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Abstract. The hyperbolic Schwarz map is defined in [SYY1] as a map

from the complex projective line to the three-dimensional real hyperbolic space by

use of solutions of the hypergeometric differential equation. Its image is a flat

front ([GMM], [KUY], [KRSUY]), and generic singularities are cuspidal edges

and swallowtail singularities. In this paper, for the two-parameter family of the

confluent hypergeometric differential equations, we study the singularities of the

hyperbolic Schwarz map, count the number of swallowtails, and identify the

further singularities, except those which are apparently of type A5. This describes

creations/eliminations of the swallowtails on the image surfaces, and gives a

stratification of the parameter space according to types of singularities. Such a

study was made for a 1-parameter family of hypergeometric differential equation

in [NSYY], which counts only the number of swallowtails without identifying

further singularities.

1. Introduction.

The confluent hypergeometric differential equation is defined as

xu00 þ ð� � xÞu0 � �u ¼ 0: ð1:1Þ

It is regular singular at x ¼ 0 and irregular singular at x ¼ 1. By a change of the

unknown u by multiplying a non-zero function � ¼ expð�x=2Þx�=2, and a change

of parameters

a ¼ 2�� �; b ¼ �2 � 2�; ð1:2Þ

this equation transforms to the SL-form:
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u00 � qðxÞu ¼ 0; where q ¼
x2 þ 2axþ b

4x2
: ðEÞ

(Note that ðEÞ is the SL-form of the Bessel equation if and only if a ¼ 0.) Let us

recall the definition of the hyperbolic Schwarz map associated with ðEÞ. For two
linearly independent solutions u0 and u1 to this equation, we define the (multi-

valued) map

S : X ¼ C � f0g 3 x 7�! HðxÞ ¼ UðxÞ tUðxÞ; ðHSÞ

where

U ¼
u0 u00

u1 u01

 !
:

Its target can be regarded as the three-dimensional hyperbolic space H 3 identified

with the space of positive 2� 2-hermitian matrices modulo diagonal ones. The

map S is called the hyperbolic Schwarz map. Its image is a surface with

singularity, which is known to be a flat front in H 3 (flat means the vanishing of

the Gaussian curvature of induced metric, for front, see Section 2.1). We remark

that the ordinary (multi-valued) Schwarz map is defined as

S : X 3 x 7�! u0ðxÞ : u1ðxÞ 2 P1;

and the (multi-valued) derived Schwarz map as

DS : X 3 x 7�! u00ðxÞ : u01ðxÞ 2 P1;

where P1 denotes the complex projective line, the ideal boundary of H 3. There is

a one-parameter family of flat fronts in H 3 such that the map S is an ordinary

member, and the maps S and DS are two extreme ones. We refer to [GMM],

[KUY], [SYY2] for these maps.

In this paper, we study the singularities on the image surface of the

hyperbolic Schwarz map of the differential equation ðEÞ with the coefficient q

with real parameters a and b and show how the singularities depend on the

parameters. It is well known that generic singularities of the image surfaces are

cuspidal edges and swallowtails. We get criteria of the singularities appearing in

the image surfaces in terms of the coefficient q, except for the singularity of type

A5. Thanks to those criteria, we identify further singularites, namely creations/

eliminations of swallowtail singularities. We thus get a stratification of the
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parameter space according to types of singularities. Refer to Figures 6 and 7.

Since our proofs rely on purely algebraic treatment of ideals of the polynomial

rings, to give a geometric idea, we show some pictures of image surfaces around

the singularities.

The point x ¼ 0 is a regular singular point of the differential equation and it

is mapped into the boundary of H 3. The behavior of the map around x ¼ 1 may

be complicated because the differential equation is irregular singular at that

point; the asymptotic behavior of the surface will be studied in the forthcoming

paper [SY2].

We refer to [E], [Y] for the hypergeometric differential equation and its

solutions.

