The cuspidal class number formula for certain quotient curves of the modular curve $X_{0}(M)$ by Atkin-Lehner involutions

By Toshikazu TAKAGI

(Received Apr. 16, 2008)

Abstract

We calculate the cuspidal class number of a certain quotient curve of the modular curve $X_{0}(M)$ with M square-free. For each factor r of M, let w_{r} denote the Atkin-Lehner type involution of $X_{0}(M)$. Let M_{0} be a divisor of M, and W_{0} the subgroup of the automorphism group of $X_{0}(M)$ consisting of all w_{r} with r dividing M_{0}. Our object is the quotient of $X_{0}(M)$ by W_{0}. In this paper, we consider the case where M is odd.

1. Introduction.

As is well known, the cuspidal divisor class group of a modular curve is finite (Manin [6], Drinfeld [2]). Concerning modular curves of type $X_{0}(n), X_{1}(n)$, or $X(n)$, the full cuspidal class numbers are calculated by several authors (Ogg [7], Kubert and Lang [4], [5], Takagi [9], [10], [11], [12], [13]) though the choice of n is restricted. Concerning the curve $X_{1}(n)$ the order of a certain subgroup of the cuspidal divisor class group is also calculated (Klimek [3], Kubert and Lang [4], [5], Yu [14]) without any condition on n.

In this paper we consider another type of modular curves, which is a quotient of the modular curve $X_{0}(M)$ with M a square-free integer, and calculate its cuspidal class number. More precisely, for each factor r of M, let w_{r} denote the Atkin-Lehner type involution of $X_{0}(M)$ (Atkin-Lehner [1]). Let M_{0} be a divisor of M, and W_{0} the subgroup of the automorphism group of $X_{0}(M)$ consisting of all w_{r} with $r \mid M_{0}$. Our object is the quotient curve of $X_{0}(M)$ by W_{0}. This work is a continuation of [12].

In this paper, in order to avoid some complexity, we confine ourselves to considering only the case where M is odd.

Our main results are Theorems 7.8 and 7.14 . As a special case, we have the following (Corollaries 7.9 and 7.15).

2000 Mathematics Subject Classification. Primary 11F03.
Key Words and Phrases. modular curve, modular unit, cuspidal class number.

Theorem. Let p and q be distinct odd primes. Let X be the quotient curve of the curve $X_{0}(p q)$ by w_{q}. Then the cuspidal class number h of X is equal to the numerator of $(1 / 24)(p-1)(q+1)$ or $(1 / 12)(p-1)(q+1)$ according as $\left(\frac{p}{q}\right)=1$ or -1 , respectively. The cuspidal divisor class group of X is a cyclic group of order h generated by the divisor class of $P_{q}-P_{\infty}$.

In the theorem above, the symbol $\left(\frac{p}{q}\right)$ denotes the Legendre symbol. The symbols P_{q} and P_{∞} denote the cusps on X represented by $1 / q$ and ∞ respectively.

This theorem is related to a result by $\mathrm{Ogg}([8$, Corollary 1$])$, which proves that the divisor $P_{1}+P_{q}-P_{p}-P_{p q}$ on $X_{0}(p q)$ defines a divisor class of order exactly equal to the numerator of $(1 / 24)(p-1)(q+1)$, where $P_{x}(x=1, p, q, p q)$ denotes the cusp on $X_{0}(p q)$ represented by $1 / x$. Note that the cusp $P_{p q}$ coincides with the cusp represented by ∞.

The contents of the present paper are the following. In Sections 2-4, we summarize some results of [12, Sections 1-4]. In Section 4 some new results are added (Proposition 4.4 and Corollary 4.5). In Section 5 the value of $\Phi_{\rho}^{(p)}$ at the type s element δ_{s} is given. In Section 6 we determine the unit group on the quotient curve of $X_{0}(M)$ by W_{0} (Theorem 6.4). It is our first main theorem. In Section 7 we divide the case into two (Cases I and II), and determine the cuspidal class number in each case (Theorems 7.8, 7.14). They are our main theorems. In Section 8 we determine the p-Sylow group of the cuspidal divisor class group for the case $p \neq 2,3$ (Theorem 8.1) and the case $p=3$ under certain conditions (Theorem 8.5).

In the present paper we denote by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{C}, 1_{2}$ the ring of rational integers, the field of rational numbers, the field of complex numbers, the two-by-two unit matrix, respectively. For any prime number p we denote by $\boldsymbol{Z}_{p}, \boldsymbol{Q}_{p}$ the ring of p-adic integers, the field of p-adic numbers, respectively.

2. Transformation formulas for Siegel functions.

In this section we summarize some results of [12, Section 1]. It is assumed that the reader is familiar with the contents of [$\mathbf{9}$, Section 1].

2.1. The Principal congruence subgroup $\Gamma(I)$ of $G(\sqrt{M})$.

Let M be a square-free integer $(\neq 1)$ fixed throughout the present paper. We denote by T the set of all positive divisors of M, and regard it as a group with the product defined by $r \circ s=r s /(r, s)^{2}$ where (r, s) denotes the greatest common divisor of r and $s(r, s \in T)$. Let \mathscr{O} be the order defined by $\mathscr{O}=\sum_{r \in T} \boldsymbol{Z} \sqrt{r}$. For any two positive integers n and m such that m is a divisor of M, put $I=n \sqrt{m} \mathscr{O}$. Then the set I is an ideal of the order \mathscr{O}. We assume that $N=n m \neq 1$.

Let $\Gamma(I)$ be the principal congruence subgroup of the group $G(\sqrt{M})$. (For the definitions of $G(\sqrt{M})$ and $\Gamma(I)$, we refer to $\left[\mathbf{9}\right.$, Section 1.1].) Let \mathfrak{F}_{I} be the field of all automorphic functions with respect to the group $\Gamma(I)$ such that their Fourier coefficients belong to the cyclotomic field $k_{N}=\boldsymbol{Q}\left(e^{2 \pi i / N}\right)$. Let \mathfrak{F}_{1} be the field of all automorphic functions with respect to the group $G(\sqrt{M})$ such that their Fourier coefficients belong to \boldsymbol{Q}. Then it is known ([9, Section 1 (1.15)]) that the field \mathfrak{F}_{I} is a Galois extension of \mathfrak{F}_{1}, and its Galois group is isomorphic to the group $\mathscr{G}_{I}(\pm)=\mathscr{G}_{I} /\{ \pm 1\}$, where \mathscr{G}_{I} denotes the group consisting of all elements α of $G L_{2}(\mathscr{O} / I)$ which are of the form

$$
\alpha=\left(\begin{array}{cc}
a \sqrt{r} & b \sqrt{r^{*}} \tag{2.1}\\
c \sqrt{r^{*}} & d \sqrt{r}
\end{array}\right)(\bmod I)
$$

with $a, b, c, d \in \boldsymbol{Z}, r \in T$, and $r^{*}=M / r$. Since the element r of T above is determined by the element α, we call it the type of α, and denote it by $t(\alpha)$. We denote by $\sigma(\alpha)$ the element of the Galois $\operatorname{group} \operatorname{Gal}\left(\mathfrak{F}_{I} / \mathfrak{F}_{1}\right)$ corresponding to α.

2.2. Some properties of Siegel functions.

Here we recall some properties of Siegel functions. For any element $a=$ $\left(a_{1}, a_{2}\right)$ of the set $\boldsymbol{Q}^{2}-\boldsymbol{Z}^{2}$, the Siegel function $g_{a}(\tau)(\tau \in \mathfrak{H})$ is defined in [5]. (The symbol \mathfrak{H} denotes the upper half plane.) It has the following q-product

$$
\begin{equation*}
g_{a}(\tau)=-q_{\tau}^{(1 / 2) B_{2}\left(a_{1}\right)} e^{2 \pi i a_{2}\left(a_{1}-1\right) / 2}\left(1-q_{z}\right) \prod_{k=1}^{\infty}\left(1-q_{\tau}^{k} q_{z}\right)\left(1-q_{\tau}^{k} / q_{z}\right), \tag{2.2}
\end{equation*}
$$

where $q_{\tau}=e^{2 \pi i \tau}, q_{z}=e^{2 \pi i z}, z=a_{1} \tau+a_{2}$, and $B_{2}(X)=X^{2}-X+(1 / 6)$ (the second Bernoulli polynomial). If $b=\left(b_{1}, b_{2}\right) \in \boldsymbol{Z}^{2}$, then we have $g_{a+b}(\tau)=\varepsilon(a, b) g_{a}(\tau)$, where $\varepsilon(a, b)$ is a root of unity defined by

$$
\begin{equation*}
\varepsilon(a, b)=\exp \left[\frac{2 \pi i}{2}\left(b_{1} b_{2}+b_{1}+b_{2}+a_{1} b_{2}-a_{2} b_{1}\right)\right] . \tag{2.3}
\end{equation*}
$$

If $\alpha \in S L_{2}(\boldsymbol{Z})$, then we have $g_{a}(\alpha(\tau))=\psi(\alpha) g_{a \alpha}(\tau)$, where ψ denotes the character of $S L_{2}(\boldsymbol{Z})$ appearing in the transformation formula for the square of the Dedekind η-function. Explicitly the value of $\psi(\alpha)$ with $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is given by

$$
\psi(\alpha)= \begin{cases}(-1)^{(d-1) / 2} \exp \left[\frac{2 \pi i}{12}\left\{(b-c) d+a c\left(1-d^{2}\right)\right\}\right] & \text { if } d \text { is odd } \tag{2.4}\\ -i(-1)^{(c-1) / 2} \exp \left[\frac{2 \pi i}{12}\left\{(a+d) c+b d\left(1-c^{2}\right)\right\}\right] & \text { if } c \text { is odd. }\end{cases}
$$

In particular, we note that $\psi\left(-1_{2}\right)=-1$. (It is known that the kernel of ψ is a congruence subgroup of level 12 with index 12 , and coincides with the commutator subgroup of $S L_{2}(\boldsymbol{Z})$.)

2.3. Modified Siegel functions with respect to the ideal I.

Here we define the modified Siegel functions with respect to the ideal I. Let r be an element of T, and $A_{I}^{\prime(r)}$ be the set of all row vectors u of the following form

$$
\begin{equation*}
u=\left(\frac{x}{n(m, r)} \sqrt{r}, \frac{y}{n\left(m, r^{*}\right)} \sqrt{r^{*}}\right) \tag{2.5}
\end{equation*}
$$

where x and y are rational integers satisfying $u \notin \boldsymbol{Z} \sqrt{r} \times \boldsymbol{Z} \sqrt{r^{*}}=Z^{(r)}$. We call the element r of T above the type of u and denote it by $t(u)$. Put $A_{I}^{\prime}=\bigcup_{r \in I} A_{I}^{\prime(r)}$ (disjoint). If u is an element of A_{I}^{\prime} of type r, and α an element of $G(\sqrt{M})$ of type s $(r, s \in T)$, then the product $u \alpha$ is an element of A_{I}^{\prime} of type $r \circ s$.

Let $u=\left(a_{1} \sqrt{r}, a_{2} \sqrt{r^{*}}\right)$ be an element of A_{I}^{\prime} of type $r\left(a_{1}, a_{2} \in \boldsymbol{Q}\right)$, and put $u^{\circ}=\left(a_{1}, a_{2}\right)\left(\in \boldsymbol{Q}^{2}-\boldsymbol{Z}^{2}\right)$. Then we define the modified Siegel function $g_{u}(\tau)$ $(\tau \in \mathfrak{H})$ with respect to the ideal I by

$$
\begin{equation*}
g_{u}(\tau)=g_{u^{\circ}}\left(\sqrt{\frac{r}{r^{*}}} \times \tau\right) \tag{2.6}
\end{equation*}
$$

For an element $v=\left(b_{1} \sqrt{r}, b_{2} \sqrt{r^{*}}\right)$ of $Z^{(r)}\left(b_{1}, b_{2} \in \boldsymbol{Z}\right)$, write $v^{\circ}=\left(b_{1}, b_{2}\right)\left(\in \boldsymbol{Z}^{2}\right)$. For elements $u \in A_{I}^{\prime(r)}$ and $v \in Z^{(r)}$, we put

$$
\begin{equation*}
\varepsilon(u, v)=\varepsilon\left(u^{\circ}, v^{\circ}\right) \tag{2.7}
\end{equation*}
$$

Let

$$
\alpha=\left(\begin{array}{cc}
a \sqrt{s} & b \sqrt{s^{*}} \tag{2.8}\\
c \sqrt{s^{*}} & d \sqrt{s}
\end{array}\right)
$$

be an element of $G(\sqrt{M})$ of type $s(a, b, c, d \in \boldsymbol{Z}, s \in T)$. For an element r of T, we put

$$
\alpha^{(r)}=\left(\begin{array}{cc}
a(r, s) & b\left(r, s^{*}\right) \tag{2.9}\\
c\left(r^{*}, s^{*}\right) & d\left(r^{*}, s\right)
\end{array}\right)
$$

Then the matrix $\alpha^{(r)}$ belongs to $S L_{2}(\boldsymbol{Z})$.

Now we have the following transformation formulas for the modified Siegel functions ([12, Proposition 1.1]).

Proposition 2.1. Let u be an element of A_{I}^{\prime} of type r.
(1) Let $v \in Z^{(r)}$. Then $g_{u+v}(\tau)=\varepsilon(u, v) g_{u}(\tau)$.
(2) Let $\alpha \in G(\sqrt{M})$. Then $g_{u}(\alpha(\tau))=\psi_{r}(\alpha) g_{u \alpha}(\tau)$, where $\psi_{r}(\alpha)=\psi\left(\alpha^{(r)}\right)$.
(3) Let $\alpha \in \Gamma(I)$. Then $g_{u}(\alpha(\tau))=\varepsilon_{u}(\alpha) \psi_{r}(\alpha) g_{u}(\tau)$, where $\varepsilon_{u}(\alpha)=\varepsilon(u, v)$ with $v=$ $u \alpha-u\left(\in Z^{(r)}\right)$.

Since the number $\varepsilon(u, v)$ (respectively $\psi_{r}(\alpha)$) in this proposition is a $2 N$ th root (respectively a 12 th root) of unity, the function $g_{u}^{[2 N, 12]}$ depends only on the residue class of u modulo $Z^{(r)}$, and is invariant under the exchange $u \rightarrow-u$. (The symbol [$2 N, 12]$ denotes the least common multiple of $2 N$ and 12.) Moreover, the function $g_{u}^{[2 N, 12]}$ belongs to the function field \mathfrak{F}_{I} and has no zeros and poles on the upper half plane \mathfrak{H}.

3. Modular units on the curve $X_{0}(M)$ and its quotient curves.

In this section we summarize some results of [12, Sections 2, 3].

3.1. The modular curve $X_{0}(M)$ and its quotient curves.

Let M be the square-free integer fixed in the present paper. Let $\Gamma_{0}(M)$ be the subgroup of $S L_{2}(\boldsymbol{Z})$ consisting of all elements of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \equiv 0$ $(\bmod M)$. Let Γ be a Fuchsian group of the first kind. We denote by X_{Γ} the complete nonsingular curve associated with the compactification of the quotient space $\Gamma \backslash \mathfrak{H}$. When $\Gamma=\Gamma_{0}(M)$, the curve X_{Γ} is written as $X_{0}(M)$. Let $f(\tau)(\tau \in \mathfrak{H})$ be an automorphic function with respect to Γ. If the function $f(\tau)$ has no zeros and poles on \mathfrak{H}, we call f as a modular unit with respect to Γ and also a modular unit on the curve X_{Γ}.

