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Abstract. A diagram of a 2-knot consists of a finite number of compact,

connected surfaces called sheets. We prove that if a 2-knot admits a non-trivial

coloring by some quandle, then any diagram of the 2-knot needs at least four

sheets. Moreover, if a 2-knot admits a non-trivial 5- or 7-coloring, then any

diagram needs at least five or six sheets, respectively.

1. Introduction.

The crossing number, crðkÞ, of a 1-dimensional knot k is one of the

fundamental quantities which reflect the knotting of k. For an odd prime p, we

consider the minimal number cp of crðkÞ’s for all p-colorable 1-knots k. In other

words, if k admits a non-trivial p-coloring, then it holds that crðkÞ � cp, and there

is a 1-knot k which realizes the equality. By checking the list of 1-knots, we can

easily obtain the following table of cp’s for 3 � p � 61.

p 3 5 7 11 13 17 19 23�37 41�61 � � �
cp 3 4 5 6 7 8 9 � � �

A 2-dimensional knot K is an oriented 2-sphere smoothly embedded in R4. A

diagram of K is the generic image under a projection of R4 onto R3—which may

have double points, isolated triple points, and isolated branch points—equipped

with crossing information specified by breaking lower disks near double points in a

similar way to the description of a 1-knot diagram.

For a 2-knot K, there are two kinds of quantities analogous to the crossing

number. One is the minimal number of triple points for all diagrams of K, which is

called the triple point number [10], [11]. On the other hand, the sheet number of

K, denoted by shðKÞ, is the minimal number of broken sheets for all diagrams of
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K [8]. Here, a diagram is regarded as a disjoint union of a finite number of

connected, compact surfaces, each of which is called a broken sheet or a sheet

simply [5].

Saito and the author [8] gave a lower bound of the sheet number by using a

coloring for a 2-knot by a particular quandle, and proved that the spun trefoil has

the sheet number four. In this paper, we first generalize the technique to a

coloring by any quandle, which allows us to show that the sheet numbers of

almost all 2-knots are greater than or equal to four. Let sp denote the minimal

number of shðKÞ’s for all p-colorable 2-knots K. Since the spun trefoil admits a

non-trivial 3-coloring, we have s3 ¼ 4 immediately.

It is easy to see that, if a 1-knot k is p-colorable, then so is the spinning of k.

Moreover, it has a diagram consisting of crðkÞ þ 1 broken sheets. Hence, it holds

that sp � cp þ 1 for any p. The second aim of this paper is to study the lower

bound of the sheet number by using non-trivial 5- and 7-colorings. As a corollary,

we see that the equality sp ¼ cp þ 1 holds for p ¼ 5 and 7.

QUESTION. Is there an odd prime p > 7 such that sp < cp þ 1?

This paper is organized as follows: In Section 2, we review the definitions of a

2-knot diagram, the fundamental quandle, and a coloring by a quandle. In

Section 3, we introduce the notion of an ‘‘exclusive’’ sheet and prepare several

lemmas. In Section 4, we prove that if the fundamental quandle is non-trivial,

then the sheet number is greater than or equal to four (Theorem 4.2). In

Section 5, we give several properties of p-colorings associated with the dihedral

quandle of order p. Sections 6 and 7 are devoted to studying the cases of p ¼ 5 and

7; in particular, we prove that if a 2-knot have a non-trivial 5- or 7-coloring, then

the sheet number is greater than or equal to five or six, respectively (Theorems 6.1

and 7.1). In particular, we see that the spun 41-knot and 52-knot have the sheet

numbers five and six, respectively.

2. Preliminaries.

2.1. 2-knot diagrams.

A 2-knot is the image of a smooth embedding of an oriented 2-sphere into 4-

space R4. We identify R4 with the product R3 �R. Let p : R4 ! R3 and h :

R4 ! R be the projections onto the first and second factors, respectively. By a

slight perturbation of a 2-knot K if necessary, we may assume that the image

pðKÞ is generic; that is, any point on pðKÞ is a regular point, a double point, a

triple point, or a branch point. Refer to [5] for more details.

A diagram ofK is such a projection image pðKÞ where we distinguish between
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upper and lower disks near double points with respect to the height function h.

We indicate crossing information by breaking lower disks in a similar way to a 1-

knot diagram. This modification extends to neighborhoods of triple points and

branch points naturally. In particular, there are three intersecting disks near a

triple point of pðKÞ, called top, middle, and bottom with respect to h, and the

middle and bottom disks are broken into two and four pieces in a diagram,

respectively. Then a diagram is regarded as a disjoint union of connected,

compact surfaces, each of which is called a broken sheet or a sheet simply. We

denote by SD the set of the sheets of a diagram D. The sheet number of K is the

minimal number of sheets for all diagrams of K, and denoted by shðKÞ (cf. [8]).
In Figure 1, we give an example of a diagram D, which is divided into five

blocks. It is easy to see that D consists of three sheets.

2.2. Lower graphs.

Let D be a diagram of K. The preimage of a double point by the restriction

pjK : K ! R3 consists of a pair of upper and lower points with respect to h. We

denote by UD and LD the closures of the sets of upper and lower points,

respectively. By identifying K with a 2-sphere S2, the sets UD and LD are

regarded as graphs in S2. Each vertex v of the graphs is of degree 1 such that pðvÞ
is a branch point, or of degree 4 such that pðvÞ is a triple point. We call UD and LD

the upper and lower graphs associated with D, respectively. By definition, there is

a correspondence between the sheets of D and the connected regions of the

complement S2 n LD of the lower graph. Hence, we often identify a sheet A 2 SD

with a connected region of S2 n LD.

In Figure 1, we also illustrate the upper and lower graphs UD and LD for D by

dotted and solid lines, respectively. We remark that the complement S2 n LD

consists of three connected regions.

2.3. Types of double points.

Assume that a 2-knot K is oriented, and hence, so is a diagram D. Let B 2 SD

be the upper sheet near a double point P of a diagram D. We take a normal vector

to B representing the orientation of B. Let A and C 2 SD be the lower sheets

divided by B such that the vector points from A to C. We denote the type of P by

ðA!B CÞ. The orientation of the corresponding edge of LD is indicated by a normal

vector pointing from A to C. We give the label ðBÞ to the edge so that LD is

regarded as an oriented, labeled graph. See Figure 2. If a double point is of type

ðA!B CÞ or ðC!B AÞ, we use the notation ðA$B CÞ.

2.4. The fundamental quandle.

A non-empty set Q with a binary operation � is a quandle [6], [7] if it satisfies
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Figure 1. A diagram D with graphs UD and LD.

Figure 2. The orientation and label of an edge of LD.
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the following three conditions:

(i) For any a 2 Q, it holds that a � a ¼ a.

(ii) For any a and b 2 Q, there is a unique element x such that x � b ¼ a.

(iii)For any element a; b, and c 2 Q, it holds that ða � bÞ � c ¼ ða � cÞ � ðb � cÞ.
The map ’a : Q ! Q defined by ’aðxÞ ¼ x � a is a quandle isomorphism. We use

the notation ’n
aðxÞ ¼ x � an for n 2 Z formally. In particular, the element x in the

condition (ii) is denoted by a � b�1. Then it holds that a � a�1 ¼ a and

a � ðb � cÞ ¼ ðða � c�1Þ � bÞ � c.
For an odd prime p, the dihedral quandle of order p, denoted by Rp, is the set

Zp ¼ f0; 1; . . . ; p� 1g equipped with the binary operation a � b � 2b� a (mod p).

