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Abstract. Let V be a total valuation ring of a division ring K with an

automorphism � and let A ¼ �i2ZAiX
i be a graded extension of V in

K½X;X�1; ��, the skew Laurent polynomial ring. We classify A by distinguishing

three different types based on the properties of A1 and A�1, and a complete

description of Ai for all i 2 Z is given in the case where A1 is not a finitely

generated left OlðA1Þ-ideal.

Introduction.

Let K be a division ring with an automorphism � and let V be a total

valuation ring of K, that is, for any non-zero k 2 K, either k 2 V or k�1 2 V . A

graded subring A ¼ �i2ZAiX
i of K½X;X�1;��, the skew Laurent polynomial ring,

is called a graded total valuation ring of K½X;X�1;�� if for any non-zero

homogeneous element aXi of K½X;X�1;��, either aXi 2 A or ðaXiÞ�1 2 A, where

Z is the ring of integers. A graded total valuation ring A of K½X;X�1;�� is said to

be a graded extension of V in K½X;X�1;�� if A0 ¼ V .

This paper is a continuation of [10] which is concerned with the classification

of graded extensions. In order to describe the classification in detail, we introduce

some notations. For any additive subgroups I and J of K, we set:

ðJ : IÞl ¼ fa 2 K j aI � Jg;
ðJ : IÞr ¼ fa 2 K j Ia � Jg;
I� ¼ fa�1 j a 2 I; a 6¼ 0g and

I�1 ¼ fa 2 K j IaI � Ig; the inverse of I:

In particular,
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OlðIÞ ¼ ðI : IÞl; the left order of I and

OrðIÞ ¼ ðI : IÞr; the right order of I:

A non-zero left V -submodule I of K is called a left V -ideal if Ia � V for some

non-zero a 2 K. Similarly we define right V -ideals and V -ideals.

Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;�� with

W ¼ OlðA1Þ. In [10], we classified graded extensions A of V in K½X;X�1;�� by
distinguishing five different types based on the properties of A1 and A�1 in the

case where A1 is a finitely generated left OlðA1Þ-ideal as follows:

Case 1: A1 is a finitely generated left W -ideal.

Type (a) A1 ¼ V a ¼ a�ðV Þ and A�1 ¼ V ��1ða�1Þ;
Type (b) A1 ¼ Wa � a�ðW Þ;
Type (c) A1 ¼ Wa ¼ Wa�ðV Þ � a�ðW Þ;
Type (d) A1 ¼ Wa ¼ a�ðW Þ, A�1 ¼ JðW Þ��1ða�1Þ and JðW Þ2

¼ JðW Þ, where JðW Þ is the Jacobson radical of W ;

Type (e) A1 ¼ Wa ¼ a�ðW Þ, A�1 ¼ JðW Þ��1ða�1Þ and JðW Þ
¼ Wb�1 for some b 2 K.

In this paper, we will classify graded extensions A of V in the case where A1 is

not a finitely generated left W -ideal. For this, we introduce further notations.

For any left V -ideal I and right V -ideal J , we define

�I ¼ \fWc j I � Wc; c 2 Kg; where W ¼ OlðIÞ and
J� ¼ \fcU j J � cU; c 2 Kg; where U ¼ OrðJÞ:

If A1 is not a finitely generated left W -ideal, then there are two cases, that is,

either �A1 � A1 or �A1 ¼ A1. In the former case, we will obtain �A1 ¼ Wa, A1 ¼
JðW Þa for some a 2 K. In the latter case, we will divide A into two types by the

properties of Mi ¼ A1�ðA1Þ � � ��i�1ðA1Þ for all i 2 N , the set of all natural

numbers. Now we can classify A by distinguishing three different types based on

the properties of A1 and A�1 by using �-operation as follows:

Case 2: A1 is not a finitely generated left W -ideal, where W ¼ OlðA1Þ.
Type (f) �A1 � A1;

Type (g) �A1 ¼ A1 and �Mi is not a principal left W -ideal for any i 2 N ;

Type (h) �A1 ¼ A1 and �Ml is a principal left W -ideal for some l 2 N .

In Section 1, we will give a complete description of Ai for all i 2 Z and study
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types (f), (g) and (h) in the following ways:

For Type (f), A�1 ¼ U��1ða�1Þ is a principal left U-ideal, where U is an

overring of V with �ðUÞ ¼ a�1Wa. Then we are in a similar situation as in [10,

Theorem 1.6]. For Type (g), it will be shown that A ¼ �i2ZMiX
i, where M�i ¼

��iððV : MiÞrÞ for any i 2 N (Theorem 1.14). For Type (h), A is not uniquely

determined by the properties of A1; A�1, and the structure of A is complicated

(Theorem 1.20).

In Section 2, we will provide some examples of graded extensions of V in

K½X;X�1;�� to illustrate the classification. We will discuss the ideal theory in the

forthcoming paper and refer the readers to [7] for some basic properties of non-

commutative valuation rings.

1. Main results.

Throughout this paper, V is a total valuation ring of a division ring K. We

start with the following lemma whose proofs are similar to ones in [7, Section 6].

LEMMA 1.1. Let I be a left V -ideal with W ¼ OlðIÞ and U ¼ OrðIÞ. Suppose
that U is a total valuation ring of K. Then

(1) The following are equivalent:

(a) I is not a principal left V -ideal.

(b) IðV : IÞr ¼ JðW Þ.
(c) I ¼ JðV ÞI.

(2) U ¼ OlðI�1Þ, W ¼ OrðI�1Þ and I� ¼ I�1�1 ¼ �I.

(3) If �I � I, then �I ¼ Wa and I ¼ JðW Þa for some a 2 K.

(4) Suppose that I is not a principal left W -ideal. Then I�1 ¼ ðV : IÞr and

vI ¼ ðV : ðV : IÞrÞl � �I.

(5) I is not a principal left W -ideal if and only if it is not a principal right

U-ideal. In this case, in particular, JðW Þ2 ¼ JðW Þ and JðUÞ2 ¼ JðUÞ.

PROOF.

(1) (a)¼)(b): The proof is similar to one in [6, Lemma 1.2].

(b)¼)(c): Suppose that I � JðV ÞI. Then there is a b 2 I n JðV ÞI with

JðV Þb 	 JðV ÞI by [7, Lemma 6.3]. Thus Ib�1 � OrðJðV ÞÞ ¼ V by [7, Lemma 6.8]

and so b�1 2 ðV : IÞr. Hence 1 ¼ bb�1 2 IðV : IÞr ¼ JðWÞ, a contradiction. There-

fore I ¼ JðV ÞI follows.

(c)¼)(a): Suppose that I ¼ V c for some c 2 I. Then V c ¼ I ¼ JðV ÞI ¼
JðV Þc, a contradiction. Hence I is not a principal left V -ideal.

(2) and (3): These are proved in the same ways as in [7, Lemma 6.10 and

Proposition 6.13].

(4) Since I ¼ JðWÞI, we easily have ðV : IÞr ¼ ðW : IÞr which is equal to I�1.
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Hence vI � �I follows since �I ¼ ðW : ðW : IÞrÞl by [7, Proposition 6.13].

(5) Suppose that I is not a principal left W -ideal. If I ¼ aU for some a 2 K,

then I ¼ ðaUa�1Þa ¼ Wa, a contradiction. Hence I is not a principal right U-ideal.

The ‘‘only if’’ part is similar and the last statement follows from the same

argument as in [7, Proposition 6.13.] �

In the case where JðW Þ2 ¼ JðWÞ, we have the following special properties of

ideals which are needed later.

