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Abstract. An austere submanifold is a minimal submanifold where for

each normal vector, the set of eigenvalues of its shape operator is invariant under

the multiplication by �1. In the present paper, we introduce the notion of weakly

reflective submanifold, which is an austere submanifold with a reflection for each

normal direction, and study its fundamental properties. Using these, we

determine weakly reflective orbits and austere orbits of linear isotropy repre-

sentations of Riemannian symmetric spaces.

1. Introduction.

Orbits of an s-representation, that is a linear isotropy representation of a

Riemannian symmetric pair, are important examples of homogeneous submani-

folds in the hypersphere of a Euclidean space. For example, a homogeneous

isoparametric hypersurface in the hypersphere, which many mathematicians have

investigated, can be obtained as a principal orbit of an s-representation of a

Riemannian symmetric pair of rank two. It is known that there exists a unique

minimal isoparametric hypersurface in each parallel family of isoparametric

hypersurfaces. Furthermore, typical examples of minimal submanifolds in the

hypersphere are given as orbits of s-representations. Hirohashi-Song-Takagi-

Tasaki [7] showed that there exists a unique minimal orbit in each strata of the

stratification of orbit types. However, in general we can not explicitly point out

which orbit among each strata is a minimal submanifold.

Harvey-Lawson [4] introduced the notion of austere submanifold, which is a

minimal submanifold whose second fundamental form has a certain symmetry.

They showed that one can construct a special Lagrangian cone, therefore

absolutely area-minimizing, in a complex Euclidean space as the twisted normal
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bundle of an austere submanifold in a sphere (see [4], [2]). As we mentioned

above, the complete list of minimal orbits of s-representations in the hypersphere

is unknown at the moment. Therefore we first attempt to determine all austere

orbits. We give a necessary and sufficient condition for an orbit to be an austere

submanifold in the hypersphere in terms of the restricted root system of a

Riemannian symmetric pair. By this criterion, we can determine all orbits which

are austere submanifolds in the hypersphere. Since the definition is focused on a

symmetry of its second fundamental form, the notion of austere submanifold is an

infinitesimal property of a submanifold. However, we observe that some of austere

orbits, which we classified, have a certain global symmetry. This symmetry is a

globalization of the notion of austere submanifold and a weakened condition of a

reflective submanifold. Therefore we shall call them weakly reflective submani-

folds, and study some fundamental properties of them. Finally we determine all

weakly reflective orbits of s-representations.

The organization of this paper is as follows. In Section 2, we will give the

definition of weakly reflective submanifold (Definition 2.1), and recall some

related notions. We study their relationship and fundamental properties. In

Section 3, we summarize the geometry of orbits of s-representations of Rieman-

nian symmetric pairs. This will be a preliminary for the sections below. In

Section 4, we shall give the list of orbits of s-representations which are weakly

reflective submanifolds in the hypersphere (Theorem 4.1). We show that these

orbits are weakly reflective submanifold in the hypersphere there, however, we

will show that the list gives all weakly reflective orbits later. In Section 5, we will

give a criterion of austere orbits (Lemma 5.3), and determine all orbits which are

austere submanifolds in the hypersphere (Theorem 5.1). Furthermore we show

that austere orbits which are not enumerated in the list of weakly reflective orbits

are not weakly reflective submanifolds. Then we will complete the proof of the list

of weakly reflective orbits. In Section 6, we will study relationships between

weakly reflective submanifolds in a sphere and those in Euclidean spaces or

complex projective spaces.

The authors are profoundly grateful to Makoto Kimura and Osami Yasukura

for their helpful suggestion on Proposition 4.4. Before we wrote this paper,

Kimura, Yasukura and the third named author showed a previous version of

Proposition 4.4 which is unpublished, that is, the orbit of the highest root of a

compact Lie group under the adjoint action is an austere submanifold in the

hypersphere. The authors would also like to thank Reiko Miyaoka for her valuable

comments. In fact, Proposition 2.9 was essentially suggested by her. Finally the

authors are grateful to the referee who gave them many useful comments.
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2. Definitions and fundamental results.

We begin with recalling the definition of reflective submanifold given by

Leung [9]. Let ~M be a complete Riemannian manifold. A connected component of

the fixed point set of an involutive isometry of ~M is called a reflective submanifold.

A reflective submanifold is a complete totally geodesic submanifold. The

involutive isometry which defines a reflective submanifold M can be determined

uniquely. We call it the reflection of M and denote by �M . If M is a reflective

submanifold in ~M and �M is its reflection, then for any normal vector � 2 T?
x M

�MðxÞ ¼ x; ðd�MÞx� ¼ ��; �MðMÞ ¼ M

hold. Taking notice of these properties, we define a weakly reflective submanifold

as follows.

DEFINITION 2.1. Let M be a submanifold of a Riemannian manifold ~M. For

each normal vector � 2 T?
x M at each point x 2 M, if there exists an isometry �� of

~M which satisfies

��ðxÞ ¼ x; ðd��Þx� ¼ ��; ��ðMÞ ¼ M;

then we call M a weakly reflective submanifold and �� a reflection of M with

respect to �.

In the case where M is a hypersurface, �� is independent of the choice of � at

each point x. In this paper mainly we deal with orbits of some isometric actions of

compact Lie groups. We note that if M is an extrinsic homogeneous submanifold

in ~M, that is an orbit of an isometric action of a Lie group on ~M, then it suffices to

ascertain that at one point of M it satisfies the condition to be a weakly reflective

submanifold.

REMARK 2.2. For a reflective submanifold, there exists a reflection which is

independent of the choice of a normal vector. So it is clear that a reflective

submanifold is always a weakly reflective submanifold.

EXAMPLE 2.3.

Sn�1ð1Þ � Sn�1ð1Þ ¼ ðx; yÞ j x; y 2 Sn�1ð1Þ
� �

is a weakly reflective submanifold in ð2n� 1Þ-dimensional sphere S2n�1ð
ffiffiffi
2

p
Þ of

radius
ffiffiffi
2

p
.
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PROOF. Since Sn�1ð1Þ � Sn�1ð1Þ is a homogeneous submanifold of

S2n�1ð
ffiffiffi
2

p
Þ, it suffices to ascertain that at one point of Sn�1ð1Þ � Sn�1ð1Þ it

satisfies the condition to be a weakly reflective submanifold. The tangent space of

Sn�1ð1Þ � Sn�1ð1Þ at

x ¼ ð1; 0; . . . ; 0; 1
nþ1
^

; 0; . . . ; 0Þ 2 Sn�1ð1Þ � Sn�1ð1Þ

is given by

TxðSn�1ð1Þ � Sn�1ð1ÞÞ ¼ fð0; x2; . . . ; xn; 0; y2; . . . ; ynÞ j xi; yj 2 Rg;

and the normal space in S2n�1ð
ffiffiffi
2

p
Þ is

T?
x ðSn�1ð1Þ � Sn�1ð1ÞÞ ¼ Rð1; 0; . . . ; 0;�1

nþ1
^

; 0; . . . ; 0Þ:

Now we define an isometry � of S2n�1ð
ffiffiffi
2

p
Þ by

�ðx1; . . . ; xn; y1; . . . ; ynÞ ¼ ðy1; . . . ; yn; x1; . . . ; xnÞ

for ðx1; . . . ; xn; y1; . . . ; ynÞ 2 S2n�1ð
ffiffiffi
2

p
Þ. Then

�ðxÞ ¼ x; �ðSn�1ð1Þ � Sn�1ð1ÞÞ ¼ Sn�1ð1Þ � Sn�1ð1Þ

and d�x acts on T?
x ðSn�1ð1Þ � Sn�1ð1ÞÞ as �id. Thus Sn�1ð1Þ � Sn�1ð1Þ is a weakly

reflective submanifold in S2n�1ð
ffiffiffi
2

p
Þ. �

DEFINITION 2.4. Let M be a submanifold of a Riemannian manifold ~M. We

denote the shape operator of M by A. M is called an austere submanifold if for

each normal vector � 2 T?
x M, the set of eigenvalues with their multiplicities of A�

is invariant under the multiplication by �1. It is obvious that an austere

submanifold is a minimal submanifold.