Let T_{0} be a subgroup of T. Let $\Gamma_{T_{0}}$ be the subgroup of $G(\sqrt{M})$ consisting of all elements such that their types belong to T_{0}. When $T_{0}=\{1\}(=1)$, the group Γ_{1} is isomorphic to $\Gamma_{0}(M)$; more precisely,

$$
\Gamma_{1}=\left(\begin{array}{cc}
1 & 0 \tag{3.1}\\
0 & \sqrt{M}
\end{array}\right)^{-1} \Gamma_{0}(M)\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{M}
\end{array}\right)
$$

Hence, if $\Gamma=\Gamma_{1}$, then the curve $X_{\Gamma_{1}}\left(=X_{1}\right)$ is isomorphic to the modular curve $X_{0}(M)$. In general, if $\Gamma=\Gamma_{T_{0}}$, then the curve $X_{\Gamma_{T_{0}}}\left(=X_{T_{0}}\right)$ is a quotient curve of X_{1} by a subgroup of the automorphism group of X_{1}. This subgroup can be described as follows. Since the group Γ_{1} is a normal subgroup of $\Gamma_{T_{0}}$ with
$\Gamma_{T_{0}} / \Gamma_{1} \cong T_{0}$, to each element r of T_{0} there exists an automorphism of the curve X_{1}, whose corresponding automorphism of the curve $X_{0}(M)$ is the Atkin-Lehner involution w_{r}. Moreover, the subgroup consisting of all w_{r} with $r \in T_{0}$ is isomorphic to the group T_{0}. Hence, the curve $X_{T_{0}}$ is isomorphic to the quotient curve of $X_{0}(M)$ by the group consisting of all Atkin-Lehner involutions w_{r} with $r \in T_{0}$.

3.2. Cuspidal prime divisors.

We use the notation in [9, Section 1]. Let $G_{A_{+}}$be the adele group associated with $G(\sqrt{M})$, and U its unit subgroup. Let $U_{T_{0}}$ be the subgroup of U consisting of all elements such that their types belong to T_{0}. Put $S=\boldsymbol{Q}^{\times} \ll \sqrt{M} \gg U_{T_{0}}$. Then to this S corresponds the function field \mathfrak{F}_{S}. For simplicity, we write $\mathfrak{F}\left(T_{0}\right)$ for this field \mathfrak{F}_{S}. Then the field $\boldsymbol{C} \mathfrak{F}\left(T_{0}\right)$ is the field of all automorphic functions with respect to the group $\Gamma_{T_{0}}$, and \boldsymbol{Q} is algebraically closed in $\mathfrak{F}\left(T_{0}\right)$ ([9, Proposition 1.6]). It can be shown in a similar way to [$\mathbf{9}$, Proposition 1.7] that the field $\mathfrak{F}\left(T_{0}\right)$ is the field of all automorphic functions with respect to $\Gamma_{T_{0}}$ such that their Fourier coefficients belong to \boldsymbol{Q}. In particular, we have $\mathfrak{F}(T)=\mathfrak{F}_{1}$ (for the definition of \mathfrak{F}_{1} see $\left[\mathbf{9}\right.$, Section 1]). The field $\mathfrak{F}\left(T_{0}\right)$ is an abelian extension of \mathfrak{F}_{1} such that the Galois group is isomorphic to T / T_{0}. The field $\mathfrak{F}(1)\left(T_{0}=1\right)$ is isomorphic to the function field $\left[=\mathfrak{F}_{0}(M)\right]$ which consists of all automorphic functions with respect to $\Gamma_{0}(M)$ such that their Fourier coefficients belong to \boldsymbol{Q}. More precisely, we have

$$
\begin{equation*}
\mathfrak{F}(1)=\left\{\left.f\left(\frac{\tau}{\sqrt{M}}\right) \right\rvert\, f(\tau) \in \mathfrak{F}_{0}(M)\right\} . \tag{3.2}
\end{equation*}
$$

Let P_{∞} denote the prime divisor of $\mathfrak{F}\left(T_{0}\right)$ defined by the q-expansion. Let P be a prime divisor of $\mathfrak{F}\left(T_{0}\right)$, and ν_{P} the valuation of P. For any element σ of $\operatorname{Gal}\left(\mathfrak{F}\left(T_{0}\right) / \mathfrak{F}_{1}\right)\left(\cong T / T_{0}\right)$, the prime divisor P^{σ} is defined by $\nu_{P^{\sigma}}\left(h^{\sigma}\right)=\nu_{P}(h)$ $\left(h \in \mathfrak{F}\left(T_{0}\right)\right)$. We can regard the prime divisor P_{∞}^{σ} as a prime divisor of $\boldsymbol{C} \mathcal{F}\left(T_{0}\right)$, in other words, a point on the curve $X_{T_{0}}$. More precisely, let us denote by the same symbol σ the corresponding element of T / T_{0}. Let α be any element of $G(\sqrt{M})$ whose type belongs to the coset σ. Then the prime divisor P_{∞}^{σ} corresponds to the point on the curve $X_{T_{0}}$ represented by $\alpha^{-1}(\infty)$. The set of the prime divisors P_{∞}^{σ} can be identified with the set of all the cusps on the curve $X_{T_{0}}$. The group T / T_{0} and the set of all the cusps on the curve $X_{T_{0}}$ correspond bijectively by the mapping $\sigma \mapsto P_{\infty}^{\sigma}$. We call the prime divisors P_{∞}^{σ} the cuspidal prime divisors of $\mathfrak{F}\left(T_{0}\right)$.

Let \mathscr{D} be the free abelian group generated by the cuspidal prime divisors of $\mathfrak{F}\left(T_{0}\right)$, and \mathscr{D}_{0} the subgroup of \mathscr{D} consisting of all elements with degree 0 . Let \mathscr{F} (respectively \mathscr{F}_{C}) be the group of all modular units in $\mathfrak{F}\left(T_{0}\right)$ (respectively
$\left.\boldsymbol{C} \mathfrak{F}\left(T_{0}\right)\right)$. Then we have $\mathscr{F}_{C}=\boldsymbol{C}^{\times} \mathscr{F}$, hence we can identify the divisor group $\operatorname{div}(\mathscr{F})$ with the divisor $\operatorname{group} \operatorname{div}\left(\mathscr{F}_{C}\right)$, and the factor group

$$
\begin{equation*}
\mathscr{C}=\mathscr{D}_{0} / \operatorname{div}(\mathscr{F}) \tag{3.3}
\end{equation*}
$$

with the cuspidal divisor class group on the curve $X_{T_{0}}$.
Let $R=\boldsymbol{Z}\left[T / T_{0}\right]$ be the group ring of T / T_{0}, and R_{0} the additive subgroup of R consisting of all elements with degree 0 . Then the mapping $P_{\infty}^{\sigma} \mapsto \sigma$ defines an isomorphism

$$
\begin{equation*}
\varphi: \mathscr{D} \cong R \tag{3.4}
\end{equation*}
$$

and we have $\varphi\left(\mathscr{D}_{0}\right)=R_{0}$.

3.3. The function $f_{\rho}^{(p)}$ and modular units.

Here we construct modular units in the field $\mathfrak{F}\left(T_{0}\right)$ by modified Siegel functions. Let p be any prime factor of M, and put $I_{p}=\sqrt{p} \mathscr{O}$. Let $\mathscr{R}_{I_{p}}^{(r)}(r \in T)$ be the subset of $A_{I_{p}}^{\prime(r)}$ consisting of all elements u which are of the form $u=$ $\left(0,(y / p) \sqrt{r^{*}}\right)$ or $((x / p) \sqrt{r}, 0)$ according as $p \nmid r$ or $p \mid r$, where y (respectively $\left.x\right)$ is an integer satisfying $1 \leq y \leq p / 2$ (respectively $1 \leq x \leq p / 2$).

When $p=2$ (this case occurs only when M is even), the set $\mathscr{R}_{I_{2}}^{(r)}$ contains only one element u that is $\left(0,(1 / 2) \sqrt{r^{*}}\right)$ or $((1 / 2) \sqrt{r}, 0)$ according as $2 \nmid r$ or $2 \mid r$. For this element u, the Siegel function $g_{u}(\tau)$ is a square of an automorphic function. We can express square roots of the function $g_{u}(\tau)$ as products of modified Siegel functions with respect to the ideal $2 \sqrt{2} \mathscr{O}$. For definiteness, we denote by $\sqrt{g_{u}}(\tau)$ one of the square roots defined by

$$
\sqrt{g_{u}}(\tau)= \begin{cases}g_{\left(0, \sqrt{r^{*}} / 4\right)}(\tau) \cdot g_{\left(\sqrt{r} / 2, \sqrt{r^{*}} / 4\right)}(\tau) \cdot c & \text { if } 2 \nmid r, \tag{3.5}\\ g_{(\sqrt{r} / 4,0)}(\tau) \cdot g_{\left(\sqrt{r} / 4, \sqrt{r^{*}} / 2\right)}(\tau) \cdot(-c) & \text { if } 2 \mid r,\end{cases}
$$

where $c=\exp [2 \pi i \times(7 / 16)]$.
For an element u of $\mathscr{R}_{I_{p}}^{(r)}$, we define the function $\widehat{g}_{u}(\tau)$ by

$$
\widehat{g}_{u}(\tau)= \begin{cases}g_{u}(\tau) & \text { if } p \neq 2 \tag{3.6}\\ \sqrt{g_{u}}(\tau) & \text { if } p=2\end{cases}
$$

Now, for each prime factor p of M and each coset $\rho \in T / T_{0}$, we define the function $f_{\rho}^{(p)}(\tau)$ by

$$
\begin{equation*}
f_{\rho}^{(p)}(\tau)=\prod_{r \in \rho}\left\{\prod_{u \in \mathscr{\Re}_{I_{p}}^{(r)}} \widehat{g}_{u}(\tau)\right\} \tag{3.7}
\end{equation*}
$$

Then we have the following proposition ([12, Proposition 2.1]).
Proposition 3.1. Let p be a prime factor of M, and ρ a coset in T / T_{0}. Then the function $\left(f_{\rho}^{(p)}\right)^{12 p}$ is a modular unit contained in the function field $\mathfrak{F}\left(T_{0}\right)$. Moreover, if we identify $\operatorname{Gal}\left(\mathcal{F}\left(T_{0}\right) / \mathfrak{F}_{1}\right)$ with T / T_{0}, then for an element $\sigma \in T / T_{0}$, we have

$$
\left\{\left(f_{\rho}^{(p)}\right)^{12 p}\right\}^{\sigma}=\left(f_{\rho \sigma}^{(p)}\right)^{12 p}
$$

3.4. The function h_{ρ} and modular units.

Here we construct another type of modular units in the field $\mathfrak{F}\left(T_{0}\right)$ by the Dedekind η-function $\eta(\tau)$. Let $H(\tau)$ be the function defined by

$$
\begin{equation*}
H(\tau)=\eta\left(\frac{\tau}{\sqrt{M}}\right)=t^{1 / 24} \prod_{n=1}^{\infty}\left(1-t^{n}\right) \tag{3.8}
\end{equation*}
$$

where $t=\exp [2 \pi i \tau / \sqrt{M}]$.
Now, for each coset $\rho \in T / T_{0}$, we define the function $h_{\rho}(\tau)$ by

$$
\begin{equation*}
h_{\rho}(\tau)=\frac{\prod_{r \in \rho} H(r \tau)}{\prod_{s \in[1]} H(s \tau)}, \tag{3.9}
\end{equation*}
$$

where the symbol [1] denotes the unit element of T / T_{0}, namely, [1] $=T_{0}$. In particular, we have $h_{[1]}(\tau)=1$. In general, we denote by $[r](r \in T)$ the coset $r T_{0}$.

About the relation between $f_{\rho}^{(p)}(\tau)$ and $h_{\rho}(\tau)$, we have the following proposition ([12, Proposition 2.3]).

Proposition 3.2.
(1) Let p be a prime factor of M, and ρ a coset in T / T_{0}. Then we have

$$
f_{\rho}^{(p)}(\tau)=\frac{h_{[p] \rho}(\tau)}{h_{\rho}(\tau)} \times c_{1}
$$

where c_{1} is a nonzero constant. In particular, $f_{[1]}^{(p)}(\tau)=h_{[p]}(\tau) \times c_{1}$.
(2) Let $p_{i}(i=1, \ldots, k)$ be prime factors of M. Then we have

$$
h_{\left[p_{1}\right] \cdots\left[p_{k}\right]}(\tau)=f_{\left[p_{2}\right] \cdots\left[p_{k}\right]}^{\left(p_{1}\right)}(\tau) \times f_{\left.\left[p_{3}\right] \cdots \cdots p_{k}\right]}^{\left(p_{2}\right)}(\tau) \times \cdots \times f_{[1]}^{\left(p_{k}\right)}(\tau) \times c_{2},
$$

where c_{2} is a nonzero constant.
By Propositions 3.1 and 3.2, we see that the function $\left(h_{\rho}\right)^{12 M}$ is a modular unit in the field $\mathfrak{F}\left(T_{0}\right)$. Later in Corollary 4.5 we shall see some stronger statements concerning the powers of $f_{\rho}^{(p)}$ and h_{ρ}.

3.5. The divisors of $f_{\rho}^{(p)}$ and h_{ρ}.

Put $\mathscr{D}_{Q}=\mathscr{D} \otimes \boldsymbol{Q}$ and $R_{Q}=R \otimes \boldsymbol{Q}$. Then we can extend the isomorphism (3.4) to an isomorphism $\mathscr{D}_{Q} \cong R_{Q}$, which we also denote by φ. Since the functions $\left(f_{\rho}^{(p)}\right)^{12 p}$ and $\left(h_{\rho}\right)^{12 M}$ are contained in the field $\mathfrak{F}\left(T_{0}\right)$, their divisors are well defined. We denote by $\operatorname{div}\left(f_{\rho}^{(p)}\right)$ and $\operatorname{div}\left(h_{\rho}\right)$ the elements of \mathscr{D}_{Q} defined by

$$
\begin{equation*}
\operatorname{div}\left(f_{\rho}^{(p)}\right)=\frac{1}{12 p} \operatorname{div}\left(\left(f_{\rho}^{(p)}\right)^{12 p}\right), \operatorname{div}\left(h_{\rho}\right)=\frac{1}{12 M} \operatorname{div}\left(\left(h_{\rho}\right)^{12 M}\right) . \tag{3.10}
\end{equation*}
$$

Let θ be the element of R_{Q} defined by

$$
\begin{equation*}
\theta=\frac{1}{24} \sum_{\rho \in T / T_{0}}\left(\sum_{r \in \rho} r\right) \rho=\frac{1}{24} \prod_{p \mid M}(1+p[p]), \tag{3.11}
\end{equation*}
$$

where p runs through all prime factors of M. Then we have the following propositions ([12, Proposition 2.4, Lemma 3.1]).

Proposition 3.3. Let p be a prime factor of M, and ρ a coset in T / T_{0}.
(1) $\varphi\left(\operatorname{div}\left(f_{\rho}^{(p)}\right)\right)=\rho([p]-1) \theta$.
(2) $\varphi\left(\operatorname{div}\left(h_{\rho}\right)\right)=(\rho-1) \theta$.

Proposition 3.4. The element θ is invertible in the algebra R_{Q}.

3.6. The group of modular units.

In [12, Section 3], we proved that every modular unit in the field $\mathfrak{F}\left(T_{0}\right)$ can be expressed by the functions h_{ρ}. Namely, we have the following theorem ([12, Theorem 3.3]).

THEOREM 3.5. Let $g(\tau)$ be any modular unit in the field $\mathfrak{F}\left(T_{0}\right)$. Then there are rational integers $m(\rho)\left(\rho \in T / T_{0}, \neq[1]\right)$ and a rational number $c \neq 0$ such that

$$
g(\tau)=c \cdot \prod_{\rho \in T / T_{0}, \neq[1]} h_{\rho}(\tau)^{m(\rho)},
$$

and moreover this expression is unique.

