©2010 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 62, No. 1 (2010) pp. 13–47 doi: 10.2969/jmsj/06210013

The cuspidal class number formula for certain quotient curves of the modular curve $X_0(M)$ by Atkin-Lehner involutions

By Toshikazu TAKAGI

(Received Apr. 16, 2008)

Abstract. We calculate the cuspidal class number of a certain quotient curve of the modular curve $X_0(M)$ with M square-free. For each factor r of M, let w_r denote the Atkin-Lehner type involution of $X_0(M)$. Let M_0 be a divisor of M, and W_0 the subgroup of the automorphism group of $X_0(M)$ consisting of all w_r with r dividing M_0 . Our object is the quotient of $X_0(M)$ by W_0 . In this paper, we consider the case where M is odd.

1. Introduction.

As is well known, the cuspidal divisor class group of a modular curve is finite (Manin [6], Drinfeld [2]). Concerning modular curves of type $X_0(n)$, $X_1(n)$, or X(n), the full cuspidal class numbers are calculated by several authors (Ogg [7], Kubert and Lang [4], [5], Takagi [9], [10], [11], [12], [13]) though the choice of n is restricted. Concerning the curve $X_1(n)$ the order of a certain subgroup of the cuspidal divisor class group is also calculated (Klimek [3], Kubert and Lang [4], [5], Yu [14]) without any condition on n.

In this paper we consider another type of modular curves, which is a quotient of the modular curve $X_0(M)$ with M a square-free integer, and calculate its cuspidal class number. More precisely, for each factor r of M, let w_r denote the Atkin-Lehner type involution of $X_0(M)$ (Atkin-Lehner [1]). Let M_0 be a divisor of M, and W_0 the subgroup of the automorphism group of $X_0(M)$ consisting of all w_r with $r \mid M_0$. Our object is the quotient curve of $X_0(M)$ by W_0 . This work is a continuation of [12].

In this paper, in order to avoid some complexity, we confine ourselves to considering only the case where M is odd.

Our main results are Theorems 7.8 and 7.14. As a special case, we have the following (Corollaries 7.9 and 7.15).

²⁰⁰⁰ Mathematics Subject Classification. Primary 11F03.

Key Words and Phrases. modular curve, modular unit, cuspidal class number.

THEOREM. Let p and q be distinct odd primes. Let X be the quotient curve of the curve $X_0(pq)$ by w_q . Then the cuspidal class number h of X is equal to the numerator of (1/24)(p-1)(q+1) or (1/12)(p-1)(q+1) according as $\left(\frac{p}{q}\right) = 1$ or -1, respectively. The cuspidal divisor class group of X is a cyclic group of order h generated by the divisor class of $P_q - P_\infty$.

In the theorem above, the symbol $\left(\frac{p}{q}\right)$ denotes the Legendre symbol. The symbols P_q and P_{∞} denote the cusps on X represented by 1/q and ∞ respectively.

This theorem is related to a result by Ogg ([8, Corollary 1]), which proves that the divisor $P_1 + P_q - P_p - P_{pq}$ on $X_0(pq)$ defines a divisor class of order exactly equal to the numerator of (1/24)(p-1)(q+1), where P_x (x = 1, p, q, pq) denotes the cusp on $X_0(pq)$ represented by 1/x. Note that the cusp P_{pq} coincides with the cusp represented by ∞ .

The contents of the present paper are the following. In Sections 2–4, we summarize some results of [12, Sections 1–4]. In Section 4 some new results are added (Proposition 4.4 and Corollary 4.5). In Section 5 the value of $\Phi_{\rho}^{(p)}$ at the type *s* element δ_s is given. In Section 6 we determine the unit group on the quotient curve of $X_0(M)$ by W_0 (Theorem 6.4). It is our first main theorem. In Section 7 we divide the case into two (Cases I and II), and determine the cuspidal class number in each case (Theorems 7.8, 7.14). They are our main theorems. In Section 8 we determine the *p*-Sylow group of the cuspidal divisor class group for the case $p \neq 2,3$ (Theorem 8.1) and the case p = 3 under certain conditions (Theorem 8.5).

In the present paper we denote by Z, Q, C, 1_2 the ring of rational integers, the field of rational numbers, the field of complex numbers, the two-by-two unit matrix, respectively. For any prime number p we denote by Z_p , Q_p the ring of p-adic integers, the field of p-adic numbers, respectively.

2. Transformation formulas for Siegel functions.

In this section we summarize some results of [12, Section 1]. It is assumed that the reader is familiar with the contents of [9, Section 1].

2.1. The Principal congruence subgroup $\Gamma(I)$ of $G(\sqrt{M})$.

Let M be a square-free integer $(\neq 1)$ fixed throughout the present paper. We denote by T the set of all positive divisors of M, and regard it as a group with the product defined by $r \circ s = rs/(r,s)^2$ where (r,s) denotes the greatest common divisor of r and s $(r, s \in T)$. Let \mathcal{O} be the order defined by $\mathcal{O} = \sum_{r \in T} \mathbf{Z}\sqrt{r}$. For any two positive integers n and m such that m is a divisor of M, put $I = n\sqrt{m}\mathcal{O}$. Then the set I is an ideal of the order \mathcal{O} . We assume that $N = nm \neq 1$.

Let $\Gamma(I)$ be the principal congruence subgroup of the group $G(\sqrt{M})$. (For the definitions of $G(\sqrt{M})$ and $\Gamma(I)$, we refer to [9, Section 1.1].) Let \mathfrak{F}_I be the field of all automorphic functions with respect to the group $\Gamma(I)$ such that their Fourier coefficients belong to the cyclotomic field $k_N = \mathbf{Q}(e^{2\pi i/N})$. Let \mathfrak{F}_1 be the field of all automorphic functions with respect to the group $G(\sqrt{M})$ such that their Fourier coefficients belong to \mathbf{Q} . Then it is known ([9, Section 1 (1.15)]) that the field \mathfrak{F}_I is a Galois extension of \mathfrak{F}_1 , and its Galois group is isomorphic to the group $\mathscr{G}_I(\pm) = \mathscr{G}_I/\{\pm 1\}$, where \mathscr{G}_I denotes the group consisting of all elements α of $GL_2(\mathcal{O}/I)$ which are of the form

$$\alpha = \begin{pmatrix} a\sqrt{r} & b\sqrt{r^*} \\ c\sqrt{r^*} & d\sqrt{r} \end{pmatrix} \pmod{I}$$
(2.1)

with $a, b, c, d \in \mathbb{Z}$, $r \in T$, and $r^* = M/r$. Since the element r of T above is determined by the element α , we call it the *type* of α , and denote it by $t(\alpha)$. We denote by $\sigma(\alpha)$ the element of the Galois group $\operatorname{Gal}(\mathfrak{F}_I/\mathfrak{F}_1)$ corresponding to α .

2.2. Some properties of Siegel functions.

Here we recall some properties of Siegel functions. For any element $a = (a_1, a_2)$ of the set $\mathbf{Q}^2 - \mathbf{Z}^2$, the Siegel function $g_a(\tau)$ ($\tau \in \mathfrak{H}$) is defined in [5]. (The symbol \mathfrak{H} denotes the upper half plane.) It has the following q-product

$$g_a(\tau) = -q_{\tau}^{(1/2)B_2(a_1)} e^{2\pi i a_2(a_1-1)/2} (1-q_z) \prod_{k=1}^{\infty} (1-q_{\tau}^k q_z) (1-q_{\tau}^k/q_z), \qquad (2.2)$$

where $q_{\tau} = e^{2\pi i \tau}$, $q_z = e^{2\pi i z}$, $z = a_1 \tau + a_2$, and $B_2(X) = X^2 - X + (1/6)$ (the second Bernoulli polynomial). If $b = (b_1, b_2) \in \mathbb{Z}^2$, then we have $g_{a+b}(\tau) = \varepsilon(a, b)g_a(\tau)$, where $\varepsilon(a, b)$ is a root of unity defined by

$$\varepsilon(a,b) = \exp\left[\frac{2\pi i}{2} \left(b_1 b_2 + b_1 + b_2 + a_1 b_2 - a_2 b_1\right)\right].$$
(2.3)

If $\alpha \in SL_2(\mathbf{Z})$, then we have $g_a(\alpha(\tau)) = \psi(\alpha)g_{a\alpha}(\tau)$, where ψ denotes the character of $SL_2(\mathbf{Z})$ appearing in the transformation formula for the square of the Dedekind η -function. Explicitly the value of $\psi(\alpha)$ with $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by

$$\psi(\alpha) = \begin{cases} (-1)^{(d-1)/2} \exp\left[\frac{2\pi i}{12}\left\{(b-c)d + ac(1-d^2)\right\}\right] & \text{if } d \text{ is odd,} \\ -i(-1)^{(c-1)/2} \exp\left[\frac{2\pi i}{12}\left\{(a+d)c + bd(1-c^2)\right\}\right] & \text{if } c \text{ is odd.} \end{cases}$$
(2.4)

In particular, we note that $\psi(-1_2) = -1$. (It is known that the kernel of ψ is a congruence subgroup of level 12 with index 12, and coincides with the commutator subgroup of $SL_2(\mathbf{Z})$.)

2.3. Modified Siegel functions with respect to the ideal I.

Here we define the modified Siegel functions with respect to the ideal I. Let r be an element of T, and $A_I^{\prime(r)}$ be the set of all row vectors u of the following form

$$u = \left(\frac{x}{n(m,r)}\sqrt{r}, \frac{y}{n(m,r^*)}\sqrt{r^*}\right),\tag{2.5}$$

where x and y are rational integers satisfying $u \notin \mathbb{Z}\sqrt{r} \times \mathbb{Z}\sqrt{r^*} = Z^{(r)}$. We call the element r of T above the *type* of u and denote it by t(u). Put $A'_I = \bigcup_{r \in I} A'_I^{(r)}$ (disjoint). If u is an element of A'_I of type r, and α an element of $G(\sqrt{M})$ of type s $(r, s \in T)$, then the product $u\alpha$ is an element of A'_I of type $r \circ s$.

Let $u = (a_1\sqrt{r}, a_2\sqrt{r^*})$ be an element of A'_I of type r $(a_1, a_2 \in \mathbf{Q})$, and put $u^\circ = (a_1, a_2) \ (\in \mathbf{Q}^2 - \mathbf{Z}^2)$. Then we define the modified Siegel function $g_u(\tau)$ $(\tau \in \mathfrak{H})$ with respect to the ideal I by

$$g_u(\tau) = g_{u^\circ} \left(\sqrt{\frac{r}{r^*}} \times \tau \right). \tag{2.6}$$

For an element $v = (b_1\sqrt{r}, b_2\sqrt{r^*})$ of $Z^{(r)}$ $(b_1, b_2 \in \mathbb{Z})$, write $v^\circ = (b_1, b_2)$ $(\in \mathbb{Z}^2)$. For elements $u \in A_I^{\prime(r)}$ and $v \in Z^{(r)}$, we put

$$\varepsilon(u,v) = \varepsilon(u^{\circ},v^{\circ}). \tag{2.7}$$

Let

$$\alpha = \begin{pmatrix} a\sqrt{s} & b\sqrt{s^*} \\ c\sqrt{s^*} & d\sqrt{s} \end{pmatrix}$$
(2.8)

be an element of $G(\sqrt{M})$ of type $s (a, b, c, d \in \mathbb{Z}, s \in T)$. For an element r of T, we put

$$\alpha^{(r)} = \begin{pmatrix} a(r,s) & b(r,s^*) \\ c(r^*,s^*) & d(r^*,s) \end{pmatrix}.$$
 (2.9)

Then the matrix $\alpha^{(r)}$ belongs to $SL_2(\mathbf{Z})$.

Now we have the following transformation formulas for the modified Siegel functions ([12, Proposition 1.1]).

PROPOSITION 2.1. Let u be an element of A'_I of type r. (1) Let $v \in Z^{(r)}$. Then $g_{u+v}(\tau) = \varepsilon(u, v)g_u(\tau)$. (2) Let $\alpha \in G(\sqrt{M})$. Then $g_u(\alpha(\tau)) = \psi_r(\alpha)g_{u\alpha}(\tau)$, where $\psi_r(\alpha) = \psi(\alpha^{(r)})$. (3) Let $\alpha \in \Gamma(I)$. Then $g_u(\alpha(\tau)) = \varepsilon_u(\alpha)\psi_r(\alpha)g_u(\tau)$, where $\varepsilon_u(\alpha) = \varepsilon(u, v)$ with $v = u\alpha - u(\in Z^{(r)})$.

Since the number $\varepsilon(u, v)$ (respectively $\psi_r(\alpha)$) in this proposition is a 2*N*th root (respectively a 12th root) of unity, the function $g_u^{[2N,12]}$ depends only on the residue class of u modulo $Z^{(r)}$, and is invariant under the exchange $u \to -u$. (The symbol [2N, 12] denotes the least common multiple of 2*N* and 12.) Moreover, the function $g_u^{[2N,12]}$ belongs to the function field \mathfrak{F}_I and has no zeros and poles on the upper half plane \mathfrak{H} .

3. Modular units on the curve $X_0(M)$ and its quotient curves.

In this section we summarize some results of [12, Sections 2, 3].

3.1. The modular curve $X_0(M)$ and its quotient curves.

Let M be the square-free integer fixed in the present paper. Let $\Gamma_0(M)$ be the subgroup of $SL_2(\mathbf{Z})$ consisting of all elements of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $c \equiv 0$ (mod M). Let Γ be a Fuchsian group of the first kind. We denote by X_{Γ} the complete nonsingular curve associated with the compactification of the quotient space $\Gamma \setminus \mathfrak{H}$. When $\Gamma = \Gamma_0(M)$, the curve X_{Γ} is written as $X_0(M)$. Let $f(\tau)$ ($\tau \in \mathfrak{H}$) be an automorphic function with respect to Γ . If the function $f(\tau)$ has no zeros and poles on \mathfrak{H} , we call f as a *modular unit* with respect to Γ and also a *modular unit* on the curve X_{Γ} .