The notion of austere submanifold was first given by Harvey-Lawson [4].

PROPOSITION 2.5. A weakly reflective submanifold is an austere submani-

fold.

PROOF. Let M be a weakly reflective submanifold in a Riemannian

manifold ~M. Then for each normal vector � 2 T?
x M, there exists an isometry �� of
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~M which satisfies

��ðxÞ ¼ x; ðd��Þx� ¼ ��; ��ðMÞ ¼ M:

For a normal vector � 2 T?
x M, we denote by A� the shape operator of M with

respect to � and by h the second fundamental form of M. For X; Y 2 TxM, we take

vector fields ~X and ~Y defined on a neighborhood of x in ~M which are tangent to M

and ~Xx ¼ X and ~Yx ¼ Y . Since �� satisfies ��ðMÞ ¼ M, vector fields d��
~X and

d��
~Y are tangent toM. Let �r denote the covariant derivative of ~M. Then we have

hððd��ÞxX; ðd��ÞxY Þ ¼ ð �rd�� ~X
d��

~Y Þ?x ¼ ððd��Þx �r ~X
~Y Þ?

¼ ðd��Þxð �r ~X
~Y Þ? ¼ ðd��ÞxhðX; Y Þ:

From the following calculation

hA�ðd��ÞxX; ðd��ÞxY i ¼ hhððd��ÞxX; ðd��ÞxY Þ; �i
¼ hðd��ÞxhðX; Y Þ; �i ¼ hhðX; Y Þ; ðd��Þ�1

x �i
¼ hhðX; Y Þ;��i ¼ �hA�X; Y i;

we have ðd��Þ�1
x A�ðd��Þx ¼ �A�. This implies that ðd��Þx provides an isomor-

phism between eigenspaces of A� for eigenvalues � and ��. Thus M is an austere

submanifold. �

In the rest of this section, we shall study weakly reflective orbits of isometric

actions of Lie groups on Riemannian manifolds. First we shall provide some

preliminaries. Let G be a Lie group acting isometrically on a Riemannian

manifold ~M and Gx be the isotropy subgroup at x, that is, Gx ¼ fg 2 G j gx ¼ xg.
Then the orbit GðxÞ is diffeomorphic to the coset manifold G=Gx. An orbit GðxÞ is
a principal orbit if, for any y 2 ~M, there exists g 2 G such that Gx � gGyg

�1. It is

known that there exists a principal orbit. The codimension of a principal orbit is

called the cohomogeneity of the action of G on ~M. An orbit which is not principal

is called a singular orbit. The differential of the action of Gx defines a linear

representation of Gx on Tx
~M called the linear isotropy representation. The

tangent space TxðGðxÞÞ and the normal space T?
x ðGðxÞÞ of GðxÞ at x are invariant

subspaces of the linear isotropy representation. The restriction of the linear

isotropy representation to T?
x ðGðxÞÞ is called the slice representation at x.

THEOREM 2.6 (Slice representation theorem [8. Theorem 1.1], [11. Theorem

4.6], [12. Proposition 5.4.7]). The cohomogeneity of a slice representation equals

the cohomogeneity of the action of G on ~M. Moreover, GðxÞ is a principal orbit if
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and only if the slice representation at x is trivial.

PROPOSITION 2.7. Any singular orbit of a cohomogeneity one action on a

Riemannian manifold is a weakly reflective submanifold.

PROOF. Suppose that the isometric action of a Lie group G on a

Riemannian manifold ~M is cohomogeneity one. Let GðxÞ be a singular orbit.

First we consider the case where the codimension of GðxÞ is greater than or

equal to 2. From the slice representation theorem, the isotropy subgroup Gx acts

transitively on the hypersphere in T?
x ðGðxÞÞ. In particular, for any � 2 T?

x ðGðxÞÞ
there exists g 2 Gx such that dgxð�Þ ¼ ��. Therefore g becomes a reflection of

GðxÞ at x with respect to �. Since GðxÞ is a homogeneous submanifold, GðxÞ has a
reflection with respect to any normal vector at any point. Thus GðxÞ is a weakly

reflective submanifold in ~M.

When the codimension of GðxÞ is 1, dimT?
x ðGðxÞÞ ¼ 1 and the dimension of a

nontrivial orbit of the slice representation is equal to 0 by Theorem 2.6. Moreover

the slice representation at x is not trivial, because GðxÞ is a singular orbit.

Therefore the image of the slice representation is not SOð1Þ but Oð1Þ and for any

� 2 T?
x ðGðxÞÞ there exists g 2 Gx such that dgxð�Þ ¼ ��. Thus, by the same

discussion with above, GðxÞ is a weakly reflective submanifold in ~M. �

REMARK 2.8. Podestá [13] proved that any singular orbit of a cohomoge-

neity one action is an austere submanifold. However, essentially he showed

Proposition 2.7.

PROPOSITION 2.9. Let G be a connected Lie group acting isometrically on a

complete, connected Riemannian manifold ~M. Suppose that the action of G on ~M

is cohomogeneity one with two singular orbits. If there exists a principal orbit

which is a weakly reflective submanifold in ~M, then it has a same distance from two

singular orbits and two singular orbits are isometric.

PROOF. Since there exist two singular orbits, the orbit space ~M=G is

homeomorphic to a closed interval (Mostert [10], Bergery [1]). Orbits of interior

points are principal and those of end points are singular. Moreover principal

orbits are hypersurfaces in ~M, because the cohomogeneity of the action of G is

one. Suppose that GðxÞ is a principal orbit which is a weakly reflective

submanifold. Then, by the slice representation theorem, there exists a unit

normal vector field � on GðxÞ, which is invariant under the action of G. We take a

geodesic �ðtÞ of ~M which satisfies an initial condition

�ð0Þ ¼ x; �0ð0Þ ¼ �x:
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Then �ðtÞ is a section of the action of G on ~M, namely �ðtÞ meets all orbits

perpendicularly ([12, Proposition 5.6.2]). Since dgxð�xÞ ¼ �gx for any g 2 G, g�ðtÞ
is a geodesic of ~M which satisfies an initial condition

g�ð0Þ ¼ gx; ðg�Þ0ð0Þ ¼ �gx:

Since GðxÞ is a weakly reflective submanifold of ~M, there exists an isometry � of
~M which satisfies

�ðxÞ ¼ x; d�xð�xÞ ¼ ��x; �ðGðxÞÞ ¼ GðxÞ;

that is a reflection of GðxÞ with respect to �x. We set

GðxÞ� ¼ fy 2 GðxÞ j d�yð�yÞ ¼ ���ðyÞg:

The sets GðxÞþ and GðxÞ� are closed subsets of GðxÞ, and GðxÞ is a disjoint union

of GðxÞþ and GðxÞ� because GðxÞ is a hypersurface in ~M. Since GðxÞ is connected
and x 2 GðxÞ�, we have GðxÞ ¼ GðxÞ�. This implies that d�yð�yÞ ¼ ���ðyÞ for any

y 2 GðxÞ. For any g 2 G, �g�ðtÞ is a geodesic which satisfies an initial condition

�g�ð0Þ ¼ �ðgxÞ; ð�g�Þ0ð0Þ ¼ d�gxðg�Þ0ð0Þ ¼ d�gxð�gxÞ ¼ ���gx:

Now we take g1 2 G such that g1x ¼ �ðgxÞ. Then �g�ðtÞ and g1�ð�tÞ are geodesics
of same initial conditions, hence �g�ðtÞ ¼ g1�ð�tÞ 2 Gð�ð�tÞÞ. Therefore we have

�ðGð�ðtÞÞÞ � Gð�ð�tÞÞ for each t. Since ��1 is also a reflection of GðxÞ at x, we also
have ��1ðGð�ð�tÞÞÞ � Gð�ðtÞÞ by the same discussion for ��1 and �ð�tÞ. Thus
�ðGð�ðtÞÞÞ ¼ Gð�ð�tÞÞ and � induces a homeomorphism of ~M=G. This implies

that � maps one singular orbit to the other one. Hence two singular orbits can be

expressed as Gð�ðt1ÞÞ and Gð�ð�t1ÞÞ for some t1. Consequently we have the

conclusion. �

3. Orbits of s-representations.

A linear isotropy representation of a Riemannian symmetric pair is called an

s-representation as we mentioned in Introduction. In the following sections, we

will study orbits of s-representations which are austere submanifolds or weakly

reflective submanifolds. For this purpose, we shall provide some fundamental

notions of orbits of s-representations in this section.

