �ð’ðR0ÞÞ ¼ �ðaZÞ ¼ aZ=24Z. Since ð� � ’Þ�1ð0Þ ¼ I1, we have

R0=I1 ¼� aZ=24Z. Hence, ½R0 : I1� ¼ 24=a ¼ 6=d. �

LEMMA 7.7. We have ½I1 : IðT0Þ� ¼ 3 or 1 according as the following three

conditions (i), (ii) and (iii) are satisfied, or not: (i) 3 - SðM0Þ, (ii) 3 jM1, (iii) there

exists a prime factor p of M1 satisfying p � 2 ðmod3Þ.
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PROOF. If 3 j SðM0Þ, then the condition (2) on IðT0Þ stated in Theorem 7.4

is trivial. Also, if 3 - M1, the same condition on IðT0Þ is null. Thus if one of the

conditions (i) and (ii) does not hold, we have I1 ¼ IðT0Þ. Assume the condition

(iii) does not hold. In this case every factor r ofM1 satisfies r � 0 or 1 ðmod 3Þ. Let
� be an element of I1 written as in (7.4). Then replacing ðmod24Þ by ðmod 3Þ in
the condition (1) of Theorem 6.3, we have SðM0Þ �

P
fð�1Þ �mðrÞg � 0 ðmod3Þ,

where r runs through all factors ofM1 with r � 0 ðmod3Þ. If we write r ¼ 3r1 for r

with r � 0 ðmod3Þ, then r1 � 1 ðmod 3Þ, so that mð3r1Þ � r1 �mð3r1Þ ðmod3Þ.
This implies that � satisfies the condition (2) of Theorem 6.3. Thus we have

I1 ¼ IðT0Þ. Assume that all the conditions (i), (ii) and (iii) hold. Let � be an

element of I1 written as in (7.4). Let ’ : I1 ! Z be the homomorphism defined by

’ð�Þ ¼ SðM0Þ �
P

fr �mð3rÞg (r jM1; ðr; 3Þ ¼ 1), and � : Z ! Z=3Z the homo-

morphism induced by the reduction modulo 3. We prove �ð’ðI1ÞÞ ¼ Z=3Z. Let p

be a prime factor of M1 satisfying p � 2 ðmod3Þ, and put �p ¼ 8ð½3� � 1Þ þ
8ð½p� � 1Þ (2 R0). Then we have �p 2 I1. In fact, concerning this element �p, the

value of the term on the left-hand side of the congruence in (1) of Theorem 6.3 is

equal to SðM0Þ � 8ðpþ 1Þ, which is a multiple of 24, hence �p 2 I1. Now we have

’ð�pÞ ¼ 8SðM0Þ, whence �ð’ð�pÞÞ is a non zero element of Z=3Z. This proves

�ð’ðI1ÞÞ ¼ Z=3Z. Since ð� � ’Þ�1ð0Þ ¼ IðT0Þ, we have I1=IðT0Þ ¼� Z=3Z. This

proves the lemma. �

By the equation (7.3), Proposition 7.2, and Lemmas 7.6–7.7, we have the

following theorem. For simplicity, we put að3Þ ¼ 3 or 1 according as all the

conditions (i), (ii) and (iii) in Lemma 7.7 are satisfied, or not.

THEOREM 7.8. Assume that Case I holds. Let d and að3Þ be as above. Then

the cuspidal class number h of the curve XT0 with T0 ¼ hM0i is given by

h ¼
6að3Þ

d
�
Y
 6¼1

1

24

Y
pjM

ðpþ ð½p�ÞÞ

8<:
9=;;

where  runs through all non-trivial characters of T=T0 and p all prime factors ofM.

COROLLARY 7.9. Let M ¼ pq, where p and q are distinct odd primes with�p
q

�
¼ 1. Put T0 ¼ hqi. Then the cuspidal class number h of the curve XT0 is the

numerator of ð1=24Þðp� 1Þðq þ 1Þ. The cuspidal divisor class group is a cyclic

group of order h generated by the class of the divisor corresponding to ½p� � 1.

7.4. Calculation of the cuspidal class number: Case II.

In this Section 7.4, we consider the case, Case II, where the following

condition is satisfied.
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CASE II: M is odd, M0 is a prime q, and there exists a prime factor p of M1

satisfying
�p
q

�
¼ �1.

Let J1 (respectively J2) be the subgroup of R0 consisting of all elements

� ¼
X

rjM1;6¼1

mðrÞ � ð½r� � 1Þ ð7:6Þ

such that mðrÞ are rational integers satisfying the condition (3) (respectively (1)

and (3)) of Theorem 6.3. We consider the indices ½R0 : J1�, ½J1 : J2� and ½J2 : IðT0Þ�
separately.