The quandle with a single element is called trivial.

The fundamental quandle of a 2-knot K, denoted by QðKÞ, is the quandle

with a finite representation such that the generators correspond to the sheets of

D, and a relation a � b ¼ c is given at any double point of type ðA!B CÞ, where a, b,
and c are the elements of QðKÞ corresponding to A, B, and C, respectively.

Consider the diagram D of a 2-knot K in Figure 1 again. By choosing an

orientation of K, we have the oriented, labeled lower graph LD as shown in

Figure 3. Let A, B, and C be the connected regions of S2 n LD as in the figure, and

a, b, and c the corresponding elements of QðKÞ. The fundamental quandle QðKÞ is
generated by a, b, and c, and the relations are given by

a � b ¼ c; a � b ¼ a; and a � b ¼ b

combined with the trivial relations a � a ¼ a and b � b ¼ b. It is easy to see that

a ¼ b ¼ c, and hence QðKÞ is trivial.

2.5. Colorings by a quandle.

A coloring for a diagram D by a quandle Q0 is a map

f : SD ¼ fthe sheets of Dg ! Q0

which satisfies fðAÞ � fðBÞ ¼ fðCÞ at every double point of type ðA!B CÞ (cf. [3]).

Figure 3. A lower graph LD.
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In particular, a coloring by the dihedral quandle Rp is called a p-coloring. The

element fðXÞ is called the color of a sheet X. We say that a coloring f is trivial if it

is a constant map. By definition, a coloring f : SD ! Q0 naturally extends to a

quandle homomorphism ~f : QðKÞ ! Q0 such that ~fðxÞ ¼ fðXÞ holds for any

generator x of QðKÞ corresponding to a sheet X.

Recall that a diagram D is obtained from the projection image pðKÞ equipped
with crossing information. Choose any connected region �0 of R

3 n pðKÞ and color

it by any element a 2 Q0. For any connected region � of R3 n pðKÞ, we take a

path � from �0 to � such that the intersections of � and D are transverse regular

points. Let x1; x2; . . . ; xn be the colors of the sheets which � meets in this order,

and "i the sign of the ith intersection such that "i ¼ þ1 if and only if the

orientation of � matches with that of the ith sheet ð1 � i � nÞ. Then we color the

region � by the element

’"n
xn

� . . .’"2
x2
� ’"1

x1
ðaÞ ¼ ð� � � ðða � x"1

1 Þ � x
"2
2 Þ � � � �Þ � x"n

n :

See Figure 4, where the colors of regions are surrounded by squares. This coloring

for R3 n pðKÞ is well-defined independently of a particular choice of a path �,

which is called a shadow coloring (cf. [4]).

2.6. Reduced lower graphs.

We say that a coloring f : SD ! Q0 is separating if f is injective, that is, any

different sheets of D have different colors.

For a (possibly non-separating) coloring f, we denote by LDðfÞ the subgraph
of LD such that each edge of LDðfÞ is adjacent to the regions of S2 n LD with

different colors. Equivalently, corresponding double point is of type ðX$Y ZÞ with
fðXÞ 6¼ fðZÞ. We call LDðfÞ the reduced lower graph associated with f .

Consider the complement S2 n LDðfÞ. Since LDðfÞ 	 LD, it holds that

#fthe connected regions of S2 n LDðfÞg � #SD;

and in particular, the equality holds if f is separating. We give a color fðXÞ to the

region of S2 n LDðfÞ containing a sheet X 2 SD, and a label ðfðY ÞÞ to an edge of

Figure 4. A shadow coloring for R3 n pðKÞ.
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LDðfÞ with a label ðY Þ. The reduced lower graph LDðfÞ is often more convenient

than LD.

3. Exclusive sheets with respect to a coloring.

Let f : SD ! Q0 be a coloring for a diagram D by a quandle Q0. For a sheet

A 2 SD, we say that A is exclusive with respect to f if any type ðX$A Y Þ whose
upper sheet is A satisfies fðXÞ ¼ fðY Þ ¼ fðAÞ. We remark that X and Y may be

different from A.

For a pair of sheets A and B 2 SD, we say that B is A-exclusive with respect

to f if D has a double point of type ðA$B XÞ for some X 2 SD and any type

ðY $B ZÞ whose upper sheet is B satisfies Y ¼ A, Z ¼ A, or fðY Þ ¼ fðZÞ ¼ fðBÞ.

LEMMA 3.1. Let A be an exclusive sheet with fðAÞ ¼ a. Consider the shadow

coloring such that a region �0 of R3 n pðKÞ adjacent to A have the color a. Then

any region � adjacent to A have the same color a.

PROOF. Choose a pair of points P0 and P on A adjacent to �0 and �,

respectively. We take a path on A connecting from P0 to P . By assumption, the

regions near P0 have the color a. Since every double point on � is of type ðX$A Y Þ
with fðXÞ ¼ fðY Þ ¼ a, the color a of�0 extends along � so that the regions near P

have the same color a by the equation a � a
1 ¼ a. Hence, � has the color a. �

We call the shadow coloring in Lemma 3.1 the shadow coloring associated

with A.

LEMMA 3.2. Suppose that D has a pair of sheets A and B such that A is

exclusive and B is A-exclusive with fðAÞ ¼ a and fðBÞ ¼ b. Then, for the shadow

coloring associated with A, any region adjacent to B have the color a � bn for some

n 2 Z.

PROOF. We take a point P on B. It is sufficient to prove that a region near

P has the color a � bn for some n 2 Z. Since B is A-exclusive, D has a double point

P0 of type ðA$B XÞ for some X 2 SD. Let � be a path on the sheet B from P0 to P .

Figure 5. Lemma 3.1.
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We may assume that every double point on the interior of � is of type ðY $B ZÞ
with fðY Þ ¼ fðZÞ ¼ b. In fact, if there are double points of type ðA$B XÞ on the

interior of �, we take the nearest one from P among them as P0 again. See

Figure 6.

Since A is exclusive, the regions adjacent to A near P0 have the color a. By

extending it along �, it is easy to see that the regions near P have the colors a � bn
and a � bnþ1 for some n 2 Z. �

The following is a generalization of the property used in [8].

LEMMA 3.3. Suppose that D has a pair of sheets A and B such that A is

exclusive and B is A-exclusive with fðAÞ ¼ a and fðBÞ ¼ b. If a 6¼ b, then D has no

double point of type ðA$X BÞ for any X 2 SD.

PROOF. Assume that D has a double point of type ðA$X BÞ for some

X 2 SD. The double point gives the relation a � x
1 ¼ b, where x ¼ fðXÞ. On the

other hand, consider the shadow coloring associated with A. Then, by Lemmas 3.1

and 3.2, we have the relation a � x
1 ¼ a � bn for some n 2 Z. Hence, we obtain

a � bn ¼ b, or equivalently a ¼ b, which contradicts to the assumption. �

For a triplet of sheets A1, A2, and B 2 SD, we say that B is A1 [A2-exclusive

associated with f if D has a double point of type ðA1 $
B
XÞ or ðA2 $

B
XÞ for some

X 2 SD and any type ðY $B ZÞ whose upper sheet is B satisfies Y ¼ A1, Y ¼ A2,

Z ¼ A1, Z ¼ A2, or fðY Þ ¼ fðZÞ ¼ fðBÞ.