Let T_0 be a subgroup of T. Let Γ_{T_0} be the subgroup of $G(\sqrt{M})$ consisting of all elements such that their types belong to T_0 . When $T_0 = \{1\} (= 1)$, the group Γ_1 is isomorphic to $\Gamma_0(M)$; more precisely,

$$\Gamma_1 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{M} \end{pmatrix}^{-1} \Gamma_0(M) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{M} \end{pmatrix}.$$
 (3.1)

Hence, if $\Gamma = \Gamma_1$, then the curve $X_{\Gamma_1}(=X_1)$ is isomorphic to the modular curve $X_0(M)$. In general, if $\Gamma = \Gamma_{T_0}$, then the curve $X_{\Gamma_{T_0}}$ (= X_{T_0}) is a quotient curve of X_1 by a subgroup of the automorphism group of X_1 . This subgroup can be described as follows. Since the group Γ_1 is a normal subgroup of Γ_{T_0} with

 $\Gamma_{T_0}/\Gamma_1 \cong T_0$, to each element r of T_0 there exists an automorphism of the curve X_1 , whose corresponding automorphism of the curve $X_0(M)$ is the Atkin-Lehner involution w_r . Moreover, the subgroup consisting of all w_r with $r \in T_0$ is isomorphic to the group T_0 . Hence, the curve X_{T_0} is isomorphic to the quotient curve of $X_0(M)$ by the group consisting of all Atkin-Lehner involutions w_r with $r \in T_0$.

3.2. Cuspidal prime divisors.

We use the notation in [9, Section 1]. Let G_{A_+} be the adele group associated with $G(\sqrt{M})$, and U its unit subgroup. Let U_{T_0} be the subgroup of U consisting of all elements such that their types belong to T_0 . Put $S = \mathbf{Q}^{\times} \ll \sqrt{M} \gg U_{T_0}$. Then to this S corresponds the function field \mathfrak{F}_S . For simplicity, we write $\mathfrak{F}(T_0)$ for this field \mathfrak{F}_S . Then the field $C\mathfrak{F}(T_0)$ is the field of all automorphic functions with respect to the group Γ_{T_0} , and \mathbf{Q} is algebraically closed in $\mathfrak{F}(T_0)$ ([9, Proposition 1.6]). It can be shown in a similar way to [9, Proposition 1.7] that the field $\mathfrak{F}(T_0)$ is the field of all automorphic functions with respect to Γ_{T_0} such that their Fourier coefficients belong to \mathbf{Q} . In particular, we have $\mathfrak{F}(T) = \mathfrak{F}_1$ (for the definition of \mathfrak{F}_1 see [9, Section 1]). The field $\mathfrak{F}(T_0)$ is an abelian extension of \mathfrak{F}_1 such that the Galois group is isomorphic to T/T_0 . The field $\mathfrak{F}(1)$ ($T_0 = 1$) is isomorphic to the function field [= $\mathfrak{F}_0(M)$] which consists of all automorphic functions with respect to $\Gamma_0(M)$ such that their Fourier coefficients belong to \mathbf{Q} . More precisely, we have

$$\mathfrak{F}(1) = \left\{ f\left(\frac{\tau}{\sqrt{M}}\right) \middle| f(\tau) \in \mathfrak{F}_0(M) \right\}.$$
(3.2)

Let P_{∞} denote the prime divisor of $\mathfrak{F}(T_0)$ defined by the *q*-expansion. Let *P* be a prime divisor of $\mathfrak{F}(T_0)$, and ν_P the valuation of *P*. For any element σ of $\operatorname{Gal}(\mathfrak{F}(T_0)/\mathfrak{F}_1) \ (\cong T/T_0)$, the prime divisor P^{σ} is defined by $\nu_{P^{\sigma}}(h^{\sigma}) = \nu_P(h)$ $(h \in \mathfrak{F}(T_0))$. We can regard the prime divisor P^{σ}_{∞} as a prime divisor of $C\mathfrak{F}(T_0)$, in other words, a point on the curve X_{T_0} . More precisely, let us denote by the same symbol σ the corresponding element of T/T_0 . Let α be any element of $G(\sqrt{M})$ whose type belongs to the coset σ . Then the prime divisor P^{σ}_{∞} corresponds to the point on the curve X_{T_0} represented by $\alpha^{-1}(\infty)$. The set of the prime divisors P^{σ}_{∞} can be identified with the set of all the cusps on the curve X_{T_0} . The group T/T_0 and the set of all the cusps on the curve X_{T_0} correspond bijectively by the mapping $\sigma \mapsto P^{\sigma}_{\infty}$. We call the prime divisors P^{σ}_{∞} the cuspidal prime divisors of $\mathfrak{F}(T_0)$.

Let \mathscr{D} be the free abelian group generated by the cuspidal prime divisors of $\mathfrak{F}(T_0)$, and \mathscr{D}_0 the subgroup of \mathscr{D} consisting of all elements with degree 0. Let \mathscr{F} (respectively \mathscr{F}_C) be the group of all modular units in $\mathfrak{F}(T_0)$ (respectively

 $C\mathfrak{F}(T_0)$). Then we have $\mathscr{F}_C = C^{\times} \mathscr{F}$, hence we can identify the divisor group $\operatorname{div}(\mathscr{F})$ with the divisor group $\operatorname{div}(\mathscr{F}_C)$, and the factor group

$$\mathscr{C} = \mathscr{D}_0 / \operatorname{div}(\mathscr{F}) \tag{3.3}$$

with the cuspidal divisor class group on the curve X_{T_0} .

Let $R = \mathbf{Z}[T/T_0]$ be the group ring of T/T_0 , and R_0 the additive subgroup of R consisting of all elements with degree 0. Then the mapping $P_{\infty}^{\sigma} \mapsto \sigma$ defines an isomorphism

$$\varphi: \mathscr{D} \cong R \tag{3.4}$$

and we have $\varphi(\mathscr{D}_0) = R_0$.

3.3. The function $f_{\rho}^{(p)}$ and modular units.

Here we construct modular units in the field $\mathfrak{F}(T_0)$ by modified Siegel functions. Let p be any prime factor of M, and put $I_p = \sqrt{p}\mathcal{O}$. Let $\mathscr{R}_{I_p}^{(r)}$ $(r \in T)$ be the subset of $A_{I_p}^{\prime(r)}$ consisting of all elements u which are of the form $u = (0, (y/p)\sqrt{r^*})$ or $((x/p)\sqrt{r}, 0)$ according as $p \nmid r$ or $p \mid r$, where y (respectively x) is an integer satisfying $1 \le y \le p/2$ (respectively $1 \le x \le p/2$).

When p = 2 (this case occurs only when M is even), the set $\mathscr{R}_{I_2}^{(r)}$ contains only one element u that is $(0, (1/2)\sqrt{r^*})$ or $((1/2)\sqrt{r}, 0)$ according as $2 \nmid r$ or $2 \mid r$. For this element u, the Siegel function $g_u(\tau)$ is a square of an automorphic function. We can express square roots of the function $g_u(\tau)$ as products of modified Siegel functions with respect to the ideal $2\sqrt{2}\mathscr{O}$. For definiteness, we denote by $\sqrt{g_u(\tau)}$ one of the square roots defined by

$$\sqrt{g_u}(\tau) = \begin{cases} g_{(0,\sqrt{r^*}/4)}(\tau) \cdot g_{(\sqrt{r}/2,\sqrt{r^*}/4)}(\tau) \cdot c & \text{if } 2 \nmid r, \\ g_{(\sqrt{r}/4,0)}(\tau) \cdot g_{(\sqrt{r}/4,\sqrt{r^*}/2)}(\tau) \cdot (-c) & \text{if } 2 \mid r, \end{cases}$$
(3.5)

where $c = \exp[2\pi i \times (7/16)]$.

For an element u of $\mathscr{R}_{I_n}^{(r)}$, we define the function $\widehat{g}_u(\tau)$ by

$$\widehat{g}_u(\tau) = \begin{cases} g_u(\tau) & \text{if } p \neq 2, \\ \sqrt{g_u}(\tau) & \text{if } p = 2. \end{cases}$$
(3.6)

Now, for each prime factor p of M and each coset $\rho \in T/T_0$, we define the function $f_{\rho}^{(p)}(\tau)$ by

$$f_{\rho}^{(p)}(\tau) = \prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{I_p}^{(r)}} \widehat{g}_u(\tau) \right\}.$$
(3.7)

Then we have the following proposition ([12, Proposition 2.1]).

PROPOSITION 3.1. Let p be a prime factor of M, and ρ a coset in T/T_0 . Then the function $\left(f_{\rho}^{(p)}\right)^{12p}$ is a modular unit contained in the function field $\mathfrak{F}(T_0)$. Moreover, if we identify $\operatorname{Gal}(\mathfrak{F}(T_0)/\mathfrak{F}_1)$ with T/T_0 , then for an element $\sigma \in T/T_0$, we have

$$\left\{ \left(f_{\rho}^{(p)}\right)^{12p} \right\}^{\sigma} = \left(f_{\rho\sigma}^{(p)}\right)^{12p}$$

3.4. The function h_{ρ} and modular units.

Here we construct another type of modular units in the field $\mathfrak{F}(T_0)$ by the Dedekind η -function $\eta(\tau)$. Let $H(\tau)$ be the function defined by

$$H(\tau) = \eta\left(\frac{\tau}{\sqrt{M}}\right) = t^{1/24} \prod_{n=1}^{\infty} (1 - t^n),$$
(3.8)

where $t = \exp\left[2\pi i \tau / \sqrt{M}\right]$.

Now, for each coset $\rho \in T/T_0$, we define the function $h_{\rho}(\tau)$ by

$$h_{\rho}(\tau) = \frac{\prod_{r \in \rho} H(r\tau)}{\prod_{s \in [1]} H(s\tau)},\tag{3.9}$$

where the symbol [1] denotes the unit element of T/T_0 , namely, $[1] = T_0$. In particular, we have $h_{[1]}(\tau) = 1$. In general, we denote by $[r] \ (r \in T)$ the coset rT_0 .

About the relation between $f_{\rho}^{(p)}(\tau)$ and $h_{\rho}(\tau)$, we have the following proposition ([12, Proposition 2.3]).

PROPOSITION 3.2.

(1) Let p be a prime factor of M, and ρ a coset in T/T_0 . Then we have

$$f_{\rho}^{(p)}(\tau) = \frac{h_{[p]\rho}(\tau)}{h_{\rho}(\tau)} \times c_1,$$

where c_1 is a nonzero constant. In particular, $f_{[1]}^{(p)}(\tau) = h_{[p]}(\tau) \times c_1$.

(2) Let p_i (i = 1, ..., k) be prime factors of M. Then we have

$$h_{[p_1]\cdots[p_k]}(au) = f_{[p_2]\cdots[p_k]}^{(p_1)}(au) imes f_{[p_3]\cdots[p_k]}^{(p_2)}(au) imes \cdots imes f_{[1]}^{(p_k)}(au) imes c_2,$$

where c_2 is a nonzero constant.

By Propositions 3.1 and 3.2, we see that the function $(h_{\rho})^{12M}$ is a modular unit in the field $\mathfrak{F}(T_0)$. Later in Corollary 4.5 we shall see some stronger statements concerning the powers of $f_{\rho}^{(p)}$ and h_{ρ} .

3.5. The divisors of $f_{\rho}^{(p)}$ and h_{ρ} .

Put $\mathscr{D}_{\boldsymbol{Q}} = \mathscr{D} \otimes \boldsymbol{Q}$ and $R_{\boldsymbol{Q}} = R \otimes \boldsymbol{Q}$. Then we can extend the isomorphism (3.4) to an isomorphism $\mathscr{D}_{\boldsymbol{Q}} \cong R_{\boldsymbol{Q}}$, which we also denote by φ . Since the functions $\left(f_{\rho}^{(p)}\right)^{12p}$ and $(h_{\rho})^{12M}$ are contained in the field $\mathfrak{F}(T_0)$, their divisors are well defined. We denote by $\operatorname{div}\left(f_{\rho}^{(p)}\right)$ and $\operatorname{div}(h_{\rho})$ the elements of $\mathscr{D}_{\boldsymbol{Q}}$ defined by

$$\operatorname{div}\left(f_{\rho}^{(p)}\right) = \frac{1}{12p} \operatorname{div}\left(\left(f_{\rho}^{(p)}\right)^{12p}\right), \ \operatorname{div}(h_{\rho}) = \frac{1}{12M} \operatorname{div}\left((h_{\rho})^{12M}\right).$$
(3.10)

Let θ be the element of R_Q defined by

$$\theta = \frac{1}{24} \sum_{\rho \in T/T_0} \left(\sum_{r \in \rho} r \right) \rho = \frac{1}{24} \prod_{p \mid M} (1 + p[p]), \tag{3.11}$$

where p runs through all prime factors of M. Then we have the following propositions ([12, Proposition 2.4, Lemma 3.1]).

PROPOSITION 3.3. Let p be a prime factor of M, and ρ a coset in T/T_0 . (1) $\varphi\left(\operatorname{div}\left(f_{\rho}^{(p)}\right)\right) = \rho([p]-1)\theta$. (2) $\varphi\left(\operatorname{div}(h_{\rho})\right) = (\rho-1)\theta$.

PROPOSITION 3.4. The element θ is invertible in the algebra R_Q .

3.6. The group of modular units.

In [12, Section 3], we proved that every modular unit in the field $\mathfrak{F}(T_0)$ can be expressed by the functions h_{ρ} . Namely, we have the following theorem ([12, Theorem 3.3]).