LEMMA 1.2. Let I be a left W and right U-ideal, where W is an overring of V

and U is a total valuation ring of K. Suppose that JðW Þ2 ¼ JðW Þ. Then
(1) If I � Wc for some c 2 K, then JðW ÞI � Wc.

(2) If JðW ÞI � JðW Þc for some c 2 K, then JðW ÞI � Wc.

PROOF.

(1) Let b 2 I nWc. Then Wb � Wc and so cb�1 2 JðW Þ. Thus Wc � JðW ÞI.
But JðW ÞI is not a principal left W -ideal by Lemma 1.1, since JðWÞ2 ¼ JðWÞ.
Hence JðW ÞI � Wc.

(2) We have either JðW ÞI � Wc or JðWÞI � Wc. Suppose that JðW ÞI � Wc.

Then JðW ÞIc�1 � JðW Þ and so Ic�1 � OrðJðW ÞÞ ¼ W . So I � Wc and thus

JðW ÞI � JðW Þc, a contradiction. Hence JðW ÞI � Wc. �

Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��. Then note that

Ai is a left V and right �iðV Þ-ideal for any i 2 Z by [2, Lemma 1.1].

LEMMA 1.3. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��.

Suppose that Ai is not a principal left V -ideal for some i 2 Z with W ¼ OlðAiÞ.
Then

(1) A�i ¼ ��iððV : AiÞrÞ.
(2) If Ai is not a principal left W -ideal, then

(a) A�i ¼ ��iððW : AiÞrÞ ¼ ��iðA�1
i Þ and

(b) If Ai ¼ JðWÞa for some a 2 K, then A�i ¼ ��iða�1W Þ.

PROOF.

(1) V 	 Ai�
iðA�iÞ implies �iðA�iÞ � ðV : AiÞr. Suppose that ðV : AiÞr �

�iðA�iÞ. Then for any c 2 ðV : AiÞr n �iðA�iÞ, c�1 =2 �iðA�
�iÞ. So c�1 2 Ai by [10,

Lemma 1.1]. Thus 1 ¼ c�1c 2 AiðV : AiÞr ¼ JðWÞ by Lemma 1.1, a contradiction.

Hence �iðA�iÞ ¼ ðV : AiÞr, that is, A�i ¼ ��iððV : AiÞrÞ.
(2) (a) First note that JðW Þ2 ¼ JðW Þ and JðW ÞAi ¼ Ai by Lemma 1.1. So

ðV : AiÞr ¼ ðW : AiÞr by the proof of Lemma 1.1 (4). Hence A�i ¼ ��iððW :

AiÞrÞ ¼ ��iðA�1
i Þ since A�1

i ¼ ðW : AiÞr.
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(b) If Ai ¼ JðW Þa for some a 2 K, then ðW : AiÞr ¼ a�1W , because

JðW Þ2 ¼ JðW Þ. Hence A�i ¼ ��iða�1W Þ. �

Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;�� with W ¼

OlðA1Þ and �ðUÞ ¼ OrðA1Þ. Then it follows that W 	 V and U 	 V , since A1 is a

left V and right �ðV Þ-ideal. Suppose that A1 is not a principal left W -ideal. Then

JðW Þ2 ¼ JðW Þ and JðUÞ2 ¼ JðUÞ by Lemma 1.1, and there are two cases, namely,

either �A1 ¼ A1 or �A1 � A1. In the latter case, we have A1 ¼ JðW Þa and �A1 ¼
Wa for some a 2 K by Lemma 1.1. Conversely, if A1 ¼ JðW Þa for some a 2 K,

then �A1 ¼ Wa � A1 by [7, Lemma 6.12].

First we will study Type (f), namely, �A1 � A1.

PROPOSITION 1.4. Let A ¼ �i2ZAiX
i be a graded extension of V in

K½X;X�1; �� with W ¼ OlðA1Þ and �ðUÞ ¼ OrðA1Þ. Suppose that A1 is not a

principal left W -ideal and that �A1 � A1, that is, A1 ¼ JðWÞa for some a 2 K.

Then

(1) �ðUÞ ¼ a�1Wa.

(2) A1 ¼ JðWÞa ¼ a�ðJðUÞÞ and A�1 ¼ ��1ða�1W Þ ¼ U��1ða�1Þ.
(3) OlðA�1Þ ¼ U and OrðA�1Þ ¼ ��1ðW Þ.

PROOF.

(1) It follows that �ðUÞ ¼ OrðJðW ÞaÞ ¼ a�1Wa since OrðJðWÞÞ ¼ W .

(2) Since �ðJðUÞÞ ¼ a�1JðW Þa by (1), we have A1 ¼ JðW Þa ¼ a�ðJðUÞÞ and
A�1 ¼ ��1ða�1W Þ ¼ ��1ð�ðUÞa�1Þ ¼ U��1ða�1Þ by Lemma 1.3 and (1).

(3) This easily follows from (2). �

Now as in [10, Section 2], for a fixed non-zero a 2 K, we set

�i ¼ a�ðaÞ � � ��i�1ðaÞ; ��i ¼ ��ið��1
i Þ for all i 2 N and �0 ¼ 1:

Then we have

��i ¼ ��1ða�1Þ��2ða�1Þ � � ���iða�1Þ for all i 2 N , �i ¼ �ið��1
�i Þ

and

�i�
ið�jÞ ¼ �iþj for all i; j 2 Z :

Furthermore, by using the properties of A�1 in Proposition 1.4, we can consider,

as in [10, Section 2], the following two cases:
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(a) A�1 ¼ U��1 	 ��1�
�1ðUÞ (equivalently, W��1 	 ��1�

�1ðW Þ ¼ A�1).

(b) A�1 ¼ U��1 � ��1�
�1ðUÞ (equivalently, W��1 � ��1�

�1ðWÞ ¼ A�1).

The following proposition is clear by [10, Lemma 1.1].

PROPOSITION 1.5. Let A ¼ �i2ZAiX
i be a graded extension of V in

K½X;X�1; ��. Set Y ¼ X�1 and Bi ¼ A�i for all i 2 Z. Then B ¼ �i2ZBiY
i is a

graded extension of V in K½Y ; Y �1; ��1�.

Since B1 ¼ A�1 is a principal left U-ideal for Type (f), we have the following

theorem by [10, Theorems 2.4, 2.5 and 2.6] and Proposition 1.5.

THEOREM 1.6. Let W be an overring of V with JðW Þ2 ¼ JðW Þ and let

A ¼ �i2ZAiX
i be a subset of K½X;X�1;�� with A0 ¼ V , A1 ¼ JðW Þa which is a

right �ðV Þ-ideal for some a 2 K, and A�1 ¼ ��1ða�1W Þ. Set OrðA1Þ ¼ �ðUÞ for

some overring U of V . Then A is a graded extension of V in K½X;X�1;�� if and
only if one of the following properties hold.

(1) If A�1 ¼ U��1 	 ��1�
�1ðUÞ, then A�i ¼ U��i and Ai ¼ �i�

iðJðUÞÞ for all
i 2 N .

(2) If A�1 ¼ U��1 � ��1�
�1ðUÞ, then A�i ¼ ��i�

�iðW Þ and Ai ¼ JðW Þ�i for

all i 2 N .