2. Criteria on singularities of flat fronts.

2.1. Singularities of flat fronts.

A smooth map f from a domain U � R2 to a Riemannian 3-manifold N3 is

called a front if there exists a unit vector field �: U ! T1N along the map f such

that df and � are perpendicular and the map �: U ! T1N along f is an immersion,

where T1N is the unit tangent bundle of N. We call � the unit normal vector field

of f . Note that, if we identify T1N with the unit cotangent bundle T1N
�, the

condition df ? � is equivalent to the corresponding map L: U ! T �
1N to be

Legendrian with respect to the canonical contact structure T �
1N. A point p 2 U is

called a singular point of f if rankðdfÞ is less than 2 at p; it is called a singular

point of rank one if rankðdfÞ is equal to one. Relative to the coordinates ðu; vÞ on
U , define a function � by

�ðu; vÞ ¼ �ðfu; fv; �Þ;

where � is the volume form. A singular point in U is said to be nondegenerate if

d� 6¼ 0. Here, let us recall some terminologies in singularity theory: Let fi be a

map germ at pi defined on the source space Si into the target space Ti, for i ¼ 1; 2.

Then, they are said to be equivalent if there exist a local diffeomorphism � from S1

to S2 with �ðp1Þ ¼ p2 and a local diffeomorphism  from T1 to T2, such that

 � f1 ¼ f2 � �. It is well-known that generic singularities of fronts are cuspidal

edges and swallowtails [A]; refer also to [SY1] for an elementary description.

Recall that the cuspidal edge is (the equivalence class of) the map germ

ðu; vÞ 7! ðu2; u3; vÞ

at the origin, and the swallowtail singularity is the map germ
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ðu; vÞ 7! ð3u4 þ u2v; 4u3 þ 2uv; vÞ

at the origin. The generic confluence of swallowtail singularities are classified into

five types called A4, a pair of cuspidal lips, a pair of cuspidal beaks, and two types

where rankðdfÞ ¼ 0; Refer to [LLR, p. 547] and also to [IS], [IST]. The first three

are defined as the map germs at the origin as follows:

A4: ðu; vÞ 7! ð5u5 þ 2uv; 4u5 þ u2v� v2; vÞ;
Cuspidal lips: ðu; vÞ 7! ðu3 þ uv2; 3u4 þ 2u2v2; vÞ;

Cuspidal beaks: ðu; vÞ 7! ðu3 � uv2; 3u4 � 2u2v2; vÞ:

Each belongs to a family of the map germs

ðu; vÞ 7! ð5u5 þ 2uvþ 3cu2; 4u5 þ u2vþ 2cu3 � v2; vÞ;
ðu; vÞ 7! ðu3 þ uv2 þ cu; 3u4 þ 2u2v2 þ 2cu2; vÞ;
ðu; vÞ 7! ðu3 � uv2 þ cu; 3u4 � 2u2v2 þ 2cu2; vÞ;

respectively, where c is the parameter. As c tends to zero, the two swallowtails

merge and vanish; in the two former cases the two swallowtails are on the same

cuspidal edge curve, while in the latter case they are on two different cuspidal

edge curves. We furthermore introduce a family of the map germs of a higher-

order singularity as

ðu; vÞ 7! ð6u5 þ 4cu3 þ 2uv; 5u6 þ 3cu4 þ u2v; vÞ;

which defines the singularity of type A5 at the origin when c ¼ 0:

A5 : ðu; vÞ 7! ð6u5 þ 2uv; 5u6 þ u2v; vÞ:

As c tends to zero, three swallowtails on the same cuspidal edge curves merge, and

one swallowtail survives.

In this subsection, we review the criteria of these singularities, except that of

type A5, in terms of �, and paraphrase them in terms of the coefficient q. We have

no criterion for A5-singularity yet.

Assume that the map f is of rank one at a point p. Then there exists a

nonvanishing vector field � around p so that ð�fÞðqÞ ¼ 0 for any singular point q

around p.

LEMMA 2.1 ([KRSUY], [IS]; see also [SUY]). Let p be a nondegenerate
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singular point of the front f. Then, the map f at p is equivalent to

(1) a cuspidal edge if and only if �ð�ÞðpÞ 6¼ 0,

(2) a swallowtail singularity if and only if �ð�ÞðpÞ ¼ 0 and ��ð�ÞðpÞ 6¼ 0, and

(3) a singularity of type A4 if and only if �ð�ÞðpÞ ¼ 0, ��ð�ÞðpÞ ¼ 0, and

���ð�ÞðpÞ 6¼ 0.