THEOREM 3.5. Let $q(\tau)$ be any modular unit in the field $\mathfrak{F}(T_0)$. Then there are rational integers $m(\rho)$ ($\rho \in T/T_0, \neq [1]$) and a rational number $c \neq 0$ such that

$$g(au)=c\cdot\prod_{
ho\in T/T_0,
eq [1]}h_
ho(au)^{m(
ho)},$$

and moreover this expression is unique.

The characters $\Phi_{a}^{(p)}$ and Ψ_{a} . 4.

In order to calculate the cuspidal class number, we need to determine the group \mathscr{F} of all modular units in the function field $\mathfrak{F}(T_0)$. The determination reduces to the determination of the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of the group Γ_{T_0} . In this section we recall some results of [12, Section 4] and add some new results (Proposition 4.4 and Corollary 4.5).

4.1. Definition of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} . Let p be a prime factor of M, and ρ a coset in T/T_0 . Since the functions $\left(f_{\rho}^{(p)}\right)^{12p}$ and $(h_{\rho})^{12M}$ are automorphic functions with respect to the group Γ_{T_0} , we can define the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of Γ_{T_0} by the following equations:

$$f_{\rho}^{(p)}(\alpha(\tau)) = \Phi_{\rho}^{(p)}(\alpha) \cdot f_{\rho}^{(p)}(\tau),$$
(4.1)

$$h_{\rho}(\alpha(\tau)) = \Psi_{\rho}(\alpha) \cdot h_{\rho}(\tau) \tag{4.2}$$

(for all $\alpha \in \Gamma_{T_0}$).

Let $q(\tau)$ be a function of the form

$$g(\tau) = \prod_{\rho \in T/T_0, \neq [1]} h_{\rho}(\tau)^{m(\rho)},$$
(4.3)

where $m(\rho)$ are rational integers $(\rho \in T/T_0, \neq [1])$. Then the function $g(\tau)$ belongs to the group \mathscr{F} of the modular units in the field $\mathfrak{F}(T_0)$ if and only if the following equation holds for all $\alpha \in \Gamma_{T_0}$:

$$\prod_{\rho \in T/T_0, \neq [1]} \left\{ \Psi_{\rho}(\alpha) \right\}^{m(\rho)} = 1.$$
(4.4)

Thus, taking account of Theorem 3.5, in order to determine the group \mathscr{F} of the modular units, we need to know the character Ψ_{ρ} . Let $\rho = [p_1] \cdots [p_k]$, where p_i (i = 1, ..., k) are prime factors of M. Then, by (2) of Proposition 3.2, we have

$$\Psi_{\rho}(\alpha) = \Phi_{[p_2]\cdots[p_k]}^{(p_1)}(\alpha) \cdot \Phi_{[p_3]\cdots[p_k]}^{(p_2)}(\alpha) \cdot \cdots \cdot \Phi_{[1]}^{(p_k)}(\alpha)$$
(4.5)

(for all $\alpha \in \Gamma_{T_0}$). We shall first determine the character $\Phi_{\rho}^{(p)}$, and next the character Ψ_{ρ} by the relation (4.5).

4.2. Generators of the factor group $\Gamma_{T_0} / \pm \Gamma(\widetilde{M} \mathscr{O})$.

Put e = 2 or 4 according as M is odd or even. Also, put

$$\widetilde{M} = 2^e \cdot 3 \cdot \prod_{p|M, \neq 2,3} p, \tag{4.6}$$

where p runs through all prime factors of M satisfying $p \neq 2, 3$. Then we have the following proposition ([12, Lemma 4.2]).

PROPOSITION 4.1. Let p be a prime factor of M, and ρ a coset in T/T_0 . Then the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of Γ_{T_0} are trivial on the group $\pm \Gamma(\tilde{M}\mathcal{O})$.

Hence, in order to determine the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} , it is sufficient to determine their values for some elements of Γ_{T_0} which generate the factor group $\Gamma_{T_0}/\pm\Gamma(\widetilde{M}\mathscr{O})$.

For each prime factor q of \widetilde{M} and an element s of T_0 , we define the elements α_q , β_q , γ_q and δ_s as follows. Let α_q , β_q and γ_q be elements of Γ_{T_0} of type 1 which satisfy the following congruences:

$$\alpha_q \equiv \begin{pmatrix} 1 & \sqrt{M} \\ 0 & 1 \end{pmatrix} \pmod{q^f \mathscr{O}}, \quad \equiv 1_2 \pmod{q^{-f} \widetilde{M} \mathscr{O}}, \tag{4.7}$$

$$\beta_q \equiv \begin{pmatrix} 1 & 0\\ \sqrt{M} & 1 \end{pmatrix} \pmod{q^f \mathscr{O}}, \quad \equiv 1_2 \pmod{q^{-f} \widetilde{M} \mathscr{O}}, \tag{4.8}$$

$$\gamma_q \equiv \begin{pmatrix} d^{-1} & 0\\ 0 & d \end{pmatrix} \pmod{q^f \mathscr{O}}, \quad \equiv 1_2 \pmod{q^{-f} \widetilde{M} \mathscr{O}}, \tag{4.9}$$

where f is a positive integer such that $q^f \parallel \widetilde{M}$, and d is a positive integer such that d is a primitive root mod q or equal to 5 according as $q \neq 2$ or q = 2. Let δ_s be an element of Γ_{T_0} of type s which satisfies the following congruences for every prime factor q of \widetilde{M} with $q^f \parallel \widetilde{M}$:

$$\delta_{s} \equiv \begin{cases} \begin{pmatrix} s^{-1}\sqrt{s} & 0\\ 0 & \sqrt{s} \end{pmatrix} \pmod{q^{f}\mathscr{O}} & \text{if } (q,s) = 1, \\ \begin{pmatrix} 0 & -\sqrt{s^{*}}\\ s^{*-1}\sqrt{s^{*}} & 0 \end{pmatrix} \pmod{q^{f}\mathscr{O}} & \text{if } (q,s) \neq 1. \end{cases}$$

$$(4.10)$$

Then the set of the elements α_q , β_q , γ_q and δ_s generates the factor group $\Gamma_{T_0}/\pm\Gamma(\tilde{M}\mathscr{O})$, where s runs through a subset of T_0 which generates the group T_0 .

Though the element γ_q depends on the choice of d, we do not indicate the dependence in its notation because as we shall see in the following subsection the values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the element γ_q do not depend on d.

4.3. The values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the elements α_q , β_q and γ_q .

The values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the elements α_q , β_q and γ_q are given in the following propositions ([12, Propositions 4.1, 4.2]). The symbols Δ_p and Δ_{ρ} there are defined as follows. Let p be a prime factor of M, and ρ a coset in T/T_0 . Then $\Delta_p = 1$ or $(-1)^{|T_0|}$ according as $p \neq 2$ or p = 2. If $\rho = [p_1] \cdots [p_k]$ where p_i are prime factors of M, then $\Delta_{\rho} = \Delta_{p_1} \cdots \Delta_{p_k}$.

PROPOSITION 4.2. Let p be a prime factor of M, and ρ a coset in T/T_0 . Then for each prime factor q of \widetilde{M} , we have the following:

$$\begin{split} \Phi_{\rho}^{(p)}(\alpha_{q}) &= \begin{cases} \Delta_{p} \exp\left[-\frac{2\pi i}{8}\left(\sum_{s\in[p]\rho}s-\sum_{r\in\rho}r\right)\right] & \text{if } q=2, \\ \Delta_{p} \exp\left[\frac{2\pi i}{6}\left(\sum_{s\in[p]\rho}s-\sum_{r\in\rho}r\right)\right] & \text{if } q=3, \\ 1 & \text{if } q\neq 2, 3, \end{cases} \\ \Phi_{\rho}^{(p)}(\beta_{q}) &= \begin{cases} \Delta_{p} \exp\left[\frac{2\pi i}{8}\left(\sum_{s\in[p]\rho}s^{*}-\sum_{r\in\rho}r^{*}\right)\right] & \text{if } q=2, \\ \Delta_{p} \exp\left[-\frac{2\pi i}{6}\left(\sum_{s\in[p]\rho}s^{*}-\sum_{r\in\rho}r^{*}\right)\right] & \text{if } q=3, \\ 1 & \text{if } q\neq 2, 3, \end{cases} \\ \Phi_{\rho}^{(p)}(\gamma_{q}) &= \begin{cases} (-1)^{|T_{0}|} & \text{if } q=p, \\ 1 & \text{if } q\neq p. \end{cases} \end{split}$$

PROPOSITION 4.3. Let ρ be a coset in T/T_0 . Then for each prime factor q of \widetilde{M} , we have the following:

$$\begin{split} \Psi_{\rho}(\alpha_{q}) &= \begin{cases} \Delta_{\rho} \exp\left[-\frac{2\pi i}{8}\left(\sum_{s\in\rho}s-\sum_{r\in[1]}r\right)\right] & \text{if } q=2, \\ \Delta_{\rho} \exp\left[\frac{2\pi i}{6}\left(\sum_{s\in\rho}s-\sum_{r\in[1]}r\right)\right] & \text{if } q=3, \\ 1 & \text{if } q\neq 2, 3, \end{cases} \\ \Psi_{\rho}(\beta_{q}) &= \begin{cases} \Delta_{\rho} \exp\left[\frac{2\pi i}{8}\left(\sum_{s\in\rho}s^{*}-\sum_{r\in[1]}r^{*}\right)\right] & \text{if } q=2, \\ \Delta_{\rho} \exp\left[-\frac{2\pi i}{6}\left(\sum_{s\in\rho}s^{*}-\sum_{r\in[1]}r^{*}\right)\right] & \text{if } q=3, \\ 1 & \text{if } q\neq 2, 3 \end{cases} \\ \Psi_{\rho}(\gamma_{q}) &= \begin{cases} -1 & \text{if } T_{0}=1 \text{ and } q \mid \rho, \\ 1 & \text{otherwise.} \end{cases} \end{split}$$

In the expression for $\Psi_{\rho}(\gamma_q)$ in Proposition 4.3 with $T_0 = 1$, the coset ρ is identified with its unique representative. As a consequence of these propositions, we have the following.

PROPOSITION 4.4. Let p be a prime factor of M, and ρ a coset in T/T_0 . (1) The character $\Phi_{\rho}^{(p)}$ takes its values in the group of 24th roots of unity, in the group of 12th roots of unity if $T_0 \neq 1$ or $p \neq 2$, and moreover in the group of 6th roots of unity if M is odd and $T_0 \neq 1$.

(2) The character Ψ_{ρ} takes its values in the group of 24th roots of unity, in the group of 12th roots of unity if M is odd or $T_0 \neq 1$, and moreover in the group of 6th roots of unity if M is odd and $T_0 \neq 1$.

PROOF. (1) In the following we use Proposition 4.2. If $T_0 = 1$, then the element δ_1 (s = 1) belongs to $\Gamma(\tilde{M}\mathscr{O})$, hence $\Phi_{\rho}^{(p)}(\delta_1) = 1$. By the definition of δ_s the element δ_s^2 can be written as a product of elements γ_q modulo $\pm \Gamma(\tilde{M}\mathscr{O})$. Hence, if $T_0 \neq 1$, we have $\Phi_{\rho}^{(p)}(\delta_s^2) = 1$, therefore $\Phi_{\rho}^{(p)}(\delta_s) = \pm 1$. Since $\sum_{s \in [p]\rho} s^* - \sum_{r \in \rho} r^* = \sum_{s \in [p]\rho^*} s - \sum_{r \in \rho^*} r$ with $\rho^* = \rho[M]$, we have $\Phi_{\rho}^{(p)}(\beta_2) = \left\{ \Phi_{\rho^*}^{(p)}(\alpha_2) \right\}^{-1}$. Thus, it is sufficient to consider the value of α_2 . The 24th roots

part of the statement is obvious. Let us assume $p \neq 2$. Since $p^2 \equiv 1 \pmod{8}$, we have $\sum_{s \in [p]\rho} s = \sum_{r \in \rho} p \circ r \equiv \sum_{r \in \rho} pr \pmod{8}$, hence

$$\sum_{s \in [p]\rho} s - \sum_{r \in \rho} r \equiv (p-1) \sum_{r \in \rho} r \pmod{8}.$$
(4.11)

This implies that the term on the left of the congruence (4.11) is even. Next, let us assume p = 2. Let ρ' (respectively ρ'') be the set of all $r \in \rho$ such that r is odd (respectively even). Since $2 \circ r = 2r$ or r/2 according as $r \in \rho'$ or ρ'' , the difference $2 \circ r - r$ is always odd. Hence

$$\sum_{s \in [2]\rho} s - \sum_{r \in \rho} r = \sum_{r \in \rho} (2 \circ r - r) \equiv |T_0| \pmod{2}.$$
(4.12)

This implies that if $T_0 \neq 1$, then the term on the left of the equation (4.12) is even. Thus, $\sum_{s \in [p]\rho} s - \sum_{r \in \rho} r$ is even if $T_0 \neq 1$ or $p \neq 2$, which proves the 12th roots part of the statement. If M is odd and $T_0 \neq 1$, then the equation (4.11) implies that $\sum_{s \in [p]\rho} s - \sum_{r \in \rho} r$ is a multiple of 4, which proves the 6th roots part of the statement. (2) This follows from (1) and the relation (4.5).

COROLLARY 4.5. Let p be a prime factor of M, and ρ a coset in T/T_0 . (1) The unit group \mathscr{F} of $\mathfrak{F}(T_0)$ contains the 24th power of $f_{\rho}^{(p)}$, the 12th power of $f_{\rho}^{(p)}$ if $T_0 \neq 1$ or $p \neq 2$, and moreover the 6th power of $f_{\rho}^{(p)}$ if M is odd and $T_0 \neq 1$. (2) The unit group \mathscr{F} of $\mathfrak{F}(T_0)$ contains the 24th power of h_{ρ} , the 12th power of h_{ρ} if M is odd or $T_0 \neq 1$, and moreover the 6th power of h_{ρ} if M is odd and $T_0 \neq 1$.