Next we will study the case where �A1 ¼ A1 and it is not a principal left

W -ideal. So in the remainder of this paper, suppose that A1 is a left V and right

�ðV Þ-ideal with W ¼ OlðA1Þ, �ðUÞ ¼ OrðA1Þ and �A1 ¼ A1 is not a principal left

W -ideal. In this case, note that JðW Þ2 ¼ JðW Þ and JðUÞ2 ¼ JðUÞ. We will study

the graded extensions by ideal theoretic methods instead of the elements �i above

as follows:

Let A�1 ¼ ��1ððV : A1ÞrÞ and set

M0 ¼ V ;Mi ¼ A1�ðA1Þ � � ��i�1ðA1Þ;M�i ¼ ��iððV : MiÞrÞ for all i 2 N

and

N0 ¼ V ;N�i ¼ A�1�
�1ðA�1Þ � � ���iþ1ðA�1Þ; Ni ¼ �iððV : N�iÞrÞ for all i 2 N :

Then we have:

Mi�
iðM�iÞ � V ;Mi�

iðMjÞ ¼ Miþj; N�i�
�iðNiÞ � V and

N�i�
�iðN�jÞ ¼ N�i�j for all i; j 2 N :
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Note that N1 ¼ A1, because A�1 ¼ ��1ðA�1
1 Þ and is not a finitely generated

left U-ideal and so, by Lemma 1.1, N1 ¼ �ððV : A�1ÞrÞ ¼ �ððV : ��1ðA�1
1 ÞÞrÞ ¼

�ðð��1ðA�1
1 ÞÞ�1Þ ¼ �ð��1ðA�1�1

1 ÞÞ ¼ �A1 ¼ A1. Furthermore, we have that �A1 ¼
A1 is not a principal left W -ideal if and only if �A�1 ¼ A�1 is not a principal left

U-ideal by Proposition 1.5.

Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;�� such that

�A1 ¼ A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ. We will show

that the properties of A depend on the properties of Mi ði 2 NÞ (see Theorems

1.14 and 1.20). There are two cases, that is,

Type (g) �Mi is not a principal left W -ideal for any i 2 N ;

Type (h) �Ml is a principal left W -ideal for some l 2 N .

We will study these two cases in the remainder of this section. At first, we

will show that both M ¼ �i2ZMiX
i and N ¼ �i2ZNiX

i are graded extensions of

V in K½X;X�1;�� with M1 ¼ A1 ¼ N1.

LEMMA 1.7. Let I be a left V and right �iðV Þ-ideal for some i 2 Z such that I

is not a principal left V -ideal as well as not a principal right �iðV Þ-ideal. Then
ðV : IÞr ¼ ð�iðV Þ : IÞl.

PROOF. Since both ðV : IÞr and ð�iðV Þ : IÞl are left �iðV Þ-ideals, we have

either ðV : IÞr � ð�iðV Þ : IÞl or ðV : IÞr � ð�iðV Þ : IÞl. Suppose that the first case

occurs. Then for any b 2 ðV : IÞr n ð�iðV Þ : IÞl, there is a c 2 I with bc =2 �iðV Þ. So
c�1b�1 2 �iðJðV ÞÞ and thus c�1 ¼ ðc�1b�1Þb 2 �iðJðV ÞÞb � ðV : IÞr. Hence 1 ¼
cc�1 2 IðV : IÞr � JðV Þ by Lemma 1.1 (1), a contradiction. Similarly, we have

ð�iðV Þ : IÞl � ðV : IÞr by the assumptions and the right hand version of Lemma 1.1

(1). Hence ðV : IÞr ¼ ð�iðV Þ : IÞl follows. �

LEMMA 1.8. Let I and J be subsets of K, 0 2 I, 0 2 J and i 2 Z. Then

(1) If I is a left V -ideal and J ¼ ��iððV : IÞrÞ. Then I [ �iðJ�Þ ¼ K.

(2) I [ �iðJ�Þ ¼ K if and only if J [ ��iðI�Þ ¼ K.

PROOF.

(1) For any b 2 K n I, we have V b � I, that is, Ib�1 � V . So b�1 2 ðV : IÞr ¼
�iðJÞ and thus b 2 �iðJ�Þ. Hence I [ �iðJ�Þ ¼ K.

(2) Suppose that I [ �iðJ�Þ ¼ K and c 2 K n J. Then c�1 =2 J� and so

�iðc�1Þ 2 I. Thus c�1 2 ��iðIÞ, that is, c 2 ��iðI�Þ. Hence J [ ��iðI�Þ ¼ K.

Similarly, J [ ��iðI�Þ ¼ K implies I [ �iðJ�Þ ¼ K. �

PROPOSITION 1.9. Let A1 be a left V and right �ðV Þ-ideal with OlðA1Þ ¼ W

and OrðA1Þ ¼ �ðUÞ. Suppose that �A1 ¼ A1 and it is not a principal left W -ideal.
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Then both M ¼ �i2ZMiX
i and N ¼ �i2ZNiX

i are graded extensions of V in

K½X;X�1;�� with M1 ¼ A1 ¼ N1.

PROOF. By Lemma 1.8, Mi [ �iðM�
�iÞ ¼ K for all i 2 Z. So it suffices to

prove thatMi�
iðMjÞ � Miþj for all i; j 2 Z by [10, Lemma 1.1]. Let i; j 2 N . Then

Mi�
iðMjÞ ¼ Miþj by the definition. If i 
 j, then

Mi�
iðM�jÞ ¼ Mi�j�

i�jðMjÞ�i�jð�jðM�jÞÞ
¼ Mi�j�

i�jðMj�
jðM�jÞÞ

� Mi�j�
i�jðV Þ ¼ Mi�j:

If i < j, then

V 	 Mj�
jðM�jÞ ¼ Mj�i�

j�iðMiÞ�j�ið�iðM�jÞÞ ¼ Mj�i �
j�iðMi�

iðM�jÞÞ.
So �j�iðMi�

iðM�jÞÞ � ðV : Mj�iÞr ¼ �j�iðMi�jÞ and thus Mi�
iðM�jÞ � Mi�j.

Since JðV ÞA1 ¼ A1 ¼ A1�ðJðV ÞÞ by Lemma 1.1 and its right version, it

follows that JðV ÞMi ¼ Mi ¼ Mi�
iðJðV ÞÞ. So Mi is not a principal left V -ideal as

well as not a principal right �iðV Þ-ideal. Hence, by Lemma 1.7, we have

�iðM�iÞMi ¼ ð�iðV Þ : MiÞlMi � �iðV Þ: ð�Þ

Thus if i � j, then

�iðM�iÞMj ¼ �iðM�iÞMi�
iðMj�iÞ � �iðV Þ�iðMj�iÞ ¼ �iðMj�iÞ:

Hence M�i�
�iðMjÞ � Mj�i.

If i > j, then, by ð�Þ, �iðV Þ 	 �iðM�iÞMj�
jðMi�jÞ and so, by Lemma 1.7,

�iðM�iÞMj � ð�iðV Þ : �jðMi�jÞÞl ¼ �jðð�i�jðV Þ : Mi�jÞlÞ
¼ �jððV : Mi�jÞrÞ ¼ �jð�i�jðM�iþjÞÞ ¼ �iðM�iþjÞ:

Hence M�i�
�iðMjÞ � M�iþj follows.

Finally, since V 	 Mj�
jðM�jÞ ¼ Mj�

jðV Þ�jðM�jÞ 	 Mj�
jðMi�

iðM�iÞÞ,
�jðM�jÞ ¼ Miþj�

iþjðM�iÞ�jðM�jÞ, we have �iþjðM�iÞ�jðM�jÞ � ðV : MiþjÞr and

so M�i�
�iðM�jÞ � ��i�jððV : MiþjÞrÞ ¼ M�i�j. Hence M is a graded extension of

V in K½X;X�1;��. Since �A�1 ¼ A�1 is not a principal left U-ideal, N is a graded

extension of V in K½X;X�1;�� by the proof above and Proposition 1.5. �

Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;�� such that
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�A1 ¼ A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ. Then either

WAi is not a principal left W -ideal for any i 2 N or WAl is a principal left

W -ideal for some l 2 N .