When the map f is of rank one and degenerate, we have the following

characterization of a pair of cuspidal lips or a pair of cuspidal beaks:

LEMMA 2.2 ([IST]). Let p be a degenerate singular point of rank one of the

front f. Then, it is equivalent to

(1) a pair of cuspidal lips if and only if d�ðpÞ ¼ 0 and detðHessð�ÞÞ > 0, and

(2) a pair of cuspidal beaks if and only if d�ðpÞ ¼ 0, detðHessð�ÞÞ < 0, and

���ðpÞ 6¼ 0.

We apply the criteria above to the hyperbolic Schwarz map f ¼ S associated

to the equation ðEÞ. The inner product h ; i on the tangent bundle TH 3 is given as

hX; Y i ¼ trðX ~Y Þ=2, where ~Y is the cofactor matrix of Y , and the cross-product at

p 2 H 3 is given as X � Y ¼ iðXp�1Y � Y p�1XÞ=2. Refer, e.g., to [KRSUY, p.

319]. The normal vector field � is given by the equation

� ¼ U
1 0

0 �1

 !
tU;

which we regard as a map to TH 3. Then the function � is equal to 2ih�; f 0 � f 0i up
to a constant multiple. Here and in the following, f 0 denotes the derivative @f=@x

and f 00 ¼ @2f=@x2, and so on. Since f 0 ¼ U 0tU and U 0 ¼ U
0 q
1 0

� �
, we see that

� ¼ qq � 1: ð2:1Þ

By definition, the set of singular points is

CE :¼ fx 2 X; qðxÞqðxÞ � 1 ¼ 0g:

A simple computation shows that the vector field � can be chosen as

� ¼ i ð1þ qÞ@x � ð1þ qÞ@xð Þ

around the point where q 6¼ �1 and

� ¼ ð1� qÞ@x þ ð1� qÞ@x
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around the point where q 6¼ 1. Then a computation using the first expression

yields

�ð�Þ ¼ 2Refiqð1þ qÞq0g;

��ð�Þ ¼ 2Ref�ð1þ qÞ2qq00 þ ð1þ qÞð1þ 2qÞq0q0g;
���ð�Þ ¼ 2Refið1þ qÞð�ð1þ qÞ2qq000 þ ð3þ 4qÞq0q02

þ ð2þ 3q þ 3q þ 4qqÞq0q00 � ð1þ qÞð1þ 3qÞq00q0Þg:

ð2:2Þ

Now, we are prepared to paraphrase Lemmas 2.1 and 2.2 as follows:

LEMMA 2.3.

(1) A point x 2 X is a singular point of the hyperbolic Schwarz map S if and

only if jqðxÞj ¼ 1,

(2) a singular point x 2 X of S is equivalent to the cuspidal edge if and only if

q0ðxÞ 6¼ 0 and q0ðxÞ 6¼ ðq0=q3ÞðxÞ,
(3) a singular point x 2 X of S is equivalent to the swallowtail if and only if

q0ðxÞ 6¼ 0, q0ðxÞ ¼ ðq0=q3ÞðxÞ, and q00ðxÞ 6¼ �ðq0=q3Þ0ðxÞ=qðxÞ,
(4) a singular point x 2 X of S is equivalent to A4 if and only if q0ðxÞ 6¼ 0,

q0ðxÞ ¼ ðq0=q3ÞðxÞ, and q00ðxÞ ¼ �ðq0=q3Þ0ðxÞ=qðxÞ, q000ðxÞ 6¼ ððq0=q3Þ0=qÞ0ðxÞ=
qðxÞ,

(5) any degenerate singular point of rank one cannot be cuspidal lips,

(6) and a degenerate singular point of rank one is equivalent to a pair of cuspidal

beaks if and only if q0 ¼ 0, q00 6¼ 0, and q00ðxÞ 6¼ ðq00=q4ÞðxÞ.

