A classification of graded extensions in a skew Laurent polynomial ring, II

By Guangming Xie and Hidetoshi Mardbayashi

(Received Jan. 23, 2008)
(Revised Aug. 25, 2008)

Abstract

Let V be a total valuation ring of a division ring K with an automorphism σ and let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$, the skew Laurent polynomial ring. We classify A by distinguishing three different types based on the properties of A_{1} and A_{-1}, and a complete description of A_{i} for all $i \in \boldsymbol{Z}$ is given in the case where A_{1} is not a finitely generated left $O_{l}\left(A_{1}\right)$-ideal.

Introduction.

Let K be a division ring with an automorphism σ and let V be a total valuation ring of K, that is, for any non-zero $k \in K$, either $k \in V$ or $k^{-1} \in V$. A graded subring $A=\oplus_{i \in Z} A_{i} X^{i}$ of $K\left[X, X^{-1} ; \sigma\right]$, the skew Laurent polynomial ring, is called a graded total valuation ring of $K\left[X, X^{-1} ; \sigma\right]$ if for any non-zero homogeneous element $a X^{i}$ of $K\left[X, X^{-1} ; \sigma\right]$, either $a X^{i} \in A$ or $\left(a X^{i}\right)^{-1} \in A$, where Z is the ring of integers. A graded total valuation ring A of $K\left[X, X^{-1} ; \sigma\right]$ is said to be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ if $A_{0}=V$.

This paper is a continuation of [10] which is concerned with the classification of graded extensions. In order to describe the classification in detail, we introduce some notations. For any additive subgroups I and J of K, we set:

$$
\begin{aligned}
& (J: I)_{l}=\{a \in K \mid a I \subseteq J\}, \\
& (J: I)_{r}=\{a \in K \mid I a \subseteq J\}, \\
& I^{-}=\left\{a^{-1} \mid a \in I, a \neq 0\right\} \text { and } \\
& I^{-1}=\{a \in K \mid I a I \subseteq I\}, \text { the inverse of } I .
\end{aligned}
$$

In particular,

[^0]\[

$$
\begin{aligned}
& O_{l}(I)=(I: I)_{l}, \text { the left order of } I \text { and } \\
& O_{r}(I)=(I: I)_{r}, \text { the right order of } I .
\end{aligned}
$$
\]

A non-zero left V-submodule I of K is called a left V-ideal if $I a \subseteq V$ for some non-zero $a \in K$. Similarly we define right V-ideals and V-ideals.

Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ with $W=O_{l}\left(A_{1}\right)$. In [10], we classified graded extensions A of V in $K\left[X, X^{-1} ; \sigma\right]$ by distinguishing five different types based on the properties of A_{1} and A_{-1} in the case where A_{1} is a finitely generated left $O_{l}\left(A_{1}\right)$-ideal as follows:

Case 1: A_{1} is a finitely generated left W-ideal.
Type (a) $A_{1}=V a=a \sigma(V)$ and $A_{-1}=V \sigma^{-1}\left(a^{-1}\right)$;
Type (b) $A_{1}=W a \supset a \sigma(W)$;
Type (c) $A_{1}=W a=W a \sigma(V) \subset a \sigma(W)$;
Type (d) $A_{1}=W a=a \sigma(W), A_{-1}=J(W) \sigma^{-1}\left(a^{-1}\right)$ and $J(W)^{2}$
$=J(W)$, where $J(W)$ is the Jacobson radical of W;
Type (e) $A_{1}=W a=a \sigma(W), A_{-1}=J(W) \sigma^{-1}\left(a^{-1}\right)$ and $J(W)$

$$
=W b^{-1} \text { for some } b \in K
$$

In this paper, we will classify graded extensions A of V in the case where A_{1} is not a finitely generated left W-ideal. For this, we introduce further notations.

For any left V-ideal I and right V-ideal J, we define

$$
\begin{aligned}
{ }^{*} I & =\cap\{W c \mid I \subseteq W c, c \in K\}, \text { where } W=O_{l}(I) \text { and } \\
J^{*} & =\cap\{c U \mid J \subseteq c U, c \in K\}, \text { where } U=O_{r}(J) .
\end{aligned}
$$

If A_{1} is not a finitely generated left W-ideal, then there are two cases, that is, either ${ }^{*} A_{1} \supset A_{1}$ or ${ }^{*} A_{1}=A_{1}$. In the former case, we will obtain ${ }^{*} A_{1}=W a, A_{1}=$ $J(W) a$ for some $a \in K$. In the latter case, we will divide A into two types by the properties of $M_{i}=A_{1} \sigma\left(A_{1}\right) \cdots \sigma^{i-1}\left(A_{1}\right)$ for all $i \in N$, the set of all natural numbers. Now we can classify A by distinguishing three different types based on the properties of A_{1} and A_{-1} by using *-operation as follows:

Case 2: A_{1} is not a finitely generated left W-ideal, where $W=O_{l}\left(A_{1}\right)$.
Type (f) ${ }^{*} A_{1} \supset A_{1}$;
Type (g) ${ }^{*} A_{1}=A_{1}$ and ${ }^{*} M_{i}$ is not a principal left W-ideal for any $i \in \boldsymbol{N}$;
Type (h) ${ }^{*} A_{1}=A_{1}$ and ${ }^{*} M_{l}$ is a principal left W-ideal for some $l \in N$.
In Section 1, we will give a complete description of A_{i} for all $i \in Z$ and study
types (f), (g) and (h) in the following ways:
For Type (f), $A_{-1}=U \sigma^{-1}\left(a^{-1}\right)$ is a principal left U-ideal, where U is an overring of V with $\sigma(U)=a^{-1} W a$. Then we are in a similar situation as in [10, Theorem 1.6]. For Type (g), it will be shown that $A=\oplus_{i \in Z} M_{i} X^{i}$, where $M_{-i}=$ $\sigma^{-i}\left(\left(V: M_{i}\right)_{r}\right)$ for any $i \in N$ (Theorem 1.14). For Type (h), A is not uniquely determined by the properties of A_{1}, A_{-1}, and the structure of A is complicated (Theorem 1.20).

In Section 2, we will provide some examples of graded extensions of V in $K\left[X, X^{-1} ; \sigma\right]$ to illustrate the classification. We will discuss the ideal theory in the forthcoming paper and refer the readers to $[\mathbf{7}]$ for some basic properties of noncommutative valuation rings.

1. Main results.

Throughout this paper, V is a total valuation ring of a division ring K. We start with the following lemma whose proofs are similar to ones in [7, Section 6].

Lemma 1.1. Let I be a left V-ideal with $W=O_{l}(I)$ and $U=O_{r}(I)$. Suppose that U is a total valuation ring of K. Then
(1) The following are equivalent:
(a) I is not a principal left V-ideal.
(b) $I(V: I)_{r}=J(W)$.
(c) $I=J(V) I$.
(2) $U=O_{l}\left(I^{-1}\right), W=O_{r}\left(I^{-1}\right)$ and $I^{*}=I^{-1-1}={ }^{*} I$.
(3) If ${ }^{*} I \supset I$, then ${ }^{*} I=W$ and $I=J(W)$ a for some $a \in K$.
(4) Suppose that I is not a principal left W-ideal. Then $I^{-1}=(V: I)_{r}$ and ${ }_{v} I=\left(V:(V: I)_{r}\right)_{l} \subseteq{ }^{*} I$.
(5) I is not a principal left W-ideal if and only if it is not a principal right U-ideal. In this case, in particular, $J(W)^{2}=J(W)$ and $J(U)^{2}=J(U)$.

Proof.
(1) $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: The proof is similar to one in [6, Lemma 1.2].
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: Suppose that $I \supset J(V) I$. Then there is a $b \in I \backslash J(V) I$ with $J(V) b \supseteq J(V) I$ by [7, Lemma 6.3]. Thus $I b^{-1} \subseteq O_{r}(J(V))=V$ by [7, Lemma 6.8] and so $b^{-1} \in(V: I)_{r}$. Hence $1=b b^{-1} \in I(V: I)_{r}=J(W)$, a contradiction. Therefore $I=J(V) I$ follows.
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$: Suppose that $I=V c$ for some $c \in I$. Then $V c=I=J(V) I=$ $J(V) c$, a contradiction. Hence I is not a principal left V-ideal.
(2) and (3): These are proved in the same ways as in [7, Lemma 6.10 and Proposition 6.13].
(4) Since $I=J(W) I$, we easily have $(V: I)_{r}=(W: I)_{r}$ which is equal to I^{-1}.

Hence ${ }_{v} I \subseteq{ }^{*} I$ follows since ${ }^{*} I=\left(W:(W: I)_{r}\right)_{l}$ by [7, Proposition 6.13].
(5) Suppose that I is not a principal left W-ideal. If $I=a U$ for some $a \in K$, then $I=\left(a U a^{-1}\right) a=W a$, a contradiction. Hence I is not a principal right U-ideal. The "only if" part is similar and the last statement follows from the same argument as in [7, Proposition 6.13.]

In the case where $J(W)^{2}=J(W)$, we have the following special properties of ideals which are needed later.

Lemma 1.2. Let I be a left W and right U-ideal, where W is an overring of V and U is a total valuation ring of K. Suppose that $J(W)^{2}=J(W)$. Then
(1) If $I \supset W c$ for some $c \in K$, then $J(W) I \supset W c$.
(2) If $J(W) I \supset J(W) c$ for some $c \in K$, then $J(W) I \supset W c$.

Proof.
(1) Let $b \in I \backslash W c$. Then $W b \supset W c$ and so $c b^{-1} \in J(W)$. Thus $W c \subseteq J(W) I$. But $J(W) I$ is not a principal left W-ideal by Lemma1.1, since $J(W)^{2}=J(W)$. Hence $J(W) I \supset W c$.
(2) We have either $J(W) I \supset W c$ or $J(W) I \subseteq W c$. Suppose that $J(W) I \subseteq W c$. Then $J(W) I c^{-1} \subseteq J(W)$ and so $I c^{-1} \subseteq O_{r}(J(W))=W$. So $I \subseteq W c$ and thus $J(W) I \subseteq J(W) c$, a contradiction. Hence $J(W) I \supset W c$.

Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. Then note that A_{i} is a left V and right $\sigma^{i}(V)$-ideal for any $i \in \boldsymbol{Z}$ by [2, Lemma 1.1].

Lemma 1.3. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. Suppose that A_{i} is not a principal left V-ideal for some $i \in \boldsymbol{Z}$ with $W=O_{l}\left(A_{i}\right)$. Then
(1) $A_{-i}=\sigma^{-i}\left(\left(V: A_{i}\right)_{r}\right)$.
(2) If A_{i} is not a principal left W-ideal, then
(a) $A_{-i}=\sigma^{-i}\left(\left(W: A_{i}\right)_{r}\right)=\sigma^{-i}\left(A_{i}^{-1}\right)$ and
(b) If $A_{i}=J(W)$ a for some $a \in K$, then $A_{-i}=\sigma^{-i}\left(a^{-1} W\right)$.