4. The characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ}.

In order to calculate the cuspidal class number, we need to determine the group \mathscr{F} of all modular units in the function field $\mathfrak{F}\left(T_{0}\right)$. The determination reduces to the determination of the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of the group $\Gamma_{T_{0}}$. In this section we recall some results of $[\mathbf{1 2}$, Section 4] and add some new results (Proposition 4.4 and Corollary 4.5).

4.1. Definition of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ}.

Let p be a prime factor of M, and ρ a coset in T / T_{0}. Since the functions $\left(f_{\rho}^{(p)}\right)^{12 p}$ and $\left(h_{\rho}\right)^{12 M}$ are automorphic functions with respect to the group $\Gamma_{T_{0}}$, we can define the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of $\Gamma_{T_{0}}$ by the following equations:

$$
\begin{align*}
f_{\rho}^{(p)}(\alpha(\tau)) & =\Phi_{\rho}^{(p)}(\alpha) \cdot f_{\rho}^{(p)}(\tau), \tag{4.1}\\
h_{\rho}(\alpha(\tau)) & =\Psi_{\rho}(\alpha) \cdot h_{\rho}(\tau) \tag{4.2}
\end{align*}
$$

(for all $\alpha \in \Gamma_{T_{0}}$).
Let $g(\tau)$ be a function of the form

$$
\begin{equation*}
g(\tau)=\prod_{\rho \in T / T_{0}, \neq[1]} h_{\rho}(\tau)^{m(\rho)}, \tag{4.3}
\end{equation*}
$$

where $m(\rho)$ are rational integers $\left(\rho \in T / T_{0}, \neq[1]\right)$. Then the function $g(\tau)$ belongs to the group \mathscr{F} of the modular units in the field $\mathfrak{F}\left(T_{0}\right)$ if and only if the following equation holds for all $\alpha \in \Gamma_{T_{0}}$:

$$
\begin{equation*}
\prod_{\rho \in T / T_{0}, \neq[1]}\left\{\Psi_{\rho}(\alpha)\right\}^{m(\rho)}=1 \tag{4.4}
\end{equation*}
$$

Thus, taking account of Theorem 3.5, in order to determine the group \mathscr{F} of the modular units, we need to know the character Ψ_{ρ}. Let $\rho=\left[p_{1}\right] \cdots\left[p_{k}\right]$, where p_{i} $(i=1, \ldots, k)$ are prime factors of M. Then, by (2) of Proposition 3.2, we have

$$
\begin{equation*}
\Psi_{\rho}(\alpha)=\Phi_{\left[p_{2} \cdots \cdots\left[p_{k}\right]\right.}^{\left(p_{1}\right)}(\alpha) \cdot \Phi_{\left[p_{3}\right] \cdots\left[p_{k}\right]}^{\left(p_{2}\right)}(\alpha) \cdots \cdots \Phi_{[1]}^{\left(p_{k}\right)}(\alpha) \tag{4.5}
\end{equation*}
$$

(for all $\alpha \in \Gamma_{T_{0}}$). We shall first determine the character $\Phi_{\rho}^{(p)}$, and next the character Ψ_{ρ} by the relation (4.5).

4.2. Generators of the factor group $\Gamma_{T_{0}} / \pm \Gamma(\widetilde{M} \mathscr{O})$.

Put $e=2$ or 4 according as M is odd or even. Also, put

$$
\begin{equation*}
\widetilde{M}=2^{e} \cdot 3 \cdot \prod_{p \mid M, \neq 2,3} p, \tag{4.6}
\end{equation*}
$$

where p runs through all prime factors of M satisfying $p \neq 2,3$. Then we have the following proposition ([12, Lemma 4.2]).

Proposition 4.1. Let p be a prime factor of M, and ρ a coset in T / T_{0}. Then the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} of $\Gamma_{T_{0}}$ are trivial on the group $\pm \Gamma(\tilde{M} \mathscr{O})$.

Hence, in order to determine the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ}, it is sufficient to determine their values for some elements of $\Gamma_{T_{0}}$ which generate the factor group $\Gamma_{T_{0}} / \pm \Gamma(\tilde{M} \mathscr{O})$.

For each prime factor q of \tilde{M} and an element s of T_{0}, we define the elements $\alpha_{q}, \beta_{q}, \gamma_{q}$ and δ_{s} as follows. Let α_{q}, β_{q} and γ_{q} be elements of $\Gamma_{T_{0}}$ of type 1 which satisfy the following congruences:

$$
\begin{align*}
& \alpha_{q} \equiv\left(\begin{array}{cc}
1 & \sqrt{M} \\
0 & 1
\end{array}\right)\left(\bmod q^{f} \mathscr{O}\right),
\end{align*} \begin{array}{ll}
\equiv 1_{2}\left(\bmod q^{-f} \tilde{M} \mathscr{O}\right), \tag{4.7}\\
\beta_{q} \equiv\left(\begin{array}{cc}
1 & 0 \\
\sqrt{M} & 1
\end{array}\right)\left(\bmod q^{f} \mathscr{O}\right), & \equiv 1_{2}\left(\bmod q^{-f} \widetilde{M} \mathscr{O}\right), \tag{4.8}\\
\gamma_{q} \equiv\left(\begin{array}{cc}
d^{-1} & 0 \\
0 & d
\end{array}\right)\left(\bmod q^{f} \mathscr{O}\right), & \equiv 1_{2}\left(\bmod q^{-f} \widetilde{M} \mathscr{O}\right), \tag{4.9}
\end{array}
$$

where f is a positive integer such that $q^{f} \| \tilde{M}$, and d is a positive integer such that d is a primitive root $\bmod q$ or equal to 5 according as $q \neq 2$ or $q=2$. Let δ_{s} be an element of $\Gamma_{T_{0}}$ of type s which satisfies the following congruences for every prime factor q of \widetilde{M} with $q^{f} \| \widetilde{M}$:

$$
\delta_{s} \equiv \begin{cases}\left(\begin{array}{cc}
s^{-1} \sqrt{s} & 0 \\
0 & \sqrt{s}
\end{array}\right)\left(\bmod q^{f} \mathscr{O}\right) & \text { if }(q, s)=1 \tag{4.10}\\
\left(\begin{array}{cc}
0 & -\sqrt{s^{*}} \\
s^{*-1} \sqrt{s^{*}} & 0
\end{array}\right)\left(\bmod q^{f} \mathscr{O}\right) & \text { if }(q, s) \neq 1\end{cases}
$$

Then the set of the elements $\alpha_{q}, \beta_{q}, \gamma_{q}$ and δ_{s} generates the factor group $\Gamma_{T_{0}} / \pm \Gamma(\tilde{M} \mathscr{O})$, where s runs through a subset of T_{0} which generates the group T_{0}.

Though the element γ_{q} depends on the choice of d, we do not indicate the dependence in its notation because as we shall see in the following subsection the values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the element γ_{q} do not depend on d.
4.3. The values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the elements α_{q}, β_{q} and γ_{q}.

The values of $\Phi_{\rho}^{(p)}$ and Ψ_{ρ} at the elements α_{q}, β_{q} and γ_{q} are given in the following propositions ($\left[\mathbf{1 2}\right.$, Propositions 4.1, 4.2]). The symbols Δ_{p} and Δ_{ρ} there are defined as follows. Let p be a prime factor of M, and ρ a coset in T / T_{0}. Then $\Delta_{p}=1$ or $(-1)^{\left|T_{0}\right|}$ according as $p \neq 2$ or $p=2$. If $\rho=\left[p_{1}\right] \cdots\left[p_{k}\right]$ where p_{i} are prime factors of M, then $\Delta_{\rho}=\Delta_{p_{1}} \cdots \cdots \Delta_{p_{k}}$.

Proposition 4.2. Let p be a prime factor of M, and ρ a coset in T / T_{0}. Then for each prime factor q of \widetilde{M}, we have the following:

$$
\begin{aligned}
& \Phi_{\rho}^{(p)}\left(\alpha_{q}\right)= \begin{cases}\Delta_{p} \exp \left[-\frac{2 \pi i}{8}\left(\sum_{s \in[p] \rho} s-\sum_{r \in \rho} r\right)\right] & \text { if } q=2, \\
\Delta_{p} \exp \left[\frac{2 \pi i}{6}\left(\sum_{s \in[p]] \rho} s-\sum_{r \in \rho} r\right)\right] & \text { if } q=3, \\
1 & \text { if } q \neq 2,3,\end{cases} \\
& \Phi_{\rho}^{(p)}\left(\beta_{q}\right)= \begin{cases}\Delta_{p} \exp \left[\frac{2 \pi i}{8}\left(\sum_{s \in[p]] \rho} s^{*}-\sum_{r \in \rho} r^{*}\right)\right] & \text { if } q=2, \\
\Delta_{p} \exp \left[-\frac{2 \pi i}{6}\left(\sum_{s \in[p]] \rho} s^{*}-\sum_{r \in \rho} r^{*}\right)\right] & \text { if } q=3, \\
1 & \text { if } q \neq 2,3,\end{cases} \\
& \Phi_{\rho}^{(p)}\left(\gamma_{q}\right)= \begin{cases}(-1)^{\left|T_{0}\right|} \quad \text { if } q=p, \\
1 & \text { if } q \neq p .\end{cases}
\end{aligned}
$$

Proposition 4.3. Let ρ be a coset in T / T_{0}. Then for each prime factor q of \widetilde{M}, we have the following:

$$
\begin{aligned}
& \Psi_{\rho}\left(\alpha_{q}\right)= \begin{cases}\Delta_{\rho} \exp \left[-\frac{2 \pi i}{8}\left(\sum_{s \in \rho} s-\sum_{r \in[1]} r\right)\right] & \text { if } q=2, \\
\Delta_{\rho} \exp \left[\frac{2 \pi i}{6}\left(\sum_{s \in \rho} s-\sum_{r \in[1]} r\right)\right] & \text { if } q=3, \\
1 & \text { if } q \neq 2,3,\end{cases} \\
& \Psi_{\rho}\left(\beta_{q}\right)= \begin{cases}\Delta_{\rho} \exp \left[\frac{2 \pi i}{8}\left(\sum_{s \in \rho} s^{*}-\sum_{r \in[1]} r^{*}\right)\right] & \text { if } q=2, \\
\Delta_{\rho} \exp \left[-\frac{2 \pi i}{6}\left(\sum_{s \in \rho} s^{*}-\sum_{r \in[1]} r^{*}\right)\right] & \text { if } q=3, \\
1 & \text { if } q \neq 2,3,\end{cases} \\
& \Psi_{\rho}\left(\gamma_{q}\right)= \begin{cases}-1 \quad \text { if } T_{0}=1 \text { and } q \mid \rho, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

In the expression for $\Psi_{\rho}\left(\gamma_{q}\right)$ in Proposition 4.3 with $T_{0}=1$, the coset ρ is identified with its unique representative. As a consequence of these propositions, we have the following.

Proposition 4.4. Let p be a prime factor of M, and ρ a coset in T / T_{0}.
(1) The character $\Phi_{\rho}^{(p)}$ takes its values in the group of 24 th roots of unity, in the group of 12 th roots of unity if $T_{0} \neq 1$ or $p \neq 2$, and moreover in the group of 6 th roots of unity if M is odd and $T_{0} \neq 1$.
(2) The character Ψ_{ρ} takes its values in the group of 24 th roots of unity, in the group of 12 th roots of unity if M is odd or $T_{0} \neq 1$, and moreover in the group of 6 th roots of unity if M is odd and $T_{0} \neq 1$.

Proof. (1) In the following we use Proposition 4.2. If $T_{0}=1$, then the element $\delta_{1}(s=1)$ belongs to $\Gamma(\widetilde{M} \mathscr{O})$, hence $\Phi_{\rho}^{(p)}\left(\delta_{1}\right)=1$. By the definition of δ_{s} the element δ_{s}^{2} can be written as a product of elements γ_{q} modulo $\pm \Gamma(\tilde{M} \mathscr{O})$. Hence, if $T_{0} \neq 1$, we have $\Phi_{\rho}^{(p)}\left(\delta_{s}^{2}\right)=1$, therefore $\Phi_{\rho}^{(p)}\left(\delta_{s}\right)= \pm 1$. Since $\sum_{s \in[p] \rho} s^{*}-\sum_{r \in \rho} r^{*}=\sum_{s \in[p] \rho^{*}} s-\sum_{r \in \rho^{*}} r$ with $\rho^{*}=\rho[M]$, we have $\Phi_{\rho}^{(p)}\left(\beta_{2}\right)=$ $\left\{\Phi_{\rho^{*}}^{(p)}\left(\alpha_{2}\right)\right\}^{-1}$. Thus, it is sufficient to consider the value of α_{2}. The 24th roots
part of the statement is obvious. Let us assume $p \neq 2$. Since $p^{2} \equiv 1(\bmod 8)$, we have $\sum_{s \in[p] \rho} s=\sum_{r \in \rho} p \circ r \equiv \sum_{r \in \rho} p r(\bmod 8)$, hence

$$
\begin{equation*}
\sum_{s \in[p] \rho} s-\sum_{r \in \rho} r \equiv(p-1) \sum_{r \in \rho} r(\bmod 8) . \tag{4.11}
\end{equation*}
$$

This implies that the term on the left of the congruence (4.11) is even. Next, let us assume $p=2$. Let ρ^{\prime} (respectively $\rho^{\prime \prime}$) be the set of all $r \in \rho$ such that r is odd (respectively even). Since $2 \circ r=2 r$ or $r / 2$ according as $r \in \rho^{\prime}$ or $\rho^{\prime \prime}$, the difference $2 \circ r-r$ is always odd. Hence

$$
\begin{equation*}
\sum_{s \in[2] \rho} s-\sum_{r \in \rho} r=\sum_{r \in \rho}(2 \circ r-r) \equiv\left|T_{0}\right|(\bmod 2) . \tag{4.12}
\end{equation*}
$$

This implies that if $T_{0} \neq 1$, then the term on the left of the equation (4.12) is even. Thus, $\sum_{s \in[p] \rho} s-\sum_{r \in \rho} r$ is even if $T_{0} \neq 1$ or $p \neq 2$, which proves the 12 th roots part of the statement. If M is odd and $T_{0} \neq 1$, then the equation (4.11) implies that $\sum_{s \in[p] \rho} s-\sum_{r \in \rho} r$ is a multiple of 4 , which proves the 6 th roots part of the statement. (2) This follows from (1) and the relation (4.5).

Corollary 4.5. Let p be a prime factor of M, and ρ a coset in T / T_{0}.
(1) The unit group \mathscr{F} of $\mathfrak{F}\left(T_{0}\right)$ contains the 24 th power of $f_{\rho}^{(p)}$, the 12 th power of $f_{\rho}^{(p)}$ if $T_{0} \neq 1$ or $p \neq 2$, and moreover the 6 th power of $f_{\rho}^{(p)}$ if M is odd and $T_{0} \neq 1$.
(2) The unit group \mathscr{F} of $\mathfrak{F}\left(T_{0}\right)$ contains the 24 th power of h_{ρ}, the 12 th power of h_{ρ} if M is odd or $T_{0} \neq 1$, and moreover the 6 th power of h_{ρ} if M is odd and $T_{0} \neq 1$.