PROOF. The claim (1) is what we observed above. To see the claim (2), we

rewrite the first identity of (2.2) by use of q ¼ 1=q:

�ð�Þ ¼ iqð1þ qÞ
q0

q3
� q0

� �
;

from which we can see that �ð�Þ 6¼ 0 if and only if q0 6¼ q0=q3 when 1þ q 6¼ 0. We

obtain the same condition also when 1� q 6¼ 0; hence, we have (2). For (3),

rewrite the second identity of (2.2) by use of q ¼ 1=q and q0 ¼ q0=q3. Then we see

��� ¼ �qð1þ qÞ2 q00 þ
q00

q4
�

3q02

q5

� �
;

which implies the third condition of (3) in case 1þ q 6¼ 0. In case 1� q 6¼ 0, we

have the same expression. The claim (4) is similarly shown.
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Since q is a rational function of x, it is easy to see that

detHess� ¼ �jq00j2

on the singular set CE. This implies that detHess� � 0. Hence we have (5) and

(6). (Note that q00 ¼ 0 if and only if 2axþ 3b ¼ 0.) �

We remark that the condition q00ðxÞ 6¼ �ðq0=q3Þ0ðxÞ=qðxÞ in (3) of the lemma

above is rewritten as Reð2q00=q2 � 3ðq0Þ2=q3ÞðxÞ 6¼ 0, which is the expression given

in [KRSUY].

2.2. Cuspidal edge.

In the following, we use the real coordinates ðs; tÞ: x ¼ sþ it for the sake of

simplicity. In these coordinates,

� ¼ ImðqÞ@s þ ð1þ ReðqÞÞ@t or ð1� ReðqÞÞ@s þ ImðqÞ@t:

The set CE is defined explicitly as

ce :¼ 15t4 � ð4as� 30s2 þ 4a2 � 2bÞt2 þ ðbþ 2asþ 5s2Þð�b� 2asþ 3s2Þ ¼ 0: ð2:3Þ

It is a plane quartic curve symmetric relative to the change t! �t for each fixed

ða; bÞ. The point x ¼ 0 is a singularity of the differential equation; the point

ðs; tÞ ¼ ð0; 0Þ is on CE only if b ¼ 0.

The shape of the set CE depends on the parameter ða; bÞ. Here, we notice that

the polynomial ce has the homogeneity

ceðks; kt; ka; k2bÞ ¼ k4ceðs; t; a; bÞ;

that comes from qðkx; ka; k2bÞ ¼ qðx; a; bÞ. Hence, it is enough to consider the cases

a ¼ 1 and a ¼ 0. When a ¼ 1, the degenerate singular points, where q0 ¼ 0, are

ðb; s; tÞ ¼ ð�1=3; 1=3; 0Þ; ð1=5;�1=5; 0Þ; ð0; 0; 0Þ:

When a ¼ 0, the equation still has the symmetry, it is enough to consider the case

b ¼ �1. Remark that the case b ¼ 0 was already excluded.

In each case, the polynomial ce in ðs; tÞ can be transformed into a quadratic

polynomial as follows, thus the shape of the set CE can be seen.

When a ¼ 0, we have

ce ¼ 15t4 þ ð30s2 þ 2bÞt2 þ ð5s2 þ bÞð3s2 � bÞ
¼ 15T 2 þ 2bS � b2;
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where T ¼ t2 þ s2; S ¼ t2 � s2. Since T þ S � 0 and T � S � 0, the set CE in

TS-plane is part (compact) of a parabola, if b 6¼ 0.

When a ¼ 1, we have

ce ¼ 15t4 þ ð30s2 � 4sþ 2b� 4Þt2 þ ð5s2 þ 2sþ bÞð3s2 � 2s� bÞ
¼ 15T 2 � 4sT � 4bs2 þ ð2b� 4ÞT � 4bs� b2;

where T ¼ t2 þ s2. Since T � s2, the set CE in Ts-plane is part (compact) of a

hyperbola or an ellipse.