Proof.
(1) $V \supseteq A_{i} \sigma^{i}\left(A_{-i}\right)$ implies $\sigma^{i}\left(A_{-i}\right) \subseteq\left(V: A_{i}\right)_{r}$. Suppose that $\left(V: A_{i}\right)_{r} \supset$ $\sigma^{i}\left(A_{-i}\right)$. Then for any $c \in\left(V: A_{i}\right)_{r} \backslash \sigma^{i}\left(A_{-i}\right), c^{-1} \notin \sigma^{i}\left(A_{-i}^{-}\right)$. So $c^{-1} \in A_{i}$ by [10, Lemma 1.1]. Thus $1=c^{-1} c \in A_{i}\left(V: A_{i}\right)_{r}=J(W)$ by Lemma 1.1, a contradiction. Hence $\sigma^{i}\left(A_{-i}\right)=\left(V: A_{i}\right)_{r}$, that is, $A_{-i}=\sigma^{-i}\left(\left(V: A_{i}\right)_{r}\right)$.
(2) (a) First note that $J(W)^{2}=J(W)$ and $J(W) A_{i}=A_{i}$ by Lemma 1.1. So $\left(V: A_{i}\right)_{r}=\left(W: A_{i}\right)_{r}$ by the proof of Lemma1.1 (4). Hence $A_{-i}=\sigma^{-i}((W$: $\left.\left.A_{i}\right)_{r}\right)=\sigma^{-i}\left(A_{i}^{-1}\right)$ since $A_{i}^{-1}=\left(W: A_{i}\right)_{r}$.
(b) If $A_{i}=J(W) a$ for some $a \in K$, then $\left(W: A_{i}\right)_{r}=a^{-1} W$, because $J(W)^{2}=J(W)$. Hence $A_{-i}=\sigma^{-i}\left(a^{-1} W\right)$.

Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ with $W=$ $O_{l}\left(A_{1}\right)$ and $\sigma(U)=O_{r}\left(A_{1}\right)$. Then it follows that $W \supseteq V$ and $U \supseteq V$, since A_{1} is a left V and right $\sigma(V)$-ideal. Suppose that A_{1} is not a principal left W-ideal. Then $J(W)^{2}=J(W)$ and $J(U)^{2}=J(U)$ by Lemma 1.1, and there are two cases, namely, either ${ }^{*} A_{1}=A_{1}$ or ${ }^{*} A_{1} \supset A_{1}$. In the latter case, we have $A_{1}=J(W) a$ and ${ }^{*} A_{1}=$ $W a$ for some $a \in K$ by Lemma 1.1. Conversely, if $A_{1}=J(W) a$ for some $a \in K$, then ${ }^{*} A_{1}=W a \supset A_{1}$ by [7, Lemma 6.12].

First we will study Type (f), namely, ${ }^{*} A_{1} \supset A_{1}$.
Proposition 1.4. Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ with $W=O_{l}\left(A_{1}\right)$ and $\sigma(U)=O_{r}\left(A_{1}\right)$. Suppose that A_{1} is not a principal left W-ideal and that ${ }^{*} A_{1} \supset A_{1}$, that is, $A_{1}=J(W)$ a for some $a \in K$. Then
(1) $\sigma(U)=a^{-1} W a$.
(2) $A_{1}=J(W) a=a \sigma(J(U))$ and $A_{-1}=\sigma^{-1}\left(a^{-1} W\right)=U \sigma^{-1}\left(a^{-1}\right)$.
(3) $O_{l}\left(A_{-1}\right)=U$ and $O_{r}\left(A_{-1}\right)=\sigma^{-1}(W)$.

Proof.
(1) It follows that $\sigma(U)=O_{r}(J(W) a)=a^{-1} W a$ since $O_{r}(J(W))=W$.
(2) Since $\sigma(J(U))=a^{-1} J(W) a$ by (1), we have $A_{1}=J(W) a=a \sigma(J(U))$ and $A_{-1}=\sigma^{-1}\left(a^{-1} W\right)=\sigma^{-1}\left(\sigma(U) a^{-1}\right)=U \sigma^{-1}\left(a^{-1}\right)$ by Lemma 1.3 and (1).
(3) This easily follows from (2).

Now as in $[\mathbf{1 0}$, Section 2], for a fixed non-zero $a \in K$, we set

$$
\alpha_{i}=a \sigma(a) \cdots \sigma^{i-1}(a), \alpha_{-i}=\sigma^{-i}\left(\alpha_{i}^{-1}\right) \text { for all } i \in \boldsymbol{N} \text { and } \alpha_{0}=1 .
$$

Then we have

$$
\alpha_{-i}=\sigma^{-1}\left(a^{-1}\right) \sigma^{-2}\left(a^{-1}\right) \cdots \sigma^{-i}\left(a^{-1}\right) \text { for all } i \in \boldsymbol{N}, \alpha_{i}=\sigma^{i}\left(\alpha_{-i}^{-1}\right)
$$

and

$$
\alpha_{i} \sigma^{i}\left(\alpha_{j}\right)=\alpha_{i+j} \text { for all } i, j \in Z .
$$

Furthermore, by using the properties of A_{-1} in Proposition 1.4, we can consider, as in $[\mathbf{1 0}$, Section 2], the following two cases:
(a) $A_{-1}=U \alpha_{-1} \supseteq \alpha_{-1} \sigma^{-1}(U)$ (equivalently, $\left.W \alpha_{-1} \supseteq \alpha_{-1} \sigma^{-1}(W)=A_{-1}\right)$.
(b) $A_{-1}=U \alpha_{-1} \subset \alpha_{-1} \sigma^{-1}(U)$ (equivalently, $\left.W \alpha_{-1} \subset \alpha_{-1} \sigma^{-1}(W)=A_{-1}\right)$.

The following proposition is clear by [10, Lemma 1.1].
Proposition 1.5. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. Set $Y=X^{-1}$ and $B_{i}=A_{-i}$ for all $i \in \boldsymbol{Z}$. Then $B=\oplus_{i \in Z} B_{i} Y^{i}$ is a graded extension of V in $K\left[Y, Y^{-1} ; \sigma^{-1}\right]$.

Since $B_{1}=A_{-1}$ is a principal left U-ideal for Type (f), we have the following theorem by [10, Theorems 2.4, 2.5 and 2.6] and Proposition 1.5.

THEOREM 1.6. Let W be an overring of V with $J(W)^{2}=J(W)$ and let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a subset of $K\left[X, X^{-1} ; \sigma\right]$ with $A_{0}=V, A_{1}=J(W)$ a which is a right $\sigma(V)$-ideal for some $a \in K$, and $A_{-1}=\sigma^{-1}\left(a^{-1} W\right)$. Set $O_{r}\left(A_{1}\right)=\sigma(U)$ for some overring U of V. Then A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ if and only if one of the following properties hold.
(1) If $A_{-1}=U \alpha_{-1} \supseteq \alpha_{-1} \sigma^{-1}(U)$, then $A_{-i}=U \alpha_{-i}$ and $A_{i}=\alpha_{i} \sigma^{i}(J(U))$ for all $i \in N$.
(2) If $A_{-1}=U \alpha_{-1} \subset \alpha_{-1} \sigma^{-1}(U)$, then $A_{-i}=\alpha_{-i} \sigma^{-i}(W)$ and $A_{i}=J(W) \alpha_{i}$ for all $i \in N$.

Next we will study the case where ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal. So in the remainder of this paper, suppose that A_{1} is a left V and right $\sigma(V)$-ideal with $W=O_{l}\left(A_{1}\right), \sigma(U)=O_{r}\left(A_{1}\right)$ and ${ }^{*} A_{1}=A_{1}$ is not a principal left W-ideal. In this case, note that $J(W)^{2}=J(W)$ and $J(U)^{2}=J(U)$. We will study the graded extensions by ideal theoretic methods instead of the elements α_{i} above as follows:

Let $A_{-1}=\sigma^{-1}\left(\left(V: A_{1}\right)_{r}\right)$ and set

$$
M_{0}=V, M_{i}=A_{1} \sigma\left(A_{1}\right) \cdots \sigma^{i-1}\left(A_{1}\right), M_{-i}=\sigma^{-i}\left(\left(V: M_{i}\right)_{r}\right) \text { for all } i \in \boldsymbol{N}
$$

and

$$
N_{0}=V, N_{-i}=A_{-1} \sigma^{-1}\left(A_{-1}\right) \cdots \sigma^{-i+1}\left(A_{-1}\right), N_{i}=\sigma^{i}\left(\left(V: N_{-i}\right)_{r}\right) \text { for all } i \in N .
$$

Then we have:

$$
\begin{aligned}
& M_{i} \sigma^{i}\left(M_{-i}\right) \subseteq V, M_{i} \sigma^{i}\left(M_{j}\right)=M_{i+j}, N_{-i} \sigma^{-i}\left(N_{i}\right) \subseteq V \text { and } \\
& N_{-i} \sigma^{-i}\left(N_{-j}\right)=N_{-i-j} \text { for all } i, j \in N
\end{aligned}
$$

Note that $N_{1}=A_{1}$, because $A_{-1}=\sigma^{-1}\left(A_{1}^{-1}\right)$ and is not a finitely generated left U-ideal and so, by Lemma 1.1, $N_{1}=\sigma\left(\left(V: A_{-1}\right)_{r}\right)=\sigma\left(\left(V: \sigma^{-1}\left(A_{1}^{-1}\right)\right)_{r}\right)=$ $\sigma\left(\left(\sigma^{-1}\left(A_{1}^{-1}\right)\right)^{-1}\right)=\sigma\left(\sigma^{-1}\left(A_{1}^{-1-1}\right)\right)={ }^{*} A_{1}=A_{1}$. Furthermore, we have that ${ }^{*} A_{1}=$ A_{1} is not a principal left W-ideal if and only if ${ }^{*} A_{-1}=A_{-1}$ is not a principal left U-ideal by Proposition 1.5.

Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. We will show that the properties of A depend on the properties of $M_{i}(i \in N)$ (see Theorems 1.14 and 1.20). There are two cases, that is,

Type $(\mathrm{g}){ }^{*} M_{i}$ is not a principal left W-ideal for any $i \in \boldsymbol{N}$;
Type (h) ${ }^{*} M_{l}$ is a principal left W-ideal for some $l \in N$.
We will study these two cases in the remainder of this section. At first, we will show that both $M=\oplus_{i \in \boldsymbol{Z}} M_{i} X^{i}$ and $N=\oplus_{i \in \boldsymbol{Z}} N_{i} X^{i}$ are graded extensions of V in $K\left[X, X^{-1} ; \sigma\right]$ with $M_{1}=A_{1}=N_{1}$.