LEMMA 1.10. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��

such that �A1 ¼ A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ. Set
�ðUÞ ¼ OrðA1Þ. Then

(1) A1�ðA�1Þ ¼ JðW Þ and JðW ÞAiþ1 ¼ A1�ðAiÞ for all i 2 N .

(2) If WAi is not a principal left W -ideal for some i 2 Nði > 1Þ, then

Ai ¼ A1�ðAi�1Þ.
(3) A�1�

�1ðA1Þ ¼ JðUÞ and JðUÞA�i�1 ¼ A�1�
�1ðA�iÞ for all i 2 N .

(4) If UA�i is not a principal left U-ideal for some i 2 N ði > 1Þ, then

A�i ¼ A�1�
�1ðA�iþ1Þ.

PROOF.

(1) It follows from Lemmas 1.1 and 1.3 that A1�ðA�1Þ ¼ A1ðV : A1Þr ¼ JðWÞ.
A�1�

�1ðAiþ1Þ � Ai implies �ðA�1ÞAiþ1 � �ðAiÞ. Thus JðW ÞAiþ1 ¼ A1�ðA�1Þ
Aiþ1 � A1�ðAiÞ � Aiþ1. Hence JðW ÞAiþ1 ¼ A1�ðAiÞ since JðW ÞA1 ¼ A1 and

JðW Þ2 ¼ JðW Þ.
(2) By the assumptions, Lemma 1.1 and (1), we have Ai � WAi ¼

JðW ÞWAi ¼ JðW ÞAi ¼ A1�ðAi�1Þ � Ai. Hence Ai ¼ A1�ðAi�1Þ follows.
(3) and (4) can be got by Proposition 1.5 and (1), (2). �

LEMMA 1.11. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��

such that A1 ¼ �A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ.
Suppose that WAi is not a principal left W -ideal for any i 2 N . Then A ¼ M.

PROOF. Suppose thatWAi is not principal left W -ideal for any i 2 N . Then

Ai ¼ A1�ðAi�1Þ for all i 2 N by Lemma 1.10. Hence we have Ai ¼ Mi for all i 2 N

by induction on i. Furthermore, by Lemma 1.3, we have A�i ¼ ��iððV : AiÞrÞ ¼
��iððV : MiÞrÞ ¼ M�i. Hence A ¼ M follows. �

Note that A1 ¼ �A1 which is not a principal left OlðA1Þ-ideal if and only if

A�1 ¼ �A�1 which is not a principal left OlðA�1Þ-ideal. Now the following remark

is clear by Proposition 1.5 and Lemma 1.11.

REMARK. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��

such that A1 ¼ �A1 and it is not a principal left OlðA1Þ-ideal. Set U ¼ OlðA�1Þ.
Suppose that UA�i is not a principal left U-ideal for any i 2 N . Then A ¼ N.

LEMMA 1.12. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��

such that �A1 ¼ A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ. Set
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�ðUÞ ¼ OrðA1Þ.
(1) Suppose that either WAl ¼ Wc or Al ¼ JðW Þc for some c 2 K and

l 2 Nðl > 1Þ. Then �ðAl�1Þ ¼ A�1
1 c and OlðAl�1Þ ¼ U.

(2) Suppose that WAl ¼ Wc for some c 2 K and l 2 N (assume that l is the

smallest natural number for this property). Then Ml ¼ JðW Þc and U ¼ W .

(3) Suppose that either UA�l ¼ Uc or A�l ¼ JðUÞc for some c 2 K and

l 2 Nðl > 1Þ. Then ��1ðA�lþ1Þ ¼ A�1
�1c and OlðA�lþ1Þ ¼ W .

(4) Suppose that UA�l ¼ Uc for some c 2 K and l 2 N (assume that l is the

smallest natural number for this property). Then N�l ¼ JðUÞc and U ¼ W .

PROOF.

(1) Suppose that Al ¼ JðW Þc. Then, from JðW Þc ¼ Al 	 A1�ðAl�1Þ, we

derive �ðAl�1Þ � ðJðW Þc : A1Þr ¼ ððW : A1ÞrÞc ¼ A�1
1 c, because JðW ÞA1 ¼ A1. On

the other hand, since A�1 ¼ ��1ðA�1
1 Þ, we have

Al�1 	 A�1�
�1ðAlÞ ¼ ��1ðA�1

1 AlÞ ¼ ��1ðA�1
1 JðW ÞcÞ ¼ ��1ðA�1

1 cÞ;

because A�1
1 is not a principal right W -ideal. Hence �ðAl�1Þ ¼ A�1

1 c follows.

Furthermore, �ðOlðAl�1ÞÞ ¼ Olð�ðAl�1ÞÞ ¼ OlðA�1
1 cÞ ¼ OlðA�1

1 Þ ¼ OrðA1Þ ¼ �ðUÞ,
which shows OlðAl�1Þ ¼ U . In the case where WAl ¼ Wc, the statements are

proved similarly.

(2) For each i ð2 � i � l� 1Þ, we have Ai ¼ A1�ðAi�1Þ by Lemma 1.10 and so

Ai ¼ Mi inductively. Hence Ml ¼ M1�ðMl�1Þ ¼ A1�ðAl�1Þ ¼ A1A
�1
1 c ¼ JðW Þc by

(1) and Lemmas 1.1, 1.3. That U ¼ W follows from W ¼ OlðJðWÞcÞ ¼ OlðMlÞ 	
OlðMl�1Þ 	 OlðM1Þ ¼ W and OlðMl�1Þ ¼ OlðAl�1Þ ¼ U by (1).

(3) and (4) can be got by Proposition 1.5 and (1), (2). �

Since M and N are graded extensions of V in K½X;X�1;�� with M1 ¼
A1 ¼ N1, we have the following remark from the proofs of Lemma 1.12.

REMARK. Suppose that either Ml ¼ JðW Þc for some c 2 K and l 2 N or

N�l0 ¼ JðUÞc0 for some c0 2 K and l0 2 N . Then U ¼ W .

LEMMA 1.13. Let A ¼ �i2ZAiX
i be a graded extension of V in K½X;X�1;��

such that �A1 ¼ A1 and it is not a principal left W -ideal, where W ¼ OlðA1Þ. Set
�ðUÞ ¼ OrðA1Þ. Then

(1) JðW ÞAi ¼ Mi for all i 2 N .

(2) JðUÞA�i ¼ N�i for all i 2 N .

PROOF.

(1) If WAi is not a principal left W -ideal for any i 2 N , then Ai ¼ Mi for all
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i 2 N by Lemma 1.11 so that JðW ÞAi ¼ JðW ÞMi ¼ Mi. If WAl is a principal left

W -ideal for some l 2 N , then U ¼ W by Lemma 1.12. We inductively suppose

that JðW ÞAi ¼ Mi for some i 2 N . Then Miþ1 ¼ M1�ðMiÞ ¼ A1�ðJðWÞAiÞ ¼
A1�ðJðUÞAiÞ ¼ A1�ðAiÞ ¼ JðW ÞAiþ1 by Lemma 1.10 since A1 is not a principal

right �ðUÞ-ideal.
(2) can be got by Proposition 1.5 and (1). �

We are now ready to prove the following theorem which characterizes

Type (g):

THEOREM 1.14. Let A ¼ �i2ZAiX
i be a subset of K½X;X�1; �� with A0 ¼ V

such that A1 is a left V and right �ðV Þ-ideal with �A1 ¼ A1, which is not a principal

left W -ideal, where W ¼ OlðA1Þ. Suppose that �Mi is not a principal left W -ideal

for any i 2 N . Then A is a graded extension of V in K½X;X�1;�� if and only if

A ¼ M ¼ �i2ZMiX
i.