5. Calculation of the value of $\Phi_{\rho}^{(p)}$ at δ_{s}.

In this section we calculate the value of $\Phi_{\rho}^{(p)}$ at δ_{s}. For our later use, it is sufficient to consider the case where $p \neq 2$ and $(p, s)=1$. Since $\Phi_{\rho}^{(p)}\left(\delta_{1}\right)=1$, we can assume that $s \neq 1$, hence $T_{0} \neq 1$. Therefore, in the Subsections 5.1-5.4, we assume that

$$
\begin{equation*}
p \neq 2,(p, s)=1, s \neq 1 \tag{5.1}
\end{equation*}
$$

5.1. Decomposition into two parts.

By the definition (3.7) of $f_{\rho}^{(p)}(\tau)$ we have

$$
\begin{equation*}
f_{\rho}^{(p)}\left(\delta_{s}(\tau)\right)=\prod_{r \in \rho}\left\{\prod_{u \in \mathscr{R}_{T_{p}}^{(r)}} g_{u}\left(\delta_{s}(\tau)\right)\right\}, \tag{5.2}
\end{equation*}
$$

where $I_{p}=\sqrt{p} \mathscr{O}$. Since $g_{u}\left(\delta_{s}(\tau)\right)=\psi_{r}\left(\delta_{s}\right) g_{u \delta_{s}}(\tau)$ by Proposition 2.1, we have the decomposition into two parts:

$$
\begin{equation*}
f_{\rho}^{(p)}\left(\delta_{s}(\tau)\right)=\prod_{r \in \rho}\left\{\prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} \psi_{r}\left(\delta_{s}\right)\right\} \cdot \prod_{r \in \rho}\left\{\prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} g_{u \delta_{s}}(\tau)\right\} . \tag{5.3}
\end{equation*}
$$

5.2. The ψ part.

LEMMA 5.1. $\quad \psi_{r}\left(\delta_{s}\right)= \begin{cases}(-1)^{\frac{1}{2}\left\{\left(r^{*}, s\right)-1\right\}} & \text { if }(s, 2)=1, \\ -i \cdot(-1)^{\frac{1}{2}\left\{\left(r, s^{*}\right)-1\right\}} & \text { if }(s, 2) \neq 1 .\end{cases}$
Proof. Put

$$
\delta_{s}=\left(\begin{array}{cc}
a \sqrt{s} & b \sqrt{s^{*}} \tag{5.4}\\
c \sqrt{s^{*}} & d \sqrt{s}
\end{array}\right)
$$

Assume $(s, 6)=1$. In the definition (4.10) of δ_{s}, putting $q=2$ and 3 , we have $a s \equiv d \equiv 1\left(\bmod 2^{e} \cdot 3\right)$ and $b \equiv c \equiv 0\left(\bmod 2^{e} \cdot 3\right)$. Hence, $d\left(r^{*}, s\right) \equiv\left(r^{*}, s\right)(\bmod 4)$ and $b\left(r, s^{*}\right) \equiv c\left(r^{*}, s^{*}\right) \equiv 0(\bmod 12)$. Combining these results with $\psi_{r}\left(\delta_{s}\right)=$ $\psi\left(\delta_{s}^{(r)}\right)$ and the equation (2.4), we have $\psi_{r}\left(\delta_{s}\right)=(-1)^{(1 / 2)\left\{\left(r^{*}, s\right)-1\right\}}$. (Note that $d\left(r^{*}, s\right)$ is odd.) The other cases $(s, 6)=2,3,6$ can be treated similarly.

In the decomposition (5.3), the ψ part is given as follows.
Lemma 5.2.

$$
\prod_{r \in \rho}\left\{\prod_{u \in \mathscr{R}_{p_{p}}^{(r)}} \psi_{r}\left(\delta_{s}\right)\right\}= \begin{cases}\exp \left[\frac{2 \pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho}\left\{\left(r^{*}, s\right)-1\right\}\right] & \text { if }(s, 2)=1 \\ \exp \left[\frac{2 \pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho}\left(r, s^{*}\right)\right] \quad & \text { if }(s, 2) \neq 1\end{cases}
$$

Proof. By the facts that $\psi_{r}\left(\delta_{s}\right)$ does not depend on u and that $\left|\mathscr{R}_{I_{p}}^{(r)}\right|=$ $(1 / 2)(p-1)$, the case $(s, 2)=1$ follows immediately from Lemma 5.1. Next, we have $\prod_{r \in \rho}\left\{\prod_{u \in \mathscr{R}_{l_{p}^{(r)}}^{(r)}}(-i)\right\}=\exp \left[2 \pi i / 2 \cdot(1 / 2)(p-1) \cdot(1 / 2)\left|T_{0}\right|\right]$. (Since $T_{0} \neq 1$, the number $|\rho|=\left|T_{0}\right|$ is even.) From this and Lemma 5.1, the case $(s, 2) \neq 1$ follows immediately.

5.3. The $\boldsymbol{g}_{u \delta_{s}}$ part with $r \in \boldsymbol{\rho}^{(1)}$.

Let us denote by $\rho^{(1)}$ (respectively $\rho^{(2)}$) the set of all elements $r \in \rho$ with $p \nmid r$ (respectively $p \mid r$). Here we assume $r \in \rho^{(1)}$. In this case the element u of $\mathscr{R}_{I_{p}}^{(r)}$ is of the form

$$
\begin{equation*}
u=u(0, y ; r)=\left(0, \frac{y}{p} \sqrt{r^{*}}\right) \tag{5.5}
\end{equation*}
$$

where y is an integer with $1 \leq y \leq(p-1) / 2$.
Let δ_{s} be written as in the equation (5.4). Then we have

$$
\begin{equation*}
u(0, y ; r) \delta_{s}=\left(\frac{c y\left(r^{*}, s^{*}\right)}{p} \sqrt{r \circ s}, \frac{d y\left(r^{*}, s\right)}{p} \sqrt{(r \circ s)^{*}}\right) . \tag{5.6}
\end{equation*}
$$

Since $(p, s)=1$ and $p \nmid r$, we have $p \mid\left(r^{*}, s^{*}\right)$ and $r \circ s \in \rho^{(1)}$. Also by the definition of δ_{s} and the assumption $(p, s)=1$, we have $d \equiv 1(\bmod p)$.

For each $y(1 \leq y \leq(p-1) / 2)$, we denote by $k(y)$ the unique integer satisfying $1 \leq k(y) \leq(p-1) / 2$ and

$$
\begin{equation*}
d y\left(r^{*}, s\right) \equiv \pm k(y)(\bmod p) \tag{5.7}
\end{equation*}
$$

We call y to be of plus (respectively minus) type if the plus (respectively minus) sign appears in the congruence (5.7). Note that if $y_{1} \neq y_{2}$, then $k\left(y_{1}\right) \neq k\left(y_{2}\right)$.

Let l be an integer satisfying

$$
\begin{equation*}
d y\left(r^{*}, s\right)= \pm k(y)+p l . \tag{5.8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
u(0, y ; r) \delta_{s}= \pm u(0, k(y) ; r \circ s)+v \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\left(\frac{c y\left(r^{*}, s^{*}\right)}{p} \sqrt{r \circ s}, l \sqrt{(r \circ s)^{*}}\right) \tag{5.10}
\end{equation*}
$$

Note that $v \in Z^{(r o s)}$. By Proposition 2.1 we have

$$
\begin{align*}
& g_{u(0, y, r) \delta_{s}}(\tau) \\
& =\varepsilon(\pm u(0, k(y) ; r \circ s), v) \cdot g_{ \pm u(0, k(y) ; r o s)}(\tau) \\
& = \begin{cases}\varepsilon(u(0, k(y) ; r \circ s), v) \cdot g_{u(0, k(y) ; r o s)}(\tau) & \text { if } y \text { is of plus type } \\
(-1) \cdot \varepsilon(-u(0, k(y) ; r \circ s), v) \cdot g_{u(0, k(y) ; r o s)}(\tau) & \text { if } y \text { is of minus type. }\end{cases} \tag{5.11}
\end{align*}
$$

In the equation (5.11) with y of minus type, we used the equalities (Proposition 2.1)

$$
\begin{equation*}
g_{u(0, k(y) ; r o s)}(\tau)=g_{u(0, k(y) ; r o s)}\left(\left(-1_{2}\right)(\tau)\right)=\psi_{r o s}\left(-1_{2}\right) \cdot g_{-u(0, k(y) ; r o s)}(\tau) \tag{5.12}
\end{equation*}
$$

and the fact $\psi_{\text {ros }}\left(-1_{2}\right)=\psi\left(-1_{2}\right)=-1$.
Lemma 5.3. With the notation above, we have

$$
\varepsilon(\pm u(0, k(y) ; r \circ s), v)=\exp \left[\frac{2 \pi i}{2}\{y+k(y)\}\right]
$$

Proof. Suppose that y is of plus type. By the definition, we have $\varepsilon(u(0, k(y) ; r \circ s), v)=\exp [2 \pi i / 2 \cdot \xi]$, where

$$
\xi=\frac{c y\left(r^{*}, s^{*}\right)}{p} \cdot l+\frac{c y\left(r^{*}, s^{*}\right)}{p}+l-\frac{k(y)}{p} \cdot \frac{c y\left(r^{*}, s^{*}\right)}{p} .
$$

If we put $q=p$ in the definition (4.10) of δ_{s}, we have $c \equiv 0(\bmod p)$. Since $\left(r^{*}, s^{*}\right) / p \in \boldsymbol{Z}$, we have $\xi \in \boldsymbol{Z}$. First, assume $(s, 2)=1$. If we put $q=2$ in the definition of δ_{s}, we have $c \equiv 0(\bmod 2)$ and $d \equiv 1(\bmod 2)$. Thus, $\xi \equiv l(\bmod 2)$. Since p and $d\left(r^{*}, s\right)$ are odd, the equation (5.8) implies $l \equiv y+k(y)(\bmod 2)$. This proves the case. Next, assume $(s, 2) \neq 1$. If we put $q=2$ in the definition of δ_{s}, we have $c \equiv 1(\bmod 2)$ and $d \equiv 0(\bmod 2)$. Since $\left(r^{*}, s^{*}\right) / p$ is an odd integer, we have $\xi \equiv y l+y+l-k(y) \cdot y(\bmod 2)$. Since p is odd and d is even, the equation (5.8) implies $l \equiv k(y)(\bmod 2)$. Thus we have $\xi \equiv y+k(y)(\bmod 2)$. This completes the proof of the case where y is of plus type. In the proof above, if we exchange $k(y)$ by $-k(y)$, we obtain $\xi \equiv y-k(y)(\bmod 2)$. Since $y-k(y) \equiv y+k(y)(\bmod 2)$, we have the proof of the case where y is of minus type.

Let us denote by $\sharp\{y:-\}$ the number of y which is of minus type.
Lemma 5.4. We have

$$
(-1)^{\sharp\{y:-\}}=\left(\frac{\left(r^{*}, s\right)}{p}\right),
$$

where the symbol on the right term denotes the Legendre symbol.
Proof. As was noticed above, we have $d \equiv 1(\bmod p)$. Hence, by the equation (5.7), $\quad y\left(r^{*}, s\right) \equiv \pm k(y)(\bmod p)$. This implies $\prod_{y=1}^{(p-1) / 2}\left\{y\left(r^{*}, s\right)\right\} \equiv$ $(-1)^{\sharp\{y--\}} \prod_{y=1}^{(p-1) / 2} k(y)(\bmod p)$. Since $\prod_{y=1}^{(p-1) / 2} y \equiv \prod_{y=1}^{(p-1) / 2} k(y)(\bmod p)$, we have
$\left(r^{*}, s\right)^{(p-1) / 2} \equiv(-1)^{\sharp\{y:-\}}(\bmod p)$. On the other hand, it is well known that $\left(r^{*}, s\right)^{(p-1) / 2} \equiv\left(\frac{\left(r^{*}, s\right)}{p}\right)(\bmod p)$. Therefore, $\quad(-1)^{\sharp\{y:-\}} \equiv\left(\frac{\left(r^{*}, s\right)}{p}\right)(\bmod p)$. Since $p \neq 2$, this congruence implies the equality.

In the decomposition (5.3), the $g_{u \delta_{s}}$ part with $r \in \rho^{(1)}$ is given as follows.
Lemma 5.5 .

$$
\prod_{r \in \rho^{(1)}}\left\{\prod_{u \in \mathscr{R}_{T_{r}^{(r)}}} g_{u \delta_{s}}(\tau)\right\}=\prod_{r \in \rho^{(1)}}\left(\frac{\left(r^{*}, s\right)}{p}\right) \cdot \prod_{r \in \rho^{(1)}}\left\{\prod_{u \in \mathscr{R}_{T_{p}^{(r)}}^{(r)}} g_{u}(\tau)\right\} .
$$

Proof. Let r be an element of $\rho^{(1)}$. By the equation (5.11) and Lemmas 5.3-5.4, we have

$$
\begin{aligned}
\prod_{u \in \mathscr{R}_{T_{p}}^{(r)}} g_{u \delta_{s}}(\tau)= & \prod_{y:+} g_{u(0, y ; r) \delta_{s}}(\tau) \cdot \prod_{y:-} g_{u(0, y ; r) \delta_{s}}(\tau) \\
= & \prod_{y:+} \exp \left[\frac{2 \pi i}{2}\{y+k(y)\}\right] \cdot g_{u(0, k(y) ; r o s)}(\tau) \\
& \times \prod_{y:-}(-1) \exp \left[\frac{2 \pi i}{2}\{y+k(y)\}\right] \cdot g_{u(0, k(y) ; r o s)}(\tau) \\
= & (-1)^{\sharp\{y:-\}} \cdot \exp \left[\frac{2 \pi i}{2}\left\{\sum_{y} y+\sum_{y} k(y)\right\}\right] \cdot \prod_{y} g_{u(0, k(y) ; r o s)}(\tau) \\
= & \left(\frac{\left(r^{*}, s\right)}{p}\right) \cdot \prod_{u \in \mathscr{R _ { T _ { p } } ^ { (r o s) }}} g_{u}(\tau),
\end{aligned}
$$

where $y:+$ (respectively $y:-$) means that y is of plus (respectively minus) type. We have used the equality $\sum_{y} y=\sum_{y} k(y)$. Since $(p, s)=1$ and $p \nmid r$, we have $p \nmid r \circ s$, namely $r \circ s \in \rho^{(1)}$. This implies that if r runs through all the elements of $\rho^{(1)}$, then so does $r \circ s$. Hence the equality of the lemma follows.

Lemma 5.6. The number $\left|\rho^{(1)}\right|$ of the elements of $\rho^{(1)}$ is even, and we have

$$
\prod_{r \in \rho^{(1)}}\left(\frac{\left(r^{*}, s\right)}{p}\right)=\left(\frac{s}{p}\right)^{\frac{1}{2}\left|\rho^{(1)}\right|}
$$

Proof. Since $s \neq 1$, if $r \in \rho^{(1)}$, then $r \circ s \in \rho^{(1)}$ and $r \circ s \neq r$. This implies that the set $\rho^{(1)}$ is a disjoint union of several pairs $\{r, r \circ s\}$, hence $\left|\rho^{(1)}\right|$ is even, and we can express the set $\rho^{(1)}$ as a disjoint union of two subsets $\rho_{1}^{(1)}$ and $\rho_{2}^{(1)}$ such that $r \in \rho_{1}^{(1)}$ if and only if $r \circ s \in \rho_{2}^{(1)}$. Now it is easy to see that for any elements $t_{1}, t_{2} \in T$ the following equality holds:

$$
\begin{equation*}
\left(t_{1}, t_{2}\right)\left(t_{1} \circ t_{2}, t_{2}\right)=t_{2} \tag{5.13}
\end{equation*}
$$

If we put $t_{1}=r^{*}$ and $t_{2}=s$ in the equation (5.13) and notice that $r^{*} \circ s=(r \circ s)^{*}$, we have $\left(r^{*}, s\right)\left((r \circ s)^{*}, s\right)=s$. Using this relation, we have

$$
\prod_{r \in \rho^{(1)}}\left(\frac{\left(r^{*}, s\right)}{p}\right)=\prod_{r \in \rho_{1}^{(1)}}\left\{\left(\frac{\left(r^{*}, s\right)}{p}\right)\left(\frac{\left((r \circ s)^{*}, s\right)}{p}\right)\right\}=\prod_{r \in \rho_{1}^{(1)}}\left(\frac{s}{p}\right)=\left(\frac{s}{p}\right)^{\left|\rho_{1}^{(1)}\right|}
$$

Since $\left|\rho_{1}^{(1)}\right|=(1 / 2)\left|\rho^{(1)}\right|$, the proof is completed.
5.4. The $g_{u \delta_{s}}$ part with $r \in \rho^{(2)}$.