Lemma 1.7. Let I be a left V and right $\sigma^{i}(V)$-ideal for some $i \in Z$ such that I is not a principal left V-ideal as well as not a principal right $\sigma^{i}(V)$-ideal. Then $(V: I)_{r}=\left(\sigma^{i}(V): I\right)_{l}$.

Proof. Since both $(V: I)_{r}$ and $\left(\sigma^{i}(V): I\right)_{l}$ are left $\sigma^{i}(V)$-ideals, we have either $(V: I)_{r} \supset\left(\sigma^{i}(V): I\right)_{l}$ or $(V: I)_{r} \subseteq\left(\sigma^{i}(V): I\right)_{l}$. Suppose that the first case occurs. Then for any $b \in(V: I)_{r} \backslash\left(\sigma^{i}(V): I\right)_{l}$, there is a $c \in I$ with $b c \notin \sigma^{i}(V)$. So $c^{-1} b^{-1} \in \sigma^{i}(J(V))$ and thus $c^{-1}=\left(c^{-1} b^{-1}\right) b \in \sigma^{i}(J(V)) b \subseteq(V: I)_{r}$. Hence $1=$ $c c^{-1} \in I(V: I)_{r} \subseteq J(V)$ by Lemma1.1 (1), a contradiction. Similarly, we have $\left(\sigma^{i}(V): I\right)_{l} \subseteq(V: I)_{r}$ by the assumptions and the right hand version of Lemma 1.1 (1). Hence $(V: I)_{r}=\left(\sigma^{i}(V): I\right)_{l}$ follows.

Lemma 1.8. Let I and J be subsets of $K, 0 \in I, 0 \in J$ and $i \in Z$. Then
(1) If I is a left V-ideal and $J=\sigma^{-i}\left((V: I)_{r}\right)$. Then $I \cup \sigma^{i}\left(J^{-}\right)=K$.
(2) $I \cup \sigma^{i}\left(J^{-}\right)=K$ if and only if $J \cup \sigma^{-i}\left(I^{-}\right)=K$.

Proof.
(1) For any $b \in K \backslash I$, we have $V b \supset I$, that is, $I b^{-1} \subset V$. So $b^{-1} \in(V: I)_{r}=$ $\sigma^{i}(J)$ and thus $b \in \sigma^{i}\left(J^{-}\right)$. Hence $I \cup \sigma^{i}\left(J^{-}\right)=K$.
(2) Suppose that $I \cup \sigma^{i}\left(J^{-}\right)=K$ and $c \in K \backslash J$. Then $c^{-1} \notin J^{-}$and so $\sigma^{i}\left(c^{-1}\right) \in I$. Thus $c^{-1} \in \sigma^{-i}(I)$, that is, $c \in \sigma^{-i}\left(I^{-}\right)$. Hence $J \cup \sigma^{-i}\left(I^{-}\right)=K$. Similarly, $J \cup \sigma^{-i}\left(I^{-}\right)=K$ implies $I \cup \sigma^{i}\left(J^{-}\right)=K$.

Proposition 1.9. Let A_{1} be a left V and right $\sigma(V)$-ideal with $O_{l}\left(A_{1}\right)=W$ and $O_{r}\left(A_{1}\right)=\sigma(U)$. Suppose that ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal.

Then both $M=\oplus_{i \in \boldsymbol{Z}} M_{i} X^{i}$ and $N=\oplus_{i \in \boldsymbol{Z}} N_{i} X^{i}$ are graded extensions of V in $K\left[X, X^{-1} ; \sigma\right]$ with $M_{1}=A_{1}=N_{1}$.

Proof. By Lemma 1.8, $M_{i} \cup \sigma^{i}\left(M_{-i}^{-}\right)=K$ for all $i \in \boldsymbol{Z}$. So it suffices to prove that $M_{i} \sigma^{i}\left(M_{j}\right) \subseteq M_{i+j}$ for all $i, j \in \boldsymbol{Z}$ by [10, Lemma 1.1]. Let $i, j \in \boldsymbol{N}$. Then $M_{i} \sigma^{i}\left(M_{j}\right)=M_{i+j}$ by the definition. If $i \geq j$, then

$$
\begin{aligned}
M_{i} \sigma^{i}\left(M_{-j}\right) & =M_{i-j} \sigma^{i-j}\left(M_{j}\right) \sigma^{i-j}\left(\sigma^{j}\left(M_{-j}\right)\right) \\
& =M_{i-j} \sigma^{i-j}\left(M_{j} \sigma^{j}\left(M_{-j}\right)\right) \\
& \subseteq M_{i-j} \sigma^{i-j}(V)=M_{i-j} .
\end{aligned}
$$

If $i<j$, then
$V \supseteq M_{j} \sigma^{j}\left(M_{-j}\right)=M_{j-i} \sigma^{j-i}\left(M_{i}\right) \sigma^{j-i}\left(\sigma^{i}\left(M_{-j}\right)\right)=M_{j-i} \sigma^{j-i}\left(M_{i} \sigma^{i}\left(M_{-j}\right)\right)$.
So $\sigma^{j-i}\left(M_{i} \sigma^{i}\left(M_{-j}\right)\right) \subseteq\left(V: M_{j-i}\right)_{r}=\sigma^{j-i}\left(M_{i-j}\right)$ and thus $M_{i} \sigma^{i}\left(M_{-j}\right) \subseteq M_{i-j}$.
Since $J(V) A_{1}=A_{1}=A_{1} \sigma(J(V))$ by Lemma1.1 and its right version, it follows that $J(V) M_{i}=M_{i}=M_{i} \sigma^{i}(J(V))$. So M_{i} is not a principal left V-ideal as well as not a principal right $\sigma^{i}(V)$-ideal. Hence, by Lemma 1.7, we have

$$
\begin{equation*}
\sigma^{i}\left(M_{-i}\right) M_{i}=\left(\sigma^{i}(V): M_{i}\right)_{l} M_{i} \subseteq \sigma^{i}(V) \tag{*}
\end{equation*}
$$

Thus if $i \leq j$, then

$$
\sigma^{i}\left(M_{-i}\right) M_{j}=\sigma^{i}\left(M_{-i}\right) M_{i} \sigma^{i}\left(M_{j-i}\right) \subseteq \sigma^{i}(V) \sigma^{i}\left(M_{j-i}\right)=\sigma^{i}\left(M_{j-i}\right) .
$$

Hence $M_{-i} \sigma^{-i}\left(M_{j}\right) \subseteq M_{j-i}$.
If $i>j$, then, by $(*), \sigma^{i}(V) \supseteq \sigma^{i}\left(M_{-i}\right) M_{j} \sigma^{j}\left(M_{i-j}\right)$ and so, by Lemma 1.7,

$$
\begin{aligned}
\sigma^{i}\left(M_{-i}\right) M_{j} & \subseteq\left(\sigma^{i}(V): \sigma^{j}\left(M_{i-j}\right)\right)_{l}=\sigma^{j}\left(\left(\sigma^{i-j}(V): M_{i-j}\right)_{l}\right) \\
& =\sigma^{j}\left(\left(V: M_{i-j}\right)_{r}\right)=\sigma^{j}\left(\sigma^{i-j}\left(M_{-i+j}\right)\right)=\sigma^{i}\left(M_{-i+j}\right)
\end{aligned}
$$

Hence $M_{-i} \sigma^{-i}\left(M_{j}\right) \subseteq M_{-i+j}$ follows.
Finally, since $\quad V \supseteq M_{j} \sigma^{j}\left(M_{-j}\right)=M_{j} \sigma^{j}(V) \sigma^{j}\left(M_{-j}\right) \supseteq M_{j} \sigma^{j}\left(M_{i} \sigma^{i}\left(M_{-i}\right)\right)$, $\sigma^{j}\left(M_{-j}\right)=M_{i+j} \sigma^{i+j}\left(M_{-i}\right) \sigma^{j}\left(M_{-j}\right)$, we have $\sigma^{i+j}\left(M_{-i}\right) \sigma^{j}\left(M_{-j}\right) \subseteq\left(V: M_{i+j}\right)_{r}$ and so $M_{-i} \sigma^{-i}\left(M_{-j}\right) \subseteq \sigma^{-i-j}\left(\left(V: M_{i+j}\right)_{r}\right)=M_{-i-j}$. Hence M is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. Since ${ }^{*} A_{-1}=A_{-1}$ is not a principal left U-ideal, N is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ by the proof above and Proposition 1.5.

Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that
${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Then either $W A_{i}$ is not a principal left W-ideal for any $i \in N$ or $W A_{l}$ is a principal left W-ideal for some $l \in N$.

Lemma 1.10. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Set $\sigma(U)=O_{r}\left(A_{1}\right)$. Then
(1) $A_{1} \sigma\left(A_{-1}\right)=J(W)$ and $J(W) A_{i+1}=A_{1} \sigma\left(A_{i}\right)$ for all $i \in N$.
(2) If $W A_{i}$ is not a principal left W-ideal for some $i \in N(i>1)$, then $A_{i}=A_{1} \sigma\left(A_{i-1}\right)$.
(3) $A_{-1} \sigma^{-1}\left(A_{1}\right)=J(U)$ and $J(U) A_{-i-1}=A_{-1} \sigma^{-1}\left(A_{-i}\right)$ for all $i \in N$.
(4) If $U A_{-i}$ is not a principal left U-ideal for some $i \in N(i>1)$, then $A_{-i}=A_{-1} \sigma^{-1}\left(A_{-i+1}\right)$.

Proof.
(1) It follows from Lemmas 1.1 and 1.3 that $A_{1} \sigma\left(A_{-1}\right)=A_{1}\left(V: A_{1}\right)_{r}=J(W)$. $A_{-1} \sigma^{-1}\left(A_{i+1}\right) \subseteq A_{i}$ implies $\sigma\left(A_{-1}\right) A_{i+1} \subseteq \sigma\left(A_{i}\right)$. Thus $J(W) A_{i+1}=A_{1} \sigma\left(A_{-1}\right)$ $A_{i+1} \subseteq A_{1} \sigma\left(A_{i}\right) \subseteq A_{i+1}$. Hence $J(W) A_{i+1}=A_{1} \sigma\left(A_{i}\right)$ since $J(W) A_{1}=A_{1}$ and $J(W)^{2}=J(W)$.
(2) By the assumptions, Lemma 1.1 and (1), we have $A_{i} \subseteq W A_{i}=$ $J(W) W A_{i}=J(W) A_{i}=A_{1} \sigma\left(A_{i-1}\right) \subseteq A_{i}$. Hence $A_{i}=A_{1} \sigma\left(A_{i-1}\right)$ follows.
(3) and (4) can be got by Proposition 1.5 and (1), (2).