We consider the intersection CE \ ft ¼ 0g to help understand a global view

of the set CE. The intersection is defined by the equation

ðbþ 2asþ 5s2Þð�b� 2asþ 3s2Þ ¼ 0;

which is solved as

s ¼ � a

5
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 5b

p

5
;

a

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 3b

p

3
:

Figure 1. Stratification of ab-plane according to cardinalities of
CE \ ft ¼ 0g. The curves A;B and C are given by 5b� a2 ¼ 0,
3bþ a2 ¼ 0 and b ¼ 0, respectively.
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When ða; bÞ ¼ ð0; 0Þ, four roots coincide; in this case, the coefficient reduces to

q ¼ 1=4, which we exclude from our consideration since S does not define a

surface. On the line b ¼ 0, the roots are 2a=3, 0ðdoubleÞ, �2a=5. On the curve

a2 ¼ 5b, the first equation has double roots and, on the curve a2 ¼ �3b, the second

equation has double roots. Thus, we have the stratification of the parameter plane

as in Figure 1. Each numeral in the figure shows the cardinality of the intersection

CE \ ft ¼ 0g; these are invariant under the change a! �a.
In Figure 2, we exhibit the set CE for the case ða; bÞ ¼ ð1;�0:31Þ and

ða; bÞ ¼ ð0;�1Þ. Refer to Figures 3 and 4 for other cases.

2.3. Swallowtail singularities.

To find swallowtail singularities using Lemma 2.3, we need to solve the

equation q3q0 � q0 ¼ 0. This equation turns out to be

swr ¼ 0 and swi ¼ 0;

where

swr ¼ 118at6s� 12a2 þ 130bt6 þ 394at4s3 þ ð60a2 þ 354bÞt4s2

þ 6að�7bþ 12a2Þt4sþ ð16a4 � 6b2Þt4 þ 402at2s5 þ ð60a2 þ 414bÞt2s4

þ 12að4a2 þ 11bÞt2s3 þ 36bð4a2 þ bÞt2s2 þ 6abð4a2 þ 11bÞt2s
þ 6b2ð2a2 þ bÞt2 þ 126as7 þ ð�12a2 þ 126bÞs6 � 6að4a2 þ 3bÞs5

� ð16a4 þ 48a2bþ 6b2Þs4 � 10abð4a2 þ 3bÞs3 � 6b2ð6a2 þ bÞs2 � 14b3as� 2b4

Figure 2. The curve CE when ða; bÞ ¼ ð1;�0:31Þ (Left) and
ða; bÞ ¼ ð0;�1Þ (Right).

Hyperbolic Schwarz Map 567



swi ¼ t½126at6 þ 402at4s2 þ ð48a2 � 12bÞt4sþ 6að4a2 � bÞt4

þ 394at2s4 þ 40bt2s3 � 12að4a2 � 9bÞt2s2 � 32a4 þ 24b2 þ 48a2bt2s

� 2abð4a2 � 9bÞt2 þ 118as6 � ð48a2 þ 12bÞs5 � 6að12a2 þ 13bÞs4

� ð32a4 þ 24b2 þ 144a2bÞs3 � 6abð12a2 þ 13bÞs2 � 12b2ð4a2 þ bÞs� 10b3a	

For a point in the set SW ¼ fðs; tÞ; ce ¼ swr ¼ swi ¼ 0g to be a swallowtail

singularity, it is necessary to check the third condition in ð3Þ of Lemma 2.3. We

denote by swexc the numerator of the real part of 2q00=q2 � 3ðq0Þ2=q3, which is a

polynomial of ðs; tÞ of total degree nine; its explicit expression is given in the

appendix.

We first compute the exceptional set SWE :¼ fce ¼ swr ¼ swi ¼ swexc ¼ 0g.
By relying on the primary decomposition of the corresponding ideal hce;
swr; swi; swexci in the polynomial ring R½s; t; b	 (a ¼ 1 is assumed), we have the

following. (Refer to, e.g., [Jac] for primary decomposition.)