Let G be a compact, connected Lie group and K a closed subgroup of G.
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Assume that � is an involutive automorphism of G and G0
� � K � G�, where

G� ¼ fg 2 G j �ðgÞ ¼ gg

and G0
� is the identity component of G�. Then ðG;KÞ is a symmetric pair with

respect to �. We denote the Lie algebras of G and K by g and k, respectively. The

involutive automorphism of g induced from � will be also denoted by �. Then we

have

k ¼ fX 2 g j �ðXÞ ¼ Xg:

Take an inner product h ; i on g which is invariant under � and the adjoint

representation of G. Set

m ¼ fX 2 g j �ðXÞ ¼ �Xg;

then we have a canonical orthogonal direct sum decomposition

g ¼ kþm:

Henceforth we assume that the symmetric pair ðG;KÞ is irreducible, namely K

acts irreducibly on m.

Fix a maximal abelian subspace a in m and a maximal abelian subalgebra t in

g containing a. For � 2 t we set

~g� ¼ fX 2 g
C j ½H;X� ¼

ffiffiffiffiffiffiffi
�1

p
h�;HiX ðH 2 tÞg

and define the root system ~R of g by

~R ¼ f� 2 t � f0g j ~g� 6¼ f0gg:

For � 2 a we set

g� ¼ fX 2 g
C j ½H;X� ¼

ffiffiffiffiffiffiffi
�1

p
h�;HiX ðH 2 aÞg

and define the restricted root system R of ðg; kÞ by

R ¼ f� 2 a� f0g j g� 6¼ f0gg:
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Set

~R0 ¼ ~R \ k

and denote the orthogonal projection from t to a by H 7! �H. Then we have

R ¼ f�� j � 2 ~R� ~R0g:

We take a basis of t extended from a basis of a and define the lexicographic

orderings > on a and t with respect to these bases. Then for H 2 t, �H > 0 implies

H > 0. We denote by ~F the fundamental system of ~R with respect to the ordering

>. Set

~F0 ¼ ~F \ ~R0;

then the fundamental system F of R with respect to the ordering > is given by

F ¼ f�� j � 2 ~F � ~F0g:

We set

~Rþ ¼ f� 2 ~R j � > 0g; Rþ ¼ f� 2 R j � > 0g:

Then we have

Rþ ¼ f�� j � 2 ~Rþ � ~R0g:

We also set

k0 ¼ fX 2 k j ½X;H� ¼ 0 ðH 2 aÞg;

and define

k� ¼ k \ ðg� þ g��Þ; m� ¼ m \ ðg� þ g��Þ

for � 2 Rþ. Under these notations, we have the following lemma.

LEMMA 3.1 ([14]).

(1) We have orthogonal direct sum decompositions
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k ¼ k0 þ
X
�2Rþ

k�; m ¼ aþ
X
�2Rþ

m�:

(2) For each � 2 ~Rþ � ~R0, there exist S� 2 k and T� 2 m such that

fS� j � 2 ~Rþ; �� ¼ �g; fT� j � 2 ~Rþ; �� ¼ �g

are respectively orthonormal bases of k� and m� and that for H 2 a

½H;S�� ¼ h�;HiT�; ½H;T�� ¼ �h�;HiS�; ½S�; T�� ¼ ��;

AdðexpHÞS� ¼ cosh�;HiS� þ sinh�;HiT�;

AdðexpHÞT� ¼ � sinh�;HiS� þ cosh�;HiT�:

We define a subset D of a by

D ¼
[
�2R

fH 2 a j h�;Hi ¼ 0g:

A connected component of a�D is a Weyl chamber. We set

C ¼ fH 2 a j h�;Hi > 0 ð� 2 F Þg:

Then C is an open convex subset of a and the closure of C is given by

�C ¼ fH 2 a j h�;Hi � 0 ð� 2 F Þg:

For a subset � � F , we define

C� ¼ fH 2 �C j h�;Hi > 0 ð� 2 �Þ; h�;Hi ¼ 0 ð� 2 F ��Þg:

LEMMA 3.2.

(1) For �1 � F , the decomposition

C�1 ¼
[

���1

C�

is a disjoint union. In particular, �C ¼
[
��F

C� is a disjoint union.

(2) For �1;�2 � F , �1 � �2 if and only if C�1 � C�2 .
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For each � 2 F , we take H� 2 a such that

hH�; �i ¼
1 ð� ¼ �Þ,
0 ð� 6¼ �Þ

(
ð� 2 F Þ:

Then we have

�C ¼
X
�2F

t�H�

����� t� � 0

( )
;

and for � � F

C� ¼
X
�2�

t�H�

����� t� > 0

( )
:

We set

R� ¼ R \ ðF ��ÞZ;
R�

þ ¼ R� \ Rþ;

g
� ¼ k0 þ aþ

X
�2R�

þ

ðk� þm�Þ:

We also set

k
� ¼ g

� \ k ¼ k0 þ
X
�2R�

þ

k�;

m
� ¼ g

� \m ¼ aþ
X
�2R�

þ

m�:

Then we have an orthogonal direct sum decomposition

g
� ¼ k

� þm
�:

For H 2 m we set

ZH
K ¼ fk 2 K j AdðkÞH ¼ Hg:

Weakly reflective submanifolds and austere submanifolds 447



Then ZH
K is a closed subgroup of K and the orbit AdðKÞH is diffeomorphic to the

coset manifold K=ZH
K .

Under these notations, we have the following lemma.

LEMMA 3.3 ([6]). Fix a subset � � F . For H 2 C� we have the following:

(1) R�
þ ¼ f� 2 Rþ j h�;Hi ¼ 0g,

(2) R� ¼ f� 2 R j h�;Hi ¼ 0g,
(3) g� ¼ fX 2 g j ½H;X� ¼ 0g,
(4) ðg�; k�Þ is a symmetric pair and its canonical decomposition is given by

g
� ¼ k

� þm
�;

(5) k
� is the Lie algebra of ZH

K .

Now we shall study an orbit AdðKÞH of the linear isotropy representation of

ðG;KÞ through H 2 m. An orbit AdðKÞH is a submanifold of the hypersphere S of

radius kHk in m. From [6], AdðKÞH is connected. Since

m ¼
[
k2K

AdðkÞ �C;

without loss of generalities we may assume H 2 �C. Moreover, from Lemma 3.2,

there exists � � F such that H 2 C�. For X 2 k we define a vector field X� on m

by

X�
x ¼

d

dt

����
t¼0

Adðexp tXÞx ¼ ½X; x�

at x 2 m. Then X�jAdðKÞH is a tangent vector field on AdðKÞH. From Lemma 3.1

we have the following lemma.

LEMMA 3.4. For � � F and H 2 C�, the tangent space THðAdðKÞHÞ of the
orbit AdðKÞH at H and the normal space T?