Lemma 1.11. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that $A_{1}={ }^{*} A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Suppose that $W A_{i}$ is not a principal left W-ideal for any $i \in N$. Then $A=M$.

Proof. Suppose that $W A_{i}$ is not principal left W-ideal for any $i \in N$. Then $A_{i}=A_{1} \sigma\left(A_{i-1}\right)$ for all $i \in N$ by Lemma 1.10. Hence we have $A_{i}=M_{i}$ for all $i \in N$ by induction on i. Furthermore, by Lemma 1.3, we have $A_{-i}=\sigma^{-i}\left(\left(V: A_{i}\right)_{r}\right)=$ $\sigma^{-i}\left(\left(V: M_{i}\right)_{r}\right)=M_{-i}$. Hence $A=M$ follows.

Note that $A_{1}={ }^{*} A_{1}$ which is not a principal left $O_{l}\left(A_{1}\right)$-ideal if and only if $A_{-1}={ }^{*} A_{-1}$ which is not a principal left $O_{l}\left(A_{-1}\right)$-ideal. Now the following remark is clear by Proposition 1.5 and Lemma 1.11.

Remark. Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that $A_{1}={ }^{*} A_{1}$ and it is not a principal left $O_{l}\left(A_{1}\right)$-ideal. Set $U=O_{l}\left(A_{-1}\right)$. Suppose that $U A_{-i}$ is not a principal left U-ideal for any $i \in N$. Then $A=N$.

Lemma 1.12. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Set
$\sigma(U)=O_{r}\left(A_{1}\right)$.
(1) Suppose that either $W A_{l}=W c$ or $A_{l}=J(W) c$ for some $c \in K$ and $l \in \boldsymbol{N}(l>1)$. Then $\sigma\left(A_{l-1}\right)=A_{1}^{-1} c$ and $O_{l}\left(A_{l-1}\right)=U$.
(2) Suppose that $W A_{l}=W c$ for some $c \in K$ and $l \in N$ (assume that l is the smallest natural number for this property). Then $M_{l}=J(W) c$ and $U=W$.
(3) Suppose that either $U A_{-l}=U c$ or $A_{-l}=J(U) c$ for some $c \in K$ and $l \in \boldsymbol{N}(l>1)$. Then $\sigma^{-1}\left(A_{-l+1}\right)=A_{-1}^{-1} c$ and $O_{l}\left(A_{-l+1}\right)=W$.
(4) Suppose that $U A_{-l}=U c$ for some $c \in K$ and $l \in N$ (assume that l is the smallest natural number for this property). Then $N_{-l}=J(U) c$ and $U=W$.

Proof.
(1) Suppose that $A_{l}=J(W) c$. Then, from $J(W) c=A_{l} \supseteq A_{1} \sigma\left(A_{l-1}\right)$, we derive $\sigma\left(A_{l-1}\right) \subseteq\left(J(W) c: A_{1}\right)_{r}=\left(\left(W: A_{1}\right)_{r}\right) c=A_{1}^{-1} c$, because $J(W) A_{1}=A_{1}$. On the other hand, since $A_{-1}=\sigma^{-1}\left(A_{1}^{-1}\right)$, we have

$$
A_{l-1} \supseteq A_{-1} \sigma^{-1}\left(A_{l}\right)=\sigma^{-1}\left(A_{1}^{-1} A_{l}\right)=\sigma^{-1}\left(A_{1}^{-1} J(W) c\right)=\sigma^{-1}\left(A_{1}^{-1} c\right),
$$

because A_{1}^{-1} is not a principal right W-ideal. Hence $\sigma\left(A_{l-1}\right)=A_{1}^{-1} c$ follows. Furthermore, $\sigma\left(O_{l}\left(A_{l-1}\right)\right)=O_{l}\left(\sigma\left(A_{l-1}\right)\right)=O_{l}\left(A_{1}^{-1} c\right)=O_{l}\left(A_{1}^{-1}\right)=O_{r}\left(A_{1}\right)=\sigma(U)$, which shows $O_{l}\left(A_{l-1}\right)=U$. In the case where $W A_{l}=W c$, the statements are proved similarly.
(2) For each $i(2 \leq i \leq l-1)$, we have $A_{i}=A_{1} \sigma\left(A_{i-1}\right)$ by Lemma 1.10 and so $A_{i}=M_{i}$ inductively. Hence $M_{l}=M_{1} \sigma\left(M_{l-1}\right)=A_{1} \sigma\left(A_{l-1}\right)=A_{1} A_{1}^{-1} c=J(W) c$ by (1) and Lemmas 1.1, 1.3. That $U=W$ follows from $W=O_{l}(J(W) c)=O_{l}\left(M_{l}\right) \supseteq$ $O_{l}\left(M_{l-1}\right) \supseteq O_{l}\left(M_{1}\right)=W$ and $O_{l}\left(M_{l-1}\right)=O_{l}\left(A_{l-1}\right)=U$ by (1).
(3) and (4) can be got by Proposition 1.5 and (1), (2).

Since M and N are graded extensions of V in $K\left[X, X^{-1} ; \sigma\right]$ with $M_{1}=$ $A_{1}=N_{1}$, we have the following remark from the proofs of Lemma 1.12.

Remark. Suppose that either $M_{l}=J(W) c$ for some $c \in K$ and $l \in N$ or $N_{-l^{\prime}}=J(U) c^{\prime}$ for some $c^{\prime} \in K$ and $l^{\prime} \in N$. Then $U=W$.

Lemma 1.13. Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ such that ${ }^{*} A_{1}=A_{1}$ and it is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Set $\sigma(U)=O_{r}\left(A_{1}\right)$. Then
(1) $J(W) A_{i}=M_{i}$ for all $i \in \boldsymbol{N}$.
(2) $J(U) A_{-i}=N_{-i}$ for all $i \in N$.

Proof.
(1) If $W A_{i}$ is not a principal left W-ideal for any $i \in N$, then $A_{i}=M_{i}$ for all
$i \in \boldsymbol{N}$ by Lemma 1.11 so that $J(W) A_{i}=J(W) M_{i}=M_{i}$. If $W A_{l}$ is a principal left W-ideal for some $l \in N$, then $U=W$ by Lemma 1.12. We inductively suppose that $J(W) A_{i}=M_{i}$ for some $i \in \boldsymbol{N}$. Then $M_{i+1}=M_{1} \sigma\left(M_{i}\right)=A_{1} \sigma\left(J(W) A_{i}\right)=$ $A_{1} \sigma\left(J(U) A_{i}\right)=A_{1} \sigma\left(A_{i}\right)=J(W) A_{i+1}$ by Lemma 1.10 since A_{1} is not a principal right $\sigma(U)$-ideal.
(2) can be got by Proposition 1.5 and (1).

We are now ready to prove the following theorem which characterizes Type (g):

Theorem 1.14. Let $A=\oplus_{i \in Z} A_{i} X^{i}$ be a subset of $K\left[X, X^{-1} ; \sigma\right]$ with $A_{0}=V$ such that A_{1} is a left V and right $\sigma(V)$-ideal with ${ }^{*} A_{1}=A_{1}$, which is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Suppose that ${ }^{*} M_{i}$ is not a principal left W-ideal for any $i \in N$. Then A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ if and only if $A=M=\oplus_{i \in \boldsymbol{Z}} M_{i} X^{i}$.

Proof. Suppose that A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. By Lemma 1.13. $J(W) A_{i}=M_{i}$ for all $i \in \boldsymbol{N}$. Assume that $W A_{j}=W c$ for some $j \in \boldsymbol{N}$ and $c \in K$. Then ${ }^{*} M_{j}={ }^{*}\left(J(W) A_{j}\right)={ }^{*}(J(W) c)=W c$, a contradiction. Thus $W A_{i}$ is not a principal left W-ideal for any $i \in N$. Hence $A=M=\oplus_{i \in Z} M_{i} X^{i}$ by Lemma 1.11. Conversely, if $A=M$, then A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ by Proposition 1.9.

Since $N=\oplus_{i \in \boldsymbol{Z}} N_{i} X^{i}$ is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ with $N_{1}=A_{1}$, we have the following

Corollary 1.15. Suppose that ${ }^{*} M_{i}$ is not a finitely generated left W-ideal for any $i \in N$. Then $N=M$.

Finally we will study Type (h), that is, $M_{l}=J(W) c$ for some $c \in K$ and $l \in N$ (see Lemma 1.1).

LEMMA 1.16. Suppose that $M_{l}=J(W) c$ for some $c \in K$ and $l \in N$ (assume that l is the smallest natural number for this property). Then
(1) For any $i \in \boldsymbol{N},{ }^{*} M_{i} \supset M_{i}$ if and only if $i \in l \boldsymbol{N}$. In this case, $M_{i l}=$ $J(W) c \sigma^{l}(c) \cdots \sigma^{(i-1) l}(c)$ for all $i \in N$.
(2) $O_{l}\left(M_{i}\right)=W$ for all $i \in N$.

Proof.
(1) First note that $U=W$ by the remark to Lemma 1.12. For any $i \in N$, let $\beta_{i}=c \sigma^{l}(c) \cdots \sigma^{(i-1) l}(c)$. Suppose that $M_{i l}=J(W) \beta_{i}$. Then $M_{(i+1) l}=M_{l} \sigma^{l}\left(M_{i l}\right)=$ $M_{l} \sigma^{l}\left(J(W) \beta_{i}\right)=M_{l} \sigma^{l}(J(U)) \sigma^{l}\left(\beta_{i}\right)=M_{l} \sigma^{l}\left(\beta_{i}\right)=J(W) \beta_{i+1}$. Thus ${ }^{*} M_{i} \supset M_{i}$ for all
$i \in l \boldsymbol{N}$. So it suffices to prove that ${ }^{*} M_{p}=M_{p}$ if $p \notin l \boldsymbol{N}$. Before that, we have to prove the statement (2). Let $i \in N$. Then there is a $j \in N$ with $j l \geq i$. So $W=$ $O_{l}\left(J(W) \beta_{j}\right)=O_{l}\left(M_{j l}\right) \supseteq O_{l}\left(M_{i}\right) \supseteq W$ and hence $O_{l}\left(M_{i}\right)=W$. Write $p=i l+j$ $(0<j<l)$ and suppose that ${ }^{*} M_{p} \supset M_{p}$, that is, $M_{p}=J(W) b$ for some $b \in K$ by Lemma 1.1. Then $J(W) b=M_{j} \sigma^{j}\left(M_{i l}\right)=M_{j} \sigma^{j}\left(J(W) \beta_{i}\right)=M_{j} \sigma^{j}\left(\beta_{i}\right)$. So $\quad M_{j}=$ $J(W) b \sigma^{j}\left(\beta_{i}^{-1}\right)$, which contradicts to the choice of l. Hence ${ }^{*} M_{p}=M_{p}$ for all $p \in$ \boldsymbol{N} with $p \notin l \boldsymbol{N}$.