For each factor r ofM1, put eðrÞ ¼ 1 or 0 according as
�
r
q

�
¼ �1 or 1. Then the

condition (3) of Theorem 6.3 can be written as follows:X
rjM1;6¼1

eðrÞ �mðrÞ � 0 ðmod 2Þ: ð7:7Þ

LEMMA 7.10. ½R0 : J1� ¼ 2.

PROOF. Let � be an element of R0 written as in (7.6). Let ’ : R0 ! Z be the

homomorphism defined by ’ð�Þ ¼
P
eðrÞ �mðrÞ (r jM1; 6¼ 1). Let p be a prime

factor of M1 satisfying
�p
q

�
¼ �1. If � ¼ ½p� � 1, then ’ð�Þ ¼ 1. Hence ’ðR0Þ ¼ Z.

Let � : Z ! Z=2Z be the homomorphism induced by the reduction modulo 2.

Then �ð’ðR0ÞÞ ¼ Z=2Z and ð� � ’Þ�1ð0Þ ¼ J1. This implies ½R0 : J1� ¼ 2. �

Let M1 ¼
Q

i pi �
Q

j lj (1 � i � a, 1 � j � b) be the prime factorization ofM1,

where pi (respectively lj) are prime factors satisfying
�pi
q

�
¼ �1 (respectively�lj

q

�
¼ 1). If a � 2, let �1 ¼ ðp2 � p1; . . . ; pa � p1Þ (> 0) be the greatest common

divisor, and put d1 ¼ ð1=4Þðq þ 1Þ�1. If a ¼ 1, put d1 ¼ 0. If b � 1, let �2 ¼
ðl1 � 1; . . . ; lb � 1Þ be the greatest common divisor, and put d2 ¼ ð1=4Þðq þ 1Þ�2. If
b ¼ 0, put d2 ¼ 0. Note that d1 and d2 are non-negative integers.

LEMMA 7.11. Let ’ : J1 ! Z be the homomorphism defined by ’ð�Þ ¼
ðq þ 1Þ �

P
fðr� 1Þ �mðrÞg (r jM1; 6¼ 1), where � is of the form (7:6). Let d1 and d2

be as above, and D ¼ ð2ðp1 � 1Þðq þ 1Þ; 4d1; 4d2Þ the greatest common divisor.

Then ’ðJ1Þ ¼ DZ.

PROOF. First we prove ’ðJ1Þ � DZ. If � ¼ 2ð½p1� � 1Þ, then � 2 J1 and

’ð�Þ ¼ ðq þ 1Þ � ðp1 � 1Þ � 2, whence ’ðJ1Þ � 2ðp1 � 1Þðq þ 1ÞZ. If a � 2, for each

index i (2 � i � a), put � ¼ �ð½p1� � 1Þ þ ð½pi� � 1Þ. Then � 2 J1 and ’ð�Þ ¼
ðq þ 1Þ � ðpi � p1Þ, whence ’ðJ1Þ � ðq þ 1Þðpi � p1ÞZ. If b � 1, for each index j
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(1 � j � b), put � ¼ ½lj� � 1. Then � 2 J1 and ’ð�Þ ¼ ðq þ 1Þ � ðlj � 1Þ, whence

’ðJ1Þ � ðq þ 1Þðlj � 1ÞZ. Thus we have ’ðJ1Þ � 2ðp1 � 1Þðq þ 1ÞZ þ
P

iðq þ 1Þ
ðpi � p1ÞZ þ

P
jðq þ 1Þðlj � 1ÞZ ¼ DZ. Second we prove ’ðJ1Þ � DZ. Let � be

an element of J1 written as in (7.6). Since � satisfies the condition (7.7),

there exists an integer k with
P

rjM1;6¼1 eðrÞ �mðrÞ ¼ 2k. Since mðp1Þ ¼ 2k�P0 eðrÞ �mðrÞ, we have ’ð�Þ ¼ ðq þ 1Þfðp1 � 1Þ �mðp1Þ þ
P0ðr� 1Þ �mðrÞg ¼

ðq þ 1Þ½2ðp1 � 1Þ � kþ
P0fr� 1� eðrÞðp1 � 1Þg �mðrÞ�, where

P0 means the sum-

mation over r with r jM1, 6¼ 1 and 6¼ p1. Thus it is sufficient to prove that the

number

fðrÞ ¼ ðq þ 1Þfr� 1� eðrÞðp1 � 1Þg

is contained in DZ (r jM1; 6¼ 1; p1). Let us write r
0 ¼ r� 1 for each factor r ofM1.

Then by the definition of D, we have (i) ðq þ 1Þp0i � ðq þ 1Þp01 ðmodDZÞ
(1 � i � a), (ii) ðq þ 1Þl0j � 0 ðmodDZÞ (1 � j � b), and (iii) ðq þ 1Þp01 � h �
0 ðmodDZÞ for any h 2 2Z. It is easy to see that we have (iv) ðq þ 1Þs01s02 �
0 ðmodDZÞ for any two prime factors s1 and s2 of M1. Now we prove fðrÞ 2 DZ.