Here we assume $r \in \rho^{(2)}$, namely $p \mid r$. In this case the element u of $\mathscr{R}_{I_{p}}^{(r)}$ is of the form

$$
\begin{equation*}
u=u(x, 0 ; r)=\left(\frac{x}{p} \sqrt{r}, 0\right) \tag{5.14}
\end{equation*}
$$

where x is an integer with $1 \leq x \leq(p-1) / 2$.
As before, let δ_{s} be written as in the equation (5.4). Then we have

$$
\begin{equation*}
u(x, 0 ; r) \delta_{s}=\left(\frac{a x(r, s)}{p} \sqrt{r \circ s}, \frac{b x\left(r, s^{*}\right)}{p} \sqrt{(r \circ s)^{*}}\right) \tag{5.15}
\end{equation*}
$$

Since $(p, s)=1$ and $p \mid r$, we have $p \mid\left(r, s^{*}\right)$ and $r \circ s \in \rho^{(2)}$. By the definition of δ_{s} and the assumption $(p, s)=1$, we have $a \equiv s^{-1}(\bmod p)$.

For each $x(1 \leq x \leq(p-1) / 2)$, we denote by $k(x)$ the unique integer satisfying $1 \leq k(x) \leq(p-1) / 2$ and

$$
\begin{equation*}
a x(r, s) \equiv \pm k(x)(\bmod p) \tag{5.16}
\end{equation*}
$$

We call x to be of plus (respectively minus) type if the plus (respectively minus) sign appears in the congruence (5.16). Note that if $x_{1} \neq x_{2}$, then $k\left(x_{1}\right) \neq k\left(x_{2}\right)$.

Let l be an integer satisfying

$$
\begin{equation*}
a x(r, s)= \pm k(x)+p l . \tag{5.17}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
u(x, 0 ; r) \delta_{s}= \pm u(k(x), 0 ; r \circ s)+v \tag{5.18}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\left(l \sqrt{r \circ s}, \frac{b x\left(r, s^{*}\right)}{p} \sqrt{(r \circ s)^{*}}\right) \tag{5.19}
\end{equation*}
$$

As before, we have $v \in Z^{(r o s)}$, and by Proposition 2.1

$$
\begin{align*}
& g_{u(x, 0 ; r) \delta_{s}}(\tau) \\
& = \begin{cases}\varepsilon(u(k(x), 0 ; r \circ s), v) \cdot g_{u(k(x), 0 ; r o s)}(\tau) & \text { if } x \text { is of + type } \\
(-1) \cdot \varepsilon(-u(k(x), 0 ; r \circ s), v) \cdot g_{u(k(x), 0 ; r o s)}(\tau) & \text { if } x \text { is of }- \text { type }\end{cases} \tag{5.20}
\end{align*}
$$

Lemma 5.7. With the notation above, we have

$$
\varepsilon(\pm u(k(x), 0 ; r \circ s), v)=\exp \left[\frac{2 \pi i}{2}\{x+k(x)\}\right] .
$$

Proof. Since the proof is similar to that of Lemma 5.3 , we only sketch it. Suppose that x is of plus type. We have $\varepsilon(u(k(x), 0 ; r \circ s), v)=\exp [2 \pi i / 2 \cdot \xi]$ where

$$
\xi=l \cdot \frac{b x\left(r, s^{*}\right)}{p}+l+\frac{b x\left(r, s^{*}\right)}{p}+\frac{k_{r}^{s}(x)}{p} \cdot \frac{b x\left(r, s^{*}\right)}{p} .
$$

Putting $q=p$ in the definition of δ_{s}, we have $b \equiv 0(\bmod p)$. Since $\left(r, s^{*}\right) / p \in \boldsymbol{Z}$, we have $\xi \in \boldsymbol{Z}$. First, assume $(s, 2)=1$. By the definition of δ_{s}, we have $b \equiv 0(\bmod 2)$ and $a \equiv 1(\bmod 2)$. Hence, $\xi \equiv l(\bmod 2)$. Since p and $a(r, s)$ are odd, the equation (5.17) implies $l \equiv x+k(x)(\bmod 2)$. This proves the case. Next, assume $(s, 2) \neq 1$. By the definition of δ_{s}, we have $b \equiv 1(\bmod 2)$ and $a \equiv 0(\bmod 2)$. Since $\left(r, s^{*}\right) / p$ is an odd integer, we have $\xi \equiv l x+l+x+k(x) x(\bmod 2)$. Since p is odd and a is even, we have $l \equiv k(x)(\bmod 2)$ by the equation (5.17). This completes the case of plus type. Exchanging $k(x)$ by $-k(x)$, we have the proof for minus type x.

Let us denote by $\sharp\{x:-\}$ the number of x which is of minus type.
Lemma 5.8. We have

$$
(-1)^{\sharp\{x:-\}}=\left(\frac{s(r, s)}{p}\right),
$$

where the symbol on the right term denotes the Legendre symbol.
Proof. Since the proof is similar to that of Lemma 5.4, we only sketch it. Since $a \equiv s^{-1}(\bmod p)$, we have $\left\{s^{-1}(r, s)\right\}^{(p-1) / 2} \equiv(-1)^{\sharp\{x:-\}}(\bmod p)$ the same as Lemma 5.4. Since $\left(s^{-1}\right)^{(p-1) / 2} \equiv s^{(p-1) / 2}(\bmod p)$, we have the result.

In the decomposition (5.3), the $g_{u \delta_{s}}$ part with $r \in \rho^{(2)}$ is given as follows.
Lemma 5.9.

$$
\prod_{r \in \rho^{(2)}}\left\{\prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} g_{u \delta_{s}}(\tau)\right\}=\prod_{r \in \rho^{(2)}}\left(\frac{s(r, s)}{p}\right) \cdot \prod_{r \in \rho^{(2)}}\left\{\prod_{u \in \mathscr{R}_{I_{p}}^{(r)}} g_{u}(\tau)\right\} .
$$

Proof. Let r be an element of $\rho^{(2)}$. Then, the same as the proof of Lemma 5.5, we have

$$
\prod_{u \in \mathscr{R}_{T_{p}}^{(r)}} g_{u \delta_{s}}(\tau)=\left(\frac{s(r, s)}{p}\right) \cdot \prod_{u \in \mathscr{R}_{T_{p}}^{(r o s)}} g_{u}(\tau)
$$

using the equation (5.20) and Lemmas 5.7-5.8. If r runs through $\rho^{(2)}$, so does $r \circ s$. Thus we have the proof.

LEMmA 5.10. The number $\left|\rho^{(2)}\right|$ of the elements of $\rho^{(2)}$ is even, and we have

$$
\prod_{r \in \rho^{(2)}}\left(\frac{s(r, s)}{p}\right)=\left(\frac{s}{p}\right)^{\frac{1}{2}\left|\rho^{(2)}\right|}
$$

Proof. Similarly to the proof of Lemma 5.6, we can show that the set $\rho^{(2)}$ is a disjoint union of two subsets $\rho_{1}^{(2)}$ and $\rho_{2}^{(2)}$ such that $r \in \rho_{1}^{(2)}$ if and only if $r \circ s \in \rho_{2}^{(2)}$, whence $\left|\rho^{(2)}\right|$ is even. Setting $t_{1}=r$ and $t_{2}=s$ in the equation (5.13), we have $(r, s)(r \circ s, s)=s$. Thus, we have

$$
\prod_{r \in \rho^{(2)}}\left(\frac{s(r, s)}{p}\right)=\prod_{r \in \rho_{1}^{(2)}}\left\{\left(\frac{s(r, s)}{p}\right)\left(\frac{s(r \circ s, s)}{p}\right)\right\}=\prod_{r \in \rho_{1}^{(2)}}\left(\frac{s^{3}}{p}\right)=\left(\frac{s}{p}\right)^{\left|\rho_{1}^{(2)}\right|} .
$$

Since $\left|\rho_{1}^{(2)}\right|=(1 / 2)\left|\rho^{(2)}\right|$, the proof is completed.

5.5. The value of $\boldsymbol{\Phi}_{\rho}^{(p)}$ at the element $\boldsymbol{\delta}_{s}$.

The value $\Phi_{\rho}^{(p)}\left(\delta_{s}\right)$ with $p \neq 2$ and $(p, s)=1$ is given as follows. Since $\Phi_{\rho}^{(p)}\left(\delta_{s}\right)=1$ if $s=1$, we consider the case $s \neq 1$, whence $T_{0} \neq 1$ and $\left|T_{0}\right|$ is even.

Proposition 5.11. Let p be a prime factor of M, and ρ a coset in T / T_{0}. Let s be an element of T_{0}. Assume that $T_{0} \neq 1$ and $s \neq 1$. Also assume that $p \neq 2$ and $(p, s)=1$. Then we have

$$
\Phi_{\rho}^{(p)}\left(\delta_{s}\right)= \begin{cases}\exp \left[\frac{2 \pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho}\left\{\left(r^{*}, s\right)-1\right\}\right] \cdot\left(\frac{s}{p}\right)^{\frac{1}{2}\left|T_{0}\right|} & \text { if }(s, 2)=1 \\ \exp \left[\frac{2 \pi i}{2} \cdot \frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho}\left(r, s^{*}\right)\right] \cdot\left(\frac{s}{p}\right)^{\frac{1}{2}\left|T_{0}\right|} & \text { if }(s, 2) \neq 1\end{cases}
$$

Proof. This follows immediately from Lemmas 5.2, 5.5, 5.6, 5.9, 5.10 and the following equalities:

$$
\left(\frac{s}{p}\right)^{\frac{1}{2}\left|\rho^{(1)}\right|} \cdot\left(\frac{s}{p}\right)^{\frac{1}{2}\left|\rho^{(2)}\right|}=\left(\frac{s}{p}\right)^{\frac{1}{2}\left(\left|\rho^{(1)}\right|+\left|\rho^{(2)}\right|\right)}=\left(\frac{s}{p}\right)^{\frac{1}{2}|\rho|}=\left(\frac{s}{p}\right)^{\frac{1}{2}\left|T_{0}\right|} .
$$

6. Determination of the unit group \mathscr{F} with $T_{0}=\left\langle M_{0}\right\rangle$.

6.1. The values $\Phi_{\rho}^{(p)}\left(\delta_{q}\right)$ and $\Psi_{\rho}\left(\delta_{q}\right)$ with $T_{0}=\left\langle M_{0}\right\rangle$.

For any divisor N of M, we denote by $\langle N\rangle$ the subgroup of T consisting of all factors r of N. Henceforth, we take a divisor M_{0} of M, and consider the case $T_{0}=\left\langle M_{0}\right\rangle$. Put $M_{1}=M / M_{0}$. Then, for each coset $\rho \in T / T_{0}$, there exists a unique factor r of M_{1} such that r is contained in ρ. We denote this integer r by r_{ρ}. The mapping $\rho \mapsto r_{\rho}$ gives an isomorphism from T / T_{0} to $\left\langle M_{1}\right\rangle$. Since the group T_{0} is generated by the prime factors of M_{0}, in order to determine the characters $\Phi_{\rho}^{(p)}$ and Ψ_{ρ}, it is sufficient to determine the values at the elements δ_{q} for all prime factors q of M_{0} (cf. Propositions 4.2, 4.3).

Proposition 6.1. Let $T_{0}=\left\langle M_{0}\right\rangle$, p a prime factor of M, and ρ a coset in T / T_{0}. Assume that p is odd. Then for each odd prime factor q of $M_{0}(\neq 1)$, we have

$$
\Phi_{\rho}^{(p)}\left(\delta_{q}\right)= \begin{cases}1 & \text { if } p=q \\ \left(\frac{p}{q}\right)^{\frac{1}{2}\left|T_{0}\right|} & \text { if } p \neq q\end{cases}
$$

where the symbol $\left(\frac{p}{q}\right)$ denotes the Legendre symbol.
Proof. First, suppose that $p=q$. Since this condition implies $p \in T_{0}$, the function $f_{\rho}^{(p)}(\tau)$ is a constant (Proposition 3.2). Hence, we have $\Phi_{\rho}^{(p)}\left(\delta_{q}\right)=1$. Next, suppose that $p \neq q$. We prove first $\sum_{r \in \rho}\left(r^{*}, q\right)=(q+1) \cdot(1 / 2)\left|T_{0}\right|$. Put $\rho^{*}=\left\{r^{*} \mid r \in \rho\right\}(=\rho \circ[M])$. Since $q \in T_{0}$, we have $r^{*} \circ q \in \rho^{*}$ for all $r \in \rho$. Since either r^{*} or $r^{*} \circ q$ is prime to q and the other a multiple of q, half of the elements of ρ^{*} are prime to q and the others are multiples of q. From this the equality follows immediately. By the use of this equality, we have

$$
\begin{aligned}
\frac{1}{2}(p-1) \cdot \frac{1}{2} \sum_{r \in \rho}\left\{\left(r^{*}, s\right)-1\right\} & =\frac{1}{2}(p-1) \cdot \frac{1}{2}\left\{(q+1) \cdot \frac{1}{2}\left|T_{0}\right|-\left|T_{0}\right|\right\} \\
& =\frac{1}{4}(p-1)(q-1) \cdot \frac{1}{2}\left|T_{0}\right|
\end{aligned}
$$

Thus, by Proposition 5.11 and the law of quadratic reciprocity, we have

$$
\Phi_{\rho}^{(p)}\left(\delta_{q}\right)=\left\{(-1)^{\frac{1}{4}(p-1)(q-1)} \cdot\left(\frac{q}{p}\right)\right\}^{\frac{1}{2}\left|T_{0}\right|}=\left(\frac{p}{q}\right)^{\frac{1}{2}\left|T_{0}\right|}
$$

Proposition 6.2. Let $T_{0}=\left\langle M_{0}\right\rangle$, and ρ a coset in T / T_{0}. Assume that r_{ρ} is odd. Then for each odd prime factor q of $M_{0}(\neq 1)$, we have

$$
\Psi_{\rho}\left(\delta_{q}\right)=\left(\frac{r_{\rho}}{q}\right)^{\frac{1}{2}\left|T_{0}\right|},
$$

where the symbol $\left(\frac{r_{p}}{q}\right)$ denotes the Legendre symbol.
Proof. First, suppose that $\rho=T_{0}$. Then $r_{\rho}=1$, hence the right term of the equality is 1 . On the other hand, we have $h_{\rho}(\tau)=1$, whence $\Psi_{\rho}\left(\delta_{q}\right)=1$. Thus the equality holds. Next, suppose that $\rho \neq T_{0}$. Let $r_{\rho}=p_{1} \cdots p_{l}$ be the prime factorization. Then $p_{i} \neq q$ for all i because r_{ρ} is a factor of M_{1}. Also the primes p_{i} are odd because r_{ρ} is odd by the assumption. Thus, by the previous proposition and the equation (4.5), we have

$$
\begin{aligned}
\Psi_{\rho}\left(\delta_{q}\right) & =\Phi_{\left[p_{2}\right] \cdots\left[p_{l}\right]}^{\left(p_{1}\right)}\left(\delta_{q}\right) \cdot \Phi_{\left[p_{3}\right] \cdots\left[p_{l}\right]}^{\left(p_{2}\right)}\left(\delta_{q}\right) \cdots \Phi_{[1]}^{\left(p_{l}\right)}\left(\delta_{q}\right) \\
& =\left(\frac{p_{1}}{q}\right)^{\frac{1}{2}\left|T_{0}\right|} \cdot\left(\frac{p_{2}}{q}\right)^{\frac{1}{2}\left|T_{0}\right|} \cdots\left(\frac{p_{l}}{q}\right)^{\frac{1}{2}\left|T_{0}\right|}=\left(\frac{r_{\rho}}{q}\right)^{\frac{1}{2}\left|T_{0}\right|}
\end{aligned}
$$

6.2. Determination of the unit group \mathscr{F}.

Now we determine the condition that a product of the functions h_{ρ} is an automorphic function with respect to the group $\Gamma_{T_{0}}$. For simplicity, we denote by $S\left(M_{0}\right)$ the sum of all factors of M_{0}. Then $S\left(M_{0}\right)=\prod_{q \mid M_{0}}(1+q)$, where q runs through all prime factors of M_{0}.