LEMMA 3.4. Suppose that D has a triplet of sheets A1, A2, and B 2 SD such

that A1 and A2 are exclusive and B is A1 [ A2-exclusive with fðA1Þ ¼ fðA2Þ ¼ a

and fðBÞ ¼ b. If A1 and A2 are adjacent along LD and a 6¼ b, then D has no double

point of type ðA1 $
X
BÞ nor ðA2 $

X
BÞ for any X 2 SD.

PROOF. Since A1 and A2 are adjacent, there is a double point of type

ðA1 $
Y
A2Þ for some Y 2 SD. Hence, the shadow coloring associated with A1 is

Figure 6. Lemma 3.2.
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coincident with that with A2. Then any region adjacent to B have the color a � bn
for some n 2 Z similarly to Lemma 3.2. Moreover, if D has a double point of type

ðA1 $
X
BÞ or ðA2 $

X
BÞ, then the relations around the double point give a ¼ b

similarly to Lemma 3.3, which contradicts to the assumption. �

LEMMA 3.5. Suppose thatD has a triplet of sheets A, B, and C such that A is

exclusive, B is A-exclusive, and C is B-exclusive with fðAÞ ¼ a, fðBÞ ¼ b, and

fðCÞ ¼ c. If a � bn 6¼ c for any n 2 Z, then D has no double point of type ðA$X CÞ
for any X 2 SD.

PROOF. Assume that D has a double point P0 of type ðA$X CÞ for some

X 2 SD. Since C is B-exclusive, D has also a double point P of type ðB$C Y Þ for
some Y 2 SD. Let � be a path on C from P0 to P . We may assume that every

double point on the interior of � is of type ðZ$C WÞ with fðZÞ ¼ fðW Þ ¼ c. If not,

we take the nearest double point of type ðB$C Y Þ from P0 as P again. See

Figure 7.

Since A is exclusive, by Lemma 3.1, the regions adjacent to A near P0 have

the color a, and hence, the regions adjacent to C near P0 have the color c. By

extending it along �, we have a � bn ¼ c near P for some n 2 Z by Lemma 3.2,

which contradicts to the assumption. �

The following lemma will be used in the last of this paper.

LEMMA 3.6. Suppose thatD has a triplet of sheets A, B, and C such that A is

exclusive, B is A-exclusive, and C is B-exclusive with fðAÞ ¼ a, fðBÞ ¼ b, and

fðCÞ ¼ c. If there is an element x 2 Q0 such that a � bl 6¼ ða � xÞ � cm for any

l;m 2 Z, then D has no double point of type ðB!X CÞ with fðXÞ ¼ x. Similarly, if

there is an element x 2 Q0 such that a � bl 6¼ ða � x�1Þ � cm for any l;m 2 Z, then D

has no double point of type ðC!X BÞ with fðXÞ ¼ x.

PROOF. Assume that D has a double point P0 of type ðB!X CÞ with

fðXÞ ¼ x. Similarly to the proof of Lemma 3.5, we take a double point P of type

Figure 7. Lemma 3.5.
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ðB$C Y Þ and a path � from P0 to P . We may assume that every double point on

the interior of � is of type ðZ$C W Þ with fðZÞ ¼ fðW Þ ¼ c.

Since B is A-exclusive, by Lemma 3.2, a region adjacent to B near P0 has the

color a � bn for some n 2 Z, and hence, a region adjacent to C near P0 has the color

ða � bnÞ � x. It is not difficult to see that, by using the relation b � x ¼ c given at P0,

we have ða � bnÞ � x ¼ ða � xÞ � cn. By extending it along �, we have a � bl ¼
ða � xÞ � cm near P for some l;m 2 Z by Lemma 3.2, which contradicts to the

assumption. The case ðC!X BÞ is similarly proved. �

4. A diagram with three sheets.

Let D be a diagram of an oriented 2-knotK. We first consider the case that D

consists of one or two sheets as follows.

LEMMA 4.1 ([8]). If D consists of at most two sheets, then QðKÞ is trivial.

PROOF. If D consists of a sheet, then QðKÞ is generated by the single

element corresponding to the sheet. Hence, QðKÞ is trivial.
Assume that D consists of two sheets A and B. Let a and b 2 QðKÞ be the

elements corresponding to A and B, respectively. Since S2 n LD ¼ A [B for the

lower graph LD, there is an edge of LD whose adjacent regions are A and B. It

corresponds to a double point of D of type ðA$X BÞ for some X 2 SD ¼ fA;Bg.
Then we have the relation a � a
1 ¼ b or a � b
1 ¼ b with respect to X ¼ A or

X ¼ B, each of which is equivalent to a ¼ b. Hence, QðKÞ is trivial. �

The aim of this section is to prove the following.

THEOREM 4.2. If QðKÞ is non-trivial, then shðKÞ � 4.

Theorem 4.2 follows immediately from Lemma 4.1 and Proposition 4.3 as

below.

PROPOSITION 4.3. If D consists of three sheets, then QðKÞ is trivial.

Figure 8. Lemma 3.6.
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In the rest of this section, we assume that D consists of three sheets A, B, and

C, and denote by a, b, and c the corresponding elements of QðKÞ, respectively.

LEMMA 4.4. If at least two of a, b, and c are the same in QðKÞ, then QðKÞ is
trivial.

PROOF. We may assume that b ¼ c. Since S2 n LD ¼ A [ B [ C, there is an

edge of LD whose adjacent regions are A and B, or A and C. It corresponds to a

double point of type ðA$X BÞ or ðA$X CÞ for some X 2 SD ¼ fA;B;Cg. Then we

have the relation a � a
1 ¼ b or a � b
1 ¼ b, each of which is equivalent to a ¼ b.

Hence, QðKÞ is trivial. �

LEMMA 4.5. If D has a double point of type ðX$X Y Þ for some X; Y 2 SD

with X 6¼ Y , then QðKÞ is trivial.

PROOF. We may assume that X ¼ A and Y ¼ B. Then we have the relation

a � a
1 ¼ b, which is equivalent to a ¼ b. Hence, QðKÞ is trivial by Lemma 4.4. �

LEMMA 4.6. If D has a pair of double points of type

ðX$Y XÞ and ðX$Y ZÞ

for some X; Y ; Z 2 SD with fX; Y ; Zg ¼ SD, then QðKÞ is trivial.

PROOF. We may assume that X ¼ A, Y ¼ B, and Z ¼ C. The first double

point gives the relation a � b ¼ a, or equivalently, a � b�1 ¼ a. The second double

point gives the relation a � b ¼ c or a � b�1 ¼ c. Hence, we have a ¼ c, and QðKÞ is
trivial by Lemma 4.4. �

LEMMA 4.7. If D has a triplet of double points of type

ðX$Y ZÞ; ðY $X ZÞ; and ðV $W V Þ

for some X; Y ; Z 2 SD with fX; Y ; Zg ¼ SD and some V ;W 2 SD with V 6¼ W ,

then QðKÞ is trivial.