5. Calculation of the value of $\Phi_{\rho}^{(p)}$ at δ_s .

In this section we calculate the value of $\Phi_{\rho}^{(p)}$ at δ_s . For our later use, it is sufficient to consider the case where $p \neq 2$ and (p, s) = 1. Since $\Phi_{\rho}^{(p)}(\delta_1) = 1$, we can assume that $s \neq 1$, hence $T_0 \neq 1$. Therefore, in the Subsections 5.1–5.4, we assume that

$$p \neq 2, \ (p,s) = 1, \ s \neq 1.$$
 (5.1)

5.1. Decomposition into two parts.

By the definition (3.7) of $f_{\rho}^{(p)}(\tau)$ we have

$$f_{\rho}^{(p)}(\delta_s(\tau)) = \prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{I_p}^{(r)}} g_u(\delta_s(\tau)) \right\},\tag{5.2}$$

where $I_p = \sqrt{p}\mathcal{O}$. Since $g_u(\delta_s(\tau)) = \psi_r(\delta_s)g_{u\delta_s}(\tau)$ by Proposition 2.1, we have the decomposition into two parts:

$$f_{\rho}^{(p)}(\delta_{s}(\tau)) = \prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} \psi_{r}(\delta_{s}) \right\} \cdot \prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} g_{u\delta_{s}}(\tau) \right\}.$$
 (5.3)

5.2. The ψ part.

LEMMA 5.1. $\psi_r(\delta_s) = \begin{cases} (-1)^{\frac{1}{2}\{(r^*,s)-1\}} & \text{if } (s,2) = 1, \\ -i \cdot (-1)^{\frac{1}{2}\{(r,s^*)-1\}} & \text{if } (s,2) \neq 1. \end{cases}$

PROOF. Put

$$\delta_s = \begin{pmatrix} a\sqrt{s} & b\sqrt{s^*} \\ c\sqrt{s^*} & d\sqrt{s} \end{pmatrix}.$$
 (5.4)

Assume (s, 6) = 1. In the definition (4.10) of δ_s , putting q = 2 and 3, we have $as \equiv d \equiv 1 \pmod{2^e \cdot 3}$ and $b \equiv c \equiv 0 \pmod{2^e \cdot 3}$. Hence, $d(r^*, s) \equiv (r^*, s) \pmod{4}$ and $b(r, s^*) \equiv c(r^*, s^*) \equiv 0 \pmod{12}$. Combining these results with $\psi_r(\delta_s) = \psi\left(\delta_s^{(r)}\right)$ and the equation (2.4), we have $\psi_r(\delta_s) = (-1)^{(1/2)\{(r^*,s)-1\}}$. (Note that $d(r^*, s)$ is odd.) The other cases (s, 6) = 2, 3, 6 can be treated similarly.

In the decomposition (5.3), the ψ part is given as follows.

LEMMA 5.2.

$$\prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{l_{\rho}}^{(r)}} \psi_{r}(\delta_{s}) \right\} = \begin{cases} \exp\left[\frac{2\pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2}\sum_{r \in \rho} \{(r^{*},s)-1\}\right] & \text{if } (s,2) = 1, \\ \exp\left[\frac{2\pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2}\sum_{r \in \rho} (r,s^{*})\right] & \text{if } (s,2) \neq 1. \end{cases}$$

PROOF. By the facts that $\psi_r(\delta_s)$ does not depend on u and that $\left|\mathscr{R}_{I_p}^{(r)}\right| = (1/2)(p-1)$, the case (s,2) = 1 follows immediately from Lemma 5.1. Next, we have $\prod_{r \in \rho} \left\{ \prod_{u \in \mathscr{R}_{I_p}^{(r)}} (-i) \right\} = \exp[2\pi i/2 \cdot (1/2)(p-1) \cdot (1/2)|T_0|]$. (Since $T_0 \neq 1$, the number $|\rho| = |T_0|$ is even.) From this and Lemma 5.1, the case $(s,2) \neq 1$ follows immediately.

5.3. The $g_{u\delta_s}$ part with $r \in \rho^{(1)}$.

Let us denote by $\rho^{(1)}$ (respectively $\rho^{(2)}$) the set of all elements $r \in \rho$ with $p \nmid r$ (respectively $p \mid r$). Here we assume $r \in \rho^{(1)}$. In this case the element u of $\mathscr{R}_{I_p}^{(r)}$ is of the form

$$u = u(0, y; r) = \left(0, \frac{y}{p}\sqrt{r^*}\right),$$
 (5.5)

where y is an integer with $1 \le y \le (p-1)/2$.

Let δ_s be written as in the equation (5.4). Then we have

$$u(0, y; r)\delta_s = \left(\frac{cy(r^*, s^*)}{p}\sqrt{r \circ s}, \frac{dy(r^*, s)}{p}\sqrt{(r \circ s)^*}\right).$$
 (5.6)

Since (p, s) = 1 and $p \nmid r$, we have $p \mid (r^*, s^*)$ and $r \circ s \in \rho^{(1)}$. Also by the definition of δ_s and the assumption (p, s) = 1, we have $d \equiv 1 \pmod{p}$.

For each y $(1 \le y \le (p-1)/2)$, we denote by k(y) the unique integer satisfying $1 \le k(y) \le (p-1)/2$ and

$$dy(r^*, s) \equiv \pm k(y) \pmod{p}.$$
(5.7)

We call y to be of *plus* (respectively *minus*) type if the plus (respectively minus) sign appears in the congruence (5.7). Note that if $y_1 \neq y_2$, then $k(y_1) \neq k(y_2)$.

Let l be an integer satisfying

$$dy(r^*, s) = \pm k(y) + pl.$$
 (5.8)

Then we have

$$u(0, y; r)\delta_s = \pm u(0, k(y); r \circ s) + v,$$
(5.9)

where

$$v = \left(\frac{cy(r^*, s^*)}{p}\sqrt{r \circ s}, l\sqrt{(r \circ s)^*}\right).$$
(5.10)

Note that $v \in Z^{(r \circ s)}$. By Proposition 2.1 we have

$$g_{u(0,y;r)\delta_{s}}(\tau) = \varepsilon(\pm u(0,k(y);r\circ s),v) \cdot g_{\pm u(0,k(y);r\circ s)}(\tau) \\ = \begin{cases} \varepsilon(u(0,k(y);r\circ s),v) \cdot g_{u(0,k(y);r\circ s)}(\tau) & \text{if } y \text{ is of plus type,} \\ (-1) \cdot \varepsilon(-u(0,k(y);r\circ s),v) \cdot g_{u(0,k(y);r\circ s)}(\tau) & \text{if } y \text{ is of minus type.} \end{cases}$$
(5.11)

In the equation (5.11) with y of minus type, we used the equalities (Proposition 2.1)

$$g_{u(0,k(y);r\circ s)}(\tau) = g_{u(0,k(y);r\circ s)}((-1_2)(\tau)) = \psi_{r\circ s}(-1_2) \cdot g_{-u(0,k(y);r\circ s)}(\tau)$$
(5.12)

and the fact $\psi_{r \circ s}(-1_2) = \psi(-1_2) = -1$.

LEMMA 5.3. With the notation above, we have

$$\varepsilon(\pm u(0,k(y);r\circ s),v) = \exp\left[\frac{2\pi i}{2}\left\{y+k(y)\right\}\right].$$

PROOF. Suppose that y is of plus type. By the definition, we have $\varepsilon(u(0, k(y); r \circ s), v) = \exp[2\pi i/2 \cdot \xi]$, where

$$\xi = \frac{cy(r^*, s^*)}{p} \cdot l + \frac{cy(r^*, s^*)}{p} + l - \frac{k(y)}{p} \cdot \frac{cy(r^*, s^*)}{p}.$$

If we put q = p in the definition (4.10) of δ_s , we have $c \equiv 0 \pmod{p}$. Since $(r^*, s^*)/p \in \mathbb{Z}$, we have $\xi \in \mathbb{Z}$. First, assume (s, 2) = 1. If we put q = 2 in the definition of δ_s , we have $c \equiv 0 \pmod{2}$ and $d \equiv 1 \pmod{2}$. Thus, $\xi \equiv l \pmod{2}$. Since p and $d(r^*, s)$ are odd, the equation (5.8) implies $l \equiv y + k(y) \pmod{2}$. This proves the case. Next, assume $(s, 2) \neq 1$. If we put q = 2 in the definition of δ_s , we have $c \equiv 1 \pmod{2}$ and $d \equiv 0 \pmod{2}$. Since $(r^*, s^*)/p$ is an odd integer, we have $\xi \equiv yl + y + l - k(y) \cdot y \pmod{2}$. Since p is odd and d is even, the equation (5.8) implies $l \equiv k(y) \pmod{2}$. Thus we have $\xi \equiv y + k(y) \pmod{2}$. This completes the proof of the case where y is of plus type. In the proof above, if we exchange k(y) by -k(y), we obtain $\xi \equiv y - k(y) \pmod{2}$. Since $y - k(y) \equiv y + k(y) \pmod{2}$, we have the proof of the case where y is of minus type.

Let us denote by $\sharp\{y:-\}$ the number of y which is of minus type.

LEMMA 5.4. We have

$$(-1)^{\sharp\{y:-\}} = \left(\frac{(r^*,s)}{p}\right),$$

where the symbol on the right term denotes the Legendre symbol.

PROOF. As was noticed above, we have $d \equiv 1 \pmod{p}$. Hence, by the equation (5.7), $y(r^*, s) \equiv \pm k(y) \pmod{p}$. This implies $\prod_{y=1}^{(p-1)/2} \{y(r^*, s)\} \equiv (-1)^{\sharp\{y:-\}} \prod_{y=1}^{(p-1)/2} k(y) \pmod{p}$. Since $\prod_{y=1}^{(p-1)/2} y \equiv \prod_{y=1}^{(p-1)/2} k(y) \pmod{p}$, we have

 $(r^*,s)^{(p-1)/2} \equiv (-1)^{\sharp\{y:-\}} \pmod{p}$. On the other hand, it is well known that $(r^*,s)^{(p-1)/2} \equiv \left(\frac{(r^*,s)}{p}\right) \pmod{p}$. Therefore, $(-1)^{\sharp\{y:-\}} \equiv \left(\frac{(r^*,s)}{p}\right) \pmod{p}$. Since $p \neq 2$, this congruence implies the equality.

In the decomposition (5.3), the $g_{u\delta_s}$ part with $r \in \rho^{(1)}$ is given as follows.

LEMMA 5.5.

$$\prod_{r\in\rho^{(1)}}\left\{\prod_{u\in\mathscr{R}_{I_p}^{(r)}}g_{u\delta_s}(\tau)\right\} = \prod_{r\in\rho^{(1)}}\left(\frac{(r^*,s)}{p}\right)\cdot\prod_{r\in\rho^{(1)}}\left\{\prod_{u\in\mathscr{R}_{I_p}^{(r)}}g_u(\tau)\right\}.$$

PROOF. Let r be an element of $\rho^{(1)}$. By the equation (5.11) and Lemmas 5.3–5.4, we have

$$\begin{split} \prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} g_{u\delta_{s}}(\tau) &= \prod_{y:+} g_{u(0,y;r)\delta_{s}}(\tau) \cdot \prod_{y:-} g_{u(0,y;r)\delta_{s}}(\tau) \\ &= \prod_{y:+} \exp\left[\frac{2\pi i}{2} \left\{y + k(y)\right\}\right] \cdot g_{u(0,k(y);ros)}(\tau) \\ &\times \prod_{y:-} (-1) \exp\left[\frac{2\pi i}{2} \left\{y + k(y)\right\}\right] \cdot g_{u(0,k(y);ros)}(\tau) \\ &= (-1)^{\sharp\{y:-\}} \cdot \exp\left[\frac{2\pi i}{2} \left\{\sum_{y} y + \sum_{y} k(y)\right\}\right] \cdot \prod_{y} g_{u(0,k(y);ros)}(\tau) \\ &= \left(\frac{(r^{*},s)}{p}\right) \cdot \prod_{u \in \mathscr{R}_{I_{p}}^{(ros)}} g_{u}(\tau), \end{split}$$

where y :+ (respectively y :-) means that y is of plus (respectively minus) type. We have used the equality $\sum_{y} y = \sum_{y} k(y)$. Since (p, s) = 1 and $p \nmid r$, we have $p \nmid r \circ s$, namely $r \circ s \in \rho^{(1)}$. This implies that if r runs through all the elements of $\rho^{(1)}$, then so does $r \circ s$. Hence the equality of the lemma follows.