Now the following Lemma is clear by Proposition 1.5 and Lemma 1.16.
Lemma 1.17. Suppose that $N_{-l}=J(U) d$ for some $d \in K$ and $l \in \boldsymbol{N}$ (assume that l is the smallest natural number for this property). Then
(1) For any $i \in \boldsymbol{N},{ }^{*} N_{-i} \supset N_{-i}$ if and only if $i \in l \boldsymbol{N}$. In this case, $N_{-i l}=$ $J(U) d \sigma^{-l}(d) \cdots \sigma^{(-i+1) l}(d)$ for all $i \in N$.
(2) $O_{l}\left(N_{-i}\right)=U$ for all $i \in N$.

Lemma 1.18. $\quad M_{k}=J(W) b$ for some $b \in K$ and $k \in N$ if and only if $N_{-k}=J(U) \sigma^{-k}\left(b^{-1}\right)$. In this situation, $\sigma^{k}(W)=b^{-1} W b$.

Proof. Note that $U=W$ by the remark to Lemma 1.12. Suppose that $M_{k}=J(W) b$. Then $M_{-k}=\sigma^{-k}\left(b^{-1} W\right)$ by Lemma 1.3 and $J(W) b=J(W) b \sigma^{k}(W)$ since M_{k} is a right $\sigma^{k}(W)$-ideal. So $b \sigma^{k}(W) b^{-1} \subseteq O_{r}(J(W))=W$. To prove that $\sigma^{k}(W)=b^{-1} W b$, suppose that $\sigma^{k}(W) \subset b^{-1} W b$. Then, applying Lemma 1.13 to $M=\oplus_{i \in Z} M_{i} X^{i}$, we have

$$
\begin{aligned}
N_{-k} & =J(W) M_{-k}=J(W) \sigma^{-k}\left(b^{-1} W\right) \\
& =J(W) \sigma^{-k}\left(b^{-1} W b\right) \sigma^{-k}\left(b^{-1}\right) \\
& =\sigma^{-k}\left(b^{-1} W b\right) \sigma^{-k}\left(b^{-1}\right)=\sigma^{-k}\left(b^{-1} W\right),
\end{aligned}
$$

which is a contradiction, because N_{-k} is not a principal right $\sigma^{-k}(W)$-ideal. Hence $\sigma^{k}(W)=b^{-1} W b$ follows. Therefore, by Lemma 1.13, $N_{-k}=J(W) \sigma^{-k}\left(b^{-1} W\right)=$ $J(W) W \sigma^{-k}\left(b^{-1}\right)=J(W) \sigma^{-k}\left(b^{-1}\right)$ as desired. Now, by Proposition 1.5, we can get that $N_{-k}=J(U) \sigma^{-k}\left(b^{-1}\right)$ implies $M_{k}=J(W) b$. This completes the proof.

Suppose that $M_{l}=J(W) c$ for some $c \in K$ and $l \in \boldsymbol{N}$. Then $M_{-l}=$ $\sigma^{-l}\left(M_{l}^{-1}\right)=\sigma^{-l}\left(c^{-1} W\right)=W \sigma^{-l}\left(c^{-1}\right) \supset J(W) \sigma^{-l}\left(c^{-1}\right)=N_{-l}$ by Lemmas 1.3 and 1.18. Thus we have the following remark.

Remark. Suppose that $M_{l}=J(W) c$ for some $c \in K$ and $l \in N$. Then $M \neq N$.

Lemma 1.19. Let $M_{l}=J(W) c$ for some $c \in K$ and $l \in N$ (assume that l is the smallest natural number for this property) and $B=\oplus_{j \in Z} A_{j l} X^{j l}$ is a graded extension of V in $K\left[X^{l}, X^{-l} ; \sigma^{l}\right]$ with $J(W) c \subseteq A_{l} \subseteq W c$. Then
(1) $J(W) \sigma^{-l}\left(c^{-1}\right) \subseteq A_{-l} \subseteq W \sigma^{-l}\left(c^{-1}\right)$.
(2) $J(W) A_{j l}=M_{j l}=A_{j l} \sigma^{j l}(J(W))$ for all $j \in N$.
(3) $J(W) A_{-j l}=N_{-j l}=A_{-j l} \sigma^{-j l}(J(W))$ for all $j \in \boldsymbol{N}$.
(4) $N_{-i}=M_{-i}$ for all $i \in \boldsymbol{N} \backslash l \boldsymbol{N}$.

Proof.
(1) First note that $U=W$ and $\sigma^{l}(W)=c^{-1} W c$ by the remark to Lemma 1.12 and Lemma 1.18. Since $c^{-1} W=(V: J(W) c)_{r} \supseteq\left(V: A_{l}\right)_{r} \supseteq(V: W c)_{r} \supseteq c^{-1} J(W)$, we have

$$
W \sigma^{-l}\left(c^{-1}\right) \supseteq \sigma^{-l}\left(\left(V: A_{l}\right)_{r}\right) \supseteq J(W) \sigma^{-l}\left(c^{-1}\right) .
$$

So if A_{l} is not a finitely generated left V-ideal, then the statement follows since $A_{-l}=\sigma^{-l}\left(\left(V: A_{l}\right)_{r}\right)$ by Lemma 1.3. If A_{l} is a finitely generated left V-ideal, say, $A_{l}=V b$ for some $b \in A_{l}$, then $J(W) c \subseteq W b \subseteq W c$ implies $W b=W c$ since $J(W)^{2}=J(W)$, that is, $c b^{-1}$ is a unit in W. It follows from the proof of $[\mathbf{1 0}$, Lemma 1.4] that $\sigma^{l}\left(A_{-l}\right) \supseteq b^{-1} J(V)$ and so $A_{-l} \supseteq \sigma^{-l}\left(b^{-1} J(V)\right) \supseteq \sigma^{-l}\left(b^{-1} J(W)\right)=$ $\sigma^{-l}\left(c^{-1} J(W)\right)=J(W) \sigma^{-l}\left(c^{-1}\right)$. Furthermore from $V \supseteq A_{l} \sigma^{l}\left(A_{-l}\right)$, we derive $\sigma^{l}\left(A_{-l}\right) \subseteq\left(V: A_{l}\right)_{r}=b^{-1} V$. Thus $A_{-l} \subseteq \sigma^{-l}\left(b^{-1} V\right) \subseteq \sigma^{-l}\left(b^{-1} W\right)=\sigma^{-l}\left(c^{-1} W\right)=$ $W \sigma^{-l}\left(c^{-1}\right)$. Hence in any case, we have $J(W) \sigma^{-l}\left(c^{-1}\right) \subseteq A_{-l} \subseteq W \sigma^{-l}\left(c^{-1}\right)$ as desired.
(2) It follows from (1) and Lemma 1.18 that $J(W) A_{-l}=J(W) \sigma^{-l}\left(c^{-1}\right)=N_{-l}$ and $A_{-l} \sigma^{-l}(J(W))=J(W) \sigma^{-l}\left(c^{-1}\right)$, which is the proof of (3) in the case where $j=1$. Now we prove the statement by induction on j. If $j=1$, then $J(W) A_{l}=$ $J(W) c=M_{l} \quad$ and $\quad M_{l}=J(W) c=c \sigma^{l}(J(W))=A_{l} \sigma^{l}(J(W))$ since $c \sigma^{l}(J(W)) \subseteq$ $A_{l} \subseteq c \sigma^{l}(W)$. Suppose that $J(W) A_{j l}=M_{j l}$ for some $j \in \boldsymbol{N}$. Then

$$
\begin{aligned}
J(W) A_{j l+l} \supseteq J(W) A_{l} \sigma^{l}\left(A_{j l}\right) & =J(W) c \sigma^{l}\left(A_{j l}\right)=c \sigma^{l}\left(J(W) A_{j l}\right) \\
& =c \sigma^{l}\left(M_{j l}\right)=c \sigma^{l}\left(J(W) \beta_{j}\right)=J(W) \beta_{j+1}=M_{j l+l}
\end{aligned}
$$

where $\beta_{j}=c \sigma^{l}(c) \cdots \sigma^{(j-1) l}(c)$ as in Lemma 1.16. Suppose that $J(W) A_{j l+l} \supset$ $M_{j l+l}=J(W) \beta_{j+1}$. Then, by Lemma 1.2, $J(W) A_{j l+l} \supset W \beta_{j+1}$ and so $c^{-1} J(W)$ $A_{j l+l} \supset c^{-1} W \beta_{j+1}$. Thus, operating σ^{-l} on both sides, we have

$$
J(W) \sigma^{-l}\left(c^{-1}\right) \sigma^{-l}\left(A_{j l+l}\right)=\sigma^{-l}\left(c^{-1} J(W) A_{j l+l}\right) \supset \sigma^{-l}\left(c^{-1} W \beta_{j+1}\right)=W \beta_{j} .
$$

So

$$
W A_{j l} \supseteq J(W) A_{-l} \sigma^{-l}\left(A_{j l+l}\right)=J(W) \sigma^{-l}\left(c^{-1}\right) \sigma^{-l}\left(A_{j l+l}\right) \supset W \beta_{j} .
$$

Thus, by Lemma1.2, $J(W) A_{j l} \supset J(W) \beta_{j}=M_{j l}, \quad$ a contradiction. Hence $J(W) A_{j l+l}=M_{j l+l}$ follows. We can prove that $M_{j l}=A_{j l} \sigma^{j l}(J(W))$ for all $j \in \boldsymbol{N}$ by the right version.
(3) can be got by Proposition 1.5 and (2).
(4) Let $i \in \boldsymbol{N} \backslash l \boldsymbol{N}$. Then ${ }^{*} M_{i}=M_{i}$ and $W=O_{l}\left(M_{i}\right)$ by Lemma 1.16. So $M_{-i}=\sigma^{-i}\left(M_{i}^{-1}\right)$ by lemma 1.3. Since M_{i} is not a principal left W-ideal, M_{i}^{-1} is not a principal right W-ideal so that it is not a principal left W^{\prime}-ideal, where $W^{\prime}=$ $O_{r}\left(M_{i}^{-1}\right)$ and it contains $\sigma^{i}(W)$. In particular, M_{i}^{-1} is not a principal left $\sigma^{i}(W)$-ideal. Thus $J(W) M_{-i}=M_{-i}$ by Lemma 1.1. Hence $N_{-i}=J(W) M_{-i}=M_{-i}$ by Lemma 1.13.