H ðAdðKÞHÞ in the hypersphere can be

expressed as

THðAdðKÞHÞ ¼
X

�2Rþ�R�
þ

m�;

T?
H ðAdðKÞHÞ ¼ H? \ aþ

X
�2R�

þ

m� ¼
[

k2ZH
K

AdðkÞðH? \ aÞ:
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Let h denote the second fundamental form of AdðKÞH at H in the hypersphere S.

Then we have

hðX�
H; Y

�
HÞ ¼ ½Y ; ½X;H��N;

where ½Y ; ½X;H��N is T?
H ðAdðKÞHÞ-component of ½Y ; ½X;H��.

PROOF. From Lemma 3.1 we have

THðAdðKÞHÞ ¼
X

�2Rþ�R�
þ

m�;

T?
H ðAdðKÞHÞ ¼ H? \ aþ

X
�2R�

þ

m� ¼ H? \m
�:

Moreover, from Lemma 3.3

m
� ¼

[
k2ZH

K

AdðkÞa:

Since AdðkÞH ¼ H for k 2 ZH
K , we have

H? \m
� ¼

[
k2ZH

K

AdðkÞðH? \ aÞ:

The calculation of X�
x mentioned above shows the representation of the

second fundamental form. �

For orbits of s-representations which are minimal submanifolds in the

hypersphere, the following theorem is known.

THEOREM 3.5 ([7]). Fix a hypersphere S in m centered at 0. For each subset

� � F , there exists a unique H 2 C� \ S such that AdðKÞH is a minimal

submanifold in S.

However, in general we can not determine H where AdðKÞH is a minimal

submanifold in S explicitly. In the following two sections, we will give the

complete lists of H where AdðKÞH is an austere submanifold or a weakly

submanifold in S.
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4. Weakly reflective orbits of s-representations.

In this section, we shall study orbits of irreducible s-representations which

are weakly reflective submanifolds in the hypersphere. In the next section, we will

study austere orbits. Since these two properties of orbits are invariant under

scalar multiples on the vector spaces, we do not discriminate the difference of the

length of a vector. The following theorem is the main result of this section. We

shall follow the notations of root systems in [3].

THEOREM 4.1. An orbit of an irreducible s-representation which is a weakly

reflective submanifold in the hypersphere is one of the following list:

(1) an orbit through a restricted root vector (Proposition 4.4),

(2) the orbit through the vector 2e1 � e2 � e3 and the orbit through the vector

e1 þ e2 � 2e3 of the linear isotropy representation of a compact symmetric

pair with the restricted root system f�ðei � ejÞg of type A2 (Proposition

4.5),

(3) the orbit through the vector e1 þ e2 � e3 � e4 of the linear isotropy

representation of a compact symmetric pair with the restricted root system

f�ðei � ejÞg of type A3 (Proposition 4.6),

(4) the orbit through the vector e1 of the linear isotropy representation of a

compact symmetric pair with the restricted root system f�ðei � ejÞg of type

Dl ðl � 4Þ (Proposition 4.7),

(5) the orbit through the vector e1 þ e2 þ e3 þ e4 and the orbit through the vector

e1 þ e2 þ e3 � e4 of the linear isotropy representation of a compact

symmetric pair with the restricted root system f�ðei � ejÞg of type D4

(Proposition 4.8).

REMARK 4.2. In the case of the restricted root system of type A2, the orbit

through a restricted root is a principal orbit called a Cartan hypersurface, that is

a minimal isoparametric hypersurface with three distinct principal curvatures.

And the orbits through the vectors 2e1 � e2 � e3 and e1 þ e2 � 2e3 are its focal

submanifolds, called Veronese surfaces. These two singular orbits are not equal

but isometric with each other.

In the case of the restricted root system of type D4, from the proof of

Proposition 4.8 we can see that three orbits through e1, e1 þ e2 þ e3 þ e4 and

e1 þ e2 þ e3 � e4 are isometric with each other by the ‘‘triality’’.

Here we prove that orbits listed above are weakly reflective submanifolds. In

the next section, we will classify all austere orbits of irreducible s-representations

and show that all weakly reflective orbits can be obtained in Theorem 4.1. For this

purpose, we shall first give the following lemma.
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LEMMA 4.3. For H 2 a, the orbit AdðKÞH is a weakly reflective submanifold

in the hypersphere S if and only if, for any � 2 H? \ a, there exists a linear

isometry �� of m which satisfies

��ðHÞ ¼ H; ��ð�Þ ¼ ��; ��ðAdðKÞHÞ ¼ AdðKÞH: ð4:1Þ

PROOF. From Lemma 3.4, the normal space of the orbit AdðKÞH at H in S

is given by

T?
H ðAdðKÞHÞ ¼ H? \ aþ

X
�2R�

þ

m� ¼
[

k2ZH
K

AdðkÞðH? \ aÞ:

If AdðKÞH is a weakly reflective submanifold in S, then for � 2 H? \ a there exists

a linear isometry �� of m which satisfies

��ðHÞ ¼ H; ðd��ÞH� ¼ ��; ��ðAdðKÞHÞ ¼ AdðKÞH:

Here we have ðd��ÞH ¼ ��, since �� is a linear isometry.

Conversely, assume that AdðKÞH satisfies the condition (4.1). We take an

arbitrary normal vector � 2 T?
H ðAdðKÞHÞ. From Lemma 3.4, there exists k0 2 ZH

K

such that Adðk0Þ� 2 H? \ a. Then, from the assumption, there exists a linear

isometry � which satisfies

�ðHÞ ¼ H; �Adðk0Þ� ¼ �Adðk0Þ�; �ðAdðKÞHÞ ¼ AdðKÞH:

We now define �� ¼ Adðk0Þ�1�Adðk0Þ. Then �� satisfies

��ðHÞ ¼ H; ��ð�Þ ¼ ��; ��ðAdðKÞHÞ ¼ AdðKÞH:

Thus �� is a reflection of AdðKÞH with respect to a normal vector � at H. Since

AdðKÞH is a homogeneous submanifold, we have a reflection with respect to any

normal vector at an arbitrary point. Consequently AdðKÞH is a weakly reflective

submanifold in S. �

PROPOSITION 4.4. An orbit through a restricted root vector of the linear

isotropy representation of an irreducible compact symmetric pair is a weakly

reflective submanifold in the hypersphere S.

PROOF. Let �0 be a restricted root vector and put H ¼ �0. The reflection
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s�0
on a with respect to �0 is given by

s�0
ðXÞ ¼ X �

2h�0; Xi
h�0; �0i

�0 ðX 2 aÞ

and satisfies

s�0
ðHÞ ¼ �H; s�0

ja\H? ¼ 1a\H? :

The reflection s�0
is an element of the Weyl group, hence there exists k0 2 NK

such that Adðk0Þja ¼ s�0
, where

NK ¼ fk 2 K j AdðkÞa ¼ ag:

Therefore

�H ¼ Adðk0ÞH 2 AdðKÞH;

and we have AdðKÞð�HÞ ¼ AdðKÞH. We define a linear isometry � of m by

� ¼ �Adðk0Þjm:

Then � satisfies

�ðHÞ ¼ H; �ja\H? ¼ �1ja\H? ; �ðAdðKÞHÞ ¼ AdðKÞH:

Thus, from Lemma 4.3, AdðKÞH is a weakly reflective submanifold in S. �

PROPOSITION 4.5. The orbit through the vector 2e1 � e2 � e3 and the orbit

through the vector e1 þ e2 � 2e3 of the linear isotropy representation of a compact

symmetric pair with the restricted root system f�ðei � ejÞg of type A2 is a weakly

reflective submanifold in the hypersphere S.

PROOF. Since the symmetric pair ðG;KÞ is of rank 2, the action of K on S

is cohomogeneity one. The vector 2e1 � e2 � e3 (resp. e1 þ e2 � 2e3) is orthogonal

to a restricted root e2 � e3 (resp. e1 � e2). Therefore the orbit of K through

2e1 � e2 � e3 (resp. e1 þ e2 � 2e3) is a singular orbit. Hence from Proposition 2.7,

this orbit is a weakly reflective submanifold in S. �
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PROPOSITION 4.6. The orbit through the vector e1 þ e2 � e3 � e4 of the

linear isotropy representation of a compact symmetric pair with the restricted root

system f�ðei � ejÞg of type A3 is a weakly reflective submanifold in the hypersphere

S.