Theorem 6.3. \quad Let $T_{0}=\left\langle M_{0}\right\rangle$. Assume that M is odd, $M_{0} \neq 1$, and $M_{1} \neq 1$. Let $m(r)$ be rational integers parametrized by all factors $r \neq 1$ of M_{1}. Then the function

$$
g(\tau)=\prod_{\rho \in T / T_{0}, \neq[1]} h_{\rho}(\tau)^{m\left(r_{\rho}\right)}
$$

belongs to the group \mathscr{F} of all modular units in the function field $\mathfrak{F}\left(T_{0}\right)$ if and only if the integers $m(r)$ satisfy the following conditions (1), (2) and (3):
(1) $S\left(M_{0}\right) \cdot \sum_{r \mid M_{1}, \neq 1}\{(r-1) \cdot m(r)\} \equiv 0(\bmod 24)$,
(2) if $3 \mid M_{1}$, then $S\left(M_{0}\right) \cdot \sum_{r \mid M_{1},(r, 3)=1}\{r \cdot m(3 r)\} \equiv 0(\bmod 3)$,
(3) if M_{0} is a prime integer q and there exists a prime factor p of M_{1} satisfying $\left(\frac{p}{q}\right)=-1$, then $\prod_{r \mid M_{1}, \neq 1}\left(\frac{r}{q}\right)^{m(r)}=1$.

Proof. The condition that the function $g(\tau)$ belongs to \mathscr{F} is equivalent to that the equation (4.4) holds in all the cases where $\alpha=\alpha_{q}, \beta_{q}, \gamma_{q}$ with q prime factors of \widetilde{M}, and δ_{q} with q prime factors of M_{0}. Since $\Psi_{\rho}\left(\alpha_{q}\right)=\Psi_{\rho}\left(\beta_{q}\right)=1$ for $q \neq 2,3$, and $\Psi_{\rho}\left(\gamma_{q}\right)=1$ for all q by Proposition 4.3, it is sufficient to consider the cases $\alpha=\alpha_{2}, \quad \alpha_{3}, \quad \beta_{2}, \quad \beta_{3}$, and $\delta_{q}\left(q \mid M_{0}\right)$. Let $\alpha=\alpha_{2}$. Since $\sum_{s \in \rho} s=$ $\sum_{r \mid M_{0}}\left(r \cdot r_{\rho}\right)=r_{\rho} \cdot S\left(M_{0}\right)$ for any coset ρ, we have by the proposition cited above

$$
\prod_{\rho \in T / T_{0}, \neq[1]} \Psi_{\rho}\left(\alpha_{2}\right)^{m\left(r_{\rho}\right)}=\exp \left[-\frac{2 \pi i}{8} \cdot S\left(M_{0}\right) \cdot \sum_{\rho \in T / T_{0}, \neq[1]}\left\{\left(r_{\rho}-1\right) \cdot m\left(r_{\rho}\right)\right\}\right],
$$

whence the equation (4.4) with $\alpha=\alpha_{2}$ is equivalent to

$$
\begin{equation*}
S\left(M_{0}\right) \cdot \sum_{r \mid M_{1}, \neq 1}\{(r-1) \cdot m(r)\} \equiv 0(\bmod 8) . \tag{6.1}
\end{equation*}
$$

Let $\alpha=\beta_{2}$. Similarly to the case above, since $r_{\rho^{*}}=M_{1} / r_{\rho}$, we have the congruence

$$
\begin{equation*}
S\left(M_{0}\right) \cdot \sum_{r \mid M_{1}, \neq 1}\left\{\left(\frac{M_{1}}{r}-M_{1}\right) \cdot m(r)\right\} \equiv 0(\bmod 8) \tag{6.2}
\end{equation*}
$$

Since M is odd, we have $r^{2} \equiv 1(\bmod 8)$. Hence, $M_{1} / r-M_{1} \equiv r^{2} \cdot M_{1} / r-$ $M_{1} \equiv M_{1} \cdot(r-1)(\bmod 8)$. Since $\left(M_{1}, 8\right)=1$, the congruence (6.2) is equivalent to (6.1). Similarly, the equation (4.4) with $\alpha=\alpha_{3}$ gives the congruence

$$
\begin{equation*}
S\left(M_{0}\right) \cdot \sum_{r \mid M_{1}, \neq 1}\{(r-1) \cdot m(r)\} \equiv 0(\bmod 3), \tag{6.3}
\end{equation*}
$$

and the one with $\alpha=\beta_{3}$ gives

$$
\begin{equation*}
S\left(M_{0}\right) \cdot \sum_{r \mid M_{1}, \neq 1}\left\{\left(\frac{M_{1}}{r}-M_{1}\right) \cdot m(r)\right\} \equiv 0(\bmod 3) . \tag{6.4}
\end{equation*}
$$

The combination of the two congruences (6.1) and (6.3) coincides with the condition (1) of the theorem. Assume $3 \nmid M_{1}$. Then $r^{2} \equiv 1(\bmod 3)$ for $r \mid M_{1}$, whence the congruence (6.4) is equivalent to the congruence (6.3), and contained in the condition (1). Next, assume $3 \mid M_{1}$. Then the summation in the congruence (6.4) can be replaced by $\sum\left\{M_{1} / r \cdot m(r)\right\}$ where r runs through all factors of M_{1} with $3 \mid r$. Put $r=3 r_{1}$ and $M_{3}=M_{1} / 3$. Then $\sum\left\{M_{1} / r \cdot m(r)\right\} \equiv \sum\left\{M_{3} / r_{1}\right.$. $\left.m\left(3 r_{1}\right)\right\}(\bmod 3)$, where r_{1} runs through all factors of M_{1} with $\left(r_{1}, 3\right)=1$. Since $r_{1}^{2} \equiv 1(\bmod 3)$, we have $M_{3} / r_{1} \equiv r_{1}^{2} \cdot M_{3} / r_{1} \equiv M_{3} \cdot r_{1}(\bmod 3)$. Since $\left(M_{3}, 3\right)=1$, this implies that the congruence (6.4) is equivalent to the condition (2) of the theorem. Let $\alpha=\delta_{q}$. Assume that M_{0} is composite. Then $(1 / 2)\left|T_{0}\right|$ is even, hence $\Psi_{\rho}\left(\delta_{q}\right)=1$ for all q by Proposition 6.2. Next, assume that M_{0} is a prime integer q, and that $\left(\frac{p}{q}\right)=1$ for all prime factors p of M_{1}. Then again, $\Psi_{\rho}\left(\delta_{q}\right)=1$ for all q by Proposition 6.2. Thus, in the result, we have the condition (3) of the theorem.

By Theorems 3.5 and 6.3 , we have the characterization of the unit group \mathscr{F}.
THEOREM 6.4. Let $T_{0}=\left\langle M_{0}\right\rangle$. Assume that M is odd, $M_{0} \neq 1$, and $M_{1} \neq 1$. Then the group \mathscr{F} of all modular units in the function field $\mathfrak{F}\left(T_{0}\right)$ consists of all functions $g(\tau)$ which have the form $g(\tau)=c \prod_{\rho \in T / T_{0}, \neq[1]} h_{\rho}(\tau)^{m\left(r_{\rho}\right)}$, where c is a nonzero rational number, and $m(r)$ are rational integers parametrized by all factors $r \neq 1$ of M_{1} such that the conditions (1), (2) and (3) of Theorem 6.3 are satisfied.

Remark 6.5. If $M_{1}=1$, then the number of the cusps of the curve $X_{T_{0}}$ is one. Therefore the unit group \mathscr{F} consists of all nonzero rational numbers.
7. Calculation of the cuspidal class number with $T_{0}=\left\langle M_{0}\right\rangle$.

In this section we calculate the cuspidal class number of the curve $X_{T_{0}}$ with $T_{0}=\left\langle M_{0}\right\rangle$. First in Section 7.1 we reduce the problem to one of purely algebraic nature without the assumption $T_{0}=\left\langle M_{0}\right\rangle$. After Section 7.2 we assume that $T_{0}=\left\langle M_{0}\right\rangle$. Because of the condition (3) of Theorem 6.3, we shall divide the problem into two cases.

7.1. Reduction to an algebraic problem with T_{0} general.

In this Section 7.1 we make no assumptions on the group T_{0} except for $T_{0} \neq T$. Let R, R_{0}, \mathscr{D}, and \mathscr{C} be the same as in Section 3.2. Let $\varphi: \mathscr{D} \cong R$ be the isomorphism (3.4), and θ the element of R_{Q} defined by the equation (3.11).

We denote by $I\left(T_{0}\right)$ the subset of R_{0} consisting of all elements $\alpha=\sum m(\rho)$. $(\rho-1)\left(\rho \in T / T_{0}, \neq[1], m(\rho) \in \boldsymbol{Z}\right)$ such that the function $g_{\alpha}(\tau)=\prod h_{\rho}(\tau)^{m(\rho)}$ ($\rho \in T / T_{0}, \neq[1]$) belongs to the group \mathscr{F} of all modular units in the function field $\mathfrak{F}\left(T_{0}\right)$. Then we have the following proposition.

Proposition 7.1. For any $T_{0} \neq T$, we have

$$
\varphi(\operatorname{div}(\mathscr{F}))=I\left(T_{0}\right) \theta
$$

Proof. This follows immediately from (2) of Proposition 3.3 and Theorem 3.5

By this proposition we have

$$
\begin{equation*}
\mathscr{C} \cong R_{0} / I\left(T_{0}\right) \theta . \tag{7.1}
\end{equation*}
$$

Hence the cuspidal class number h of the curve $X_{T_{0}}$ is given by

$$
\begin{equation*}
h=\left[R_{0}: I\left(T_{0}\right) \theta\right] . \tag{7.2}
\end{equation*}
$$

Let A and B be two lattices of R_{Q}, and C a lattice contained in $A \cap B$. Then the quotient $[A: C] /[B: C]$ does not depend on the choice of C. We denote this number by $[A: B]$. It satisfies the usual multiplicative property, namely $[A: B]=[A: D][D: B]$. In particular, by (7.2) above, we have $h=\left[R_{0}: R_{0} \theta\right]$. $\left[R_{0} \theta: I\left(T_{0}\right) \theta\right]$. Since θ is invertible (Proposition 3.4), we have $\left[R_{0} \theta: I\left(T_{0}\right) \theta\right]=$ [$\left.R_{0}: I\left(T_{0}\right)\right]$, thus

$$
\begin{equation*}
h=\left[R_{0}: R_{0} \theta\right] \cdot\left[R_{0}: I\left(T_{0}\right)\right] . \tag{7.3}
\end{equation*}
$$

On the value $\left[R_{0}: R_{0} \theta\right.$], we have the following.
Proposition 7.2. For any $T_{0} \neq T$, we have

$$
\left[R_{0}: R_{0} \theta\right]=\prod_{\chi \neq 1}\left\{\frac{1}{24} \prod_{p \mid M}(p+\chi([p]))\right\}
$$

where χ runs through all non-trivial characters of T / T_{0} and p all prime factors of M.
Proof. This can be proved the same as [12, Proposition 5.2].
Though the following proposition is not necessary in the calculation of h, we include it because of interest.

Proposition 7.3. For any $T_{0} \neq T$, both of the sets $I\left(T_{0}\right)$ and $I\left(T_{0}\right) \theta$ are ideals of the ring R.

Proof. First we consider the case of $I\left(T_{0}\right) \theta$. Let $\sigma \in \operatorname{Gal}\left(\mathfrak{F}\left(T_{0}\right) / \mathfrak{F}_{1}\right)$, and P a prime divisor of $\mathfrak{F}\left(T_{0}\right)$. As was seen in Section 3.2, P^{σ} is cuspidal if and only if P is. This implies that if $g \in \mathscr{F}$, then also $g^{\sigma} \in \mathscr{F}$. Let us identify the group T / T_{0} with $\operatorname{Gal}\left(\mathfrak{F}\left(T_{0}\right) / \mathfrak{F}_{1}\right)$. Then we have $\operatorname{div}\left(g^{\sigma}\right)=\sum_{\rho \in T / T_{0}} \nu_{P_{\infty}^{\rho}}\left(g^{\sigma}\right) \cdot P_{\infty}^{\rho}$. Hence, $\varphi\left(\operatorname{div}\left(g^{\sigma}\right)\right)=\sum_{\rho \in T / T_{0}} \nu_{P_{\infty}^{\rho}}\left(g^{\sigma}\right) \cdot \rho=\sum_{\rho \in T / T_{0}} \nu_{P_{\infty}^{\rho \sigma}}(g) \cdot \rho=\sigma \circ\left(\sum_{\rho \in T / T_{0}} \nu_{P_{\infty}^{o \sigma}}(g) \cdot \rho \sigma\right)=$ $\sigma \circ \varphi(\operatorname{div}(g))$. The relation $\sigma \circ \varphi(\operatorname{div}(g))=\varphi\left(\operatorname{div}\left(g^{\sigma}\right)\right)$ implies that $\varphi(\operatorname{div}(\mathscr{F}))$ is an ideal of R. Thus, by Proposition 7.1, $I\left(T_{0}\right) \theta$ is an ideal of R. The statement that $I\left(T_{0}\right)$ is an ideal follows from this and the fact that θ is invertible in R_{Q}.
7.2. The ideal $I\left(T_{0}\right)$ with $T_{0}=\left\langle M_{0}\right\rangle$.

Hereafter we consider the case $T_{0}=\left\langle M_{0}\right\rangle$ as in Section 6.1. The following is a restatement of Theorem 6.4.

THEOREM 7.4. Let $T_{0}=\left\langle M_{0}\right\rangle$. Assume that M is odd, $M_{0} \neq 1$, and $M_{1} \neq 1$. Then the ideal $I\left(T_{0}\right)$ coincides with the set of all elements $\alpha=\sum m(r) \cdot([r]-1)$ of $R_{0}\left(r \mid M_{1}, \neq 1\right)$ such that $m(r)$ are rational integers satisfying the conditions (1), (2) and (3) of Theorem 6.3.

7.3. Calculation of the cuspidal class number: Case I.

Now we calculate the cuspidal class number of the curve $X_{T_{0}}$ with $T_{0}=\left\langle M_{0}\right\rangle$. By the relation (7.3) and Proposition 7.2, it is sufficient to consider the index [$\left.R_{0}: I\left(T_{0}\right)\right]$. In this Section 7.3, we restrict ourselves to the case where the
condition (3) on the ideal $I\left(T_{0}\right)$ stated in Theorem 7.4 is null. We call it Case I. In other words, we assume that one of the following conditions is satisfied.

CASE I-1: M is odd, M_{0} is a prime $q, M_{1} \neq 1$ and every prime factor p of M_{1} satisfies $\left(\frac{p}{q}\right)=1$.