In the case where either ${ }^{*} A_{1} \supset A_{1}$ or ${ }^{*} A_{1}=A_{1}$ and ${ }^{*} M_{i}$ is not a principal left W-ideal for any $i \in \boldsymbol{N}$, the graded extension $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ is uniquely determined by A_{1} and A_{-1} (see Theorems 1.6 and 1.14). However, in the case where ${ }^{*} A_{1}=A_{1}$ and ${ }^{*} M_{l}$ is a principal left W-ideal for some $l \in N$, that is, $M_{l}=$ $J(W) c$ for some $c \in K, A$ is not uniquely determined by A_{1} and A_{-1} (see the remark after Lemma 1.18) and we are now ready to prove the following theorem which characterizes Type (h).

Theorem 1.20. Let $A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ be a subset of $K\left[X, X^{-1} ; \sigma\right]$ such that $A_{0}=V, A_{1}$ is a left V and right $\sigma(V)$-ideal with ${ }^{*} A_{1}=A_{1}$ which is not a principal left W-ideal, where $W=O_{l}\left(A_{1}\right)$. Suppose that $M_{l}=J(W) c$ for some $c \in K$ and $l \in \boldsymbol{N}$ (assume that l is the smallest natural number for this property). Then A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ if and only if
(1) $A_{i}=M_{i}$ for all $i \in \boldsymbol{Z} \backslash l \boldsymbol{Z}$.
(2) $B=\oplus_{j \in Z} A_{j l} X^{j l}$ is a graded extension of V in $K\left[X^{l}, X^{-l} ; \sigma^{l}\right]$ with $J(W) c \subseteq A_{l} \subseteq W c$.

Proof. Note that $U=W$ by the remark to Lemma 1.12. Suppose that A is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$. Then, by Lemma 1.13, $M_{l}=J(W) c=$ $J(W) A_{l} \subseteq A_{l}$ and so $A_{l} c^{-1} \subseteq O_{r}(J(W))=W$. Hence $J(W) c \subseteq A_{l} \subseteq W c$. Thus it remains to prove that $A_{i}=M_{i}$ for all $i \in \boldsymbol{Z} \backslash l \boldsymbol{Z}$. Let $i \in \boldsymbol{N} \backslash l \boldsymbol{N}$. Then ${ }^{*} M_{i}=M_{i}$ and $A_{i} \supseteq J(W) A_{i}=M_{i}$ by Lemmas 1.13 and 1.16. Suppose that $A_{i} \supset M_{i}$ and let $d \in A_{i} \backslash M_{i}$. Then $W d \supset M_{i}$ and so $J(W) d \supseteq M_{i}$. If $J(W) d=M_{i}$, then $W d=$ ${ }^{*}(J(W) d)={ }^{*} M_{i}=M_{i}$, which is a contradiction, because $J(W) M_{i}=M_{i}$. Thus $J(W) d \supset M_{i}$. Then $J(W) A_{i} \supseteq J(W) d \supset M_{i}$, a contradiction. Hence $A_{i}=M_{i}$
follows. Now, by Proposition 1.5, we can get that $A_{-i}=N_{-i}$ and so $A_{-i}=M_{-i}$ by Lemma 1.19.

Conversely, suppose that (1) and (2) hold. For any $i \in \boldsymbol{Z}$, we have $A_{i} \cup$ $\sigma^{-i}\left(A_{i}^{-}\right)=K$ by $[\mathbf{1 0}$, Lemma 1.1] and the assumptions. So it suffices to prove that $A_{i} \sigma^{i}\left(A_{j}\right) \subseteq A_{i+j}$ for all $i, j \in Z$, which will be proved in the following four cases:
(i) $i \notin l \boldsymbol{Z}$ and $j \notin l \boldsymbol{Z}$. Then $A_{i} \sigma^{i}\left(A_{j}\right)=M_{i} \sigma^{i}\left(M_{j}\right) \subseteq M_{i+j} \subseteq A_{i+j}$, because $M_{i+j}=A_{i+j}$ if $i+j \notin l \boldsymbol{Z}$ and $A_{i+j} \supseteq J(W) A_{i+j}=M_{i+j}$ if $i+j \in l \boldsymbol{Z}$ by Lemma 1.19.
(ii) $\quad i \notin l \boldsymbol{Z}, \quad j \in l \boldsymbol{Z}$. Then $\quad i+j \notin l \boldsymbol{Z} \quad$ and $\quad A_{i} \sigma^{i}\left(A_{j}\right) \sigma^{i+j}(J(W))=$ $A_{i} \sigma^{i}\left(A_{j} \sigma^{j}(J(W))=M_{i} \sigma^{i}\left(M_{j}\right) \subseteq M_{i+j}\right.$ by Lemma 1.19. So

$$
\begin{aligned}
A_{i} \sigma^{i}\left(A_{j}\right) & \subseteq\left(A_{i} \sigma^{i}\left(A_{j}\right) \sigma^{i+j}(W)\right)_{v}=\left(A_{i} \sigma^{i}\left(A_{j}\right) \sigma^{i+j}(J(W))\right)_{v} \\
& \subseteq\left(M_{i+j}\right)_{v} \subseteq\left(M_{i+j}\right)^{*}=M_{i+j}=A_{i+j}
\end{aligned}
$$

by Lemma 1.1, where $I_{v}=\left(\sigma^{i+j}(W):\left(\sigma^{i+j}(W): I\right)_{l}\right)_{r}$ for a right $\sigma^{i+j}(W)$-ideal I.
(iii) $i \in l \boldsymbol{Z}, j \notin l \boldsymbol{Z}$. In this case, it is proved in the same way as in (ii) by considering $J(W) A_{i} \sigma^{j}\left(A_{j}\right)$.
(iv) $i, j \in l \boldsymbol{Z}$. This case is clear by the assumption.

2. Examples.

In this section, we will provide concrete examples of graded extensions of V in $K\left[X, X^{-1} ; \sigma\right]$ for illustrating the classification.

Let W be an overring of V with $J(W)^{2}=J(W)$ and $\sigma=1$. Then the following is a trivial example satisfying Theorem 1.6.

Example 2.1. $\quad A=\oplus_{i \in N} W X^{-i} \oplus V \oplus\left(\oplus_{i \in N} J(W) X^{i}\right)$ is a graded extension of V in $K\left[X, X^{-1}\right]$.

Let $F_{0}\left[Y_{i}^{r} \mid i \in \boldsymbol{Z}, r \in \boldsymbol{Q}\right]$ be a commutative domain over a field F_{0} in indeterminates Y_{i} with $Y_{i}^{r} \cdot Y_{i}^{s}=Y_{i}^{r+s}$ and let $F=F_{0}\left(Y_{i}^{r} \mid i \in \boldsymbol{Z}, r \in \boldsymbol{Q}\right)$ be its quotient field, where \boldsymbol{Q} is the field of rational numbers. We define a $\sigma \in \operatorname{Aut}(F)$ as follows;

$$
\sigma(a)=a \text { for all } a \in F_{0} \text { and } \sigma\left(Y_{i}^{r}\right)=Y_{i-1}^{r} \text { for all } i \in \boldsymbol{Z} \text { and } r \in \boldsymbol{Q} .
$$

Furthermore, let $G=\oplus_{i \in \boldsymbol{Z}} \boldsymbol{Q}_{i}$, the direct sum of \boldsymbol{Q}_{i} with $\boldsymbol{Q}=\boldsymbol{Q}_{i}$, which is a totally ordered abelian group by lexicographic ordering and we define a map v from F to G as follows;
$v(a)=0$ for any $a \in F_{0}$ and for any homogeneous element $\alpha=Y_{i_{1}}^{r_{1}} \cdots Y_{i_{n}}^{r_{n}}$ $\left(i_{1}<\cdots<i_{n}\right), v(\alpha)=\left(\cdots, 0, r_{1}, \cdots, r_{n}, 0, \cdots\right)$, i.e., the i_{j}-component of $v(\alpha)$ is $r_{j}(1 \leq j \leq n)$ and the other components of it are all zeroes.

Furthermore, let $\beta=\beta_{1}+\cdots+\beta_{m}$ be any element in $F_{0}\left[Y_{i}^{r} \mid i \in \boldsymbol{Z}, r \in\right.$ $\boldsymbol{Q}]$, where β_{i} are homogenous elements. Then we define $v(\beta)=\min \left\{v\left(\beta_{i}\right) \mid\right.$ $1 \leq i \leq m\}$. As usual, we can extend the map v to F, which is a valuation of F. We denote by V_{0} the valuation ring of F determined by v, that is, $V_{0}=\left\{\alpha \beta^{-1} \mid\right.$ $v\left(\alpha \beta^{-1}\right)=v(\alpha)-v(\beta) \geq 0$, where $\alpha, \beta \in F_{0}\left[Y_{i}^{r} \mid i \in \boldsymbol{Z}, r \in \boldsymbol{Q}\right]$ with $\left.\beta \neq 0\right\}$.

Note that $\sigma\left(V_{0}\right)=V_{0}$, since σ is just shifting and that, for any $\alpha \beta^{-1} \in F$, $V_{0} \alpha \beta^{-1}=V_{0} Y_{i_{1}}^{r_{1}} \cdots Y_{i_{n}}^{r_{n}}$ for some homogeneous element $Y_{i_{1}}^{r_{1}} \cdots Y_{i_{n}}^{r_{n}}$ by the construction of v. We set $U_{i}=\cup\left\{V_{0} Y_{i}^{r} \mid r \in \boldsymbol{Q}\right\}$, an overring of V_{0}. Then $\sigma\left(U_{i}\right)=$ $U_{i-1} \supset U_{i}$ for all $i \in \boldsymbol{Z}$.

Let $F[t, \sigma]$ be the skew polynomial ring over F in an indeterminate t and let $K=F(t, \sigma)$ be the quotient ring of $F[t, \sigma]$ which is a division ring.

As in [8, Section 1], we define the map

$$
\varphi: F[t, \sigma]_{(t)} \longrightarrow F
$$

by $\varphi\left(f(t) g(t)^{-1}\right)=f(0) g(0)^{-1}$, where $f(t), g(t) \in F[t, \sigma], g(0) \neq 0$ and $F[t, \sigma]_{(t)}$ is the localization of $F[t, \sigma]$ at the maximal ideal (t). We let

$$
V=\varphi^{-1}\left(V_{0}\right)=V_{0}+t F[t, \sigma]_{(t)} \text { and } W_{i}=\varphi^{-1}\left(U_{i}\right)=U_{i}+t F[t, \sigma]_{(t)},
$$

the complete inverse images of V_{0} and U_{i} by φ respectively for any $i \in Z$. Then V and W_{i} are all total valuation rings of $F(t, \sigma)$ by [8, Proposition 1.6]. Furthermore, we have the following properties which are easily proved by the definitions:
(1) $\sigma(V)=V$ and $\sigma\left(W_{i}\right)=W_{i-1} \supset W_{i}$ for any $i \in \boldsymbol{Z}$.
(2) $Y_{j}^{r} V=V Y_{j}^{r}$ and $Y_{j}^{r} W_{i}=W_{i} Y_{j}^{r}$ for any $i, j \in \boldsymbol{Z}$ and $r \in \boldsymbol{Q}$.