PROOF. Put H ¼ e1 þ e2 � e3 � e4. The set R�
þ of all positive restricted

roots which are orthogonal to H is given by

R�
þ ¼ fe1 � e2; e3 � e4g:

Let se1�e2 and se3�e4 be the reflections with respect to restricted roots e1 � e2 and

e3 � e4, respectively. Then se1�e2 and se3�e4 are elements of the Weyl group, hence

there exist k0; k1 2 NK such that

se1�e2 ¼ Adðk0Þja; se3�e4 ¼ Adðk1Þja:

We now define a linear isometry of m by

�ðXÞ ¼ Adðk0ÞAdðk1ÞX ðX 2 mÞ:

Then � satisfies

�ðHÞ ¼ H; �ja\H? ¼ �1a\H? ; �ðAdðKÞHÞ ¼ AdðKÞH:

Thus from Lemma 4.3, AdðKÞH is a weakly reflective submanifold in S. �

PROPOSITION 4.7. The orbit through the vector e1 of the linear isotropy

representation of a compact symmetric pair with the restricted root system

f�ei � ejg of type Dl is a weakly reflective submanifold in the hypersphere S.

PROOF. An irreducible compact symmetric pair with the restricted root

system of type Dl is one of ðSOð2lÞ � SOð2lÞ; SOð2lÞ�Þ and ðSOð2lÞ; SOðlÞ �
SOðlÞÞ.

First we consider the case of ðSOð2lÞ � SOð2lÞ; SOð2lÞ�Þ. In this case, m can

be identified with oð2lÞ in a natural manner. We take a maximal abelian

subalgebra

a ¼ diag
0 �t1

t1 0

" #
; . . . ;

0 �tl

tl 0

" #( ) ���� t1; . . . ; tl 2 R

( )
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of oð2lÞ, and put

H ¼ e1 ¼ diag
0 �1

1 0

" #
; 0; . . . ; 0

( )
:

We define a linear isometry � of oð2lÞ by

�ðXÞ ¼ sXs ðX 2 oð2lÞÞ;

where

s ¼ diag
1 0

0 1

" #
;

�1 0

0 1

" #
; . . . ;

�1 0

0 1

" #( )
2 Oð2lÞ:

Then � is an isometry of S and satisfies

�ðHÞ ¼ H; �ja\H? ¼ �ida\H? ; �ðAdðKÞHÞ ¼ AdðKÞH:

Hence from Lemma 4.3, AdðKÞH is a weakly reflective submanifold in S.

Second, we consider the case of ðSOð2lÞ; SOðlÞ � SOðlÞÞ. We take a maximal

abelian subspace

a ¼
0 X

�X 0

" # ����� X ¼ diagðt1; . . . ; tlÞ; ti 2 R

( )
;

and put

H ¼ e1 ¼
0 X0

�X0 0

" #
2 oð2lÞ;

where

X0 ¼ diagf1; 0; . . . ; 0g 2 MlðRÞ:

We define a linear isometry � of m by
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�ðXÞ ¼
s 0

0 Il

" #
X

s 0

0 Il

" #
ðX 2 mÞ;

where

s ¼ diagf1;�1; . . . ;�1g 2 OðlÞ:

Then � is an isometry of S and satisfies

�ðHÞ ¼ H; �ja\H? ¼ �ida\H? ; �ðAdðKÞHÞ ¼ AdðKÞH:

Hence from Lemma 4.3, AdðKÞH is a weakly reflective submanifold in S. �

PROPOSITION 4.8. The orbit through the vector e1 þ e2 þ e3 þ e4 and the

orbit through the vector e1 þ e2 þ e3 � e4 of the linear isotropy representation of a

compact symmetric pair with the restricted root system f�ei � ejg of type D4 is a

weakly reflective submanifold in the hypersphere S.

PROOF. We take a fundamental system of f�ei � ejg of type D4:

�1 ¼ e1 � e2; �2 ¼ e2 � e3; �3 ¼ e3 � e4; �4 ¼ e3 þ e4:

The automorphism group of the Dynkin diagram is the permutation group of

f�1; �3; �4g. So there exists an automorphism of mmapping �1 to �4 and fixing �3,

which gives an equivalence of the orbits through e1 and e1 þ e2 þ e3 þ e4. Thus the

orbit through e1 þ e2 þ e3 þ e4 is also a weakly reflective submanifold in the

hypersphere. Similarly the permutation of �1 and �3 gives an equivalence of the

orbits through e1 and e1 þ e2 þ e3 � e4. Thus the orbit through e1 þ e2 þ e3 � e4 is

also a weakly reflective submanifold in the hypersphere. �

In the case of ðSOð8Þ; SOð4Þ � SOð4ÞÞ we can explicitly represent a reflection

of the orbit though e1 þ e2 þ e3 þ e4. The linear isotropy representation is

equivalent to

ðg1; g2Þ �X ¼ g1Xg�1
2 ððg1; g2Þ 2 SOð4Þ � SOð4Þ; X 2 M4ðRÞÞ:

Let ei denotes an element of M4ðRÞ whose ði; iÞ component is 1 and others are 0.

Then the orbit through e1 þ e2 þ e3 þ e4 is SOð4Þ in M4ðRÞ.
For z1 	 z2 2 H 	H , we define

�z1	z2 : H ! H ; z 7! z1z�z2:
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Since H ¼
 R4, we can regard �z1	z2 as an element of M4ðRÞ and � induces an

isomorphism M4ðRÞ ¼
 H 	H of real algebras. We define an involutive isometry

� of H 	H by

� : H 	H ! H 	H ; z1 	 z2 7! z1 	 �z2:

We also denote by � the linear isometry of M4ðRÞ induced from � through �. We

note that

SOð4Þ ¼ f�z1	z2 j z1; z2 2 Spð1Þg:

Moreover

fz1 	 z2 j z1; z2 2 Spð1Þg � H 	H

is invariant under �. Therefore SOð4Þ is invariant under �. The identity element I

is fixed by the action of �. The normal space of SOð4Þ at I in S15ð2Þ is given by

T?
I ðSOð4ÞÞ ¼ fX 2 M4ðRÞ j X : symmetric; trðXÞ ¼ 0g:

It is easy to see that T?
I ðSOð4ÞÞ is contained in the eigenspace of � for an

eigenvalue �1. Thus � is a reflection of SOð4Þ with respect to an arbitrary normal

vector at I.

5. Austere orbits of s-representations.

In this section we classify all orbits of irreducible s-representations which are

austere submanifolds in the hypersphere S. In the previous section we showed

that all orbits through restricted root vectors (or their scalar multiples) are

weakly reflective, hence austere. Therefore, hereafter we shall concern with other

orbits. We will also determine austere orbits which are not weakly reflective

submanifolds. Then we will complete to prove Theorem 4.1.