PROOF. Suppose that A is a graded extension of V in K½X;X�1;��. By

Lemma 1.13. JðW ÞAi ¼ Mi for all i 2 N . Assume that WAj ¼ Wc for some j 2 N

and c 2 K. Then �Mj ¼ �ðJðW ÞAjÞ ¼ �ðJðW ÞcÞ ¼ Wc, a contradiction. Thus WAi

is not a principal left W -ideal for any i 2 N . Hence A ¼ M ¼ �i2ZMiX
i by

Lemma 1.11. Conversely, if A ¼ M, then A is a graded extension of V in

K½X;X�1;�� by Proposition 1.9. �

Since N ¼ �i2ZNiX
i is a graded extension of V in K½X;X�1;�� with N1 ¼ A1,

we have the following

COROLLARY 1.15. Suppose that �Mi is not a finitely generated left W -ideal

for any i 2 N . Then N ¼ M.

Finally we will study Type (h), that is, Ml ¼ JðW Þc for some c 2 K and l 2 N

(see Lemma 1.1).

LEMMA 1.16. Suppose that Ml ¼ JðW Þc for some c 2 K and l 2 N (assume

that l is the smallest natural number for this property). Then

(1) For any i 2 N , �Mi � Mi if and only if i 2 lN . In this case, Mil ¼
JðW Þc�lðcÞ � � ��ði�1ÞlðcÞ for all i 2 N .

(2) OlðMiÞ ¼ W for all i 2 N .

PROOF.

(1) First note that U ¼ W by the remark to Lemma 1.12. For any i 2 N , let

�i ¼ c�lðcÞ � � ��ði�1ÞlðcÞ. Suppose that Mil ¼ JðW Þ�i. Then Mðiþ1Þl ¼ Ml�
lðMilÞ ¼

Ml�
lðJðW Þ�iÞ ¼ Ml�

lðJðUÞÞ�lð�iÞ ¼ Ml�
lð�iÞ ¼ JðW Þ�iþ1. Thus

�Mi � Mi for all
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i 2 lN . So it suffices to prove that �Mp ¼ Mp if p =2 lN . Before that, we have to

prove the statement (2). Let i 2 N . Then there is a j 2 N with jl 
 i. So W ¼
OlðJðW Þ�jÞ ¼ OlðMjlÞ 	 OlðMiÞ 	 W and hence OlðMiÞ ¼ W . Write p ¼ ilþ j

ð0 < j < lÞ and suppose that �Mp � Mp, that is, Mp ¼ JðW Þb for some b 2 K by

Lemma 1.1. Then JðW Þb ¼ Mj�
jðMilÞ ¼ Mj�

jðJðW Þ�iÞ ¼ Mj�
jð�iÞ. So Mj ¼

JðW Þb�jð��1
i Þ, which contradicts to the choice of l. Hence �Mp ¼ Mp for all p 2

N with p =2 lN . �

Now the following Lemma is clear by Proposition 1.5 and Lemma 1.16.

LEMMA 1.17. Suppose that N�l ¼ JðUÞd for some d 2 K and l 2 N (assume

that l is the smallest natural number for this property). Then

(1) For any i 2 N , �N�i � N�i if and only if i 2 lN . In this case, N�il ¼
JðUÞd��lðdÞ � � ��ð�iþ1ÞlðdÞ for all i 2 N .

(2) OlðN�iÞ ¼ U for all i 2 N .

LEMMA 1.18. Mk ¼ JðW Þb for some b 2 K and k 2 N if and only if

N�k ¼ JðUÞ��kðb�1Þ. In this situation, �kðW Þ ¼ b�1Wb.

PROOF. Note that U ¼ W by the remark to Lemma 1.12. Suppose that

Mk ¼ JðW Þb. Then M�k ¼ ��kðb�1W Þ by Lemma 1.3 and JðW Þb ¼ JðWÞb�kðW Þ
since Mk is a right �kðWÞ-ideal. So b�kðW Þb�1 � OrðJðW ÞÞ ¼ W . To prove that

�kðWÞ ¼ b�1Wb, suppose that �kðW Þ � b�1Wb. Then, applying Lemma 1.13 to

M ¼ �i2ZMiX
i, we have

N�k ¼ JðWÞM�k ¼ JðW Þ��kðb�1W Þ
¼ JðWÞ��kðb�1WbÞ��kðb�1Þ
¼ ��kðb�1WbÞ��kðb�1Þ ¼ ��kðb�1W Þ;

which is a contradiction, because N�k is not a principal right ��kðW Þ-ideal. Hence

�kðWÞ ¼ b�1Wb follows. Therefore, by Lemma 1.13, N�k ¼ JðW Þ��kðb�1W Þ ¼
JðW ÞW��kðb�1Þ ¼ JðW Þ��kðb�1Þ as desired. Now, by Proposition 1.5, we can get

that N�k ¼ JðUÞ��kðb�1Þ implies Mk ¼ JðW Þb. This completes the proof. �

Suppose that Ml ¼ JðW Þc for some c 2 K and l 2 N . Then M�l ¼
��lðM�1

l Þ ¼ ��lðc�1W Þ ¼ W��lðc�1Þ � JðW Þ��lðc�1Þ ¼ N�l by Lemmas 1.3 and

1.18. Thus we have the following remark.

REMARK. Suppose that Ml ¼ JðWÞc for some c 2 K and l 2 N . Then

M 6¼ N .
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LEMMA 1.19. Let Ml ¼ JðW Þc for some c 2 K and l 2 N (assume that l is

the smallest natural number for this property) and B ¼ �j2ZAjlX
jl is a graded

extension of V in K½Xl;X�l; �l� with JðW Þc � Al � Wc. Then

(1) JðW Þ��lðc�1Þ � A�l � W��lðc�1Þ.
(2) JðW ÞAjl ¼ Mjl ¼ Ajl�

jlðJðW ÞÞ for all j 2 N .

(3) JðW ÞA�jl ¼ N�jl ¼ A�jl�
�jlðJðW ÞÞ for all j 2 N .

(4) N�i ¼ M�i for all i 2 N n lN .

PROOF.

(1) First note that U ¼ W and �lðW Þ ¼ c�1Wc by the remark to Lemma 1.12

and Lemma 1.18. Since c�1W ¼ ðV : JðW ÞcÞr 	 ðV : AlÞr 	 ðV : WcÞr 	 c�1JðWÞ,
we have

W��lðc�1Þ 	 ��lððV : AlÞrÞ 	 JðWÞ��lðc�1Þ:

So if Al is not a finitely generated left V -ideal, then the statement follows since

A�l ¼ ��lððV : AlÞrÞ by Lemma 1.3. If Al is a finitely generated left V -ideal, say,

Al ¼ V b for some b 2 Al, then JðW Þc � Wb � Wc implies Wb ¼ Wc since

JðW Þ2 ¼ JðW Þ, that is, cb�1 is a unit in W . It follows from the proof of [10,

Lemma 1.4] that �lðA�lÞ 	 b�1JðV Þ and so A�l 	 ��lðb�1JðV ÞÞ 	 ��lðb�1JðW ÞÞ ¼
��lðc�1JðW ÞÞ ¼ JðW Þ��lðc�1Þ. Furthermore from V 	 Al�

lðA�lÞ, we derive

�lðA�lÞ � ðV : AlÞr ¼ b�1V . Thus A�l � ��lðb�1V Þ � ��lðb�1WÞ ¼ ��lðc�1W Þ ¼
W��lðc�1Þ. Hence in any case, we have JðW Þ��lðc�1Þ � A�l � W��lðc�1Þ as

desired.