PROOF. We may assume that X ¼ A, Y ¼ B, and Z ¼ C. Then the types

ðA$B CÞ and ðB$A CÞ give the relations a � b ¼ c or a � b�1 ¼ c, and b � a ¼ c or

b � a�1 ¼ c, respectively. By Lemma 4.6, QðKÞ is trivial for

ðV $W V Þ ¼ ðA$B AÞ; ðC$B CÞ; ðB$A BÞ; or ðC$A CÞ:
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If ðV $W V Þ ¼ ðA$C AÞ, then we have the relation a � c ¼ a. Since c ¼ b � a
1,

it holds that

a � ðb � a
1Þ ¼ a , ða � a
1Þ � ðb � a
1Þ ¼ a

, ða � bÞ � a
1 ¼ a

, a � b ¼ a , a � b�1 ¼ a:

Since a � b
1 ¼ c, we have a ¼ c. Hence, QðKÞ is trivial by Lemma 4.4. Similarly,

if ðV $W V Þ ¼ ðB$C BÞ, then we have b ¼ c, and hence, QðKÞ is trivial. �

Each vertex of the lower graph LD is of degree 1 or 4 corresponding to a

branch point or a triple point, respectively. In particular, the regions of S2 n LD

near a vertex of degree 4 correspond to the bottom sheets. We draw a picture of a

neighborhood of such a vertex instead of that of a triple point as shown in

Figure 9. Here, we remove small segments from a diagonal pair of edges

connecting to the vertex which correspond to the middle sheets.

Consider a triple points of D whose bottom sheets are not all the same. We

divide such triple points into seven types as shown in Figure 10, where

fX; Y ; Zg ¼ SD. The meaning of ‘‘degrees’’ in the figure will be explained in the

proof of Proposition 4.3.

(i) Each pair of the bottom sheets on the same side of the top sheet is the

same.

(ii) Each pair of the bottom sheets on the same side of the middle sheets is the

same.

(iii) Three of the bottom sheets are the same, and the other is different.

(iv) A pair of the bottom sheets on the same side of the middle sheets is the

same, and the other two are different.

(v) A pair of the bottom sheets on the same side of the top sheet is the same,

and the other two are different.

Figure 9. A vertex of degree 4 and a triple point.
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(vi) Each diagonal pair of the bottom sheets is the same.

(vii) A diagonal pair of the bottom sheets is the same, and the other two are

different.

LEMMA 4.8. If D has a triple point of type (iii), (v), or (vii), then QðKÞ is
trivial.

PROOF. (iii) If the top sheet is X or Y , then there is a double point of type

ðX$X Y Þ or ðX$Y Y Þ, respectively. Hence, QðKÞ is trivial by Lemma 4.5. If the top

sheet is Z, then there is a pair of double points of types ðX$Z XÞ and ðX$Z Y Þ.
Hence, QðKÞ is trivial by Lemma 4.6.

(v) If the top sheet is X, Y , or Z, then there is a double point of type ðX$X Y Þ,
ðX$Y Y Þ, or ðX$Z ZÞ, respectively. Hence, QðKÞ is trivial by Lemma 4.5.

(vii) The proof is similar to (v). �

LEMMA 4.9. D has no triple point of type (vi).

PROOF. Assume that D has a triple point of type (vi). Then it is easy to find

a pair of simple closed circles on S2 with a single intersection. More precisely, the

Figure 10. Vertices of degree 2, 3, and 4 of LDðf0Þ.
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circles are contained in the regions X and Y , respectively, except the intersection

at the vertex of degree 4 corresponding to the triple point. Hence, we have a

contradiction. �

We are ready to prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. Assume that QðKÞ is non-trivial. We take the

map

f0 : SD ¼ fA;B;Cg ! QðKÞ

defined by f0ðAÞ ¼ a, f0ðBÞ ¼ b, and f0ðCÞ ¼ c. By definition, f0 is a coloring forD

by QðKÞ. Moreover, it is separating by Lemma 4.4.

Let us consider the reduced lower graph LDðf0Þ associated with f0. Since the

edge of LD connecting to a vertex of degree 1 is adjacent to a single region, it is

eliminated in LDðf0Þ. Similarly, a vertex of degree 4 of LD, where the adjacent

four regions are the same, is also eliminated. Hence, each vertex of LDðf0Þ is of

degree 2, 3, or 4, which corresponds to a triple point of type (i)–(iii), (iv) or (v), or

(vi) or (vii), respectively. See Figure 10 again.

Since QðKÞ is non-trivial, it follows by Lemmas 4.8 and 4.9 that each vertex

of LDðf0Þ is of degree 2 corresponding to type (i) or (ii), or of degree 3

corresponding to (iv). In particular, the pair of edges connecting to a vertex of

degree 2 have the same orientation and label. Hence, we can ignore such a vertex

by identifying the pair of edges with a single one so that LDðf0Þ is a graph whose

vertices are of degree 3. We remark that LDðf0Þ may have circle components each

of which is regarded as an edge with no vertex.

Since f0 is separating, the complement S2 n LDðf0Þ consists of three regions.

Hence, LDðf0Þ is one of the graphs (a) and (b) as shown in Figure 11, where the

regions A, B, and C of S2 n LDðf0Þ are colored by a, b, and c, respectively. We

remark that, by Lemma 4.5, the edges of LDðf0Þ between A and B, B and C, and C

and A are colored by c, a, and b, respectively.

Figure 11. Reduced graphs (a) and (b).
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Graph (a): We consider the case that LDðf0Þ is a �-graph embedded in S2.

Recall that a vertex of degree 3 corresponds to a triple point of type (iv). We may

assume that two bottom sheets of such a triple point are colored by a. Then the

top sheet is also colored by a. See Figure 12. It is easy to find a pair of double

points of type ðB!A CÞ and ðC!A BÞ. Hence, there are at least two edges of LDðf0Þ
each of which is adjacent to B and C. This is a contradiction.

Graph (b): We consider the case that LDðf0Þ is a disjoint union of a pair of

circles. We may assume that the regions B and C are adjacent to A as shown in

Figure 11. It is easy to see that D have a pair of double points of type ðA$B CÞ and
ðA$C BÞ, and never have a double point of type ðB$A CÞ.

On the other hand, by Lemma 4.7, D has no double point of type ðX!Y XÞ for
any X; Y 2 SD with X 6¼ Y . Hence, any double point of D is of type

ðA$B CÞ; ðA$C BÞ; ðA$A AÞ; ðB$B BÞ; or ðC$C CÞ:

In particular, A is exclusive and B is A-exclusive. Since D has a double point of

type ðA$C BÞ, we have a contradiction to Lemma 3.3. �

5. Properties of p-colorings.

Let D be a diagram of a 2-knot K and p an odd prime. Recall that the

dihedral quandle Rp is the set Zp ¼ f0; 1; . . . ; p� 1g with the binary operation

a � b ¼ 2b� a. Hence, a p-coloring is regarded as a map

f : SD ¼ fthe sheets of Dg ! Zp

such that fðXÞ þ fðZÞ ¼ 2fðY Þ holds at every double point of type ðX$Y ZÞ. We

say that a 2-knot K is p-colorable if a diagram D of K has a non-trivial p-coloring.

For a; b 2 Zp, the map X 7! afðXÞ þ b for X 2 SD is also a p-coloring, which is

denoted by af þ b.

Figure 12. A trivalent vertex and a triple point of type (iv).
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LEMMA 5.1. Let X and Y 2 SD be a pair of sheets of D. If there is a

p-coloring f with fðXÞ 6¼ fðY Þ, then, for any different colors a and b 2 Zp, there is

a p-coloring f 0 with f 0ðXÞ ¼ a and f 0ðY Þ ¼ b.