The classification of austere orbits is following:

THEOREM 5.1. An orbit of an irreducible s-representation which is an

austere submanifold in the hypersphere is one of the following list:

(1) an orbit through a restricted root vector,

(2) the orbit through the vector 2e1 � e2 � e3 and the orbit through the vector

e1 þ e2 � 2e3 of the linear isotropy representation of a compact symmetric

pair with the restricted root system f�ðei � ejÞg of type A2 (Proposition

4.5 or 5.4),
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(3) the orbit through the vector e1 þ e2 � e3 � e4 of the linear isotropy

representation of a compact symmetric pair with the restricted root system

f�ðei � ejÞg of type A3 (Proposition 5.4),

(4) the orbit through the vector e1 of the linear isotropy representation of a

compact symmetric pair with the restricted root system f�ðei � ejÞg of type

Dl ðl � 4Þ (Proposition 5.5),

(5) the orbit through the vector e1 þ e2 þ e3 þ e4 and the orbit through the vector

e1 þ e2 þ e3 � e4 of the linear isotropy representation of a compact

symmetric pair with the restricted root system f�ðei � ejÞg of type D4

(Proposition 5.5),

(6) the orbit through the vector e1 þ ðe1 þ e2Þ=
ffiffiffi
2

p
of the linear isotropy

representation of a compact symmetric pair with the restricted root system

f�ei;�ei � ejg of type B2 whose multiplicities are constant (Proposition

5:6Þ,
(7) the orbit through the vector �1 þ ð�2=

ffiffiffi
3

p
Þ of the linear isotropy representa-

tion of a compact symmetric pair with the restricted root system of type G2,

where �1 ¼ e1 � e2 and �2 ¼ �2e1 þ e2 þ e3 (Proposition 5.8).

REMARK 5.2. In the case where the rank of the symmetric pair is equal to

two, any principal orbit of an s-representation is an isoparametric hypersurface in

the hypersphere. It is known that the number g of distinct principal curvatures of

an isoparametric hypersurface in the sphere is one of 1, 2, 3, 4 and 6. There exists

a unique minimal isoparametric hypersurface in each parallel family of isopara-

metric hypersurfaces. Theorems 4.1 and 5.1 shows some of minimal isoparametric

hypersurfaces and their focal submanifolds are austere, furthermore weakly

reflective, and some of them are not. More precisely;

. When g ¼ 1, a minimal isoparametric hypersurface is nothing but a great

sphere.

. When g ¼ 2, a minimal isoparametric hypersurface is weakly reflective

(austere) if and only if the multiplicities of two distinct principal

curvatures are constant as in Example 2.3.

. When g ¼ 3, that corresponds to the case of type A2, a minimal

isoparametric hypersurface is weakly reflective. Moreover both of its two

focal submanifolds are also weakly reflective.

. When g ¼ 4, that corresponds to the case of types B2 ¼ C2 or BC2, a

minimal homogeneous isoparametric hypersurface is austere, but not

weakly reflective, if and only if the multiplicities of two distinct principal

curvatures are constant. Both of focal submanifolds are always weakly

reflective.

. When g ¼ 6, that corresponds to the case of type G2, a minimal
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homogeneous isoparametric hypersurface is austere, but not weakly

reflective. Both of its two focal submanifolds are weakly reflective.

Before giving a proof of Theorem 5.1 we shall provide some preliminaries. Let

ðG;KÞ be an irreducible compact symmetric pair. We shall use the notations in

previous sections. From Lemma 3.4, for a normal vector � 2 T?
H ðAdðKÞHÞ, the

shape operator A� of AdðKÞH in the hypersphere S is given by

hA�ðX�Þ; Y �i ¼ hhðX�; Y �Þ; �i ¼ h½Y ; ½X;H��; �i ¼ �h½X;H�; ½Y ; ��i: ð5:2Þ

For simplification, we discuss a normalization of a normal vector �. From Lemma

3.4, there exists k 2 ZH
K such that AdðkÞ� 2 H? \ a. Then

hA�ðX�Þ; Y �i ¼ hAdðkÞhðX�; Y �Þ;AdðkÞ�i
¼ hhðAdðkÞX�;AdðkÞY �Þ;AdðkÞ�i
¼ hAAdðkÞ�AdðkÞX�;AdðkÞY �i

¼ hAdðkÞ�1AAdðkÞ�ðAdðkÞX�Þ; Y �i:

Thus we have

A� ¼ AdðkÞ�1AAdðkÞ�AdðkÞ:

This implies that eigenvalues of AAdðkÞ� and their multiplicities coincide with

those of A�. Hence, in order to show whether an orbit AdðKÞH is austere, it

suffices to check eigenvalues of A� for � 2 H? \ a. Hereafter we assume that

� 2 H? \ a.

From Lemmas 3.1 and 3.4

fT� j � 2 ~Rþ � ~R�
þg

is an orthonormal basis of THðAdðKÞHÞ. For �; � 2 ~Rþ � ~R�
þ we have

hA�ððS�
�ÞHÞ; ðS�

�ÞHi ¼ h�;Hih�;HihA�ðT�Þ; T�i:

On the other hand, from (5.2), we have

hA�ððS�
�ÞHÞ; ðS�

�ÞHi ¼ �h½S�;H�; ½S�; ��i ¼ �h�;Hih�; �i	��:

Therefore we have
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A�ðT�Þ ¼ �
h�; �i
h�;Hi

T�:

This shows that T� is an eigenvector of A� and its eigenvalue is

�
h�; �i
h�;Hi

:

Hence AdðKÞH is an austere submanifold in S if and only if, for any � 2 H? \ a,

the set

h�; �i
h�;Hi

���� � 2 ~Rþ � ~R�
þ

� �

with multiplicities is symmetric by the multiplication of �1. We shall describe

this condition in terms of a finite subset of a Euclidean space.

Let A be a finite subset of a Euclidean space V . We consider a condition that,

for any v 2 V , the set

fha; vi j a 2 Ag

with multiplicities is symmetric by the multiplication of �1. This condition is

equivalent to a condition that A is symmetric by the multiplication of �1 on V .

Indeed, it is obvious that fha; vi j a 2 Ag is symmetric whenever A is symmetric.

Conversely, fix an arbitrary a 2 A. From the assumption we have

V ¼
[
b2A

fv 2 V j ha; vi ¼ �hb; vig:

If �a =2 A, then the right hand side consists of finite union of hyperplanes of V .

This is a contradiction. Therefore �a 2 A. Consequently A is symmetric by the

multiplication of �1 on V .

Let pH : a ! H? \ a denote the orthogonal projection. An orbit AdðKÞH is

austere in S if and only if the set

pHð�Þ
h�;Hi

���� � 2 Rþ � R�
þ

� �

with multiplicities is symmetric by the multiplication of �1 on H? \ a. By this
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criterion, we can easily see that orbits listed in Theorem 5.1 are austere

submanifolds in the hypersphere S. Hereafter we shall prove that all austere orbits

can be obtained in Theorem 5.1.

We set RR ¼ fx� j x 2 R; � 2 Rg. We have already showed that the orbit

through any element in RR is weakly reflective in the hypersphere, so we consider

the orbits through elements in a�RR

LEMMA 5.3. For H 2 a�RR, the orbit AdðKÞH is an austere submanifold

in S if and only if there exist a mapping f : Rþ � R�
þ ! Rþ � R�

þ without fixed

points, and constants n� 6¼ 0; 
� ¼ �1 for each � 2 Rþ �R�
þ such that

H ¼ n�
�

k�k
þ 
�

fð�Þ
kfð�Þk

� �
; ð5:3Þ

and

X
�2Rþ�R�

þ
�==�

mð�Þ ¼
X

�2Rþ�R�
þ

�==fð�Þ

mð�Þ: ð5:4Þ

Here we denote by mð�Þ the multiplicity of a restricted root �, and � == � means

that � and � are linearly dependent.

Excepting the case where the restricted root system R is of type BC, the

equality (5.4) is equivalent to mð�Þ ¼ mðfð�ÞÞ, moreover #ðRþ � R�
þÞ is even and

f2 ¼ 1.