CASE I-2: M is odd, M_{0} is composite, and $M_{1} \neq 1$.
Let I_{1} be the subgroup of R_{0} consisting of all elements

$$
\begin{equation*}
\alpha=\sum_{r \mid M_{1}, \neq 1} m(r) \cdot([r]-1) \tag{7.4}
\end{equation*}
$$

such that $m(r)$ are rational integers satisfying the condition (1) of Theorem 6.3. We consider the indices $\left[R_{0}: I_{1}\right]$ and $\left[I_{1}: I\left(T_{0}\right)\right]$ separately.

Let $M_{1}=p_{1} \cdots p_{k}$ be the prime factorization of M_{1}, and $\delta=\left(p_{1}-1, \ldots, p_{k}-1\right)$ the greatest common divisor.

Lemma 7.5. Let δ be as above. Then $\sum_{r \mid M_{1}}(r-1) \boldsymbol{Z}=\delta \boldsymbol{Z}$.
Proof. The inclusion $\sum_{r \mid M_{1}}(r-1) \boldsymbol{Z} \supset \delta \boldsymbol{Z}$ is obvious. Put $r^{\prime}=r-1$ for each factor r of M_{1}. Let $r=p_{(1)} \cdots p_{(l)}$ be the prime factorization of $r \neq 1$. Since $r^{\prime}=\prod_{i}\left(1+p_{(i)}^{\prime}\right)-1 \in \delta \boldsymbol{Z}$, we have the reverse inclusion $\sum_{r \mid M_{1}}(r-1) \boldsymbol{Z} \subset \delta \boldsymbol{Z}$. This proves the lemma.

Since $M_{0}(\neq 1)$ and $M_{1}(\neq 1)$ are odd, the numbers $S\left(M_{0}\right)$ and δ are even integers. Let d be the greatest common divisor of 6 and (1/4) $\delta S\left(M_{0}\right)$:

$$
\begin{equation*}
d=\left(6, \frac{1}{4} \delta S\left(M_{0}\right)\right) \tag{7.5}
\end{equation*}
$$

Lemma 7.6. Let d be as above. Then $\left[R_{0}: I_{1}\right]=6 / d$.
Proof. Let α be an element of R_{0} written as in the equation (7.4). Let $\varphi: R_{0} \rightarrow \boldsymbol{Z}$ be the homomorphism defined by $\varphi(\alpha)=S\left(M_{0}\right) \cdot \sum\{(r-1) \cdot m(r)\}$ $\left(r \mid M_{1}, \neq 1\right)$. Then by Lemma 7.5 , we have $\varphi\left(R_{0}\right)=S\left(M_{0}\right) \cdot \delta \boldsymbol{Z}$. Let $\phi: \boldsymbol{Z} \rightarrow$ $\boldsymbol{Z} / 24 \boldsymbol{Z}$ be the homomorphism induced by the reduction modulo 24 . Let $a=\left(24, \delta S\left(M_{0}\right)\right)$ be the greatest common divisor. Then $a \boldsymbol{Z}=24 \boldsymbol{Z}+\delta S\left(M_{0}\right) \boldsymbol{Z}$. This implies that $\phi\left(\varphi\left(R_{0}\right)\right)=\phi(a \boldsymbol{Z})=a \boldsymbol{Z} / 24 \boldsymbol{Z}$. Since $(\phi \circ \varphi)^{-1}(0)=I_{1}$, we have $R_{0} / I_{1} \cong a \boldsymbol{Z} / 24 \boldsymbol{Z}$. Hence, $\left[R_{0}: I_{1}\right]=24 / a=6 / d$.

Lemma 7.7. We have $\left[I_{1}: I\left(T_{0}\right)\right]=3$ or 1 according as the following three conditions (i), (ii) and (iii) are satisfied, or not: (i) $3 \nmid S\left(M_{0}\right)$, (ii) $3 \mid M_{1}$, (iii) there exists a prime factor p of M_{1} satisfying $p \equiv 2(\bmod 3)$.

Proof. If $3 \mid S\left(M_{0}\right)$, then the condition (2) on $I\left(T_{0}\right)$ stated in Theorem 7.4 is trivial. Also, if $3 \nmid M_{1}$, the same condition on $I\left(T_{0}\right)$ is null. Thus if one of the conditions (i) and (ii) does not hold, we have $I_{1}=I\left(T_{0}\right)$. Assume the condition (iii) does not hold. In this case every factor r of M_{1} satisfies $r \equiv 0$ or $1(\bmod 3)$. Let α be an element of I_{1} written as in (7.4). Then replacing $(\bmod 24)$ by $(\bmod 3)$ in the condition (1) of Theorem 6.3, we have $S\left(M_{0}\right) \cdot \sum\{(-1) \cdot m(r)\} \equiv 0(\bmod 3)$, where r runs through all factors of M_{1} with $r \equiv 0(\bmod 3)$. If we write $r=3 r_{1}$ for r with $r \equiv 0(\bmod 3)$, then $r_{1} \equiv 1(\bmod 3)$, so that $m\left(3 r_{1}\right) \equiv r_{1} \cdot m\left(3 r_{1}\right)(\bmod 3)$. This implies that α satisfies the condition (2) of Theorem 6.3. Thus we have $I_{1}=I\left(T_{0}\right)$. Assume that all the conditions (i), (ii) and (iii) hold. Let α be an element of I_{1} written as in (7.4). Let $\varphi: I_{1} \rightarrow \boldsymbol{Z}$ be the homomorphism defined by $\varphi(\alpha)=S\left(M_{0}\right) \cdot \sum\{r \cdot m(3 r)\}\left(r \mid M_{1},(r, 3)=1\right)$, and $\phi: \boldsymbol{Z} \rightarrow \boldsymbol{Z} / 3 \boldsymbol{Z}$ the homomorphism induced by the reduction modulo 3 . We prove $\phi\left(\varphi\left(I_{1}\right)\right)=\boldsymbol{Z} / 3 \boldsymbol{Z}$. Let p be a prime factor of M_{1} satisfying $p \equiv 2(\bmod 3)$, and put $\alpha_{p}=8([3]-1)+$ $8([p]-1)\left(\in R_{0}\right)$. Then we have $\alpha_{p} \in I_{1}$. In fact, concerning this element α_{p}, the value of the term on the left-hand side of the congruence in (1) of Theorem 6.3 is equal to $S\left(M_{0}\right) \cdot 8(p+1)$, which is a multiple of 24 , hence $\alpha_{p} \in I_{1}$. Now we have $\varphi\left(\alpha_{p}\right)=8 S\left(M_{0}\right)$, whence $\phi\left(\varphi\left(\alpha_{p}\right)\right)$ is a non zero element of $\boldsymbol{Z} / 3 \boldsymbol{Z}$. This proves $\phi\left(\varphi\left(I_{1}\right)\right)=\boldsymbol{Z} / 3 \boldsymbol{Z}$. Since $(\phi \circ \varphi)^{-1}(0)=I\left(T_{0}\right)$, we have $I_{1} / I\left(T_{0}\right) \cong \boldsymbol{Z} / 3 \boldsymbol{Z}$. This proves the lemma.

By the equation (7.3), Proposition 7.2, and Lemmas 7.6-7.7, we have the following theorem. For simplicity, we put $a_{(3)}=3$ or 1 according as all the conditions (i), (ii) and (iii) in Lemma 7.7 are satisfied, or not.

Theorem 7.8. Assume that Case I holds. Let d and $a_{(3)}$ be as above. Then the cuspidal class number h of the curve $X_{T_{0}}$ with $T_{0}=\left\langle M_{0}\right\rangle$ is given by

$$
h=\frac{6 a_{(3)}}{d} \cdot \prod_{\chi \neq 1}\left\{\frac{1}{24} \prod_{p \mid M}(p+\chi([p]))\right\},
$$

where χ runs through all non-trivial characters of T / T_{0} and p all prime factors of M.
Corollary 7.9. Let $M=p q$, where p and q are distinct odd primes with $\left(\frac{p}{q}\right)=1$. Put $T_{0}=\langle q\rangle$. Then the cuspidal class number h of the curve $X_{T_{0}}$ is the numerator of $(1 / 24)(p-1)(q+1)$. The cuspidal divisor class group is a cyclic group of order h generated by the class of the divisor corresponding to $[p]-1$.

7.4. Calculation of the cuspidal class number: Case II.

In this Section 7.4, we consider the case, Case II, where the following condition is satisfied.

CASE II: M is odd, M_{0} is a prime q, and there exists a prime factor p of M_{1} satisfying $\left(\frac{p}{q}\right)=-1$.

Let J_{1} (respectively J_{2}) be the subgroup of R_{0} consisting of all elements

$$
\begin{equation*}
\alpha=\sum_{r \mid M_{1}, \neq 1} m(r) \cdot([r]-1) \tag{7.6}
\end{equation*}
$$

such that $m(r)$ are rational integers satisfying the condition (3) (respectively (1) and (3)) of Theorem 6.3. We consider the indices $\left[R_{0}: J_{1}\right],\left[J_{1}: J_{2}\right]$ and $\left[J_{2}: I\left(T_{0}\right)\right]$ separately.

For each factor r of M_{1}, put $e(r)=1$ or 0 according as $\left(\frac{r}{q}\right)=-1$ or 1 . Then the condition (3) of Theorem 6.3 can be written as follows:

$$
\begin{equation*}
\sum_{r \mid M_{1}, \neq 1} e(r) \cdot m(r) \equiv 0(\bmod 2) . \tag{7.7}
\end{equation*}
$$

LEMMA 7.10. $\left[R_{0}: J_{1}\right]=2$.
Proof. Let α be an element of R_{0} written as in (7.6). Let $\varphi: R_{0} \rightarrow \boldsymbol{Z}$ be the homomorphism defined by $\varphi(\alpha)=\sum e(r) \cdot m(r)\left(r \mid M_{1}, \neq 1\right)$. Let p be a prime factor of M_{1} satisfying $\left(\frac{p}{q}\right)=-1$. If $\alpha=[p]-1$, then $\varphi(\alpha)=1$. Hence $\varphi\left(R_{0}\right)=\boldsymbol{Z}$. Let $\phi: \boldsymbol{Z} \rightarrow \boldsymbol{Z} / 2 \boldsymbol{Z}$ be the homomorphism induced by the reduction modulo 2 . Then $\phi\left(\varphi\left(R_{0}\right)\right)=\boldsymbol{Z} / 2 \boldsymbol{Z}$ and $(\phi \circ \varphi)^{-1}(0)=J_{1}$. This implies $\left[R_{0}: J_{1}\right]=2$.

Let $M_{1}=\prod_{i} p_{i} \cdot \prod_{j} l_{j}(1 \leq i \leq a, 1 \leq j \leq b)$ be the prime factorization of M_{1}, where p_{i} (respectively l_{j}) are prime factors satisfying $\left(\frac{p_{i}}{q}\right)=-1$ (respectively $\left.\left(\frac{l_{j}}{q}\right)=1\right)$. If $a \geq 2$, let $\delta_{1}=\left(p_{2}-p_{1}, \ldots, p_{a}-p_{1}\right)(>0)$ be the greatest common divisor, and put $d_{1}=(1 / 4)(q+1) \delta_{1}$. If $a=1$, put $d_{1}=0$. If $b \geq 1$, let $\delta_{2}=$ $\left(l_{1}-1, \ldots, l_{b}-1\right)$ be the greatest common divisor, and put $d_{2}=(1 / 4)(q+1) \delta_{2}$. If $b=0$, put $d_{2}=0$. Note that d_{1} and d_{2} are non-negative integers.

Lemma 7.11. Let $\varphi: J_{1} \rightarrow \boldsymbol{Z}$ be the homomorphism defined by $\varphi(\alpha)=$ $(q+1) \cdot \sum\{(r-1) \cdot m(r)\}\left(r \mid M_{1}, \neq 1\right)$, where α is of the form (7.6). Let d_{1} and d_{2} be as above, and $D=\left(2\left(p_{1}-1\right)(q+1), 4 d_{1}, 4 d_{2}\right)$ the greatest common divisor. Then $\varphi\left(J_{1}\right)=D Z$.

Proof. First we prove $\varphi\left(J_{1}\right) \supset D \boldsymbol{Z}$. If $\alpha=2\left(\left[p_{1}\right]-1\right)$, then $\alpha \in J_{1}$ and $\varphi(\alpha)=(q+1) \cdot\left(p_{1}-1\right) \cdot 2$, whence $\varphi\left(J_{1}\right) \supset 2\left(p_{1}-1\right)(q+1) Z$. If $a \geq 2$, for each index $i(2 \leq i \leq a)$, put $\alpha=-\left(\left[p_{1}\right]-1\right)+\left(\left[p_{i}\right]-1\right)$. Then $\alpha \in J_{1}$ and $\varphi(\alpha)=$ $(q+1) \cdot\left(p_{i}-p_{1}\right)$, whence $\varphi\left(J_{1}\right) \supset(q+1)\left(p_{i}-p_{1}\right) Z$. If $b \geq 1$, for each index j
$(1 \leq j \leq b)$, put $\alpha=\left[l_{j}\right]-1$. Then $\alpha \in J_{1}$ and $\varphi(\alpha)=(q+1) \cdot\left(l_{j}-1\right)$, whence $\varphi\left(J_{1}\right) \supset(q+1)\left(l_{j}-1\right) \boldsymbol{Z}$. Thus we have $\varphi\left(J_{1}\right) \supset 2\left(p_{1}-1\right)(q+1) \boldsymbol{Z}+\sum_{i}(q+1)$ $\left(p_{i}-p_{1}\right) \boldsymbol{Z}+\sum_{j}(q+1)\left(l_{j}-1\right) \boldsymbol{Z}=D \boldsymbol{Z}$. Second we prove $\varphi\left(J_{1}\right) \subset D \boldsymbol{Z}$. Let α be an element of J_{1} written as in (7.6). Since α satisfies the condition (7.7), there exists an integer k with $\sum_{r \mid M_{1}, \neq 1} e(r) \cdot m(r)=2 k$. Since $m\left(p_{1}\right)=2 k-$ $\sum^{\prime} e(r) \cdot m(r)$, we have $\varphi(\alpha)=(q+1)\left\{\left(p_{1}-1\right) \cdot m\left(p_{1}\right)+\sum^{\prime}(r-1) \cdot m(r)\right\}=$ $(q+1)\left[2\left(p_{1}-1\right) \cdot k+\sum^{\prime}\left\{r-1-e(r)\left(p_{1}-1\right)\right\} \cdot m(r)\right]$, where \sum^{\prime} means the summation over r with $r \mid M_{1}, \neq 1$ and $\neq p_{1}$. Thus it is sufficient to prove that the number

$$
f(r)=(q+1)\left\{r-1-e(r)\left(p_{1}-1\right)\right\}
$$

is contained in $D \boldsymbol{Z}\left(r \mid M_{1}, \neq 1, p_{1}\right)$. Let us write $r^{\prime}=r-1$ for each factor r of M_{1}. Then by the definition of D, we have (i) $(q+1) p_{i}^{\prime} \equiv(q+1) p_{1}^{\prime}(\bmod D \boldsymbol{Z})$ $(1 \leq i \leq a), \quad($ ii $) \quad(q+1) l_{j}^{\prime} \equiv 0(\bmod D \boldsymbol{Z}) \quad(1 \leq j \leq b), \quad$ and \quad (iii) $\quad(q+1) p_{1}^{\prime} \cdot h \equiv$ $0(\bmod D \boldsymbol{Z})$ for any $h \in 2 \boldsymbol{Z}$. It is easy to see that we have (iv) $(q+1) s_{1}^{\prime} s_{2}^{\prime} \equiv$ $0(\bmod D \boldsymbol{Z})$ for any two prime factors s_{1} and s_{2} of M_{1}. Now we prove $f(r) \in D \boldsymbol{Z}$. Let $r=t_{1} \cdots t_{c}$ be the prime factorization of r. By the equation $r^{\prime}=r-1=$ $\left(1+t_{1}^{\prime}\right) \cdots\left(1+t_{c}^{\prime}\right)-1$ and the property (iv), we have (v) $(q+1) r^{\prime} \equiv$ $(q+1) t_{1}^{\prime}+\cdots+(q+1) t_{c}^{\prime}(\bmod D \boldsymbol{Z})$. Assume that $e(r)=0$, i.e. $\left(\frac{r}{q}\right)=1$. Then the number $n(r)$ of the prime factor $p \mid M_{1}$ with $\left(\frac{p}{q}\right)=-1$ which appears in the set $\left\{t_{1}, \ldots, t_{c}\right\}$ is even. Hence $f(r)=(q+1) r^{\prime} \equiv(q+1) t_{1}^{\prime}+\cdots+(q+1) t_{c}^{\prime} \equiv$ $(q+1) p_{1}^{\prime} \cdot n(r) \equiv 0(\bmod D \boldsymbol{Z})$ by the properties (v), (i), (ii) and (iii). This implies $f(r) \in D \boldsymbol{Z}$. Next assume that $e(r)=1$, i.e. $\left(\frac{r}{q}\right)=-1$. Then the number $n(r)$ defined the same as above is odd. Hence we have $f(r)=(q+1) r^{\prime}-(q+1) p_{1}^{\prime} \equiv$ $(q+1) t_{1}^{\prime}+\cdots+(q+1) t_{c}^{\prime}-(q+1) p_{1}^{\prime} \equiv(q+1) p_{1}^{\prime} \cdot\{n(r)-1\} \equiv 0(\bmod D \boldsymbol{Z})$ by the properties (v), (i), (ii) and (iii). This implies $f(r) \in D \boldsymbol{Z}$, and completes the proof.