LEMMA 2.4. Assume a ¼ 1. Then the set defined by the ideal hce; swr;
swi; swexci is the union of the sets defined by the ideals

ð1Þ ½b; s2 þ t2	;
ð2Þ ½b� 1; 4t2 þ 1; 2sþ 1	;
ð3Þ ½25b2 � 10b� 27; 25t2 þ 10bþ 7; 10sþ 5bþ 1	;
ð4Þ ½27b2 � 70b� 21; t; 8sþ 3b� 3	;
ð5Þ ½P1; P2; P3	;

where

P1 ¼ 49005b5 � 91665b4 þ 51270b3 � 6414b2 � 147b� 1;

P2 ¼ 3011952t2 þ 288933480b4 � 567654615b3 þ 356174169b2 � 68910105b

þ 3483983;

P3 ¼ 16063744sþ 396597465b4 � 830462220b3 þ 605893890b2 � 162782468b

þ 17102389:

By this lemma, the exceptional real points are

p1 : b ¼ b1; ðs; tÞ 
 ð0:3291502622; 0:2516350726Þ;
p2 : b ¼ b2; ðs; tÞ 
 ð0:4768336246; 0Þ;
p3 : b ¼ b3; ðs; tÞ 
 ð�0:1696551154; 0:03711109674Þ;
p4 : b ¼ b4; ðs; tÞ 
 ð�0:6990558469; 0Þ;
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where b1 is one of solutions of the equation 25b2 � 10b� 27 ¼ 0 of ð3Þ:

b1 ¼
1�

ffiffiffiffiffi
28

p

5

 �0:8583005244;

Note that the second solution ð1þ
ffiffiffiffiffi
28

p
Þ=5 is excluded because the value t cannot

be real. The values b2 and b4 are solutions of the equation 27b2 � 70b� 21 ¼ 0 of

ð4Þ:

b2 ¼
35�

ffiffiffiffiffiffiffiffiffiffi
1792

p

27

 �0:2715563324; b4 ¼

35þ
ffiffiffiffiffiffiffiffiffiffi
1792

p

27

 2:8641489250;

and b3 is the unique real solution of the equation P1 ¼ 0:

b3 
 0:2081942455:

In the case a ¼ 0, we see that when b ¼ 1 the swallowtail points are ðs; tÞ ¼
ð0;�1=

ffiffiffi
5

p
Þ; ð�1=

ffiffiffi
3

p
; 0Þ and that when b ¼ �1 there exist no swallowtail points.

2.4. Types of confluence of swallowtail singularities.

The types of the above exceptional points can be identified by using the

criteria in Lemma 2.3. Let C be one of the ideals in the previous lemma for the

cases (3)–(5) when a ¼ 1. By computing the primary decomposition of the ideal

generated by the polynomials in C and the numerator num of the expression of

���ð�Þ in (2.2), we can see that p1 and p3 are of type A4 and that ���ð�Þ ¼ 0 for p2
and p4. The polynomial num is given in the appendix.

When b passes through b2 (resp. b4), three swallowtail points get together to

the point p2 (resp. p4) and then reappears a single swallowtail point. At these

extreme values of b, the derivatives �kð�Þ vanishes for 0 � k � 3 as we have seen,

while we can examine �4ð�Þ 6¼ 0. These strongly suggest that these are of

singularity is A5. We remark that this type of confluence is not generic in Arnold’s

sense.

When a ¼ 0, no confluence occurs.

We next treat degenerate points of rank one, which can be a pair of cuspidal

beaks in view of Lemma 2.3. In fact, by solving the equation q0 ¼ 0 and checking

q00 6¼ 0 and q3ðxÞq0ðxÞ � q0ðxÞ 6¼ 0, we can show that ðs; tÞ ¼ ð1=3; 0Þ when b ¼ �1=3

and ðs; tÞ ¼ ð�1=5; 0Þ when b ¼ 1=5 are actually cuspidal beaks.

REMARK 2.5. When b passes through the value 0, three swallowtail points

get together to the origin and then reappear three swallowtail points again. Such a

phenomenon was observed also in the study of Gauss hypergeometric equation
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([NSYY]). A similar phenomenon is known in the study of confluence of

swallowtail points by Arnold; refer to the third case in the list of classification

given in [LLR, p. 547]. However, the present type of confluence seems to be

different from Arnold’s since the point x ¼ 0 is a singularity of the equation and

the map S itself is multi-valued at this point.

2.5. Figures of the cuspidal edge.

Summarizing the above, in the case a ¼ 1, we have critical values of b where

the shape of the cuspidal edge and the location of the swallowtail points on it

make changes: b ¼ b1;�1=3; b2; 1=5; b3; b4.