PROOF. The orthogonal projection pH is defined by

pHðXÞ ¼ X �
hX;Hi
hH;HiH ðX 2 aÞ:

Therefore AdðKÞH is an austere submanifold in S if and only if the set

�

h�;Hi
�

H

hH;Hi

���� � 2 Rþ � R�
þ

� �

with multiplicities is symmetric by the multiplication of �1 on H? \ a. In other

words, there exists a mapping f : Rþ � R�
þ ! Rþ �R�

þ which satisfies
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fð�Þ
hfð�Þ; Hi

�
H

hH;Hi
¼ �

�

h�;Hi
þ

H

hH;Hi
ð5:5Þ

and

X
mð�Þ

���� � 2 Rþ � R�
þ ;

�

h�;Hi �
H

hH;Hi ¼
�

h�;Hi �
H

hH;Hi

� �

¼
X

mð�Þ
���� � 2 Rþ � R�

þ ;
�

h�;Hi �
H

hH;Hi ¼
fð�Þ

hfð�Þ; Hi �
H

hH;Hi

� �

for any � 2 Rþ � R�
þ . This condition for the multiplicities is equivalent to (5.4).

From (5.5), if f has a fixed point �, then H 2 RR. Thus f has no fixed points.

If we assume (5.5), then there exist non-zero real numbers x; y so that

H ¼ x�þ yfð�Þ. Applying this to the equation (5.5), we have a quadratic

equation

kfð�Þk2y2 ¼ k�k2x2

with respect to x and y. Thus we have

y ¼ �
k�k

kfð�Þk x;

hence H can be expressed as

H ¼ x��
k�k

kfð�Þk xfð�Þ ¼ xk�k
�

k�k �
fð�Þ

kfð�Þk

� �
:

Since this equality holds for any � 2 Rþ � R�
þ , we have the condition (5.3).

Replacing � in (5.5) by fð�Þ, we have

f2ð�Þ
hf2ð�Þ; Hi

þ
fð�Þ

hfð�Þ; Hi
¼

2H

hH;Hi
: ð5:6Þ

From equations (5.5) and (5.6), we have

�

h�;Hi ¼
f2ð�Þ

hf2ð�Þ; Hi :
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The above discussion stands for any restricted root systems R, including of type

BC. Henceforth we assume that R is not of type BC. Then � is the only element of

Rþ � R�
þ which is a scalar multiple of �. Thus f2ð�Þ ¼ �. Since f has no fixed

points, #ðRþ �R�
þÞ is even. This completes the proof. �

Here we mention some results concerning with the Weyl group needed later.

The action of the Weyl group maps the restricted root system R onto itself ([5]).

We can see that, for any restricted roots � and � with the same length, there

exists an element s in the Weyl group such that � ¼ s� by the classification of the

restricted root systems. In this case, mð�Þ ¼ mð�Þ holds. In particular, if the

restricted root system R is one of the types Al, Dl, E6, E7 and E8, then the Weyl

group acts transitively on R and all restricted roots have constant multiplicities,

since all restricted roots have the same length.

PROPOSITION 5.4. In the case where R is of type Al, an austere orbit is one

of the following except orbits through a restricted root vector:

(1) when l ¼ 2, the orbit through H ¼ 2e1 � e2 � e3 and the orbit through

e1 þ e2 � 2e3,

(2) when l ¼ 3, the orbit through H ¼ e1 þ e2 � e3 � e4.

PROOF. In the case of R ¼ Al, Rþ is given by Rþ ¼ fei � ej j i < jg. Since
all restricted roots have constant multiplicities, the condition (5.4) of Lemma 5.3

is always satisfied. From Lemma 5.3, without loss of generalities, we may assume

that H ¼ �ða positive rootÞ � (a positive root), since all restricted roots have the

same length. Moreover since any root can be translated to e1 � e2 by the action of

the Weyl group, we may assume that H ¼ ðe1 � e2Þ � (a positive root). The

positive root in the second term of H is one of e1 � ei ð3 � iÞ; e2 � ej ð3 � iÞ, ei � ej
ð3 � i < jÞ.

In the case of H ¼ ðe1 � e2Þ � ðe1 � eiÞ ð3 � iÞ, ei can be translated to e3 by

the action of an element of the Weyl group which fixes both e1 and e2. Therefore

we can put

H ¼ ðe1 � e2Þ � ðe1 � e3Þ ¼
ðe1 � e2Þ þ ðe1 � e3Þ ¼ 2e1 � e2 � e3

ðe1 � e2Þ � ðe1 � e3Þ ¼ �e2 þ e3 (root):

(

Similarly, in the case of H ¼ ðe1 � e2Þ � ðe2 � eiÞ ð3 � iÞ, we can put

H ¼ ðe1 � e2Þ � ðe2 � e3Þ ¼
e1 � 2e2 þ e3 
 e1 þ e2 � 2e3

e1 � e3 (root):

�
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Here, for H1; H2 2 a, we express H1 
 H2 when H1 can be translated to H2 by

some element of K. In other words, H1 is equivalent to H2 under the action of the

Weyl group.

In the case of H ¼ ðe1 � e2Þ � ðei � ejÞ ð3 � i < jÞ, there exists an element of

the Weyl group which fixes e1, e2 and translates ei to e3 and ej to e4. Therefore we

can put

H ¼ ðe1 � e2Þ � ðe3 � e4Þ ¼
e1 þ e3 � e2 � e4

e1 þ e4 � e2 � e3:

�

By the action of the Weyl group, these vectors are equivalent to e1 þ e2 � e3 � e4.

Consequently, it suffices to consider orbits through

H ¼ 2e1 � e2 � e3; e1 þ e2 � 2e3; e1 þ e2 � e3 � e4;

which have a possibility to be austere.

In the case of H ¼ 2e1 � e2 � e3, the only possibility to be the form H ¼
(a positive root)� (a positive root) is H ¼ ðe1 � e2Þ þ ðe1 � e3Þ. Thus, from Lem-

ma 5.3, the set Rþ � R�
þ must be

Rþ � R�
þ ¼ fe1 � e2; e1 � e3g:

When l � 3, since he3 � e4; Hi 6¼ 0, we have e3 � e4 2 Rþ � R�
þ . This is a contra-

diction. Hence l ¼ 2 and then AdðKÞH is austere in S. Similarly, the orbit through

H ¼ e1 þ e2 � 2e3 is also austere.

In the case of H ¼ e1 þ e2 � e3 � e4, possibilities to be the form H ¼
(a positive root)� (a positive root) are

H ¼ ðe1 � e3Þ þ ðe2 � e4Þ ¼ ðe1 � e4Þ þ ðe2 � e3Þ:

Thus Rþ � R�
þ must satisfy

Rþ � R�
þ � fe1 � e3; e2 � e4; e1 � e4; e2 � e3g:

When l � 4, since he4 � e5; Hi 6¼ 0, we have e4 � e5 2 Rþ � R�
þ . This is a contra-

diction. Hence l ¼ 3, and then AdðKÞH is austere in S. �

PROPOSITION 5.5. In the case where R is of type Dl, an austere orbit is one

of the following except orbits through a restricted root vector:

(1) the orbit through H ¼ e1,

(2) when l ¼ 4, the orbits through H ¼ e1 þ e2 þ e3 þ e4, e1 þ e2 þ e3 � e4.
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PROOF. In the case of R ¼ Dl, Rþ is given by Rþ ¼ fei � ej j i < jg. Since
all restricted roots have constant multiplicities, the condition (5.4) of Lemma 5.3

is always satisfied. It is easy to see that the orbit through e1 (or its scalar multiple)

is austere. Therefore we consider other orbits. From Lemma 5.3, we can assume

H ¼ �(a positive root)� (a positive root), since all restricted roots have the

same length. Since any root can be translated to e1 þ e2 by the action of the Weyl

group, we can assume H ¼ ðe1 þ e2Þ � (a positive root). Furthermore any root

can be translated to one of

e1 � e2; e1 þ e3; e2 þ e4; e3 þ e4; e3 � e4

by the action of elements of the Weyl group which fix e1; e2. Therefore H is one of

the following:

H ¼ ðe1 þ e2Þ � ðe1 � e2Þ ¼ 2e1; 2e2 
 2e1;

H ¼ ðe1 þ e2Þ � ðe1 þ e3Þ ¼
2e1 þ e2 þ e3;

e2 � e3 (root);

�

H ¼ ðe1 þ e2Þ � ðe2 þ e4Þ ¼
2e2 þ e1 þ e4 
 2e1 þ e2 þ e3;

e1 � e4 (root);

�

H ¼ ðe1 þ e2Þ � ðe3 þ e4Þ 
 e1 þ e2 þ e3 þ e4;

H ¼ ðe1 þ e2Þ � ðe3 � e4Þ 
 e1 þ e2 þ e3 � e4:

Consequently, it suffices to consider orbits through

H ¼ 2e1 þ e2 þ e3; e1 þ e2 þ e3 þ e4; e1 þ e2 þ e3 � e4

which have a possibility to be austere.