LEMMA 5.6. The number $|\rho^{(1)}|$ of the elements of $\rho^{(1)}$ is even, and we have

$$\prod_{r \in \rho^{(1)}} \left(\frac{(r^*, s)}{p} \right) = \left(\frac{s}{p} \right)^{\frac{1}{2} \left| \rho^{(1)} \right|}.$$

PROOF. Since $s \neq 1$, if $r \in \rho^{(1)}$, then $r \circ s \in \rho^{(1)}$ and $r \circ s \neq r$. This implies that the set $\rho^{(1)}$ is a disjoint union of several pairs $\{r, r \circ s\}$, hence $|\rho^{(1)}|$ is even, and we can express the set $\rho^{(1)}$ as a disjoint union of two subsets $\rho_1^{(1)}$ and $\rho_2^{(1)}$ such that $r \in \rho_1^{(1)}$ if and only if $r \circ s \in \rho_2^{(1)}$. Now it is easy to see that for any elements $t_1, t_2 \in T$ the following equality holds:

$$(t_1, t_2)(t_1 \circ t_2, t_2) = t_2. \tag{5.13}$$

If we put $t_1 = r^*$ and $t_2 = s$ in the equation (5.13) and notice that $r^* \circ s = (r \circ s)^*$, we have $(r^*, s)((r \circ s)^*, s) = s$. Using this relation, we have

$$\prod_{r \in \rho^{(1)}} \left(\frac{(r^*, s)}{p} \right) = \prod_{r \in \rho_1^{(1)}} \left\{ \left(\frac{(r^*, s)}{p} \right) \left(\frac{((r \circ s)^*, s)}{p} \right) \right\} = \prod_{r \in \rho_1^{(1)}} \left(\frac{s}{p} \right) = \left(\frac{s}{p} \right)^{\left| \rho_1^{(1)} \right|}.$$

Since $\left|\rho_1^{(1)}\right| = (1/2)\left|\rho^{(1)}\right|$, the proof is completed.

5.4. The $g_{u\delta_s}$ part with $r \in ho^{(2)}$.

Here we assume $r \in \rho^{(2)}$, namely $p \mid r$. In this case the element u of $\mathscr{R}_{I_p}^{(r)}$ is of the form

$$u = u(x,0;r) = \left(\frac{x}{p}\sqrt{r},0\right),\tag{5.14}$$

where x is an integer with $1 \le x \le (p-1)/2$.

As before, let δ_s be written as in the equation (5.4). Then we have

$$u(x,0;r)\delta_s = \left(\frac{ax(r,s)}{p}\sqrt{r \circ s}, \frac{bx(r,s^*)}{p}\sqrt{(r \circ s)^*}\right).$$
(5.15)

Since (p, s) = 1 and $p \mid r$, we have $p \mid (r, s^*)$ and $r \circ s \in \rho^{(2)}$. By the definition of δ_s and the assumption (p, s) = 1, we have $a \equiv s^{-1} \pmod{p}$.

For each x $(1 \le x \le (p-1)/2)$, we denote by k(x) the unique integer satisfying $1 \le k(x) \le (p-1)/2$ and

$$ax(r,s) \equiv \pm k(x) \pmod{p}.$$
(5.16)

We call x to be of *plus* (respectively *minus*) type if the plus (respectively minus) sign appears in the congruence (5.16). Note that if $x_1 \neq x_2$, then $k(x_1) \neq k(x_2)$.

Let l be an integer satisfying

$$ax(r,s) = \pm k(x) + pl.$$
 (5.17)

Then we have

$$u(x,0;r)\delta_s = \pm u(k(x),0;r \circ s) + v, \tag{5.18}$$

where

$$v = \left(l\sqrt{r \circ s}, \frac{bx(r, s^*)}{p}\sqrt{(r \circ s)^*}\right).$$
(5.19)

As before, we have $v \in Z^{(r \circ s)}$, and by Proposition 2.1

$$g_{u(x,0;r)\delta_s}(\tau) = \begin{cases} \varepsilon(u(k(x),0;r\circ s),v) \cdot g_{u(k(x),0;r\circ s)}(\tau) & \text{if } x \text{ is of } + \text{type,} \\ (-1) \cdot \varepsilon(-u(k(x),0;r\circ s),v) \cdot g_{u(k(x),0;r\circ s)}(\tau) & \text{if } x \text{ is of } - \text{type.} \end{cases}$$
(5.20)

LEMMA 5.7. With the notation above, we have

$$\varepsilon(\pm u(k(x), 0; r \circ s), v) = \exp\left[\frac{2\pi i}{2} \left\{x + k(x)\right\}\right].$$

PROOF. Since the proof is similar to that of Lemma 5.3, we only sketch it. Suppose that x is of plus type. We have $\varepsilon(u(k(x), 0; r \circ s), v) = \exp[2\pi i/2 \cdot \xi]$ where

$$\xi = l \cdot \frac{bx(r,s^*)}{p} + l + \frac{bx(r,s^*)}{p} + \frac{k_r^s(x)}{p} \cdot \frac{bx(r,s^*)}{p}.$$

Putting q = p in the definition of δ_s , we have $b \equiv 0 \pmod{p}$. Since $(r, s^*)/p \in \mathbb{Z}$, we have $\xi \in \mathbb{Z}$. First, assume (s, 2) = 1. By the definition of δ_s , we have $b \equiv 0 \pmod{2}$ and $a \equiv 1 \pmod{2}$. Hence, $\xi \equiv l \pmod{2}$. Since p and a(r, s) are odd, the equation (5.17) implies $l \equiv x + k(x) \pmod{2}$. This proves the case. Next, assume $(s, 2) \neq 1$. By the definition of δ_s , we have $b \equiv 1 \pmod{2}$ and $a \equiv 0 \pmod{2}$. Since $(r, s^*)/p$ is an odd integer, we have $\xi \equiv lx + l + x + k(x) \pmod{2}$. Since p is odd and a is even, we have $l \equiv k(x) \pmod{2}$ by the equation (5.17). This completes the case of plus type. Exchanging k(x) by -k(x), we have the proof for minus type x.

Let us denote by $\sharp\{x:-\}$ the number of x which is of minus type.

LEMMA 5.8. We have

$$(-1)^{\sharp\{x:-\}} = \left(\frac{s(r,s)}{p}\right),$$

where the symbol on the right term denotes the Legendre symbol.

PROOF. Since the proof is similar to that of Lemma 5.4, we only sketch it. Since $a \equiv s^{-1} \pmod{p}$, we have $\{s^{-1}(r,s)\}^{(p-1)/2} \equiv (-1)^{\sharp\{x:-\}} \pmod{p}$ the same as Lemma 5.4. Since $(s^{-1})^{(p-1)/2} \equiv s^{(p-1)/2} \pmod{p}$, we have the result. \Box

In the decomposition (5.3), the $g_{u\delta_s}$ part with $r \in \rho^{(2)}$ is given as follows.

LEMMA 5.9.

$$\prod_{r\in\rho^{(2)}}\left\{\prod_{u\in\mathscr{R}_{I_p}^{(r)}}g_{u\delta_s}(\tau)\right\} = \prod_{r\in\rho^{(2)}}\left(\frac{s(r,s)}{p}\right)\cdot\prod_{r\in\rho^{(2)}}\left\{\prod_{u\in\mathscr{R}_{I_p}^{(r)}}g_u(\tau)\right\}.$$

PROOF. Let r be an element of $\rho^{(2)}$. Then, the same as the proof of Lemma 5.5, we have

$$\prod_{u \in \mathscr{R}_{I_p}^{(r)}} g_{u\delta_s}(\tau) = \left(\frac{s(r,s)}{p}\right) \cdot \prod_{u \in \mathscr{R}_{I_p}^{(r\circ s)}} g_u(\tau)$$

using the equation (5.20) and Lemmas 5.7–5.8. If r runs through $\rho^{(2)}$, so does $r \circ s$. Thus we have the proof.

LEMMA 5.10. The number $|\rho^{(2)}|$ of the elements of $\rho^{(2)}$ is even, and we have

$$\prod_{r \in \rho^{(2)}} \left(\frac{s(r,s)}{p} \right) = \left(\frac{s}{p} \right)^{\frac{1}{2}|\rho^{(2)}|}$$

PROOF. Similarly to the proof of Lemma 5.6, we can show that the set $\rho^{(2)}$ is a disjoint union of two subsets $\rho_1^{(2)}$ and $\rho_2^{(2)}$ such that $r \in \rho_1^{(2)}$ if and only if $r \circ s \in \rho_2^{(2)}$, whence $|\rho^{(2)}|$ is even. Setting $t_1 = r$ and $t_2 = s$ in the equation (5.13), we have $(r, s)(r \circ s, s) = s$. Thus, we have

$$\prod_{r\in\rho^{(2)}} \left(\frac{s(r,s)}{p}\right) = \prod_{r\in\rho^{(2)}_1} \left\{ \left(\frac{s(r,s)}{p}\right) \left(\frac{s(r\circ s,s)}{p}\right) \right\} = \prod_{r\in\rho^{(2)}_1} \left(\frac{s^3}{p}\right) = \left(\frac{s}{p}\right)^{\left|\rho^{(2)}_1\right|}.$$

Since $\left|\rho_1^{(2)}\right| = (1/2)|\rho^{(2)}|$, the proof is completed.

5.5. The value of $\Phi_{\rho}^{(p)}$ at the element δ_s . The value $\Phi_{\rho}^{(p)}(\delta_s)$ with $p \neq 2$ and (p, s) = 1 is given as follows. Since $\Phi_{\rho}^{(p)}(\delta_s) = 1$ if s = 1, we consider the case $s \neq 1$, whence $T_0 \neq 1$ and $|T_0|$ is even.

PROPOSITION 5.11. Let p be a prime factor of M, and ρ a coset in T/T_0 . Let s be an element of T_0 . Assume that $T_0 \neq 1$ and $s \neq 1$. Also assume that $p \neq 2$ and (p,s) = 1. Then we have

$$\Phi_{\rho}^{(p)}(\delta_{s}) = \begin{cases} \exp\left[\frac{2\pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2}\sum_{r \in \rho} \{(r^{*}, s) - 1\}\right] \cdot \left(\frac{s}{p}\right)^{\frac{1}{2}|T_{0}|} & \text{if } (s, 2) = 1, \\ \\ \exp\left[\frac{2\pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2}\sum_{r \in \rho} (r, s^{*})\right] \cdot \left(\frac{s}{p}\right)^{\frac{1}{2}|T_{0}|} & \text{if } (s, 2) \neq 1. \end{cases}$$

This follows immediately from Lemmas 5.2, 5.5, 5.6, 5.9, 5.10 and PROOF. the following equalities:

$$\left(\frac{s}{p}\right)^{\frac{1}{2}|\rho^{(1)}|} \cdot \left(\frac{s}{p}\right)^{\frac{1}{2}|\rho^{(2)}|} = \left(\frac{s}{p}\right)^{\frac{1}{2}\left(|\rho^{(1)}|+|\rho^{(2)}|\right)} = \left(\frac{s}{p}\right)^{\frac{1}{2}|\rho|} = \left(\frac{s}{p}\right)^{\frac{1}{2}|T_0|}.$$

Determination of the unit group \mathscr{F} with $T_0 = \langle M_0 \rangle$. 6.

The values $\Phi_{\rho}^{(p)}(\delta_q)$ and $\Psi_{\rho}(\delta_q)$ with $T_0 = \langle M_0 \rangle$. 6.1.

For any divisor N of M, we denote by $\langle N \rangle$ the subgroup of T consisting of all factors r of N. Henceforth, we take a divisor M_0 of M, and consider the case $T_0 = \langle M_0 \rangle$. Put $M_1 = M/M_0$. Then, for each coset $\rho \in T/T_0$, there exists a unique factor r of M_1 such that r is contained in ρ . We denote this integer r by r_{ρ} . The mapping $\rho \mapsto r_{\rho}$ gives an isomorphism from T/T_0 to $\langle M_1 \rangle$. Since the group T_0 is generated by the prime factors of M_0 , in order to determine the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} , it is sufficient to determine the values at the elements δ_q for all prime factors q of M_0 (cf. Propositions 4.2, 4.3).

PROPOSITION 6.1. Let $T_0 = \langle M_0 \rangle$, p a prime factor of M, and ρ a coset in T/T_0 . Assume that p is odd. Then for each odd prime factor q of $M_0 \ (\neq 1)$, we have

Cuspidal class number formula

$$\Phi_{\rho}^{(p)}(\delta_q) = \begin{cases} 1 & \text{if } p = q, \\ \left(\frac{p}{q}\right)^{\frac{1}{2}|T_0|} & \text{if } p \neq q, \end{cases}$$

where the symbol $\left(\frac{p}{a}\right)$ denotes the Legendre symbol.

PROOF. First, suppose that p = q. Since this condition implies $p \in T_0$, the function $f_{\rho}^{(p)}(\tau)$ is a constant (Proposition 3.2). Hence, we have $\Phi_{\rho}^{(p)}(\delta_q) = 1$. Next, suppose that $p \neq q$. We prove first $\sum_{r \in \rho} (r^*, q) = (q+1) \cdot (1/2)|T_0|$. Put $\rho^* = \{r^* \mid r \in \rho\} (= \rho \circ [M])$. Since $q \in T_0$, we have $r^* \circ q \in \rho^*$ for all $r \in \rho$. Since either r^* or $r^* \circ q$ is prime to q and the other a multiple of q, half of the elements of ρ^* are prime to q and the others are multiples of q. From this the equality follows immediately. By the use of this equality, we have

$$\begin{aligned} \frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho} \{(r^*, s) - 1\} &= \frac{1}{2}(p-1) \cdot \frac{1}{2} \left\{ (q+1) \cdot \frac{1}{2} |T_0| - |T_0| \right\} \\ &= \frac{1}{4}(p-1)(q-1) \cdot \frac{1}{2} |T_0|. \end{aligned}$$

Thus, by Proposition 5.11 and the law of quadratic reciprocity, we have

$$\Phi_{\rho}^{(p)}(\delta_q) = \left\{ (-1)^{\frac{1}{4}(p-1)(q-1)} \cdot \left(\frac{q}{p}\right) \right\}^{\frac{1}{2}|T_0|} = \left(\frac{p}{q}\right)^{\frac{1}{2}|T_0|}.$$

PROPOSITION 6.2. Let $T_0 = \langle M_0 \rangle$, and ρ a coset in T/T_0 . Assume that r_{ρ} is odd. Then for each odd prime factor q of $M_0 \ (\neq 1)$, we have

$$\Psi_{\rho}(\delta_q) = \left(\frac{r_{\rho}}{q}\right)^{\frac{1}{2}|T_0|},$$

where the symbol $\left(\frac{r_p}{a}\right)$ denotes the Legendre symbol.