In Figures 3–4, we exhibit the shape of the cuspidal edge for several values of

b including these. The balck ball indicates a swallowtail point, the white

quadrangle a pair of cuspidal beaks, the white ball a singularity of type A4, and

the crossed ball a singularity seemingly of type A5.

When a ¼ 0, we show two figures in Figure 5.

In Figure 6, we give a finer stratification of the ab-plane according to the

cardinality of swallowtail points; since they are invariant under the change

a! �a, they are marked only in the right half of the figure. The curves are named

as A : 5b� a2 ¼ 0, B : 3bþ a2 ¼ 0, C : b ¼ 0, as in Figure 1, and

E1 : b ¼ b1a
2; E2 : b ¼ b2a

2; E3 : b ¼ 0:4a2; E4 : b ¼ b4a
2;

Here we remark that the two curves b ¼ b3a
2 and b ¼ ð1=5Þa2 are very nearly

situated; so, we draw b ¼ 0:4a2 instead of b ¼ b3a
2 so that the stratification is

better observed. In Figure 7, the stratification is transported to the ��-plane. The

lines C1 and C2 are the pullback of the line C.
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b ¼ �0:9 b ¼ b1 ¼ �0:858300524 b ¼ �65=100

b ¼ �35=100 b ¼ �1=3 b ¼ �31=100

b ¼ b2 ¼ �0:2715563324 b ¼ �25=100 b ¼ 0

b ¼ 19=100 b ¼ 1=5 b ¼ 205=1000

Figure 3. Shapes of CE when a ¼ 1.
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b ¼ b3 ¼ 0:2081942455 b ¼ 1 b ¼ 2

b ¼ b4 ¼ 2:86414892507 b ¼ 3

Figure 4. Shapes of CE when a ¼ 1 continued.

b ¼ �1 b ¼ 1

Figure 5. Shapes of CE when a ¼ 0.
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Figure 6. Stratification of ab-plane and cardinalities of swallow-
tail points.

Figure 7. Stratification of ��-plane and cardinalities of swallow-
tail points.
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3. Surfaces for particular values of the parameter b.

We show the image surface of S for some parameters ða; bÞ ¼ ð1; bÞ. Since S

is multi-valued in general, we cut the ðs; tÞ-plane along the negative s-axis. The

hyperbolic Schwarz map is defined by use of solutions

u0 ¼ �ðxÞ 1F1ð�; �;xÞ and u1 ¼ �ðxÞx1�� 1F1ð�� � þ 1; 2� �;xÞ;

where

1F1ð�; �;xÞ ¼
X1
n¼0

�ð�þ 1Þ � � � ð�þ n� 1Þ
�ð� þ 1Þ � � � ð� þ n� 1Þn!

xn

is the confluent hypergeomtric function and �ðxÞ ¼ expð�x=2Þx�=2 is the multi-

plier that changes the equation (1.1) into the SL-form ðEÞ. For a given b, we have

generally two sets of ð�; �Þ determined by (1.2); however, the both define the same

map up to interchange of u0 and u1.

In drawing the surfaces in Figures 8–9, we chose five values of b from the five

intervals separated by the exceptional values bi ð1 � i � 4Þ. Areas of drawing are

chosen to be the quadrangles shown in the left figures, where the cuspidal edge

curves and the swallowtail points are drawn. In the middle columns, we draw the

images of the cuspidal edge curves lying in the quadrangles. In the second row

when b ¼ �0:31 and b ¼ �0:25, the curve in the middle column is the image of the

cuspidal edge curve in the thin quadrangle with dotted frame. Each surface in the

right column is the image of the quadrangles. A remark is in order: Though the V

shaped curve in the middle figure (in the first row) when b ¼ �0:31 and that when

b ¼ �0:25 look similar, it carries three swallowtails in the former case and one

swallowtail in the latter case.