(2) It follows from (1) and Lemma 1.18 that JðW ÞA�l ¼ JðW Þ��lðc�1Þ ¼ N�l

and A�l�
�lðJðW ÞÞ ¼ JðW Þ��lðc�1Þ, which is the proof of (3) in the case where

j ¼ 1. Now we prove the statement by induction on j. If j ¼ 1, then JðW ÞAl ¼
JðW Þc ¼ Ml and Ml ¼ JðW Þc ¼ c�lðJðW ÞÞ ¼ Al�

lðJðW ÞÞ since c�lðJðW ÞÞ �
Al � c�lðW Þ. Suppose that JðW ÞAjl ¼ Mjl for some j 2 N . Then

JðW ÞAjlþl 	 JðW ÞAl�
lðAjlÞ ¼ JðW Þc�lðAjlÞ ¼ c�lðJðW ÞAjlÞ

¼ c�lðMjlÞ ¼ c�lðJðW Þ�jÞ ¼ JðWÞ�jþ1 ¼ Mjlþl;

where �j ¼ c�lðcÞ � � ��ðj�1ÞlðcÞ as in Lemma 1.16. Suppose that JðW ÞAjlþl �
Mjlþl ¼ JðW Þ�jþ1. Then, by Lemma 1.2, JðW ÞAjlþl � W�jþ1 and so c�1JðW Þ
Ajlþl � c�1W�jþ1. Thus, operating ��l on both sides, we have

JðW Þ��lðc�1Þ��lðAjlþlÞ ¼ ��lðc�1JðW ÞAjlþlÞ � ��lðc�1W�jþ1Þ ¼ W�j:

Graded extensions II 1123



So

WAjl 	 JðWÞA�l�
�lðAjlþlÞ ¼ JðW Þ��lðc�1Þ ��lðAjlþlÞ � W�j:

Thus, by Lemma 1.2, JðW ÞAjl � JðWÞ�j ¼ Mjl, a contradiction. Hence

JðW ÞAjlþl ¼ Mjlþl follows. We can prove that Mjl ¼ Ajl�
jlðJðW ÞÞ for all j 2 N

by the right version.

(3) can be got by Proposition 1.5 and (2).

(4) Let i 2 N n lN . Then �Mi ¼ Mi and W ¼ OlðMiÞ by Lemma 1.16. So

M�i ¼ ��iðM�1
i Þ by lemma 1.3. Since Mi is not a principal left W -ideal,M�1

i is not

a principal right W -ideal so that it is not a principal left W 0-ideal, where W 0 ¼
OrðM�1

i Þ and it contains �iðW Þ. In particular, M�1
i is not a principal left

�iðW Þ-ideal. Thus JðW ÞM�i ¼ M�i by Lemma 1.1. Hence N�i ¼ JðW ÞM�i ¼ M�i

by Lemma 1.13. �

In the case where either �A1 � A1 or
�A1 ¼ A1 and

�Mi is not a principal left

W -ideal for any i 2 N , the graded extension A ¼ �i2ZAiX
i is uniquely

determined by A1 and A�1 (see Theorems 1.6 and 1.14). However, in the case

where �A1 ¼ A1 and �Ml is a principal left W -ideal for some l 2 N , that is, Ml ¼
JðW Þc for some c 2 K, A is not uniquely determined by A1 and A�1 (see the

remark after Lemma 1.18) and we are now ready to prove the following theorem

which characterizes Type (h).

THEOREM 1.20. Let A ¼ �i2ZAiX
i be a subset of K½X;X�1;�� such that

A0 ¼ V , A1 is a left V and right �ðV Þ-ideal with �A1 ¼ A1 which is not a principal

left W -ideal, where W ¼ OlðA1Þ. Suppose that Ml ¼ JðW Þc for some c 2 K and

l 2 N (assume that l is the smallest natural number for this property). Then A is a

graded extension of V in K½X;X�1;�� if and only if

(1) Ai ¼ Mi for all i 2 Z n lZ.

(2) B ¼ �j2ZAjlX
jl is a graded extension of V in K½Xl;X�l;�l� with

JðW Þc � Al � Wc.

PROOF. Note that U ¼ W by the remark to Lemma 1.12. Suppose that A is

a graded extension of V in K½X;X�1;��. Then, by Lemma 1.13, Ml ¼ JðWÞc ¼
JðW ÞAl � Al and so Alc

�1 � OrðJðW ÞÞ ¼ W . Hence JðW Þc � Al � Wc. Thus it

remains to prove that Ai ¼ Mi for all i 2 Z n lZ. Let i 2 N n lN . Then �Mi ¼ Mi

and Ai 	 JðW ÞAi ¼ Mi by Lemmas 1.13 and 1.16. Suppose that Ai � Mi and let

d 2 Ai nMi. Then Wd � Mi and so JðWÞd 	 Mi. If JðW Þd ¼ Mi, then Wd ¼
�ðJðW ÞdÞ ¼ �Mi ¼ Mi, which is a contradiction, because JðW ÞMi ¼ Mi. Thus

JðW Þd � Mi. Then JðWÞAi 	 JðW Þd � Mi, a contradiction. Hence Ai ¼ Mi
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follows. Now, by Proposition 1.5, we can get that A�i ¼ N�i and so A�i ¼ M�i by

Lemma 1.19.

Conversely, suppose that (1) and (2) hold. For any i 2 Z, we have Ai [
��iðA�

i Þ ¼ K by [10, Lemma 1.1] and the assumptions. So it suffices to prove that

Ai�
iðAjÞ � Aiþj for all i; j 2 Z, which will be proved in the following four cases:

(i) i =2 lZ and j =2 lZ. Then Ai�
iðAjÞ ¼ Mi�

iðMjÞ � Miþj � Aiþj, because

Miþj ¼ Aiþj if iþ j =2 lZ and Aiþj 	 JðW ÞAiþj ¼ Miþj if iþ j 2 lZ by Lemma

1.19.

(ii) i =2 lZ, j 2 lZ. Then iþ j =2 lZ and Ai�
iðAjÞ�iþjðJðW ÞÞ ¼

Ai�
iðAj�

jðJðW ÞÞ ¼ Mi�
iðMjÞ � Miþj by Lemma 1.19. So

Ai�
iðAjÞ � ðAi�

iðAjÞ�iþjðW ÞÞv ¼ ðAi�
iðAjÞ�iþjðJðWÞÞÞv

� ðMiþjÞv � ðMiþjÞ� ¼ Miþj ¼ Aiþj

by Lemma 1.1, where Iv ¼ ð�iþjðW Þ : ð�iþjðW Þ : IÞlÞr for a right �iþjðW Þ-ideal I.
(iii) i 2 lZ, j =2 lZ. In this case, it is proved in the same way as in (ii) by

considering JðW ÞAi�
jðAjÞ.

(iv) i; j 2 lZ. This case is clear by the assumption. �

2. Examples.

In this section, we will provide concrete examples of graded extensions of V in

K½X;X�1;�� for illustrating the classification.

Let W be an overring of V with JðW Þ2 ¼ JðW Þ and � ¼ 1. Then the following

is a trivial example satisfying Theorem 1.6.

EXAMPLE 2.1. A ¼ �i2NWX�i � V � ð�i2NJðW ÞXiÞ is a graded extension

of V in K½X;X�1�.