PROOF. First, suppose that $\rho = T_0$. Then $r_{\rho} = 1$, hence the right term of the equality is 1. On the other hand, we have $h_{\rho}(\tau) = 1$, whence $\Psi_{\rho}(\delta_q) = 1$. Thus the equality holds. Next, suppose that $\rho \neq T_0$. Let $r_{\rho} = p_1 \cdots p_l$ be the prime factorization. Then $p_i \neq q$ for all *i* because r_{ρ} is a factor of M_1 . Also the primes p_i are odd because r_{ρ} is odd by the assumption. Thus, by the previous proposition and the equation (4.5), we have

$$\Psi_{\rho}(\delta_{q}) = \Phi_{[p_{2}]\cdots[p_{l}]}^{(p_{1})}(\delta_{q}) \cdot \Phi_{[p_{3}]\cdots[p_{l}]}^{(p_{2})}(\delta_{q}) \cdots \Phi_{[1]}^{(p_{l})}(\delta_{q})$$
$$= \left(\frac{p_{1}}{q}\right)^{\frac{1}{2}|T_{0}|} \cdot \left(\frac{p_{2}}{q}\right)^{\frac{1}{2}|T_{0}|} \cdots \left(\frac{p_{l}}{q}\right)^{\frac{1}{2}|T_{0}|} = \left(\frac{r_{\rho}}{q}\right)^{\frac{1}{2}|T_{0}|}.$$

6.2. Determination of the unit group \mathscr{F} .

Now we determine the condition that a product of the functions h_{ρ} is an automorphic function with respect to the group Γ_{T_0} . For simplicity, we denote by $S(M_0)$ the sum of all factors of M_0 . Then $S(M_0) = \prod_{q|M_0} (1+q)$, where q runs through all prime factors of M_0 .

THEOREM 6.3. Let $T_0 = \langle M_0 \rangle$. Assume that M is odd, $M_0 \neq 1$, and $M_1 \neq 1$. Let m(r) be rational integers parametrized by all factors $r \neq 1$ of M_1 . Then the function

$$g(au) = \prod_{
ho \in T/T_0,
eq [1]} h_
ho(au)^{m(r_
ho)}$$

belongs to the group \mathscr{F} of all modular units in the function field $\mathfrak{F}(T_0)$ if and only if the integers m(r) satisfy the following conditions (1), (2) and (3): (1) $S(M_0) \cdot \sum_{r|M_1,\neq 1} \{(r-1) \cdot m(r)\} \equiv 0 \pmod{24}$, (2) if $3 \mid M_1$, then $S(M_0) \cdot \sum_{r|M_1,(r,3)=1} \{r \cdot m(3r)\} \equiv 0 \pmod{3}$, (3) if M_0 is a prime integer q and there exists a prime factor p of M_1 satisfying $\left(\frac{p}{q}\right) = -1$, then $\prod_{r|M_1,\neq 1} \left(\frac{r}{q}\right)^{m(r)} = 1$.

PROOF. The condition that the function $g(\tau)$ belongs to \mathscr{F} is equivalent to that the equation (4.4) holds in all the cases where $\alpha = \alpha_q$, β_q , γ_q with q prime factors of \widetilde{M} , and δ_q with q prime factors of M_0 . Since $\Psi_{\rho}(\alpha_q) = \Psi_{\rho}(\beta_q) = 1$ for $q \neq 2, 3$, and $\Psi_{\rho}(\gamma_q) = 1$ for all q by Proposition 4.3, it is sufficient to consider the cases $\alpha = \alpha_2$, α_3 , β_2 , β_3 , and δ_q $(q \mid M_0)$. Let $\alpha = \alpha_2$. Since $\sum_{s \in \rho} s = \sum_{r \mid M_0} (r \cdot r_{\rho}) = r_{\rho} \cdot S(M_0)$ for any coset ρ , we have by the proposition cited above

$$\prod_{\rho \in T/T_0, \neq [1]} \Psi_{\rho}(\alpha_2)^{m(r_{\rho})} = \exp\left[-\frac{2\pi i}{8} \cdot S(M_0) \cdot \sum_{\rho \in T/T_0, \neq [1]} \{(r_{\rho} - 1) \cdot m(r_{\rho})\}\right],$$

whence the equation (4.4) with $\alpha = \alpha_2$ is equivalent to

$$S(M_0) \cdot \sum_{r \mid M_1, \neq 1} \{ (r-1) \cdot m(r) \} \equiv 0 \pmod{8}.$$
 (6.1)

Let $\alpha = \beta_2$. Similarly to the case above, since $r_{\rho^*} = M_1/r_{\rho}$, we have the congruence

$$S(M_0) \cdot \sum_{r \mid M_1, \neq 1} \left\{ \left(\frac{M_1}{r} - M_1 \right) \cdot m(r) \right\} \equiv 0 \pmod{8}.$$
 (6.2)

Since M is odd, we have $r^2 \equiv 1 \pmod{8}$. Hence, $M_1/r - M_1 \equiv r^2 \cdot M_1/r - M_1 \equiv M_1 \cdot (r-1) \pmod{8}$. Since $(M_1, 8) = 1$, the congruence (6.2) is equivalent to (6.1). Similarly, the equation (4.4) with $\alpha = \alpha_3$ gives the congruence

$$S(M_0) \cdot \sum_{r \mid M_1, \neq 1} \{ (r-1) \cdot m(r) \} \equiv 0 \pmod{3}, \tag{6.3}$$

and the one with $\alpha = \beta_3$ gives

$$S(M_0) \cdot \sum_{r \mid M_1, \neq 1} \left\{ \left(\frac{M_1}{r} - M_1 \right) \cdot m(r) \right\} \equiv 0 \pmod{3}.$$
 (6.4)

The combination of the two congruences (6.1) and (6.3) coincides with the condition (1) of the theorem. Assume $3 \nmid M_1$. Then $r^2 \equiv 1 \pmod{3}$ for $r \mid M_1$, whence the congruence (6.4) is equivalent to the congruence (6.3), and contained in the condition (1). Next, assume $3 \mid M_1$. Then the summation in the congruence (6.4) can be replaced by $\sum \{M_1/r \cdot m(r)\}$ where r runs through all factors of M_1 with $3 \mid r$. Put $r = 3r_1$ and $M_3 = M_1/3$. Then $\sum \{M_1/r \cdot m(r)\} \equiv \sum \{M_3/r_1 \cdot m(3r_1)\} \pmod{3}$, where r_1 runs through all factors of M_1 with $(r_1, 3) = 1$. Since $r_1^2 \equiv 1 \pmod{3}$, we have $M_3/r_1 \equiv r_1^2 \cdot M_3/r_1 \equiv M_3 \cdot r_1 \pmod{3}$. Since $(M_3, 3) = 1$, this implies that the congruence (6.4) is equivalent to the condition (2) of the theorem. Let $\alpha = \delta_q$. Assume that M_0 is composite. Then $(1/2)|T_0|$ is even, hence $\Psi_{\rho}(\delta_q) = 1$ for all q by Proposition 6.2. Next, assume that M_0 is a prime integer q, and that $(\frac{p}{q}) = 1$ for all prime factors p of M_1 . Then again, $\Psi_{\rho}(\delta_q) = 1$ for all q by Proposition 6.2. Thus, in the result, we have the condition (3) of the theorem. \Box

By Theorems 3.5 and 6.3, we have the characterization of the unit group \mathscr{F} .

THEOREM 6.4. Let $T_0 = \langle M_0 \rangle$. Assume that M is odd, $M_0 \neq 1$, and $M_1 \neq 1$. Then the group \mathscr{F} of all modular units in the function field $\mathfrak{F}(T_0)$ consists of all functions $g(\tau)$ which have the form $g(\tau) = c \prod_{\rho \in T/T_0, \neq [1]} h_{\rho}(\tau)^{m(r_{\rho})}$, where c is a nonzero rational number, and m(r) are rational integers parametrized by all factors $r \neq 1$ of M_1 such that the conditions (1), (2) and (3) of Theorem 6.3 are satisfied.

REMARK 6.5. If $M_1 = 1$, then the number of the cusps of the curve X_{T_0} is one. Therefore the unit group \mathscr{F} consists of all nonzero rational numbers.

7. Calculation of the cuspidal class number with $T_0 = \langle M_0 \rangle$.

In this section we calculate the cuspidal class number of the curve X_{T_0} with $T_0 = \langle M_0 \rangle$. First in Section 7.1 we reduce the problem to one of purely algebraic nature without the assumption $T_0 = \langle M_0 \rangle$. After Section 7.2 we assume that $T_0 = \langle M_0 \rangle$. Because of the condition (3) of Theorem 6.3, we shall divide the problem into two cases.

7.1. Reduction to an algebraic problem with T_0 general.

In this Section 7.1 we make no assumptions on the group T_0 except for $T_0 \neq T$. Let R, R_0, \mathcal{D} , and \mathcal{C} be the same as in Section 3.2. Let $\varphi : \mathcal{D} \cong R$ be the isomorphism (3.4), and θ the element of R_Q defined by the equation (3.11).

We denote by $I(T_0)$ the subset of R_0 consisting of all elements $\alpha = \sum m(\rho) \cdot (\rho - 1)$ $(\rho \in T/T_0, \neq [1], m(\rho) \in \mathbb{Z})$ such that the function $g_{\alpha}(\tau) = \prod h_{\rho}(\tau)^{m(\rho)}$ $(\rho \in T/T_0, \neq [1])$ belongs to the group \mathscr{F} of all modular units in the function field $\mathfrak{F}(T_0)$. Then we have the following proposition.

PROPOSITION 7.1. For any $T_0 \neq T$, we have

$$\varphi(\operatorname{div}(\mathscr{F})) = I(T_0)\theta.$$

PROOF. This follows immediately from (2) of Proposition 3.3 and Theorem 3.5 $\hfill \Box$

By this proposition we have

$$\mathscr{C} \cong R_0 / I(T_0)\theta. \tag{7.1}$$

Hence the cuspidal class number h of the curve X_{T_0} is given by

$$h = [R_0 : I(T_0)\theta].$$
(7.2)

Let A and B be two lattices of R_{Q} , and C a lattice contained in $A \cap B$. Then the quotient [A:C]/[B:C] does not depend on the choice of C. We denote this number by [A:B]. It satisfies the usual multiplicative property, namely [A:B] = [A:D][D:B]. In particular, by (7.2) above, we have $h = [R_0:R_0\theta] \cdot [R_0\theta:I(T_0)\theta]$. Since θ is invertible (Proposition 3.4), we have $[R_0\theta:I(T_0)\theta] = [R_0:I(T_0)]$, thus

 $h = [R_0 : R_0\theta] \cdot [R_0 : I(T_0)].$ (7.3)

On the value $[R_0 : R_0\theta]$, we have the following.

PROPOSITION 7.2. For any $T_0 \neq T$, we have

$$[R_0: R_0\theta] = \prod_{\chi \neq 1} \left\{ \frac{1}{24} \prod_{p|M} (p + \chi([p])) \right\},\$$

where χ runs through all non-trivial characters of T/T_0 and p all prime factors of M.

PROOF. This can be proved the same as [12, Proposition 5.2].

Though the following proposition is not necessary in the calculation of h, we include it because of interest.

PROPOSITION 7.3. For any $T_0 \neq T$, both of the sets $I(T_0)$ and $I(T_0)\theta$ are ideals of the ring R.

PROOF. First we consider the case of $I(T_0)\theta$. Let $\sigma \in \operatorname{Gal}(\mathfrak{F}(T_0)/\mathfrak{F}_1)$, and Pa prime divisor of $\mathfrak{F}(T_0)$. As was seen in Section 3.2, P^{σ} is cuspidal if and only if Pis. This implies that if $g \in \mathscr{F}$, then also $g^{\sigma} \in \mathscr{F}$. Let us identify the group T/T_0 with $\operatorname{Gal}(\mathfrak{F}(T_0)/\mathfrak{F}_1)$. Then we have $\operatorname{div}(g^{\sigma}) = \sum_{\rho \in T/T_0} \nu_{P_{\infty}^{\phi}}(g^{\sigma}) \cdot P_{\infty}^{\rho}$. Hence, $\varphi(\operatorname{div}(g^{\sigma})) = \sum_{\rho \in T/T_0} \nu_{P_{\infty}^{\rho}}(g^{\sigma}) \cdot \rho = \sum_{\rho \in T/T_0} \nu_{P_{\infty}^{\rho,\sigma}}(g) \cdot \rho = \sigma \circ \left(\sum_{\rho \in T/T_0} \nu_{P_{\infty}^{\rho,\sigma}}(g) \cdot \rho \sigma\right) =$ $\sigma \circ \varphi(\operatorname{div}(g))$. The relation $\sigma \circ \varphi(\operatorname{div}(g)) = \varphi(\operatorname{div}(g^{\sigma}))$ implies that $\varphi(\operatorname{div}(\mathscr{F}))$ is an ideal of R. Thus, by Proposition 7.1, $I(T_0)\theta$ is an ideal of R. The statement that $I(T_0)$ is an ideal follows from this and the fact that θ is invertible in R_Q .

7.2. The ideal $I(T_0)$ with $T_0 = \langle M_0 \rangle$.

Hereafter we consider the case $T_0 = \langle M_0 \rangle$ as in Section 6.1. The following is a restatement of Theorem 6.4.

THEOREM 7.4. Let $T_0 = \langle M_0 \rangle$. Assume that M is odd, $M_0 \neq 1$, and $M_1 \neq 1$. Then the ideal $I(T_0)$ coincides with the set of all elements $\alpha = \sum m(r) \cdot ([r] - 1)$ of R_0 $(r \mid M_1, \neq 1)$ such that m(r) are rational integers satisfying the conditions (1), (2) and (3) of Theorem 6.3.