The following is the list of quadrangles relative to the coordinate x ¼ sþ it.

b s� interval t� interval

�0:9 ½0:2; 0:4	 ½�0:4; 0:4	
�0:65 ½0:2; 0:35	 ½�0:6; 0:6	
�0:31 ½0:1; 0:5	 ½�0:5; 0:5	

½0:40; 0:44	 ½�0:3; 0:3	
�0:25 ½0:05; 0:56	 ½�0:42; 0:42	

½0:07; 0:2	 ½�0:04; 0:04	
½0:40; 0:54	 ½�0:4; 0:4	

1 ½0:7; 1:1	 ½�0:5; 0:5	
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Drawing is done by Maple 9.5.

b ¼ �0:9 jST j ¼ 0

b ¼ �0:65 jST j ¼ 4

b ¼ �0:31 jST j ¼ 6

Figure 8. Pictures of image surfaces when a ¼ 1. (1)
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Appendix.

Two polynomials swexc and num are given as follows.

swexc ¼ 32t6a4 � 88t8a2 þ 64a5t4s� 144s5abt2 � 656s3at4bþ 576s3at2b2

þ 16s9aþ 104s8a2 þ 240s7a3 þ 224s6a4 þ 64a5s5 þ 24s8bþ 24s2b4

þ 72s4b3 þ 72s6b2 � 24b4t2 þ 24bt8 � 72b2t6 þ 72b3t4 þ 208s3ab3

þ 384s5ab2 þ 208s7abþ 672s5a3bþ 600s4a2b2 þ 600s6a2b� 96s5at4

� 128s3at6 þ 160s6a2t2 þ 528s5a3t2 þ 336s3a3t4 þ 480s4a4t2

� 80s4a2t4 � 48ast8 þ 48a3st6 þ 288a4s2t4 þ 408s4a2t2b

þ 576s3a3t2b� 224a2s2t6 þ 104a2s2b3 þ 224a4s4bþ 240a3s3b2

b ¼ �0:25 jST j ¼ 4

b ¼ 1 jST j ¼ 2

Figure 9. Pictures of image surfaces when a ¼ 1. (2)
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þ 128a5s3t2 þ 16asb4 � 304at6bs� 32a4t4b� 24a2t6bþ 88a2t2b3

þ 24a2t4b2 � 96s2bt6 � 96s6bt2 � 240s4bt4 þ 72s4b2t2 � 72s2b2t4

þ 144s2b3t2 � 96a3t4bsþ 192a4t2bs2 � 216a2t4bs2 þ 624a2t2b2s2

þ 240a3t2b2sþ 192at4b2sþ 144at2b3s

num ¼ � 81t12 þ 162s2t10 � ð810bþ 90Þst10 þ ð45b� 108Þt10 þ 1377s4t8

� ð810bþ 450Þs3t8 þ ð�45bþ 204Þs2t8 � ð135b2 þ 1068bþ 648Þst8

þ ð�99b2 þ 324bþ 192Þt8 þ 2268s6t6 þ ð2268b� 900Þs5t6

þ ð�630bþ 1896Þs4t6 � ð540b2 þ 2592þ 1296bÞs3t6

þ ð324b2 � 1296bþ 768Þs2t6 � bð81b2 þ 958b� 768Þst6

þ b2ð27bþ 400Þt6 þ 1377s8t4 þ ð3564b� 900Þs7t4

þ ð�1170bþ 3384Þs6t4 þ ð�810b2 þ 2520b� 3888Þs5t4

þ ð2598b2 � 5832bþ 1152Þs4t4 þ bð273b2 � 4594bþ 2304Þs3t4

� b2ð985b� 1936Þs2t4 � b3ð25b� 556Þst4 þ 28b4t4 þ 162s10t2

þ ð1134b� 450Þs9t2 þ ð�855bþ 2436Þs8t2

þ ð�540b2 þ 4656b� 2592Þs7t2 þ ð3828b2 � 6480bþ 768Þs6t2

þ bð789b2 � 6314bþ 2304Þs5t2 � b2ð2323b� 2672Þs4t2

� 2b3ð127b� 676Þs3t2 þ 272b4s2t2 þ 11b5st2 � 81s12 þ ð�162b� 90Þs11

þ ð636� 225bÞs10 þ ð�135b2 þ 1908b� 648Þs9

þ ð192� 2268bþ 1653b2Þs8 þ bð435b2 � 2678bþ 768Þs7

� b2ð�1136þ 1311bÞs6 � b3ð229b� 796Þs5 þ 268b4s4 þ 35b5s3
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