Let r ¼ t1 � � � tc be the prime factorization of r. By the equation r0 ¼ r� 1 ¼
ð1þ t01Þ � � � ð1þ t0cÞ � 1 and the property (iv), we have (v) ðq þ 1Þr0 �
ðq þ 1Þt01 þ � � � þ ðq þ 1Þt0c ðmodDZÞ. Assume that eðrÞ ¼ 0, i.e.

�
r
q

�
¼ 1. Then the

number nðrÞ of the prime factor p jM1 with
�p
q

�
¼ �1 which appears in the

set ft1; . . . ; tcg is even. Hence fðrÞ ¼ ðq þ 1Þr0 � ðq þ 1Þt01 þ � � � þ ðq þ 1Þt0c �
ðq þ 1Þp01 � nðrÞ � 0 ðmodDZÞ by the properties (v), (i), (ii) and (iii). This implies

fðrÞ 2 DZ . Next assume that eðrÞ ¼ 1, i.e.
�
r
q

�
¼ �1. Then the number nðrÞ

defined the same as above is odd. Hence we have fðrÞ ¼ ðq þ 1Þr0 � ðq þ 1Þp01 �
ðq þ 1Þt01 þ � � � þ ðq þ 1Þt0c � ðq þ 1Þp01 � ðq þ 1Þp01 �fnðrÞ � 1g � 0 ðmodDZÞ by the

properties (v), (i), (ii) and (iii). This implies fðrÞ 2 DZ, and completes the

proof. �

Let d be the following greatest common divisor

d ¼ 6;
1

2
ðp1 � 1Þðq þ 1Þ; d1; d2


 �
: ð7:8Þ

LEMMA 7.12. Let d be as above. Then ½J1 : J2� ¼ 6=d.

PROOF. Let ’ : J1 ! Z and D be the same as in Lemma 7.11. Let � : Z !
Z=24Z be the homomorphism induced by the reduction modulo 24. Since

4d ¼ ð24; DÞ, we have 4dZ ¼ 24Z þDZ. This and Lemma 7.11 imply �ð’ðJ1ÞÞ ¼
�ðDZÞ ¼ 4dZ=24Z. Since ð� � ’Þ�1ð0Þ ¼ J2, we have J1=J2 ¼� 4dZ=24Z ¼�dZ=6Z.

This completes the proof. �
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LEMMA 7.13. We have ½J2 : IðT0Þ� ¼ 3 or 1 according as the following three

conditions (i), (ii) and (iii) are satisfied, or not: (i) 3 - SðM0Þð¼ q þ 1Þ, (ii) 3 jM1,

(iii) there exists a prime factor p of M1 satisfying p � 2 ðmod 3Þ.

PROOF. This can be proved the same as Lemma 7.7. �

By the equation (7.3), Proposition 7.2, and Lemmas 7.10, 7.12 and 7.13, we

have the following theorem. For simplicity, we put að3Þ ¼ 3 or 1 according as all

the conditions (i), (ii) and (iii) in Lemma 7.13 are satisfied, or not.

THEOREM 7.14. Assume that Case II holds. Let d and að3Þ be as above. Then

the cuspidal class number h of the curve XT0 with T0 ¼ hM0i is given by

h ¼
12að3Þ

d
�
Y
 6¼1

1

24

Y
pjM

ðpþ ð½p�ÞÞ

8<:
9=;;

where  runs through all non-trivial characters of T=T0 and p all prime factors ofM.

COROLLARY 7.15. Let M ¼ pq, where p and q are distinct odd primes with�p
q

�
¼ �1. Put T0 ¼ hqi. Then the cuspidal class number h of the curve XT0 is the

numerator of ð1=12Þðp� 1Þðq þ 1Þ. The cuspidal divisor class group is a cyclic

group of order h generated by the class of the divisor corresponding to ½p� � 1.

8. The p-Sylow group of the cuspidal divisor class group.

In this section we study the p-Sylow group of the cuspidal divisor class group

of the curve XT0 . In Section 8.1 we consider the case where T0 is general. In

Section 8.2 we consider the case where p ¼ 3 and T0 ¼ hM0i.

8.1. The p-Sylow group with T0 general.

In this Section 8.1 we make no assumptions on the group T0 except for

T0 6¼ T .