PROOF. Put x ¼ fðXÞ and y ¼ fðY Þ. Then the map f 0 ¼ b�a
y�x ðf � xÞ þ a

satisfies f 0ðXÞ ¼ a and f 0ðY Þ ¼ b. �

Let ImðfÞ be the image of f, that is, the set of the colors of the sheets of D.

We construct a graph PDðfÞ associated with f such that
(i) the set of the vertices is ImðfÞ, and
(ii) two different vertices x and y are connected by an edge if and only if there is

a double point of type ðX$A Y Þ with x ¼ fðXÞ and y ¼ fðY Þ.
We call PDðfÞ the pallet graph of f. We label the edge in (ii) by xþy

2 2 Zp.

LEMMA 5.2. Let f be a p-coloring for D.

(i) The pallet graph PDðfÞ is connected.

(ii) If x and y are connected by an edge, then xþy
2 2 ImðfÞ.

(iii) x, y, and xþy
2 are mutually different in (ii).

PROOF.

(i) Recall that SD is identified with the set of the complementary regions of

S2 n LD. By definition, x 6¼ y 2 ImðfÞ are connected if and only if there are

adjacent regions colored by x and y. Since S2 is connected, so is PDðfÞ.
(ii) There is a double point of type ðX$A Y Þ with x ¼ fðXÞ and y ¼ fðY Þ.

Hence, we have xþy
2 ¼ fðAÞ 2 ImðfÞ.

(iii) Put a ¼ xþy
2 . Then 2a ¼ xþ y in Zp. If two of x, y, and a are the same, then

it follows x ¼ y ¼ a. �

LEMMA 5.3. If f is a non-trivial p-coloring for p � 5, then #ImðfÞ � 4.

PROOF. If #ImðfÞ ¼ 1, then f is trivial. If #ImðfÞ ¼ 2, then we may

assume that ImðfÞ ¼ f0; 1g by Lemma 5.1. Since 0 and 1 are connected by an edge

by Lemma 5.2(i), we have 0þ1
2 2 ImðfÞ by Lemma 5.2(ii). It contradicts to Lemma

5.2(iii).

Assume that #ImðfÞ ¼ 3. Also, we may assume that 0; 1 2 ImðfÞ and they

are connected by an edge. Then we have ImðfÞ ¼ f0; 1; 12g. Since PDðfÞ is

connected, there is an edge between 0 and 1
2, or 1 and

1
2. If the vertex

1
2 is connected

by 0, then we have 1
2 ð0þ 1

2Þ ¼ 1
4 ¼ 1, which implies that p ¼ 3. Similarly, if the 1

2 is

connected by 1, then we have 1
2 ð1þ 1

2Þ ¼ 3
4 ¼ 0, which also implies that p ¼ 3. �

Recall that each edge of the lower graph LD and its reduced lower graph
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LDðfÞ is labeled by ðXÞ where X is the upper sheet of the corresponding double

point. The color of the edge is fðXÞ 2 Zp. By definition, each vertex of LDðfÞ is of
degree 2, 3, or 4. In Figure 13, we illustrate eight types of triple points which give

the vertices of LDðfÞ, where x, y, z, and w 2 Zp are mutually different colors of

bottom sheets.

LEMMA 5.4. D has no triple point of type (ii), (iii), (v), nor (vii).

PROOF. Let a be the color of the top sheet.

(ii) Since 2x ¼ 2y ¼ a, we have x ¼ y.

(iii) Since 2x ¼ xþ y ¼ 2a, we have x ¼ y.

(v) Since xþ y ¼ xþ z ¼ 2a, we have y ¼ z.

(vii) Since zþ x ¼ xþ y ¼ 2a, we have y ¼ z.

In each case, we have a contradiction. �

At each vertex of degree 2 of LDðfÞ, which is of type (i) by Lemma 5.4, the

edges have the same color and orientation corresponding to the top sheet. Hence,

we identify the edges with a single one so that the degree of any vertex of LDðfÞ is
assumed to be 3 or 4. We remark that, among the edges connecting to a vertex of

degree 4, each diagonal pair has the same orientation.

Figure 13. Vertices of degree 2, 3, and 4 of LDðfÞ.
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LEMMA 5.5. If LDðfÞ has a vertex T of degree 3, then PDðfÞ has a cycle of

length 3. More precisely, if the regions around T are colored by x, y, and z, then the

vertices of the cycle are x, y, and z. In addition, if p � 5, then just one of x, y, and z

appears as a color of the edge connecting to T , which corresponds to that of the top

sheet.

PROOF. By Lemma 5.4, T is of type (iv). We may assume that a pair of the

bottom sheets are colored by x, and so is the top sheet. Since yþz
2 ¼ x, we have

xþ y

2
� z ¼ 3ðy� xÞ

2
6¼ 0 and

xþ z

2
� y ¼ 3ðz� xÞ

2
6¼ 0

for p � 5. Hence, we have the conclusion. �

LEMMA 5.6. Suppose that LDðfÞ has a vertex T of degree 4.

(i) If f is separating, then the four regions near T have mutually different

colors, and PDðfÞ has a cycle of length 4. More precisely, if the regions

around T are colored by x, y, z, and w in cyclic order, then the vertices of the

cycle are x, y, z, and w. In addition, for the labels of the edges of the cycle,

one of the equations xþy
2 ¼ zþw

2 and xþw
2 ¼ yþz

2 holds.

(ii) If PDðfÞ has no cycle of length 4, then each diagonal pair of the four regions

near T have the same color, and f is non-separating.

PROOF. By Lemma 5.4, T is of type (vi) or (viii).

(i) If f is separating, then T never be of type (vi). In fact, if T is of type (vi),

then, similarly to the proof of Lemma 4.9, there is a pair of simple closed circles on

S2 with a single intersection, which is a contradiction. Hence, T is of type (viii)

and we have the conclusion. We remark that the diagonal pair of the edges

corresponding to the top sheet have the same color.

(ii) It follows by (i) that T is of type (vi). In particular, a diagonal pair of the

four regions belongs to different sheets. Hence, f is non-separating. �

For the reduced lower graph LDðfÞ, let vi be the number of vertices of degree

i ði ¼ 3; 4Þ, ‘ the number of circle components, n the number of connected

components except circles, and r the number of the connected regions of

S2 n LDðfÞ. The following is easily obtained by the calculation of the Euler

characteristic of S2.

LEMMA 5.7. r ¼ 1

2
v3 þ v4 þ nþ ‘þ 1.
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6. A 5-colored diagram with four sheets.

In this section, we consider a non-trivial 5-coloring for a diagram of a 2-knot.

We use the notations introduced in the previous sections. The aim of this section

is to prove the following.

THEOREM 6.1. If a 2-knot K is 5-colorable, then shðKÞ � 5.

Theorem 6.1 follows immediately from Propositions 4.3 and 6.2 as below. In

fact, if D consists of at most three sheets, then QðKÞ is trivial, and hence, so is any

coloring ~f : QðKÞ ! R5 by the dihedral quandle R5.

PROPOSITION 6.2. If D consists of four sheets, then any 5-coloring for D is

trivial.

Let P1 and P2 be the graphs as shown in Figure 14.

LEMMA 6.3. If D has a non-trivial 5-coloring f with #ImðfÞ ¼ 4, then it has

a non-trivial 5-coloring f 0 such that

(i) Imðf 0Þ ¼ f1; 2; 3; 4g, and
(ii) PDðf 0Þ ¼ P1 or P2.