Let π be a positive real number but not a rational number and set

$$
A_{1}=\cup\left\{t^{-1} Y_{0}^{-r} V \mid r<\pi, r \in \boldsymbol{Q}\right\}=\cup\left\{V Y_{1}^{-r} t^{-1} \mid r<\pi, r \in \boldsymbol{Q}\right\} .
$$

Then A_{1} satisfies the following:
(a) $W_{2}=O_{l}\left(A_{1}\right)$ and $W_{1}=O_{r}\left(A_{1}\right)$.
(b) A_{1} is not a principal left W_{2}-ideal.
(c) $A_{1}=\cap\left\{W_{2} Y_{1}^{-s} t^{-1} \mid s>\pi, s \in \boldsymbol{Q}\right\}$ so that ${ }^{*} A_{1}=A_{1}$.

Proof. First note that $t^{-1} F[t, \sigma]_{(t)} \supseteq A_{1} \supseteq F[t, \sigma]_{(t)}$, which are easily obtained from the construction of A_{1}.
(a) To prove $W_{2} \subseteq O_{l}\left(A_{1}\right)$, let $r, s \in \boldsymbol{Q}$ with $r<\pi$. Then

$$
F[t, \sigma]_{(t)} t \cdot t^{-1} Y_{0}^{-r} V=F[t, \sigma]_{(t)} V=F[t, \sigma]_{(t)} \subseteq A_{1}
$$

and

$$
Y_{2}^{s} t^{-1} Y_{0}^{-r} V=t^{-1} Y_{1}^{s} Y_{0}^{-r} V=t^{-1} Y_{0}^{-\left(r_{1}+r\right)} Y_{0}^{r_{1}} Y_{1}^{s} V \subseteq t^{-1} Y_{0}^{-\left(r_{1}+r\right)} V \subseteq A_{1},
$$

where $r_{1} \in \boldsymbol{Q}$ with $r+r_{1}<\pi$ and $r_{1}>0$. Hence $W_{2} \subseteq O_{l}\left(A_{1}\right)$ follows since $W_{2}=U_{2}+t F[t, \sigma]_{(t)}$.

To prove the converse inclusion, let $\alpha \in O_{l}\left(A_{1}\right)$. Since $K=\cup\left\{t^{i} F[t, \sigma]_{(t)} \mid\right.$ $i \in \boldsymbol{Z}\}$, we can write $\alpha=t^{i} c$ for some $i \in \boldsymbol{Z}$ and $c \in U\left(F[t, \sigma]_{(t)}\right)$, where $U\left(F[t, \sigma]_{(t)}\right)$ is the set of units in $F[t, \sigma]_{(t)}$. If $i<0$, then $\alpha t^{-1}=t^{i} c t^{-1}=t^{i-1} \sigma(c) \notin A_{1}$, since $A_{1} \subseteq t^{-1} F[t, \sigma]_{(t)}$, which is impossible so that $i \geq 0$. If $i>0$, then $\alpha \in t F[t, \sigma]_{(t)} \subseteq$ W_{2}. So we may assume that $i=0$, that is, $\alpha \in U\left(F[t, \sigma]_{(t)}\right)$. Since $F[t, \sigma]_{(t)}=$ $F+t F[t, \sigma]_{(t)}$, we can write $\alpha=b+t d$, where $b \in F$, and $d \in F[t, \sigma]_{(t)}$. Suppose that $\alpha \notin W_{2}$. Then $b \notin U_{2}$ and $b=Y_{i_{1}}^{l_{1}} \cdots Y_{i_{n}}^{l_{n}} u$ for some $l_{i} \in \boldsymbol{Q}, i_{1}<\cdots<i_{n}$ and $u \in U\left(V_{0}\right)$ as it is noticed before. If either $i_{1} \geq 2$ or $l_{1}>0$, then $b \in U_{2}$. So we may assume that $i_{1}<2$ and $l_{1}<0$. If $i_{1}<1$, then $A_{1} \ni \alpha t^{-1}=t^{-1} \sigma(\alpha)=t^{-1} Y_{i_{1}-1}^{l_{1}} \cdots$ $Y_{i_{n}-1}^{l_{n}} \sigma(u)+\sigma(d)$, which implies $t^{-1} Y_{i_{1}-1}^{l_{1}} \cdots Y_{i_{n}-1}^{l_{n}} \in A_{1}$ and so $t^{-1} Y_{i_{1}-1}^{l_{1}} \cdots Y_{i_{n}-1}^{l_{n}}=$ $t^{-1} Y_{0}^{-r}\left(v_{0}+t e\right)$ for some $r \in \boldsymbol{Q}$ with $r<\pi, \quad v_{0} \in V_{0}, \quad e \in F[t, \sigma]_{(t)}$. Thus $Y_{i_{1}-1}^{l_{1}} \cdots Y_{i_{n}-1}^{l_{n}}-Y_{0}^{-r} v_{0}=Y_{0}^{-r} t e \in t F[t, \sigma]_{(t)}=J\left(F[t, \sigma]_{(t)}\right) \quad$ and $\quad Y_{i_{1}-1}^{l_{1}} \cdots Y_{i_{n}-1}^{l_{n}}-$ $Y_{0}^{-r} v_{0}$ is non-zero and is a unit in $F[t, \sigma]$, a contradiction, because $i_{1}-1<0$ and $l_{1}<0$. Hence $i_{1}=1$ and $l_{1}<0$. In this case, there is an $r \in \boldsymbol{Q}$ with $r<\pi$ and $l_{1}-r<-\pi$. Then $A_{1} \ni \alpha t^{-1} Y_{0}^{-r}=t^{-1} \sigma(\alpha) Y_{0}^{-r}=t^{-1}\left[Y_{i_{1}-1}^{l_{1}} \cdots Y_{i_{n}-1}^{l_{n}} \sigma(u)+t \sigma(d)\right]$ $Y_{0}^{-r}=t^{-1} Y_{0}^{-s} u_{1}$ for some $s \in \boldsymbol{Q}$ with $s<\pi$ and $u_{1}=u_{0}+t d_{1} \in V$, where $u_{0} \in V_{0}$ and $d_{1} \in F[t, \sigma]_{(t)}$. Hence, as before, we have $Y_{0}^{l_{1}-r} Y_{i_{2}-1}^{l_{2}} \cdots Y_{i_{n}-1}^{l_{n}} \sigma(u)=Y_{0}^{-s} u_{0}$, a contradiction, because $-s>-\pi>l_{1}-r$. Thus $\alpha \in W_{2}$ and hence $W_{2}=O_{l}\left(A_{1}\right)$. Similarly, we can prove that $W_{1}=O_{r}\left(A_{1}\right)$.
(b) It follows that $A_{1}=\cup\left\{W_{2} Y_{1}^{-r} t^{-1} \mid r<\pi, r \in \boldsymbol{Q}\right\}$ by (a) and that $W_{2} Y_{1}^{-r} t^{-1} \supset W_{2} Y_{1}^{-s} t^{-1}$ if $r>s$. Hence A_{1} is not a principal left W_{2}-ideal.
(c) Let s and $r \in \boldsymbol{Q}$ with $s>\pi>r$. Then $W_{2} Y_{1}^{-s} t^{-1} \supset W_{2} Y_{1}^{-r} t^{-1}$ and so $A_{1} \subseteq \cap\left\{W_{2} Y_{1}^{-s} t^{-1} \mid s>\pi, s \in \boldsymbol{Q}\right\}$. To prove the converse inclusion, let $\alpha=c t^{i}$ for some $c \in U\left(F[t, \sigma]_{(t)}\right)$ and $i \in \boldsymbol{Z}$ with $\alpha \in \cap\left\{W_{2} Y_{1}^{-s} t^{-1} \mid s>\pi, s \in \boldsymbol{Q}\right\}$. Suppose that $\alpha \notin A_{1}$. If $i \geq 0$, then $\alpha \in F[t, \sigma]_{(t)} \subseteq A_{1}$, a contradiction. If $i \leq-2$, then $c t^{i} \in W_{2} Y_{1}^{-s} t^{-1}$ implies $c \in W_{2} Y_{1}^{-s} t \subseteq J\left(F[t, \sigma]_{(t)}\right)$, a contradiction. Hence we may assume that $i=-1$. As before, let $c=b+t d$, where $b \in F$ and $d \in F[t, \sigma]_{(t)}$ and let $b=Y_{i_{1}}^{l_{1}} \cdots Y_{i_{n}}^{l_{n}} u$, where $i_{1}<\cdots<i_{n}, l_{i} \in \boldsymbol{Q}, l_{1}<0$ (since α is not in A_{1}) and
$u \in U\left(V_{0}\right)$. Then for any $s>\pi>r$, we have $W_{2} Y_{1}^{-s} t^{-1} \supseteq W_{2} \alpha=W_{2} c t^{-1} \supset$ $W_{2} Y_{1}^{-r} t^{-1}$, which implies $U_{2} Y_{1}^{-s} \supseteq U_{2} Y_{i_{1}}^{l_{1}} \cdots Y_{i_{n}}^{l_{n}} u \supset U_{2} Y_{1}^{-r}$. It follows that $i_{1}=1$ and $-s \leq l_{1}<-r$ for any $s, r \in \boldsymbol{Q}$ with $s>\pi>r>0$. Hence $l_{1}=-s$ for some $s \in \boldsymbol{Q}$ with $s>\pi$. This implies $W_{2} \alpha \supset W_{2} Y_{1}^{-s_{1}} t^{-1}$ for any $s_{1} \in \boldsymbol{Q}$ with $\pi<s_{1}<-l_{1}$, a contradiction. Hence $A_{1}=\cap\left\{W_{2} Y_{1}^{-s} t^{-1} \mid s>\pi, s \in \boldsymbol{Q}\right\}$ follows. In particular, ${ }^{*} A_{1}=A_{1}$.