7.3. Calculation of the cuspidal class number: Case I.

Now we calculate the cuspidal class number of the curve X_{T_0} with $T_0 = \langle M_0 \rangle$. By the relation (7.3) and Proposition 7.2, it is sufficient to consider the index $[R_0: I(T_0)]$. In this Section 7.3, we restrict ourselves to the case where the

condition (3) on the ideal $I(T_0)$ stated in Theorem 7.4 is null. We call it Case I. In other words, we assume that one of the following conditions is satisfied.

CASE I-1: *M* is odd, M_0 is a prime q, $M_1 \neq 1$ and every prime factor p of M_1 satisfies $\left(\frac{p}{q}\right) = 1$.

CASE I-2: M is odd, M_0 is composite, and $M_1 \neq 1$.

Let I_1 be the subgroup of R_0 consisting of all elements

$$\alpha = \sum_{r|M_1, \neq 1} m(r) \cdot ([r] - 1)$$
(7.4)

such that m(r) are rational integers satisfying the condition (1) of Theorem 6.3. We consider the indices $[R_0: I_1]$ and $[I_1: I(T_0)]$ separately.

Let $M_1 = p_1 \cdots p_k$ be the prime factorization of M_1 , and $\delta = (p_1 - 1, \dots, p_k - 1)$ the greatest common divisor.

LEMMA 7.5. Let δ be as above. Then $\sum_{r|M_1} (r-1)\mathbf{Z} = \delta \mathbf{Z}$.

PROOF. The inclusion $\sum_{r|M_1}(r-1)\mathbf{Z} \supset \delta \mathbf{Z}$ is obvious. Put r' = r-1 for each factor r of M_1 . Let $r = p_{(1)} \cdots p_{(l)}$ be the prime factorization of $r \neq 1$. Since $r' = \prod_i (1 + p'_{(i)}) - 1 \in \delta \mathbf{Z}$, we have the reverse inclusion $\sum_{r|M_1} (r-1)\mathbf{Z} \subset \delta \mathbf{Z}$. This proves the lemma.

Since $M_0 \ (\neq 1)$ and $M_1 \ (\neq 1)$ are odd, the numbers $S(M_0)$ and δ are even integers. Let d be the greatest common divisor of 6 and $(1/4)\delta S(M_0)$:

$$d = \left(6, \frac{1}{4}\delta S(M_0)\right). \tag{7.5}$$

LEMMA 7.6. Let d be as above. Then $[R_0: I_1] = 6/d$.

PROOF. Let α be an element of R_0 written as in the equation (7.4). Let $\varphi: R_0 \to \mathbf{Z}$ be the homomorphism defined by $\varphi(\alpha) = S(M_0) \cdot \sum\{(r-1) \cdot m(r)\}$ $(r \mid M_1, \neq 1)$. Then by Lemma 7.5, we have $\varphi(R_0) = S(M_0) \cdot \delta \mathbf{Z}$. Let $\phi: \mathbf{Z} \to \mathbf{Z}/24\mathbf{Z}$ be the homomorphism induced by the reduction modulo 24. Let $a = (24, \delta S(M_0))$ be the greatest common divisor. Then $a\mathbf{Z} = 24\mathbf{Z} + \delta S(M_0)\mathbf{Z}$. This implies that $\phi(\varphi(R_0)) = \phi(a\mathbf{Z}) = a\mathbf{Z}/24\mathbf{Z}$. Since $(\phi \circ \varphi)^{-1}(0) = I_1$, we have $R_0/I_1 \cong a\mathbf{Z}/24\mathbf{Z}$. Hence, $[R_0: I_1] = 24/a = 6/d$.

LEMMA 7.7. We have $[I_1 : I(T_0)] = 3$ or 1 according as the following three conditions (i), (ii) and (iii) are satisfied, or not: (i) $3 \nmid S(M_0)$, (ii) $3 \mid M_1$, (iii) there exists a prime factor p of M_1 satisfying $p \equiv 2 \pmod{3}$.

Proof. If $3 \mid S(M_0)$, then the condition (2) on $I(T_0)$ stated in Theorem 7.4 is trivial. Also, if $3 \nmid M_1$, the same condition on $I(T_0)$ is null. Thus if one of the conditions (i) and (ii) does not hold, we have $I_1 = I(T_0)$. Assume the condition (iii) does not hold. In this case every factor r of M_1 satisfies $r \equiv 0$ or 1 (mod 3). Let α be an element of I_1 written as in (7.4). Then replacing (mod 24) by (mod 3) in the condition (1) of Theorem 6.3, we have $S(M_0) \cdot \sum \{(-1) \cdot m(r)\} \equiv 0 \pmod{3}$, where r runs through all factors of M_1 with $r \equiv 0 \pmod{3}$. If we write $r = 3r_1$ for r with $r \equiv 0 \pmod{3}$, then $r_1 \equiv 1 \pmod{3}$, so that $m(3r_1) \equiv r_1 \cdot m(3r_1) \pmod{3}$. This implies that α satisfies the condition (2) of Theorem 6.3. Thus we have $I_1 = I(T_0)$. Assume that all the conditions (i), (ii) and (iii) hold. Let α be an element of I_1 written as in (7.4). Let $\varphi: I_1 \to \mathbf{Z}$ be the homomorphism defined by $\varphi(\alpha) = S(M_0) \cdot \sum \{r \cdot m(3r)\}\ (r \mid M_1, (r, 3) = 1), \text{ and } \phi: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ the homomorphism induced by the reduction modulo 3. We prove $\phi(\varphi(I_1)) = \mathbb{Z}/3\mathbb{Z}$. Let p be a prime factor of M_1 satisfying $p \equiv 2 \pmod{3}$, and put $\alpha_p = 8([3] - 1) +$ $8([p]-1) \ (\in R_0)$. Then we have $\alpha_p \in I_1$. In fact, concerning this element α_p , the value of the term on the left-hand side of the congruence in (1) of Theorem 6.3 is equal to $S(M_0) \cdot 8(p+1)$, which is a multiple of 24, hence $\alpha_p \in I_1$. Now we have $\varphi(\alpha_p) = 8S(M_0)$, whence $\phi(\varphi(\alpha_p))$ is a non zero element of $\mathbb{Z}/3\mathbb{Z}$. This proves $\phi(\varphi(I_1)) = \mathbf{Z}/3\mathbf{Z}$. Since $(\phi \circ \varphi)^{-1}(0) = I(T_0)$, we have $I_1/I(T_0) \cong \mathbf{Z}/3\mathbf{Z}$. This proves the lemma.

By the equation (7.3), Proposition 7.2, and Lemmas 7.6–7.7, we have the following theorem. For simplicity, we put $a_{(3)} = 3$ or 1 according as all the conditions (i), (ii) and (iii) in Lemma 7.7 are satisfied, or not.

THEOREM 7.8. Assume that Case I holds. Let d and $a_{(3)}$ be as above. Then the cuspidal class number h of the curve X_{T_0} with $T_0 = \langle M_0 \rangle$ is given by

$$h = \frac{6a_{(3)}}{d} \cdot \prod_{\chi \neq 1} \Biggl\{ \frac{1}{24} \prod_{p|M} (p + \chi([p])) \Biggr\},$$

where χ runs through all non-trivial characters of T/T_0 and p all prime factors of M.

COROLLARY 7.9. Let M = pq, where p and q are distinct odd primes with $\left(\frac{p}{q}\right) = 1$. Put $T_0 = \langle q \rangle$. Then the cuspidal class number h of the curve X_{T_0} is the numerator of (1/24)(p-1)(q+1). The cuspidal divisor class group is a cyclic group of order h generated by the class of the divisor corresponding to [p] - 1.

7.4. Calculation of the cuspidal class number: Case II.

In this Section 7.4, we consider the case, Case II, where the following condition is satisfied.

CASE II: *M* is odd, M_0 is a prime *q*, and there exists a prime factor *p* of M_1 satisfying $\left(\frac{p}{q}\right) = -1$.

Let J_1 (respectively J_2) be the subgroup of R_0 consisting of all elements

$$\alpha = \sum_{r|M_1, \neq 1} m(r) \cdot ([r] - 1)$$
(7.6)

such that m(r) are rational integers satisfying the condition (3) (respectively (1) and (3)) of Theorem 6.3. We consider the indices $[R_0 : J_1]$, $[J_1 : J_2]$ and $[J_2 : I(T_0)]$ separately.

For each factor r of M_1 , put e(r) = 1 or 0 according as $\left(\frac{r}{q}\right) = -1$ or 1. Then the condition (3) of Theorem 6.3 can be written as follows:

$$\sum_{r|M_1\neq 1} e(r) \cdot m(r) \equiv 0 \; (\text{mod } 2). \tag{7.7}$$

LEMMA 7.10. $[R_0: J_1] = 2.$

PROOF. Let α be an element of R_0 written as in (7.6). Let $\varphi : R_0 \to \mathbb{Z}$ be the homomorphism defined by $\varphi(\alpha) = \sum e(r) \cdot m(r)$ $(r \mid M_1, \neq 1)$. Let p be a prime factor of M_1 satisfying $\left(\frac{p}{q}\right) = -1$. If $\alpha = [p] - 1$, then $\varphi(\alpha) = 1$. Hence $\varphi(R_0) = \mathbb{Z}$. Let $\phi : \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ be the homomorphism induced by the reduction modulo 2. Then $\phi(\varphi(R_0)) = \mathbb{Z}/2\mathbb{Z}$ and $(\phi \circ \varphi)^{-1}(0) = J_1$. This implies $[R_0 : J_1] = 2$.

Let $M_1 = \prod_i p_i \cdot \prod_j l_j$ $(1 \le i \le a, 1 \le j \le b)$ be the prime factorization of M_1 , where p_i (respectively l_j) are prime factors satisfying $\left(\frac{p_i}{q}\right) = -1$ (respectively $\left(\frac{l_j}{q}\right) = 1$). If $a \ge 2$, let $\delta_1 = (p_2 - p_1, \dots, p_a - p_1)$ (> 0) be the greatest common divisor, and put $d_1 = (1/4)(q+1)\delta_1$. If a = 1, put $d_1 = 0$. If $b \ge 1$, let $\delta_2 = (l_1 - 1, \dots, l_b - 1)$ be the greatest common divisor, and put $d_2 = (1/4)(q+1)\delta_2$. If b = 0, put $d_2 = 0$. Note that d_1 and d_2 are non-negative integers.

LEMMA 7.11. Let $\varphi: J_1 \to \mathbb{Z}$ be the homomorphism defined by $\varphi(\alpha) = (q+1) \cdot \sum \{(r-1) \cdot m(r)\} \ (r \mid M_1, \neq 1), \text{ where } \alpha \text{ is of the form (7.6). Let } d_1 \text{ and } d_2$ be as above, and $D = (2(p_1 - 1)(q+1), 4d_1, 4d_2)$ the greatest common divisor. Then $\varphi(J_1) = D\mathbb{Z}$.

PROOF. First we prove $\varphi(J_1) \supset D\mathbf{Z}$. If $\alpha = 2([p_1] - 1)$, then $\alpha \in J_1$ and $\varphi(\alpha) = (q+1) \cdot (p_1 - 1) \cdot 2$, whence $\varphi(J_1) \supset 2(p_1 - 1)(q+1)\mathbf{Z}$. If $a \ge 2$, for each index $i \ (2 \le i \le a)$, put $\alpha = -([p_1] - 1) + ([p_i] - 1)$. Then $\alpha \in J_1$ and $\varphi(\alpha) = (q+1) \cdot (p_i - p_1)$, whence $\varphi(J_1) \supset (q+1)(p_i - p_1)\mathbf{Z}$. If $b \ge 1$, for each index j

 $(1 \leq j \leq b)$, put $\alpha = [l_j] - 1$. Then $\alpha \in J_1$ and $\varphi(\alpha) = (q+1) \cdot (l_j-1)$, whence $\varphi(J_1) \supset (q+1)(l_j-1)\mathbf{Z}$. Thus we have $\varphi(J_1) \supset 2(p_1-1)(q+1)\mathbf{Z} + \sum_i (q+1)(p_i-p_1)\mathbf{Z} + \sum_j (q+1)(l_j-1)\mathbf{Z} = D\mathbf{Z}$. Second we prove $\varphi(J_1) \subset D\mathbf{Z}$. Let α be an element of J_1 written as in (7.6). Since α satisfies the condition (7.7), there exists an integer k with $\sum_{r|M_1\neq 1} e(r) \cdot m(r) = 2k$. Since $m(p_1) = 2k - \sum' e(r) \cdot m(r)$, we have $\varphi(\alpha) = (q+1)\{(p_1-1) \cdot m(p_1) + \sum'(r-1) \cdot m(r)\} = (q+1)[2(p_1-1) \cdot k + \sum'\{r-1-e(r)(p_1-1)\} \cdot m(r)]$, where \sum' means the summation over r with $r \mid M_1, \neq 1$ and $\neq p_1$. Thus it is sufficient to prove that the number

$$f(r) = (q+1)\{r-1 - e(r)(p_1 - 1)\}$$

is contained in DZ $(r \mid M_1, \neq 1, p_1)$. Let us write r' = r - 1 for each factor r of M_1 . Then by the definition of D, we have (i) $(q+1)p'_i \equiv (q+1)p'_1 \pmod{DZ}$ $(1 \le i \le a)$, (ii) $(q+1)l'_i \equiv 0 \pmod{DZ}$ $(1 \le j \le b)$, and (iii) $(q+1)p'_1 \cdot h \equiv 0$ $0 \pmod{DZ}$ for any $h \in 2Z$. It is easy to see that we have (iv) $(q+1)s_1's_2' \equiv$ 0 (mod $D\mathbf{Z}$) for any two prime factors s_1 and s_2 of M_1 . Now we prove $f(r) \in D\mathbf{Z}$. Let $r = t_1 \cdots t_c$ be the prime factorization of r. By the equation r' = r - 1 = $(1+t'_1)\cdots(1+t'_c)-1$ and the property (iv), we have (v) $(q+1)r' \equiv$ $(q+1)t'_1 + \cdots + (q+1)t'_c \pmod{DZ}$. Assume that e(r) = 0, i.e. $\left(\frac{r}{q}\right) = 1$. Then the number n(r) of the prime factor $p \mid M_1$ with $\left(\frac{p}{q}\right) = -1$ which appears in the set $\{t_1, ..., t_c\}$ is even. Hence $f(r) = (q+1)\hat{r'} \equiv (q+1)t'_1 + \dots + (q+1)t'_c \equiv$ $(q+1)p'_1 \cdot n(r) \equiv 0 \pmod{DZ}$ by the properties (v), (i), (ii) and (iii). This implies $f(r) \in D\mathbf{Z}$. Next assume that e(r) = 1, i.e. $\left(\frac{r}{q}\right) = -1$. Then the number n(r)defined the same as above is odd. Hence we have $f(r) = (q+1)r' - (q+1)p'_1 \equiv$ $(q+1)t'_1 + \dots + (q+1)t'_c - (q+1)p'_1 \equiv (q+1)p'_1 \cdot \{n(r)-1\} \equiv 0 \pmod{DZ}$ by the properties (v), (i), (ii) and (iii). This implies $f(r) \in D\mathbf{Z}$, and completes the proof.