PROOF. By assumption, it holds that ImðfÞ ¼ Z5 n fag for some a 2 Z5.

Then the 5-coloring g ¼ f � a satisfies ImðgÞ ¼ f1; 2; 3; 4g. Since 1þ4
2 ¼ 2þ3

2 ¼
0 =2 ImðgÞ, PDðgÞ is P1 or one of the four graphs obtained from P1 by deleting an

edge. For the latter cases, it is easy to see that the 5-colorings g, 2g, 3g, and 4g

satisfy the condition (i), and just one of them has the reduced graph P2. �

PROOF OF PROPOSITION 6.2. Assume that D has a non-trivial 5-coloring f .

Since D consists of four sheets and #ImðfÞ � 4 by Lemma 5.3, we have

#ImðfÞ ¼ 4 and f is separating. We may assume that ImðfÞ ¼ f1; 2; 3; 4g and

PDðfÞ ¼ P1 or P2 by Lemma 6.3.

Since both P1 and P2 have no cycle of length 3, the reduced lower graph LDðfÞ
has no vertex of degree 3 by Lemma 5.5. Moreover, it follows by Lemma 5.6(i)

that LDðfÞ has no vertex of degree 4. Hence, it follows by Lemma 5.7 that

Figure 14. Pallet graphs with four colors for p ¼ 5.

Sheet number and quandle-colored 2-knot 597



ðv3; v4; n; ‘Þ ¼ ð0; 0; 0; 3Þ, that is, LDðfÞ is the union of concentric three circles with

PDðfÞ ¼ P2.

Let Hi 2 SD denote the sheet whose color is i ði ¼ 1; 2; 3; 4Þ. By observing the

graph P2, it is easy to see that any double point of D is of type

ðH1 $
H4

H2Þ; ðH2 $
H3

H4Þ; ðH4 $
H1

H3Þ; or ðHi $
Hi

HiÞ for i ¼ 1; 2; 3; 4;

and the double points of first three types must exist in D. In particular, H2 is

exclusive and H4 is H2-exclusive. Since D has a double point of type ðH2 $
H3

H4Þ,
we have a contradiction to Lemma 3.3. �

For an odd prime p, let sp denote the minimal number of shðKÞ’s for all

p-colorable 2-knots K. Since the spun trefoil has a 3-colorable diagram with four

sheets, we have s3 ¼ 4 by Theorem 4.2. On the other hand, Theorem 6.1 implies

that s5 � 5.

PROPOSITION 6.4. It holds that s5 ¼ 5. In particular, the spun 41-knot has

the sheet number five.

PROOF. It is sufficient to prove that the spun 41-knot K is 5-colorable and

has a diagram with five sheets. We take a tangle diagram of the 41-knot with four

crossings in the upper half plane, and rotate it about the boundary axis so that we

obtain a diagram D of K (cf. [2]). A non-trivial 5-coloring for the tangle diagram

induces that for D naturally. Since the tangle diagram consists of five arcs, D

consists of five sheets such that two of them are disks and the other three are

annuli. �

7. A 7-colored diagram with four or five sheets.

In this section, we consider a non-trivial 7-coloring for a diagram of a 2-knot.

The argument is parallel to that for a 5-coloring in the previous section, however,

we need to consider the case of non-separating coloring. The aim of this section is

to prove the following.

THEOREM 7.1. If a 2-knot K is 7-colorable, then shðKÞ � 6.

Theorem 7.1 follows immediately from Propositions 4.3, 7.2, and 7.3 as

below.

PROPOSITION 7.2. If D consists of four sheets, then any 7-coloring for D is

trivial.

598 S. SATOH



PROPOSITION 7.3. If D consists of five sheets, then any 7-coloring for D is

trivial.

Let P3 be the graph as shown in Figure 15.

LEMMA 7.4. If D has a non-trvial 7-coloring f with #ImðfÞ ¼ 4, then it has

a non-trivial 7-coloring f 0 such that

(i) Imðf 0Þ ¼ f0; 1; 2; 4g, and
(ii) PDðf 0Þ ¼ P3.

PROOF. By Lemma 5.1, we may assume that 0; 1 2 ImðfÞ and they are

connected by an edge of PDðfÞ. Since 0þ1
2 ¼ 4, we have ImðfÞ ¼ f0; 1; 4; ag for some

a 6¼ 0; 1; 4.

If a ¼ 2, then we have ImðfÞ ¼ f0; 1; 2; 4g. Since 1þ2
2 ¼ 5, 2þ4

2 ¼ 3, and
1þ4
2 ¼ 6 =2 ImðfÞ, we have PDðfÞ ¼ P3 by Lemma 5.2. If a ¼ 3, then we have

0þ4
2 ¼ 1þ3

2 ¼ 2, 0þ3
2 ¼ 5, and 1þ4

2 ¼ 6 =2 ImðfÞ, and hence, PDðfÞ is disconnected. If

a ¼ 5, then we have VDðf þ 3Þ ¼ f0; 1; 3; 4g, which is reduced to the case a ¼ 3. If

a ¼ 6, then Imð1� fÞ ¼ f0; 1; 2; 4g, which is reduced to the case a ¼ 2. �

PROOF OF PROPOSITION 7.2. Assume that D has a non-trivial 7-coloring f.

Since D consists of four sheets and #ImðfÞ � 4 by Lemma 5.3, we have #ImðfÞ ¼
4 and f is separating. We may assume that ImðfÞ ¼ f0; 1; 2; 4g and PDðfÞ ¼ P3 by

Lemma 7.4.

Let Hi 2 SD denote the sheet whose color is i ði ¼ 0; 1; 2; 4Þ. By observing the

graph P3, it is easy to see that any double point of D is of type

ðH0 $
H4

H1Þ; ðH0 $
H1

H2Þ; ðH0 $
H2

H4Þ; or ðHi $
Hi

HiÞ for i ¼ 0; 1; 2; 4;

and the double points of first three types must exist in D. In particular, H0 is

exclusive and H1 is H0-exclusive. Since D has a double point of type ðH0 $
H4

H1Þ,
we have a contradiction to Lemma 3.3. �

Since #ImðfÞ � 4, Proposition 7.3 is divided into two parts as follows.

LEMMA 7.5. If D consists of five sheets, then there is no non-trivial 7-

coloring f with #ImðfÞ ¼ 4.

Figure 15. A pallet graph with four colors for p ¼ 7.
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LEMMA 7.6. If D consists of five sheets, then there is no non-trivial 7-

coloring f with #ImðfÞ ¼ 5.

PROOF OF LEMMA 7.5. Assume that D has a non-trivial 7-coloring f with

#ImðfÞ ¼ 4. By Lemma 7.4, we may assume that ImðfÞ ¼ f0; 1; 2; 4g and

PDðfÞ ¼ P3. Since D has five sheets, f is non-separating and two of the sheets

have the same color k 2 ImðfÞ. Let Hk and H 0
k be the sheets colored by k, and Hi

the sheet colored by i 2 ImðfÞ n fkg.
We first consider the case k 6¼ 0. By taking 2f or 4f instead of f if necessary,

we may assume that k ¼ 4, that is, SD ¼ fH0; H1; H2; H4; H
0
4g. Similarly to the

proof of Proposition 7.2, we see that H0 is exclusive and H1 is H0-exclusive. Since

D has a double point of type ðH0 $
H4

H1Þ or ðH0 $
H 0

4
H1Þ, we have a contradiction to

Lemma 3.3.