Let d be the following greatest common divisor

$$
\begin{equation*}
d=\left(6, \frac{1}{2}\left(p_{1}-1\right)(q+1), d_{1}, d_{2}\right) . \tag{7.8}
\end{equation*}
$$

Lemma 7.12. Let d be as above. Then $\left[J_{1}: J_{2}\right]=6 / d$.
Proof. Let $\varphi: J_{1} \rightarrow \boldsymbol{Z}$ and D be the same as in Lemma 7.11. Let $\phi: \boldsymbol{Z} \rightarrow$ $\boldsymbol{Z} / 24 \boldsymbol{Z}$ be the homomorphism induced by the reduction modulo 24 . Since $4 d=(24, D)$, we have $4 d \boldsymbol{Z}=24 \boldsymbol{Z}+D \boldsymbol{Z}$. This and Lemma $7.11 \mathrm{imply} \phi\left(\varphi\left(J_{1}\right)\right)=$ $\phi(D \boldsymbol{Z})=4 d \boldsymbol{Z} / 24 \boldsymbol{Z}$. Since $(\phi \circ \varphi)^{-1}(0)=J_{2}$, we have $J_{1} / J_{2} \cong 4 d \boldsymbol{Z} / 24 \boldsymbol{Z} \cong d \boldsymbol{Z} / 6 \boldsymbol{Z}$. This completes the proof.

Lemma 7.13. We have $\left[J_{2}: I\left(T_{0}\right)\right]=3$ or 1 according as the following three conditions (i), (ii) and (iii) are satisfied, or not: (i) $3 \nmid S\left(M_{0}\right)(=q+1)$, (ii) $3 \mid M_{1}$, (iii) there exists a prime factor p of M_{1} satisfying $p \equiv 2(\bmod 3)$.

Proof. This can be proved the same as Lemma 7.7.
By the equation (7.3), Proposition 7.2, and Lemmas 7.10, 7.12 and 7.13, we have the following theorem. For simplicity, we put $a_{(3)}=3$ or 1 according as all the conditions (i), (ii) and (iii) in Lemma 7.13 are satisfied, or not.

THEOREM 7.14. Assume that Case II holds. Let d and $a_{(3)}$ be as above. Then the cuspidal class number h of the curve $X_{T_{0}}$ with $T_{0}=\left\langle M_{0}\right\rangle$ is given by

$$
h=\frac{12 a_{(3)}}{d} \cdot \prod_{\chi \neq 1}\left\{\frac{1}{24} \prod_{p \mid M}(p+\chi([p]))\right\},
$$

where χ runs through all non-trivial characters of T / T_{0} and p all prime factors of M.
Corollary 7.15. Let $M=p q$, where p and q are distinct odd primes with $\left(\frac{p}{q}\right)=-1$. Put $T_{0}=\langle q\rangle$. Then the cuspidal class number h of the curve $X_{T_{0}}$ is the numerator of $(1 / 12)(p-1)(q+1)$. The cuspidal divisor class group is a cyclic group of order h generated by the class of the divisor corresponding to $[p]-1$.

8. The \boldsymbol{p}-Sylow group of the cuspidal divisor class group.

In this section we study the p-Sylow group of the cuspidal divisor class group of the curve $X_{T_{0}}$. In Section 8.1 we consider the case where T_{0} is general. In Section 8.2 we consider the case where $p=3$ and $T_{0}=\left\langle M_{0}\right\rangle$.

8.1. The \boldsymbol{p}-Sylow group with \boldsymbol{T}_{0} general.

In this Section 8.1 we make no assumptions on the group T_{0} except for $T_{0} \neq T$.

Let χ be a character of the group T / T_{0}, and e_{χ} the element of R_{Q} defined by

$$
\begin{equation*}
e_{\chi}=\frac{1}{\left|T / T_{0}\right|} \sum_{\rho \in T / T_{0}} \chi(\rho) \rho \tag{8.1}
\end{equation*}
$$

These e_{χ} are the elementary idempotents of R_{Q}. Let $a(\chi)$ be the eigenvalue of θ belonging to e_{χ}, i.e., $\theta e_{\chi}=a(\chi) e_{\chi}$. Then we have

$$
\begin{equation*}
a(\chi)=\frac{1}{24} \prod_{p \mid M}(1+p \chi([p])) . \tag{8.2}
\end{equation*}
$$

Theorem 8.1. Let $a(\chi)$ be as above, and p a prime $\neq 2,3$. Then $a(\chi) \in \boldsymbol{Z}_{p}$ for all χ, and the p-Sylow group of the cuspidal divisor class group of the curve $X_{T_{0}}$ is isomorphic to the direct sum

$$
\bigoplus_{\chi \neq 1}\left(\boldsymbol{Z}_{p} / a(\chi) \boldsymbol{Z}_{p}\right)
$$

where χ runs through all non-trivial characters of T / T_{0}.
Proof. Since $p \neq 2,3$, the fact $a(\chi) \in \boldsymbol{Z}_{p}$ is obvious. In the following we consider the elements $e_{\chi}, a(\chi)$ and θ as contained in $R \otimes \boldsymbol{Q}_{p}$. As is well-known the p-Sylow group of a finite abelian group G is isomorphic to $G \otimes \boldsymbol{Z}_{p}$. Hence, by the isomorphism (7.1), the p-Sylow group of \mathscr{C} is isomorphic to $\mathscr{C} \otimes \boldsymbol{Z}_{p} \cong$ $\left(R_{0} / I\left(T_{0}\right) \theta\right) \otimes \boldsymbol{Z}_{p} \cong\left(R_{0} \otimes \boldsymbol{Z}_{p}\right) /\left(I\left(T_{0}\right) \theta \otimes \boldsymbol{Z}_{p}\right) \cong\left(R_{0} \otimes \boldsymbol{Z}_{p}\right) /\left(\left(I\left(T_{0}\right) \otimes \boldsymbol{Z}_{p}\right) \theta\right)$. By Corollary 4.5 we have $R_{0} \supset I\left(T_{0}\right) \supset 24 R_{0}$. Since $p \neq 2,3$, this implies $I\left(T_{0}\right) \otimes$ $\boldsymbol{Z}_{p}=R_{0} \otimes \boldsymbol{Z}_{p}$. Thus we have $\mathscr{C} \otimes \boldsymbol{Z}_{p} \cong\left(R_{0} \otimes \boldsymbol{Z}_{p}\right) /\left(\left(R_{0} \otimes \boldsymbol{Z}_{p}\right) \theta\right)$. Since $p \neq 2$, the set of the elements e_{χ} with $\chi \neq 1$ constitutes a basis of $R_{0} \otimes \boldsymbol{Z}_{p}$ over \boldsymbol{Z}_{p} (Takagi [12, Lemma 6.1]). Hence we have $\mathscr{C} \otimes \boldsymbol{Z}_{p} \cong\left(\bigoplus \boldsymbol{Z}_{p} e_{\chi}\right) /\left(\left(\bigoplus \boldsymbol{Z}_{p} e_{\chi}\right) \theta\right) \cong$ $\left(\bigoplus \boldsymbol{Z}_{p} e_{\chi}\right) /\left(\bigoplus \boldsymbol{Z}_{p} e_{\chi} \theta\right) \cong\left(\bigoplus \boldsymbol{Z}_{p} e_{\chi}\right) /\left(\bigoplus \boldsymbol{Z}_{p} a(\chi) e_{\chi}\right) \cong \bigoplus\left(\boldsymbol{Z}_{p} / a(\chi) \boldsymbol{Z}_{p}\right)$.

Proposition 8.2. Assume that the index $\left[R_{0}: I\left(T_{0}\right)\right]$ is prime to 3. Then $a(\chi) \in Z_{3}$ for all $\chi \neq 1$, and the 3 -Sylow group of the cuspidal divisor class group of the curve $X_{T_{0}}$ is isomorphic to the direct sum

$$
\bigoplus_{\chi \neq 1}\left(\boldsymbol{Z}_{3} / a(\chi) \boldsymbol{Z}_{3}\right),
$$

where χ runs through all non-trivial characters of T / T_{0}.
PROOF. As in the proof of Theorem 8.1 we have the isomorphism $\mathscr{C} \otimes \boldsymbol{Z}_{3} \cong$ $\left(R_{0} \otimes \boldsymbol{Z}_{3}\right) /\left(\left(I\left(T_{0}\right) \otimes \boldsymbol{Z}_{3}\right) \theta\right)$. By the assumption we have $I\left(T_{0}\right) \otimes \boldsymbol{Z}_{3}=R_{0} \otimes \boldsymbol{Z}_{3}$, whence $\mathscr{C} \otimes \boldsymbol{Z}_{3} \cong\left(R_{0} \otimes \boldsymbol{Z}_{3}\right) /\left(\left(R_{0} \otimes \boldsymbol{Z}_{3}\right) \theta\right)$. Since the set of the elements e_{χ} with $\chi \neq 1$ is a basis of $R_{0} \otimes \boldsymbol{Z}_{3}$ over \boldsymbol{Z}_{3}, we have $\mathscr{C} \otimes \boldsymbol{Z}_{3} \cong\left(\bigoplus \boldsymbol{Z}_{3} e_{\chi}\right) /\left(\bigoplus \boldsymbol{Z}_{3} a(\chi) e_{\chi}\right)$. Thus we have the inclusion $\boldsymbol{Z}_{3} a(\chi) e_{\chi} \subset \boldsymbol{Z}_{3} e_{\chi}$, which implies $a(\chi) \in \boldsymbol{Z}_{3}$. This completes the proof.

8.2. The 3-Sylow group with $T_{0}=\left\langle M_{0}\right\rangle$.

Here we consider the case where $p=3$ and $T_{0}=\left\langle M_{0}\right\rangle$.
Proposition 8.3. Let $T_{0}=\left\langle M_{0}\right\rangle$. Assume that M is odd, $M_{0} \neq 1, M_{1} \neq 1$, and that either the following condition (i) or (ii) is satisfied: (i) $3 \mid S\left(M_{0}\right)$, (ii) every prime factor p of M_{1} satisfies $p \equiv 1(\bmod 3)$. Then the index $\left[R_{0}: I\left(T_{0}\right)\right]$ is prime to 3 .

Proof. We consider the Cases I and II separately. First, assume that the condition of Case I is satisfied (Section 7.3). By the proof of Theorem 7.8, we have $\left[R_{0}: I\left(T_{0}\right)\right]=6 a_{(3)} / d$. It is easy to see that if either of the conditions (i), (ii) holds, then $a_{(3)}=1$ and $3 \mid d$. This implies that the index $\left[R_{0}: I\left(T_{0}\right)\right]$ is prime to 3 . Next, assume that the condition of Case II is satisfied (Section 7.4). By the proof of Theorem 7.14, we have $\left[R_{0}: I\left(T_{0}\right)\right]=12 a_{(3)} / d$. As in the Case I, we see again that if either of the conditions (i), (ii) holds, then $a_{(3)}=1$ and $3 \mid d$. Hence we see that the index $\left[R_{0}: I\left(T_{0}\right)\right]$ is prime to 3 .

REMARK 8.4. If neither the condition (i) nor (ii) is satisfied, then the index [$\left.R_{0}: I\left(T_{0}\right)\right]$ is not prime to 3 .

By Propositions 8.2 and 8.3 we have the following theorem.
ThEOREM 8.5. Let $T_{0}=\left\langle M_{0}\right\rangle$. Assume that M, M_{0} and M_{1} satisfy the condition of Proposition 8.3. Then $a(\chi) \in \boldsymbol{Z}_{3}$ for all $\chi \neq 1$, and the 3 -Sylow group of the cuspidal divisor class group of the curve $X_{T_{0}}$ is isomorphic to the direct sum

$$
\bigoplus_{\chi \neq 1}\left(\boldsymbol{Z}_{3} / a(\chi) \boldsymbol{Z}_{3}\right),
$$

where χ runs through all non-trivial characters of T / T_{0}.

References

[1] A. O. L. Atkin and J. Lehner, Hecke Operators on $\Gamma_{0}(m)$, Math. Ann., 185 (1970), 134-160.
[2] V. G. Drinfeld, Two theorems on modular curves, Funct. Anal. Appl., 7 (1973), 155-156.
[3] S. Klimek, Thesis, Berkeley, 1975.
[4] D. Kubert and S. Lang, The index of Stickelberger ideals of order 2 and cuspidal class numbers, Math. Ann., 237 (1978), 213-232.
[5] D. Kubert and S. Lang, Modular Units, Grundlehren der Mathematischen Wissenschaften, 244, Springer-Verlag, Berlin, 1981.
[6] J. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., 36 (1972), AMS translation 19-64.
[7] A. Ogg, Rational points on certain elliptic modular curves, AMS Conference, St. Louis, 1972, pp. 211-231.
[8] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462.
[9] T. Takagi, Cuspidal class number formula for the modular curves $X_{1}(p)$, J. Algebra, 151 (1992), 348-374.
[10] T. Takagi, The cuspidal class number formula for the modular curves $X_{1}\left(p^{m}\right)$, J. Algebra, 158 (1993), 515-549.
[11] T. Takagi, The cuspidal class number formula for the modular curves $X_{1}\left(3^{m}\right)$, J. Math. Soc. Japan, 47 (1995), 671-686.
[12] T. Takagi, The cuspidal class number formula for the modular curves $X_{0}(M)$ with M squarefree, J. Algebra, 193 (1997), 180-213.
[13] T. Takagi, The cuspidal class number formula for the modular curves $X_{1}\left(2^{2 n+1}\right)$, J. Algebra, 319 (2008), 3535-3566.
[14] J. Yu, A cuspidal class number formula for the modular curves $X_{1}(N)$, Math. Ann., 252 (1980), 197-216.

Toshikazu Takagi

Faculty of Arts and Sciences at Fujiyoshida Showa University
Fujiyoshida
Yamanashi 403-0005, Japan
E-mail: takagi@cas.showa-u.ac.jp