Let d be the following greatest common divisor

$$d = \left(6, \frac{1}{2}(p_1 - 1)(q + 1), d_1, d_2\right).$$
(7.8)

LEMMA 7.12. Let d be as above. Then $[J_1:J_2] = 6/d$.

PROOF. Let $\varphi: J_1 \to \mathbb{Z}$ and D be the same as in Lemma 7.11. Let $\phi: \mathbb{Z} \to \mathbb{Z}/24\mathbb{Z}$ be the homomorphism induced by the reduction modulo 24. Since 4d = (24, D), we have $4d\mathbb{Z} = 24\mathbb{Z} + D\mathbb{Z}$. This and Lemma 7.11 imply $\phi(\varphi(J_1)) = \phi(D\mathbb{Z}) = 4d\mathbb{Z}/24\mathbb{Z}$. Since $(\phi \circ \varphi)^{-1}(0) = J_2$, we have $J_1/J_2 \cong 4d\mathbb{Z}/24\mathbb{Z} \cong d\mathbb{Z}/6\mathbb{Z}$. This completes the proof.

LEMMA 7.13. We have $[J_2: I(T_0)] = 3$ or 1 according as the following three conditions (i), (ii) and (iii) are satisfied, or not: (i) $3 \nmid S(M_0)(=q+1)$, (ii) $3 \mid M_1$, (iii) there exists a prime factor p of M_1 satisfying $p \equiv 2 \pmod{3}$.

PROOF. This can be proved the same as Lemma 7.7. $\hfill \Box$

By the equation (7.3), Proposition 7.2, and Lemmas 7.10, 7.12 and 7.13, we have the following theorem. For simplicity, we put $a_{(3)} = 3$ or 1 according as all the conditions (i), (ii) and (iii) in Lemma 7.13 are satisfied, or not.

THEOREM 7.14. Assume that Case II holds. Let d and $a_{(3)}$ be as above. Then the cuspidal class number h of the curve X_{T_0} with $T_0 = \langle M_0 \rangle$ is given by

$$h = \frac{12a_{(3)}}{d} \cdot \prod_{\chi \neq 1} \Biggl\{ \frac{1}{24} \prod_{p \mid M} (p + \chi([p])) \Biggr\},$$

where χ runs through all non-trivial characters of T/T_0 and p all prime factors of M.

COROLLARY 7.15. Let M = pq, where p and q are distinct odd primes with $\left(\frac{p}{q}\right) = -1$. Put $T_0 = \langle q \rangle$. Then the cuspidal class number h of the curve X_{T_0} is the numerator of (1/12)(p-1)(q+1). The cuspidal divisor class group is a cyclic group of order h generated by the class of the divisor corresponding to [p] - 1.

8. The *p*-Sylow group of the cuspidal divisor class group.

In this section we study the *p*-Sylow group of the cuspidal divisor class group of the curve X_{T_0} . In Section 8.1 we consider the case where T_0 is general. In Section 8.2 we consider the case where p = 3 and $T_0 = \langle M_0 \rangle$.

8.1. The *p*-Sylow group with T_0 general.

In this Section 8.1 we make no assumptions on the group T_0 except for $T_0 \neq T$.

Let χ be a character of the group T/T_0 , and e_{χ} the element of R_Q defined by

$$e_{\chi} = \frac{1}{|T/T_0|} \sum_{\rho \in T/T_0} \chi(\rho) \rho.$$
(8.1)

These e_{χ} are the elementary idempotents of R_Q . Let $a(\chi)$ be the eigenvalue of θ belonging to e_{χ} , i.e., $\theta e_{\chi} = a(\chi)e_{\chi}$. Then we have

$$a(\chi) = \frac{1}{24} \prod_{p|M} (1 + p\chi([p])).$$
(8.2)

THEOREM 8.1. Let $a(\chi)$ be as above, and p a prime $\neq 2, 3$. Then $a(\chi) \in \mathbb{Z}_p$ for all χ , and the p-Sylow group of the cuspidal divisor class group of the curve X_{T_0} is isomorphic to the direct sum

$$\bigoplus_{\chi \neq 1} (\boldsymbol{Z}_p / a(\chi) \boldsymbol{Z}_p),$$

where χ runs through all non-trivial characters of T/T_0 .

PROOF. Since $p \neq 2, 3$, the fact $a(\chi) \in \mathbb{Z}_p$ is obvious. In the following we consider the elements e_{χ} , $a(\chi)$ and θ as contained in $R \otimes \mathbb{Q}_p$. As is well-known the p-Sylow group of a finite abelian group G is isomorphic to $G \otimes \mathbb{Z}_p$. Hence, by the isomorphism (7.1), the p-Sylow group of \mathscr{C} is isomorphic to $\mathscr{C} \otimes \mathbb{Z}_p \cong$ $(R_0/I(T_0)\theta) \otimes \mathbb{Z}_p \cong (R_0 \otimes \mathbb{Z}_p)/(I(T_0)\theta \otimes \mathbb{Z}_p) \cong (R_0 \otimes \mathbb{Z}_p)/((I(T_0) \otimes \mathbb{Z}_p)\theta)$. By Corollary 4.5 we have $R_0 \supset I(T_0) \supset 24R_0$. Since $p \neq 2, 3$, this implies $I(T_0) \otimes \mathbb{Z}_p = R_0 \otimes \mathbb{Z}_p$. Thus we have $\mathscr{C} \otimes \mathbb{Z}_p \cong (R_0 \otimes \mathbb{Z}_p)/((R_0 \otimes \mathbb{Z}_p)\theta)$. Since $p \neq 2$, the set of the elements e_{χ} with $\chi \neq 1$ constitutes a basis of $R_0 \otimes \mathbb{Z}_p$ over \mathbb{Z}_p (Takagi [12, Lemma 6.1]). Hence we have $\mathscr{C} \otimes \mathbb{Z}_p \cong (\bigoplus \mathbb{Z}_p e_{\chi})/((\bigoplus \mathbb{Z}_p e_{\chi})\theta) \cong$ $(\bigoplus \mathbb{Z}_p e_{\chi})/(\bigoplus \mathbb{Z}_p e_{\chi}\theta) \cong (\bigoplus \mathbb{Z}_p e_{\chi})/(\bigoplus \mathbb{Z}_p a(\chi) e_{\chi}) \cong \bigoplus (\mathbb{Z}_p/a(\chi)\mathbb{Z}_p)$.

PROPOSITION 8.2. Assume that the index $[R_0 : I(T_0)]$ is prime to 3. Then $a(\chi) \in \mathbb{Z}_3$ for all $\chi \neq 1$, and the 3-Sylow group of the cuspidal divisor class group of the curve X_{T_0} is isomorphic to the direct sum

$$\bigoplus_{\chi \neq 1} (\boldsymbol{Z}_3/a(\chi)\boldsymbol{Z}_3),$$

where χ runs through all non-trivial characters of T/T_0 .

PROOF. As in the proof of Theorem 8.1 we have the isomorphism $\mathscr{C} \otimes \mathbb{Z}_3 \cong (R_0 \otimes \mathbb{Z}_3)/((I(T_0) \otimes \mathbb{Z}_3)\theta)$. By the assumption we have $I(T_0) \otimes \mathbb{Z}_3 = R_0 \otimes \mathbb{Z}_3$, whence $\mathscr{C} \otimes \mathbb{Z}_3 \cong (R_0 \otimes \mathbb{Z}_3)/((R_0 \otimes \mathbb{Z}_3)\theta)$. Since the set of the elements e_{χ} with $\chi \neq 1$ is a basis of $R_0 \otimes \mathbb{Z}_3$ over \mathbb{Z}_3 , we have $\mathscr{C} \otimes \mathbb{Z}_3 \cong (\bigoplus \mathbb{Z}_3 e_{\chi})/(\bigoplus \mathbb{Z}_3 a(\chi) e_{\chi})$. Thus we have the inclusion $\mathbb{Z}_3 a(\chi) e_{\chi} \subset \mathbb{Z}_3 e_{\chi}$, which implies $a(\chi) \in \mathbb{Z}_3$. This completes the proof.

8.2. The 3-Sylow group with $T_0 = \langle M_0 \rangle$. Here we consider the case where p = 3 and $T_0 = \langle M_0 \rangle$.

PROPOSITION 8.3. Let $T_0 = \langle M_0 \rangle$. Assume that M is odd, $M_0 \neq 1$, $M_1 \neq 1$, and that either the following condition (i) or (ii) is satisfied: (i) $3 \mid S(M_0)$, (ii) every prime factor p of M_1 satisfies $p \equiv 1 \pmod{3}$. Then the index $[R_0 : I(T_0)]$ is prime to 3.

PROOF. We consider the Cases I and II separately. First, assume that the condition of Case I is satisfied (Section 7.3). By the proof of Theorem 7.8, we have $[R_0: I(T_0)] = 6a_{(3)}/d$. It is easy to see that if either of the conditions (i), (ii) holds, then $a_{(3)} = 1$ and $3 \mid d$. This implies that the index $[R_0: I(T_0)]$ is prime to 3. Next, assume that the condition of Case II is satisfied (Section 7.4). By the proof of Theorem 7.14, we have $[R_0: I(T_0)] = 12a_{(3)}/d$. As in the Case I, we see again that if either of the conditions (i), (ii) holds, then $a_{(3)} = 1$ and $3 \mid d$. Hence we see that the index $[R_0: I(T_0)]$ is prime to 3.

REMARK 8.4. If neither the condition (i) nor (ii) is satisfied, then the index $[R_0: I(T_0)]$ is not prime to 3.

By Propositions 8.2 and 8.3 we have the following theorem.

THEOREM 8.5. Let $T_0 = \langle M_0 \rangle$. Assume that M, M_0 and M_1 satisfy the condition of Proposition 8.3. Then $a(\chi) \in \mathbb{Z}_3$ for all $\chi \neq 1$, and the 3-Sylow group of the cuspidal divisor class group of the curve X_{T_0} is isomorphic to the direct sum

$$\bigoplus_{\chi\neq 1} (\boldsymbol{Z}_3/a(\chi)\boldsymbol{Z}_3),$$

where χ runs through all non-trivial characters of T/T_0 .

References

- [1] A. O. L. Atkin and J. Lehner, Hecke Operators on $\Gamma_0(m)$, Math. Ann., 185 (1970), 134–160.
- [2] V. G. Drinfeld, Two theorems on modular curves, Funct. Anal. Appl., 7 (1973), 155–156.
- [3] S. Klimek, Thesis, Berkeley, 1975.
- [4] D. Kubert and S. Lang, The index of Stickelberger ideals of order 2 and cuspidal class numbers, Math. Ann., 237 (1978), 213–232.
- [5] D. Kubert and S. Lang, Modular Units, Grundlehren der Mathematischen Wissenschaften, 244, Springer-Verlag, Berlin, 1981.
- [6] J. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., 36 (1972), AMS translation 19–64.
- [7] A. Ogg, Rational points on certain elliptic modular curves, AMS Conference, St. Louis, 1972, pp. 211–231.
- [8] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, **102** (1974), 449–462.
- [9] T. Takagi, Cuspidal class number formula for the modular curves $X_1(p)$, J. Algebra, 151 (1992), 348–374.
- [10] T. Takagi, The cuspidal class number formula for the modular curves $X_1(p^m)$, J. Algebra, 158 (1993), 515–549.
- [11] T. Takagi, The cuspidal class number formula for the modular curves X₁(3^m), J. Math. Soc. Japan, 47 (1995), 671–686.
- [12] T. Takagi, The cuspidal class number formula for the modular curves $X_0(M)$ with M square-free, J. Algebra, **193** (1997), 180–213.

- [13] T. Takagi, The cuspidal class number formula for the modular curves $X_1(2^{2n+1})$, J. Algebra, **319** (2008), 3535–3566.
- [14] J. Yu, A cuspidal class number formula for the modular curves $X_1(N)$, Math. Ann., **252** (1980), 197–216.

Toshikazu TAKAGI

Faculty of Arts and Sciences at Fujiyoshida Showa University Fujiyoshida Yamanashi 403-0005, Japan E-mail: takagi@cas.showa-u.ac.jp