Let  be a character of the group T=T0, and e the element of RQ defined by

e ¼
1

jT=T0j
X

�2T=T0
ð�Þ�: ð8:1Þ

These e are the elementary idempotents of RQ. Let aðÞ be the eigenvalue of 	

belonging to e, i.e., 	e ¼ aðÞe. Then we have

aðÞ ¼
1

24

Y
pjM

ð1þ pð½p�ÞÞ: ð8:2Þ
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THEOREM 8.1. Let aðÞ be as above, and p a prime 6¼ 2; 3. Then aðÞ 2 Zp

for all , and the p-Sylow group of the cuspidal divisor class group of the curve XT0

is isomorphic to the direct sum M
 6¼1

ðZp=aðÞZpÞ;

where  runs through all non-trivial characters of T=T0.

PROOF. Since p 6¼ 2; 3, the fact aðÞ 2 Zp is obvious. In the following we

consider the elements e, aðÞ and 	 as contained in RQp. As is well-known the

p-Sylow group of a finite abelian group G is isomorphic to G Zp. Hence, by

the isomorphism (7.1), the p-Sylow group of C is isomorphic to C  Zp ¼�
ðR0=IðT0Þ	Þ  Zp ¼� ðR0  ZpÞ=ðIðT0Þ	  ZpÞ ¼� ðR0  ZpÞ=ððIðT0Þ  ZpÞ	Þ. By
Corollary 4.5 we have R0 � IðT0Þ � 24R0. Since p 6¼ 2; 3, this implies IðT0Þ 
Zp ¼ R0  Zp. Thus we have C  Zp ¼� ðR0  ZpÞ=ððR0  ZpÞ	Þ. Since p 6¼ 2, the

set of the elements e with  6¼ 1 constitutes a basis of R0  Zp over Zp

(Takagi [12, Lemma 6.1]). Hence we have C  Zp ¼� ð
L

ZpeÞ=ðð
L

ZpeÞ	Þ ¼�
ð
L

ZpeÞ=ð
L

Zpe	Þ ¼� ð
L

ZpeÞ=ð
L

ZpaðÞeÞ ¼�
L

ðZp=aðÞZpÞ. �

PROPOSITION 8.2. Assume that the index ½R0 : IðT0Þ� is prime to 3. Then

aðÞ 2 Z3 for all  6¼ 1, and the 3-Sylow group of the cuspidal divisor class group of

the curve XT0 is isomorphic to the direct sumM
 6¼1

ðZ3=aðÞZ3Þ;

where  runs through all non-trivial characters of T=T0.

PROOF. As in the proof of Theorem 8.1 we have the isomorphism C  Z3 ¼�
ðR0  Z3Þ=ððIðT0Þ  Z3Þ	Þ. By the assumption we have IðT0Þ  Z3 ¼ R0  Z3,

whence C  Z3 ¼� ðR0  Z3Þ=ððR0  Z3Þ	Þ. Since the set of the elements e with

 6¼ 1 is a basis of R0  Z3 over Z3, we have C  Z3 ¼� ð
L

Z3eÞ=ð
L

Z3aðÞeÞ.
Thus we have the inclusion Z3aðÞe � Z3e, which implies aðÞ 2 Z3. This

completes the proof. �

8.2. The 3-Sylow group with T0 ¼ hM0i.
Here we consider the case where p ¼ 3 and T0 ¼ hM0i.

PROPOSITION 8.3. Let T0 ¼ hM0i. Assume that M is odd, M0 6¼ 1, M1 6¼ 1,

and that either the following condition (i) or (ii) is satisfied: (i) 3 j SðM0Þ, (ii) every
prime factor p ofM1 satisfies p � 1 ðmod3Þ. Then the index ½R0 : IðT0Þ� is prime to 3.
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PROOF. We consider the Cases I and II separately. First, assume that the

condition of Case I is satisfied (Section 7.3). By the proof of Theorem 7.8, we have

½R0 : IðT0Þ� ¼ 6að3Þ=d. It is easy to see that if either of the conditions (i), (ii) holds,

then að3Þ ¼ 1 and 3 j d. This implies that the index ½R0 : IðT0Þ� is prime to 3. Next,

assume that the condition of Case II is satisfied (Section 7.4). By the proof of

Theorem 7.14, we have ½R0 : IðT0Þ� ¼ 12að3Þ=d. As in the Case I, we see again that

if either of the conditions (i), (ii) holds, then að3Þ ¼ 1 and 3 j d. Hence we see that

the index ½R0 : IðT0Þ� is prime to 3. �

REMARK 8.4. If neither the condition (i) nor (ii) is satisfied, then the index

½R0 : IðT0Þ� is not prime to 3.

By Propositions 8.2 and 8.3 we have the following theorem.

THEOREM 8.5. Let T0 ¼ hM0i. Assume that M, M0 and M1 satisfy the

condition of Proposition 8.3. Then aðÞ 2 Z3 for all  6¼ 1, and the 3-Sylow group

of the cuspidal divisor class group of the curve XT0 is isomorphic to the direct sumM
 6¼1

ðZ3=aðÞZ3Þ;

where  runs through all non-trivial characters of T=T0.
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