Let F0½Y r
i j i 2 Z ; r 2 Q� be a commutative domain over a field F0 in

indeterminates Yi with Y r
i � Y s

i ¼ Y rþs
i and let F ¼ F0ðY r

i j i 2 Z ; r 2 QÞ be its

quotient field, where Q is the field of rational numbers. We define a � 2 Aut ðF Þ as
follows;

�ðaÞ ¼ a for all a 2 F0 and �ðY r
i Þ ¼ Y r

i�1 for all i 2 Z and r 2 Q:

Furthermore, let G ¼ �i2ZQi, the direct sum of Qi with Q ¼ Qi, which is a

totally ordered abelian group by lexicographic ordering and we define a map v

from F to G as follows;
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vðaÞ ¼ 0 for any a 2 F0 and for any homogeneous element � ¼ Y r1
i1

� � �Y rn
in

ði1 < � � � < inÞ, vð�Þ ¼ ð� � � ; 0; r1; � � � ; rn; 0; � � �Þ, i.e., the ij-component of vð�Þ is

rjð1 � j � nÞ and the other components of it are all zeroes.

Furthermore, let � ¼ �1 þ � � � þ �m be any element in F0½Y r
i j i 2 Z ; r 2

Q�,where �i are homogenous elements. Then we define vð�Þ ¼ minfvð�iÞ j
1 � i � mg. As usual, we can extend the map v to F , which is a valuation of F .

We denote by V0 the valuation ring of F determined by v, that is, V0 ¼ f���1 j
vð���1Þ ¼ vð�Þ � vð�Þ 
 0; where �; � 2 F0½Y r

i j i 2 Z ; r 2 Q� with � 6¼ 0g:
Note that �ðV0Þ ¼ V0, since � is just shifting and that, for any ���1 2 F ,

V0��
�1 ¼ V0Y

r1
i1

� � �Y rn
in

for some homogeneous element Y r1
i1

� � �Y rn
in

by the con-

struction of v. We set Ui ¼ [fV0Y
r
i j r 2 Qg, an overring of V0. Then �ðUiÞ ¼

Ui�1 � Ui for all i 2 Z.

Let F ½t; �� be the skew polynomial ring over F in an indeterminate t and let

K ¼ F ðt; �Þ be the quotient ring of F ½t; �� which is a division ring.

As in [8, Section 1], we define the map

’ : F ½t; ��ðtÞ �! F

by ’ðfðtÞgðtÞ�1Þ ¼ fð0Þgð0Þ�1, where fðtÞ; gðtÞ 2 F ½t; ��, gð0Þ 6¼ 0 and F ½t; ��ðtÞ is

the localization of F ½t; �� at the maximal ideal ðtÞ. We let

V ¼ ’�1ðV0Þ ¼ V0 þ tF ½t; ��ðtÞ and Wi ¼ ’�1ðUiÞ ¼ Ui þ tF ½t; ��ðtÞ;

the complete inverse images of V0 and Ui by ’ respectively for any i 2 Z. Then V

andWi are all total valuation rings of F ðt; �Þ by [8, Proposition 1.6]. Furthermore,

we have the following properties which are easily proved by the definitions:

(1) �ðV Þ ¼ V and �ðWiÞ ¼ Wi�1 � Wi for any i 2 Z.

(2) Y r
j V ¼ V Y r

j and Y r
j Wi ¼ WiY

r
j for any i; j 2 Z and r 2 Q.

Let � be a positive real number but not a rational number and set

A1 ¼ [ft�1Y �r
0 V j r < �; r 2 Qg ¼ [fV Y �r

1 t�1 j r < �; r 2 Qg:

Then A1 satisfies the following:

(a) W2 ¼ OlðA1Þ and W1 ¼ OrðA1Þ.
(b) A1 is not a principal left W2-ideal.

(c) A1 ¼ \fW2Y
�s
1 t�1 j s > �; s 2 Qg so that �A1 ¼ A1.
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PROOF. First note that t�1F ½t; ��ðtÞ 	 A1 	 F ½t; ��ðtÞ, which are easily

obtained from the construction of A1.

(a) To prove W2 � OlðA1Þ, let r; s 2 Q with r < �. Then

F ½t; ��ðtÞt � t�1Y �r
0 V ¼ F ½t; ��ðtÞV ¼ F ½t; ��ðtÞ � A1

and

Y s
2 t

�1Y �r
0 V ¼ t�1Y s

1 Y
�r
0 V ¼ t�1Y

�ðr1þrÞ
0 Y r1

0 Y s
1 V � t�1Y

�ðr1þrÞ
0 V � A1;

where r1 2 Q with rþ r1 < � and r1 > 0. Hence W2 � OlðA1Þ follows since

W2 ¼ U2 þ tF ½t; ��ðtÞ.
To prove the converse inclusion, let � 2 OlðA1Þ. Since K ¼ [ftiF ½t; ��ðtÞ j

i 2 Zg, we can write � ¼ tic for some i 2 Z and c 2 UðF ½t; ��ðtÞÞ, where UðF ½t; ��ðtÞÞ
is the set of units in F ½t; ��ðtÞ. If i < 0, then �t�1 ¼ tict�1 ¼ ti�1�ðcÞ =2 A1, since

A1 � t�1F ½t; ��ðtÞ, which is impossible so that i 
 0. If i > 0, then � 2 tF ½t; ��ðtÞ �
W2. So we may assume that i ¼ 0, that is, � 2 UðF ½t; ��ðtÞÞ. Since F ½t; ��ðtÞ ¼
F þ tF ½t; ��ðtÞ, we can write � ¼ bþ td, where b 2 F , and d 2 F ½t; ��ðtÞ. Suppose
that � =2 W2. Then b =2 U2 and b ¼ Y l1

i1
� � �Y ln

in
u for some li 2 Q; i1 < � � � < in and

u 2 UðV0Þ as it is noticed before. If either i1 
 2 or l1 > 0, then b 2 U2. So we may

assume that i1 < 2 and l1 < 0. If i1 < 1, then A1 3 �t�1 ¼ t�1�ð�Þ ¼ t�1Y l1
i1�1 � � �

Y ln
in�1�ðuÞ þ �ðdÞ, which implies t�1Y l1

i1�1 � � �Y
ln
in�1 2 A1 and so t�1Y l1

i1�1 � � �Y
ln
in�1¼

t�1Y �r
0 ðv0 þ teÞ for some r 2 Q with r < �, v0 2 V0, e 2 F ½t; ��ðtÞ. Thus

Y l1
i1�1 � � �Y

ln
in�1 � Y �r

0 v0 ¼ Y �r
0 te 2 tF ½t; ��ðtÞ ¼ JðF ½t; ��ðtÞÞ and Y l1

i1�1 � � �Y
ln
in�1 �

Y �r
0 v0 is non-zero and is a unit in F ½t; ��, a contradiction, because i1 � 1 < 0

and l1 < 0. Hence i1 ¼ 1 and l1 < 0. In this case, there is an r 2 Q with r < � and

l1 � r < ��. Then A1 3 �t�1Y �r
0 ¼ t�1�ð�ÞY �r

0 ¼ t�1½Y l1
i1�1 � � �Y

ln
in�1�ðuÞ þ t�ðdÞ�

Y �r
0 ¼ t�1Y �s

0 u1 for some s 2 Q with s < � and u1 ¼ u0 þ td1 2 V , where u0 2 V0

and d1 2 F ½t; ��ðtÞ. Hence, as before, we have Y l1�r
0 Y l2

i2�1 � � �Y
ln
in�1�ðuÞ ¼ Y �s

0 u0, a

contradiction, because �s > �� > l1 � r. Thus � 2 W2 and hence W2 ¼ OlðA1Þ.
Similarly, we can prove that W1 ¼ OrðA1Þ.