We set $M_{i}=A_{1} \sigma\left(A_{1}\right) \cdots \sigma^{i-1}\left(A_{1}\right)$. Then we have
(d) $M_{i}=\cup\left\{V Y_{1}^{-r} t^{-i} \mid r<i \pi, r \in \boldsymbol{Q}\right\}=\cup\left\{W_{2} Y_{1}^{-r} t^{-i} \mid r<i \pi, r \in \boldsymbol{Q}\right\}$ for all $i \in N$ and they are not finitely generated left W_{2}-ideals.
(e) $M_{i}=\cap\left\{W_{2} Y_{1}^{-s} t^{-i} \mid s>i \pi, s \in \boldsymbol{Q}\right\}$ so that ${ }^{*} M_{i}=M_{i}$.
(f) $\left(V: M_{i}\right)_{r}=\cup\left\{t^{i} Y_{1}^{s} V \mid s>i \pi, s \in Q\right\}$ so that $M_{-i}=\sigma^{-i}\left(\left(V: M_{i}\right)_{r}\right)=$ $\cup\left\{t^{i} Y_{1+i}^{s} V \mid s>i \pi, s \in \boldsymbol{Q}\right\}$.

Proof.
(d) The first statement follows by induction on i and the second statement is clear from the proof of (b).
(e) This is clear from (c)(we use $\pi^{\prime}=i \pi$ instead of π in (c)).
(f) It is clear from (d) that $\left(V: M_{i}\right)_{r} \supseteq \cup\left\{t^{i} Y_{1}^{s} V \mid s>i \pi, s \in \boldsymbol{Q}\right\}$. To prove the converse inclusion, let $\alpha=t^{j} c \in\left(V: M_{i}\right)_{r}$ for some $c \in U\left(F[t, \sigma]_{(t)}\right)$ and $j \in \boldsymbol{Z}$. We may suppose that $j \geq i$, because $V Y_{1}^{-r} t^{-i} t^{j} c \subseteq V \subseteq F[t, \sigma]_{(t)}$ for any $r \in \boldsymbol{Q}$ with $r<i \pi$. If $j>i$, then $\alpha=t^{i} t^{j-i} c \in t^{i} t F[t, \sigma]_{(t)} \subseteq t^{i} Y_{1}^{s} V$ for any $s \in \boldsymbol{Q}$ with $s>i \pi$. If $j=i$, then, as before, let $c=b+t d$ for some $b \in F$ and $d \in F[t, \sigma]_{(t)}$ and write $b=Y_{i_{1}}^{l_{1}} \cdots Y_{i_{n}}^{l_{n}} u$ for some $u \in U\left(V_{0}\right), i_{1}<\cdots<i_{n}$ and $l_{i} \in \boldsymbol{Q}$. Since $V \ni Y_{1}^{-r} t^{-i} \alpha$ for any $r<i \pi, r \in \boldsymbol{Q}$, we have $Y_{1}^{-r} b \in V_{0}$, that is, $b \in Y_{1}^{r} V_{0}$. This implies $l_{1}>0$ and $i_{1} \leq 1$. If $i_{1}<1$, then $\alpha=t^{i}(b+t d) \in t^{i}\left(Y_{1}^{s} V_{0}+Y_{1}^{s} t F[t, \sigma]_{(t)}\right) \subseteq t^{i} Y_{1}^{s} V$ for any $s>i \pi, s \in \boldsymbol{Q}$, because $v(b)>v\left(Y_{1}^{s}\right)$. If $i_{1}=1$ and $l_{1}<i \pi$, then there is an $r \in \boldsymbol{Q}$ with $l_{1}<r<i \pi$ and $b \notin Y_{1}^{r} V_{0}$, a contradiction. If $i_{1}=1$ and $l_{1}>i \pi$, then there is an $s \in \boldsymbol{Q}$ with $l_{1}>s>i \pi$ and $b V_{0} \subseteq Y_{1}^{s} V_{0}$. So we have

$$
\alpha=t^{i} c=t^{i}(b+t d) \in t^{i}\left(Y_{1}^{s} V_{0}+Y_{1}^{s} t F[t, \sigma]_{(t)}\right)=t^{i} Y_{1}^{s} V
$$

Hence $\quad\left(V: M_{i}\right)_{r}=\cup\left\{t^{i} Y_{1}^{s} V \mid s>i \pi, s \in \boldsymbol{Q}\right\} \quad$ follows. In particular, $\quad M_{-i}=$ $\cup\left\{t^{i} Y_{1+i}^{s} V \mid s>i \pi, s \in \boldsymbol{Q}\right\}$.

Thus we have the following example of a graded extension A of V in $K\left[X, X^{-1} ; \sigma\right]$ satisfying all conditions in Theorem 1.14.

EXAMPLE 2.2. Under the notations and assumptions as above, let $A_{i}=\cup\left\{V Y_{1}^{-r} t^{-i} \mid r<i \pi, r \in \boldsymbol{Q}\right\} \quad$ and $\quad A_{-i}=\cup\left\{t^{i} Y_{1+i}^{s} V \mid s>i \pi, s \in \boldsymbol{Q}\right\}$. Then
$A=\oplus_{i \in \boldsymbol{Z}} A_{i} X^{i}$ is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$.
In order to obtain more concrete examples of Theorem 1.6, let $A_{1}=J\left(W_{2}\right) t^{j}$, which is a left W_{2} and right $t^{-j} W_{2} t^{j}\left(=\sigma^{-j}\left(W_{2}\right)=W_{2+j}\right)$-ideal. So, by using the notation in Section 1, $W=W_{2}, \sigma(U)=W_{2+j}, \alpha_{i}=t^{i j}, \alpha_{-i}=t^{-i j}$ for all $i \in N$ and $A_{-1}=U \alpha_{-1}=W_{3+j} t^{-j}$. Thus we have the following:
(1) $A_{-1}=U \alpha_{-1}=\alpha_{-1} \sigma^{-1}(U)$ if and only if $j=-1$.
(2) $A_{-1}=U \alpha_{-1} \supset \alpha_{-1} \sigma^{-1}(U)$ if and only if $j>-1$.
(3) $A_{-1}=U \alpha_{-1} \subset \alpha_{-1} \sigma^{-1}(U)$ if and only if $j<-1$.

Hence we have the following example illustrating Theorem 1.6.
Example 2.3. Under the notations and assumptions as above, if $j \geq-1$, then $A=\oplus_{i \in N} W_{3+j} t^{-i j} X^{-i} \oplus V \oplus\left(\oplus_{i \in N} t^{i j} J\left(W_{3-i+j}\right) X^{i}\right)$ is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$ and if $j<-1$, then $A=\oplus_{i \in N} t^{-i j} W_{2+i} X^{-i} \oplus V \oplus$ $\left(\oplus_{i \in N} J\left(W_{2}\right) t^{i j} X^{i}\right)$ is a graded extension of V in $K\left[X, X^{-1} ; \sigma\right]$.

Finally we will provide examples satisfying all conditions in Theorem 1.20. Let V be a total valuation ring of K with rank one and suppose that $J(V) \supset(0)$ is an exceptional prime segment with C, the non-Goldie prime ideal. Then ${ }^{*} C=C$ such that $O_{l}(C)=V=O_{r}(C)$ and it is not a finitely generated left V-ideal (cf. [3]). Let l be a natural number with ${ }^{*}\left(C^{l}\right)=V c=c V$ for some $c \in K$ (assume that l is the smallest natural number for this property and $l>1$)(cf. [$\mathbf{1}, \mathrm{p} .3173])$. Then $C^{l}=J(V) c$. Thus we have the following example (in the case $\sigma=1$):

Example 2.4. Under the notations and assumptions above, let $A_{1}=C$. Then

$$
\begin{aligned}
A= & \oplus_{i \in N \backslash l N}\left(C^{i}\right)^{-1} X^{-i} \oplus\left(\oplus_{j \in N} V c^{-j} X^{-j l}\right) \\
& \oplus V \oplus\left(\oplus_{i \in N \backslash l N} C^{i} X^{i}\right) \oplus\left(\oplus_{j \in N} V c^{j} X^{j l}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B= & \oplus_{i \in \boldsymbol{N} \backslash \backslash \boldsymbol{N}}\left(C^{i}\right)^{-1} X^{-i} \oplus\left(\oplus_{j \in N} V c^{-j} X^{-j l}\right) \\
& \oplus V \oplus\left(\oplus_{i \in N \backslash \backslash N} C^{i} X^{i}\right) \oplus\left(\oplus_{j \in N} J(V) c^{j} X^{j l}\right)
\end{aligned}
$$

are graded extensions of V in $K\left[X, X^{-1}\right]$.
Acknowledgements. The authours express their gratitude for the referee's valuable comments on the previous version which make the paper readable.

References

[1] H. H. Brungs, H. Marubayashi and E. Osmanagic, A classification of prime segments in simple Artinian rings, Proc. Amer. Math. Soc., 128 (2000), 3167-3175.
[2] H. H. Brungs, H. Marubayashi and E. Osmanagic, Gauss extensions and total graded subrings for crossed product algebras, J. Algebra, 316 (2007), 189-205.
[3] H. H. Brungs, H. Marubayashi and A. Ueda, A classification of primary ideals of Dubrovin valuation rings, Houston J. Math., 29 (2003), 595-608.
[4] H. H. Brungs and M. Schröder, Valuation rings in Ore extensions, J. Algebra, 235 (2001), 665680.
[5] H. H. Brungs and G. Törner, Extensions of chain rings, Math. Z., 185 (1984), 93-104.
[6] S. Irawati, H. Marubayashi and A. Ueda, On R-ideals of a Dubrovin valuation ring R, Comm. in Algebra, 32 (2004), 261-267.
[7] H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative Valuation Rings and Semihereditary Orders, K-Monographs in Math., 3, Kluwer Academic Publishers, 1997.
[8] G. Xie, S. Kobayashi, H. Marubayashi, N. Popescu and C. Vraciu, Non-commutative valuation rings of the quotient Artinian ring of a skew polynomial ring, Algebr. Represent. Theory, 8 (2005), 57-68.
[9] G. Xie, S. Kobayashi, H. Marubayashi and H. Komatsu, Non-commutative valuation rings of $K(X ; \sigma, \delta)$ over a division ring K, J. Math. Soc. Japan, 56 (2004), 737-752.
[10] G. Xie and H. Marubayashi, A classification of graded extensions in a skew Laurent polynomial ring, J. Math. Soc. Japan, 60 (2008), 423-443.

Guangming XIE

School of Mathematical Sciences
Guangxi Normal University
Guilin, 541004
P. R. China

E-mail: gmxie@mailbox.gxnu.edu.cn

Hidetoshi Marubayashi
Faculty of Engineering
Tokushima Bunri University
Sanuki, Kagawa, 769-2193
Japan
E-mail: marubaya@kagawa.bunri-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 16W50.
 Key Words and Phrases. graded extension, total valuation ring, skew Laurent polynomial ring, homogeneous element, division ring.

 The second author was supported by Grant-in-Aid for Scientific Research (No. 17540031) of Japan Society for the Promotion of Science.