Next, we consider the case k ¼ 0, that is, SD ¼ fH0; H
0
0; H1; H2; H4g. By

observing the graph P3, we see that H0 and H 0
0 are both exclusive. We divide the

argument into two cases whether H0 and H 0
0 are adjacent or not.

Assume that H0 and H 0
0 are adjacent along LD. Since H1 is H0 [H 0

0-exclusive

and D has a double point of type ðH0 $
H4

H1Þ or ðH 0
0 $
H4

H1Þ, we have a contradiction

to Lemma 3.4.

Assume that H0 and H 0
0 are not adjacent, that is, S2 n LDðfÞ consists of five

connected components. Since P1 has no cycle of length 3, LDðfÞ has no vertex of

degree 3 by Lemma 5.5. It follows by Lemma 5.7 that

ðv4; n; ‘Þ ¼ ð3; 1; 0Þ; ð2; 2; 0Þ; ð2; 1; 1Þ; ð1; 1; 2Þ; and ð0; 0; 4Þ:

By Lemma 5.6(ii), the regions near each vertex of degree 4 have the colors 0 and a

for some a 2 f1; 2; 4g.

ðv4; n; ‘Þ ¼ ð3; 1; 0Þ: Since n ¼ 1, there is an element a 2 f1; 2; 4g such that the

regions have the colors 0 and a at any vertex. It implies that ImðfÞ ¼ f0; ag, which
is a contradiction.

ðv4; n; ‘Þ ¼ ð2; 2; 0Þ: There are elements a and b 2 f1; 2; 4g such that the

regions have the colors 0 and a at one vertex, and 0 and b at the other. It implies

that ImðfÞ ¼ f0; a; bg, which is a contradiction.

ðv4; n; ‘Þ ¼ ð2; 1; 1Þ: Since n ¼ 1, there is an element a 2 f1; 2; 4g such that the

regions have the colors 0 and a at any vertex. Also, since ‘ ¼ 1, there is an element

b 2 f1; 2; 4g such that the regions along the circle component have the colors 0 and

b. It implies that ImðfÞ ¼ f0; a; bg, which is a contradiction.

600 S. SATOH



ðv4; n; ‘Þ ¼ ð1; 1; 2Þ: The reduced lower graph LDðfÞ is a disjoint union of a 2-

bouquet ‘‘1’’ and a pair of circles. Since PDðfÞ ¼ P3, by taking 2f or 4f instead of

f if necessary, it is sufficient to consider the graphs as shown in Figure 16. In each

case, since H1 is H0-exclusive and D has a double point of type ðH0 $
H4

H1Þ, we
have a contradiction to Lemma 3.3.

ðv4; n; ‘Þ ¼ ð0; 0; 4Þ: There are three ways to arrange four circles on S2. Since

PDðfÞ ¼ P3, the regions along each circle component have the colors 0 and a for

some a 2 f1; 2; 4g.

If LDðfÞ is the boundary of disjoint four disks in S2, then the interiors of the

disks are colored by 1, 2, or 4, and the exterior is colored by 0. This contradicts to

the assumption that there are two regions colored by 0.

If LDðfÞ is a split union of a pair of concentric circles and a pair of split

circles, then it is sufficient to consider the case as shown in the left of Figure 17,

where H0 is adjacent to H1, H2, and H4, and H 0
0 is adjacent to H1 only. Since H1 is

H0-exclusive and D has a double point of type ðH0 $
H4

H1Þ, we have a contradiction

to Lemma 3.3.

If LDðfÞ is the union of concentric four circles, then it is sufficient to consider

the case as shown in the right of Figure 17, where H0 is adjacent to H1 and H2,

and H 0
0 is adjacent to H2 and H4. Hence, H4 is H0-exclusive and H2 is

H4-exclusive. On the other hand, we have 0 � 4n ¼ 0 (n: even) or 1 (n: odd) in R7,

which is not equal to 2. Since D has a double point of type ðH0 $
H1

H2Þ, we have a

Figure 17. ðv4; n; ‘Þ ¼ ð0; 0; 4Þ.

Figure 16. ðv4; n; ‘Þ ¼ ð1; 1; 2Þ.
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contradiction to Lemma 3.5. �

Let P4 be the graphs as shown in Figure 18.

LEMMA 7.7. If D has a non-trvial 7-coloring f with #ImðfÞ ¼ 5, then it has

a non-trivial 7-coloring f 0 such that

(i) Imðf 0Þ ¼ f1; 2; 3; 4; 5g, and
(ii) PDðf 0Þ is a connected subgraph of P4.

PROOF. Assume that ImðfÞ ¼ Z7 n fx; yg. We consider a 7-coloring f 0 ¼
6�0
y�x ðf � xÞ þ 0 similarly to the proof of Lemma 5.1. Then we have VDðf 0Þ ¼
Z7 n f0; 6g. Since 2þ5

2 ¼ 3þ4
2 ¼ 0 and 1þ4

2 ¼ 2þ3
2 ¼ 6 =2 VDðf 0Þ, the coloring f 0 satisfies

(ii) by Lemma 5.2. �

PROOF OF LEMMA 7.6. Assume that D has a non-trivial 7-coloring f with

#ImðfÞ ¼ 5. Since D consists of five sheets, f is separating. By Lemma 7.7, we

may assume that ImðfÞ ¼ f1; 2; 3; 4; 5g and PDðfÞ is a connected subgraph of P4.

We consider the reduced lower graph LDðfÞ. Let Hi 2 SD denote the sheet

whose color is i ði ¼ 1; 2; . . . ; 5Þ. By Lemma 5.5, the three regions near each vertex

of degree 3 are H1, H3, and H5. Also, by Lemma 5.6(i), the four regions near each

vertex of degree 4 are H1, H2, H4, and H5 in cyclic order. We remark that the

edges of LDðfÞ between H2 and H4 have the endpoints on the vertices of degree 4.

Hence, LDðfÞ satisfies the following:

(i) v3
2 þ v4 þ nþ ‘ ¼ 4 with v3

2 þ v4 � n.

(ii) v3 and v4 are even.

(iii) If v3 > 0 and v4 > 0, then ‘ ¼ 0.

(iv) If v3 ¼ 0 and v4 > 0, then ‘ ¼ 1.

(v) If v3 > 0 and v4 ¼ 0, then ‘ ¼ 2.

By these properties, we have the following four cases.

ðv3; v4; n; ‘Þ ¼ ð2; 2; 1; 0Þ; ð0; 2; 1; 1Þ; ð2; 0; 1; 2Þ; and ð0; 0; 0; 4Þ:

ðv3; v4; n; ‘Þ ¼ ð2; 2; 1; 0Þ: Since H2, H3, and H4 are bigons, it is easy to see that

Figure 18. A pallet graph with five colors for p ¼ 7.
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LDðfÞ is uniquely determined as shown in the left of Figure 19. Around the triple

point corresponding to a vertex of degree 4, we can find a pair of double points of

type ðH1 !
H3

H5Þ and ðH5 !
H3

H1Þ both. See the right of Figure 17. However, since

each diagonal pair of edges have the same orientation near a vertex of degree 4,

the edges between H1 and H5 have the same orientation. This is a contradiction.