(b) It follows that A1 ¼ [fW2Y
�r
1 t�1 j r < �; r 2 Qg by (a) and that

W2Y
�r
1 t�1 � W2Y

�s
1 t�1 if r > s. Hence A1 is not a principal left W2-ideal.

(c) Let s and r 2 Q with s > � > r. Then W2Y
�s
1 t�1 � W2Y

�r
1 t�1 and so

A1 � \fW2Y
�s
1 t�1 j s > �; s 2 Qg. To prove the converse inclusion, let � ¼ cti for

some c 2 UðF ½t; ��ðtÞÞ and i 2 Z with � 2 \fW2Y
�s
1 t�1 j s > �; s 2 Qg. Suppose

that � =2 A1. If i 
 0, then � 2 F ½t; ��ðtÞ � A1, a contradiction. If i � �2, then

cti 2 W2Y
�s
1 t�1 implies c 2 W2Y

�s
1 t � JðF ½t; ��ðtÞÞ, a contradiction. Hence we may

assume that i ¼ �1. As before, let c ¼ bþ td, where b 2 F and d 2 F ½t; ��ðtÞ and let

b ¼ Y l1
i1
� � �Y ln

in
u, where i1 < � � � < in, li 2 Q, l1 < 0 (since � is not in A1) and
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u 2 UðV0Þ. Then for any s > � > r, we have W2Y
�s
1 t�1 	 W2� ¼ W2ct

�1 �
W2Y

�r
1 t�1, which implies U2Y

�s
1 	 U2Y

l1
i1
� � �Y ln

in
u � U2Y

�r
1 . It follows that i1 ¼ 1

and �s � l1 < �r for any s; r 2 Q with s > � > r > 0. Hence l1 ¼ �s for some

s 2 Q with s > �. This implies W2� � W2Y
�s1
1 t�1 for any s1 2 Q with

� < s1 < �l1, a contradiction. Hence A1 ¼ \fW2Y
�s
1 t�1 j s > �; s 2 Qg follows.

In particular, �A1 ¼ A1. �

We set Mi ¼ A1�ðA1Þ � � ��i�1ðA1Þ. Then we have

(d) Mi ¼ [fV Y �r
1 t�i j r < i�; r 2 Qg ¼ [fW2Y

�r
1 t�i j r < i�; r 2 Qg for all

i 2 N and they are not finitely generated left W2-ideals.

(e) Mi ¼ \fW2Y
�s
1 t�i j s > i�; s 2 Qg so that �Mi ¼ Mi.

(f) ðV : MiÞr ¼ [ftiY s
1 V j s > i�; s 2 Qg so that M�i ¼ ��iððV : MiÞrÞ ¼

[ftiY s
1þiV j s > i�; s 2 Qg.

PROOF.

(d) The first statement follows by induction on i and the second statement is

clear from the proof of (b).

(e) This is clear from (c)(we use �0 ¼ i� instead of � in (c)).

(f) It is clear from (d) that ðV : MiÞr 	 [ftiY s
1 V j s > i�; s 2 Qg. To prove the

converse inclusion, let � ¼ tjc 2 ðV : MiÞr for some c 2 UðF ½t; ��ðtÞÞ and j 2 Z. We

may suppose that j 
 i, because V Y �r
1 t�itjc � V � F ½t; ��ðtÞ for any r 2 Q with

r < i�. If j > i, then � ¼ titj�ic 2 titF ½t; ��ðtÞ � tiY s
1 V for any s 2 Q with s > i�. If

j ¼ i, then, as before, let c ¼ bþ td for some b 2 F and d 2 F ½t; ��ðtÞ and write

b ¼ Y l1
i1
� � �Y ln

in
u for some u 2 UðV0Þ, i1 < � � � < in and li 2 Q. Since V 3 Y �r

1 t�i� for

any r < i�; r 2 Q, we have Y �r
1 b 2 V0, that is, b 2 Y r

1 V0. This implies l1 > 0 and

i1 � 1. If i1 < 1, then � ¼ tiðbþ tdÞ 2 tiðY s
1 V0 þ Y s

1 tF ½t; ��ðtÞÞ � tiY s
1 V for any

s > i�; s 2 Q, because vðbÞ > vðY s
1 Þ. If i1 ¼ 1 and l1 < i�, then there is an r 2 Q

with l1 < r < i� and b =2 Y r
1 V0, a contradiction. If i1 ¼ 1 and l1 > i�, then there is

an s 2 Q with l1 > s > i� and bV0 � Y s
1 V0. So we have

� ¼ tic ¼ tiðbþ tdÞ 2 tiðY s
1 V0 þ Y s

1 tF ½t; ��ðtÞÞ ¼ tiY s
1 V :

Hence ðV : MiÞr ¼ [ftiY s
1 V j s > i�; s 2 Qg follows. In particular, M�i ¼

[ftiY s
1þiV j s > i�; s 2 Qg. �

Thus we have the following example of a graded extension A of V in

K½X;X�1;�� satisfying all conditions in Theorem 1.14.

EXAMPLE 2.2. Under the notations and assumptions as above, let

Ai ¼ [fV Y �r
1 t�i j r < i�; r 2 Qg and A�i ¼ [ftiY s

1þiV j s > i�; s 2 Qg. Then
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A ¼ �i2ZAiX
i is a graded extension of V in K½X;X�1;��.

In order to obtain more concrete examples of Theorem 1.6, let A1 ¼ JðW2Þtj,
which is a left W2 and right t�jW2t

jð¼ ��jðW2Þ ¼ W2þjÞ-ideal. So, by using the

notation in Section 1, W ¼ W2, �ðUÞ ¼ W2þj, �i ¼ tij, ��i ¼ t�ij for all i 2 N and

A�1 ¼ U��1 ¼ W3þjt
�j. Thus we have the following:

(1) A�1 ¼ U��1 ¼ ��1�
�1ðUÞ if and only if j ¼ �1.

(2) A�1 ¼ U��1 � ��1�
�1ðUÞ if and only if j > �1.

(3) A�1 ¼ U��1 � ��1�
�1ðUÞ if and only if j < �1.

Hence we have the following example illustrating Theorem 1.6.

EXAMPLE 2.3. Under the notations and assumptions as above, if j 
 �1,

then A ¼ �i2NW3þjt
�ijX�i � V � ð�i2N tijJðW3�iþjÞXiÞ is a graded extension

of V in K½X;X�1;�� and if j < �1, then A ¼ �i2N t�ijW2þiX
�i � V �

ð�i2NJðW2ÞtijXiÞ is a graded extension of V in K½X;X�1;��.

Finally we will provide examples satisfying all conditions in Theorem 1.20.

Let V be a total valuation ring of K with rank one and suppose that JðV Þ � ð0Þ is
an exceptional prime segment with C, the non-Goldie prime ideal. Then �C ¼ C

such that OlðCÞ ¼ V ¼ OrðCÞ and it is not a finitely generated left V -ideal (cf.

[3]). Let l be a natural number with �ðClÞ ¼ V c ¼ cV for some c 2 K (assume that

l is the smallest natural number for this property and l > 1)(cf. [1, p. 3173]). Then

Cl ¼ JðV Þc. Thus we have the following example (in the case � ¼ 1):

EXAMPLE 2.4. Under the notations and assumptions above, let A1 ¼ C.

Then

A ¼ �i2NnlN ðCiÞ�1X�i � ð�j2NV c�jX�jlÞ
� V � ð�i2NnlNCiXiÞ � ð�j2NV cjXjlÞ

and

B ¼ �i2NnlN ðCiÞ�1X�i � ð�j2NV c�jX�jlÞ
� V � ð�i2NnlNCiXiÞ � ð�j2NJðV ÞcjXjlÞ

are graded extensions of V in K½X;X�1�.
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