ðv3; v4; n; ‘Þ ¼ ð0; 2; 1; 1Þ: Since v4 ¼ 2, there is a unique edge of LDðfÞ where
H1 and H5 are adjacent. On the other hand, there are at least two such edges by

the same reason as in the case ð2; 2; 1; 0Þ, which is a contradiction.

ðv3; v4; n; ‘Þ ¼ ð2; 0; 1; 2Þ: The lower graph LDðfÞ is a disjoint union of a

�-graph and a pair of circles. By Lemma 5.5, the triple point corresponding to each

vertex of degree 3 is as shown in the left of Figure 20, where the top sheet is H3.

Hence, H2 and H4 are adjacent. By taking 6� f instead of f if necessary, we may

assume that LDðfÞ is the graph as shown in the right of the figure. Since H1 is

exclusive, H2 is H1-exclusive, and D has a double point of type ðH1 $
H5

H2Þ, we
have a contradiction to Lemma 3.3.

ðv3; v4; n; ‘Þ ¼ ð0; 0; 0; 4Þ: There are three ways to arrange four circles on S2. If

LDðfÞ is the boundary of disjoint four disks, then PDðfÞ is the graph of ‘‘X’’-shape

with one vertex of degree 4 and four vertices of degree 1. Since it is not a subgraph

of P4, we have a contradiction.

Figure 19. ðv3; v4; n; ‘Þ ¼ ð2; 2; 1; 0Þ.

Figure 20. ðv3; v4; n; ‘Þ ¼ ð2; 0; 1; 2Þ.
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If LDðfÞ is the union of concentric four circles, then PDðfÞ is the graph of ‘‘I’’-

shape with three vertices of degree 2 and two vertices of degree 1. Since it is a

subgraph of P4, by taking 6� f instead of f if necessary, we may assume that

PDðfÞ is P5, P6, P7, or P8 as shown in Figure 21.

If PDðfÞ ¼ P5, then H4 is exclusive, H1 is H4-exclusive, and H2 is

H1-exclusive. We have 4 � 1n ¼ 4 (n: even) or 5 (n: odd) in R7, which is not

equal to 2. Since D has a double point of type ðH4 $
H3

H2Þ, we have a contradiction

to Lemma 3.5.

If PDðfÞ ¼ P6, then H5 is exclusive, and H1 is H5-exclusive. Since D has a

double point of type ðH5 $
H3

H1Þ, we have a contradiction to Lemma 3.3.

If PDðfÞ ¼ P7, then H5 is exclusive, and H4 is H5-exclusive. Since D has a

double point of type ðH5 $
H1

H4Þ, we have a contradiction to Lemma 3.3.

If PDðfÞ ¼ P8, then H3 is exclusive, and H2 is H3-exclusive, and H5 is

H2-exclusive. We have 3 � 2n ¼ 3 (n: even) or 1 (n: odd) in R7, which is not equal

to 5. Since D has a double point of type ðH3 $
H4

H5Þ, we have a contradiction to

Lemma 3.5.

If LDðfÞ is a split union of a pair of concentric circles and a pair of split

circles, then PDðfÞ is the graph of ‘‘Y’’-shape with one vertex of degree 3, one

vertex of degree 2, and three vertices of degree 1. By taking 6� f instead of f if

necessary, we may assume that PDðfÞ is P9 or P10 as shown in Figure 22.

Figure 21. Pallet graphs of ‘‘I’’-shape.

Figure 22. Pallet graphs of ‘‘Y’’-shape.
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If PDðfÞ ¼ P9, then H1 is exclusive, and H2 is H1-exclusive. Since D has a

double point of type ðH1 $
H5

H2Þ, we have a contradiction to Lemma 3.3.

If PDðfÞ ¼ P10, then H4 is exclusive, H1 is H4-exclusive, and H5 is

H1-exclusive. For integers l;m 2 Z, we have 4 � 1l ¼ 4 (l: even) or 5 (l: odd),

and ð4 � 3
1Þ � 5m ¼ 2 � 5m ¼ 2 (m: even) or 1 (m: odd), that is, 4 � 1l 6¼ ð4 � 3
1Þ

�5m. Since D has a double point of type ðH1 $
H3

H5Þ with fðH3Þ ¼ 3, we have a

contradiction to Lemma 3.6. �

PROPOSITION 7.8. It holds that s7 ¼ 6. In particular, the spun 52-knot has

the sheet number six.

PROOF. The 52-knot is 7-colorable and the crossing number is equal to five.

Similarly to Proposition 6.4, the proposition follows from Theorem 7.1 immedi-

ately. �

EXAMPLE 7.9. We have another example of a 2-knot whose sheet number is

equal to six. We take a diagram of a trivial 2-string tangle in the upper half plane

as shown in the left of Figure 23, where the arcs are colored by 1; 2; . . . ; 6 2 Z7.

We rotate it about the axis, and do surgery along a 1-handle connecting between

the sheets colored by 5 and 6 under the sheet colored by 2, so that we obtain a

diagram of a 2-knot. See the right of the figure. Since the diagram consists of six

sheets with the induced non-trivial 7-coloring, the sheet number is equal to six by

Theorem 7.1. The Alexander polynomial of the 2-knot is t3 � 3t2 þ 2t� 1 which is

not symmetric, and hence, the 2-knot is not a spun knot. We remark that this 2-

knot can be found in the table of ribbon 2-knots due to Aiso [1].

Figure 23. A 2-knot of sheet number six.
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(1925), 174–177.

[ 3 ] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and

state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355 (2003),

3947–3989.

[ 4 ] J. S. Carter, S. Kamada and M. Saito, Geometric interpretations of quandle homology and

cocycle knot invariants, J. Knot Theory Ramifications, 10 (2001), 345–358.

[ 5 ] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and

Monographs, 55, American Mathematical Society, Providence, RI, 1998.

[ 6 ] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg., 23 (1982), 37–

65.

[ 7 ] S. Matveev, Distributive groupoids in knot theory (Russian), Math. USSR-Sbornik, 46 (1982),

73–83.

[ 8 ] M. Saito and S. Satoh, The spun trefoil needs four broken sheets, J. Knot Theory Ramifications,

14 (2005), 853–858.

[ 9 ] S. Satoh, Sheet numbers of 2- and 3-twist-spun trefoils, preprint.

[10] S. Satoh and A. Shima, The 2-twist-spun trefoil has the triple point number four, Trans. Amer.

Math. Soc., 356 (2004), 1007–1024.

[11] S. Satoh and A. Shima, Triple point numbers and quandle cocycle invariants of knotted surfaces

in 4-space, New Zealand J. Math., 34 (2005), 71–79.

Shin SATOH

Department of Mathematics

Kobe University

Rokkodai-cho, Nada-ku

Kobe 657-0013, Japan

E-mail: shin@math.kobe-u.ac.jp

606 S. SATOH

http://dx.doi.org/10.1007/BF02950724
http://dx.doi.org/10.1007/BF02950724
http://dx.doi.org/10.1142/S0218216501000901
http://dx.doi.org/10.1016/0022-4049(82)90077-9
http://dx.doi.org/10.1016/0022-4049(82)90077-9
http://dx.doi.org/10.1142/S0218216505004123
http://dx.doi.org/10.1142/S0218216505004123
http://dx.doi.org/10.1090/S0002-9947-03-03181-7
http://dx.doi.org/10.1090/S0002-9947-03-03181-7