In the case of H ¼ 2e1 þ e2 þ e3, the only possibility to be the form H ¼
(a positive root)� (a positive root) is

H ¼ ðe1 þ e2Þ þ ðe1 þ e3Þ:

Thus Rþ � R�
þ must be

Rþ � R�
þ ¼ fe1 þ e2; e1 þ e3g:

Since he1 � e2; Hi 6¼ 0, we have e1 � e2 2 Rþ � R�
þ . This is a contradiction. Hence

this orbit is not austere.
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In the case of H ¼ e1 þ e2 þ e3 þ e4, possibilities of the form H ¼ (a positive

root)� (a positive root) are

H ¼ ðe1 þ e2Þ þ ðe3 þ e4Þ ¼ ðe1 þ e3Þ þ ðe2 þ e4Þ ¼ ðe1 þ e4Þ þ ðe2 þ e3Þ:

Thus Rþ � R�
þ must satisfy

Rþ � R�
þ � fe1 þ e2; e3 þ e4; e1 þ e3; e2 þ e4; e1 þ e4; e2 þ e3g:

When l � 5, since he4 þ e5; Hi 6¼ 0, we have e4 þ e5 2 Rþ � R�
þ . This is a contra-

diction. Hence l ¼ 4, and then the orbit AdðKÞH is austere in S. In the case of

H ¼ e1 þ e2 þ e3 � e4, similarly we have l ¼ 4, and then AdðKÞH is austere. �

PROPOSITION 5.6. In the case where R is one of types Bl, Cl and BCl, an

austere orbit except orbits through restricted root vectors is the following:

When R ¼ B2 where the multiplicities of the restricted roots are constant, the

orbit through

H ¼ e1 þ
e1 þ e2ffiffiffi

2
p

is austere. This orbit is a principal orbit.

REMARK 5.7. In the case of R ¼ B2, there exist two singular orbits and

these are not isometric. Hence from Proposition 2.9, a principal austere orbit in

Proposition 5.6 is not a weakly reflective submanifold.

PROOF. First we consider the case of R ¼ Bl, where Rþ ¼ fei, ei � ej j
i < jg. From Lemma 5.3, we can assume

H ¼ �

k�k
� �

k�k
ð�; � 2 RþÞ:

i) When � and � are both short roots, we can put H ¼ �� �. Furthermore,

since any short root � can be translated to e1 by the action of the Weyl group, we

can assume H ¼ e1 � �. If � ¼ e1, then H ¼ 2e1 and this is equivalent to the orbit

through a root vector. If � ¼ ej ðj � 2Þ, then H ¼ e1 � ej is a root vector.

ii) When � and � are both long roots, we can put H ¼ �� �. Since any long

root � can be translated to e1 þ e2 by the action of the Weyl group, we can assume

H ¼ ðe1 þ e2Þ � �. Furthermore � can be translated to one of

� ¼ e1 � e2; e1 þ e3; e2 þ e3; e3 þ e4
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by the action of elements of the Weyl group which fix e1 and e2.

In the case of � ¼ e1 � e2, H is equivalent to a root or zero vector.

In the case of � ¼ e1 þ e3,

H ¼ ðe1 þ e2Þ � ðe1 þ e3Þ ¼
2e1 þ e2 þ e3;

e2 � e3 (root):

�

When H ¼ 2e1 þ e2 þ e3, the only possibility to be the form H ¼ (a positive

root)� (a positive root) is H ¼ ðe1 þ e2Þ þ ðe1 þ e3Þ. Thus Rþ �R�
þ must be

Rþ � R�
þ ¼ fe1 þ e2; e1 þ e3g. On the other hand, since he1; Hi 6¼ 0, we have

e1 2 Rþ � R�
þ . This is a contradiction. Hence this orbit is not austere.

In the case of � ¼ e2 þ e3,

H ¼ ðe1 þ e2Þ � ðe2 þ e3Þ ¼
e1 þ 2e2 þ e3 
 2e1 þ e2 þ e3;

e1 � e3 (root):

�

In the case of � ¼ e3 þ e4,

H ¼ ðe1 þ e2Þ � ðe3 þ e4Þ ¼
e1 þ e2 þ e3 þ e4;

e1 þ e2 � e3 � e4 
 e1 þ e2 þ e3 þ e4:

�

In this case,

H ¼ ðe1 þ e2Þ þ ðe3 þ e4Þ ¼ ðe1 þ e3Þ þ ðe2 þ e4Þ ¼ ðe1 þ e4Þ þ ðe2 þ e3Þ

are possibilities to be the form H ¼ �� �. Thus Rþ �R�
þ must satisfy

Rþ � R�
þ � fe1 þ e2; e3 þ e4; e1 þ e3; e2 þ e4; e1 þ e4; e2 þ e3g:

On the other hand, since he1; Hi 6¼ 0, we have e1 2 Rþ �R�
þ . This is a contra-

diction. Hence this orbit is not austere.

iii) When � is a short root and � is a long root, we can assume � ¼ e1 and

H ¼ e1 �
�ffiffiffi
2

p where � ¼ e1 þ e2; e2 þ e3:

In the case of H ¼ e1 þ e1þe2ffiffi
2

p , if l � 3, then e3 2 Rþ � R�
þ . On the other hand,

there is no � 2 Rþ such that
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H ¼ n e3 �
�

k�k

� �
:

Thus we have l ¼ 2. In this case Rþ � R�
þ ¼ fe1; e2; e1 þ e2; e1 � e2g. If we define

f : Rþ � R�
þ ! Rþ �R�

þ by

fðe1Þ ¼ e1 þ e2; fðe2Þ ¼ e1 � e2;

then H satisfies the condition (5.3) of Lemma 5.3. Hence this orbit is austere if the

multiplicities of the restricted roots are constant.

In the case of H ¼ e1 � ðe1 þ e2Þ=
ffiffiffi
2

p
, we can express H as

H ¼ � 1ffiffiffi
2

p
þ 1

1þ 1ffiffiffi
2

p
� �

e2 �
1ffiffiffi
2

p e1

� �
:

Permuting e1 and e2 by the action of the Weyl group and replacing e2 7! �e2, we

have that this orbit is equivalent to the orbit through

H ¼ e1 þ
e1 þ e2ffiffiffi

2
p :

In the case of � ¼ e2 þ e3,

H ¼ e1 �
e2 þ e3ffiffiffi

2
p 
 e1 þ

e2 þ e3ffiffiffi
2

p :

In this case e3 2 Rþ �R�
þ . On the other hand, there is no � 2 Rþ such that

H ¼ n e3 �
�

k�k

� �
:

Hence this orbit is not austere.

Second we consider the case of R ¼ Cl, where Rþ ¼ f2ei; ei � ej j i < jg. For
this purpose we shall use the dual mapping and transfer the result of the case

R ¼ Bl by the dual mapping. A mapping

a� f0g ! a� f0g;H 7! H� ¼
2H

hH;Hi
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is called a dual mapping. This maps a root system to a root system, more

precisely, a long root is moved to a short root and a short root is moved to a long

root. The root systems of type Bl and Cl are dual by this mapping, and other

irreducible root systems are self-dual. If there exists f which satisfies (5.3) for

H 2 a, then there exists f� which satisfies (5.3) for H�.

In the above discussion, in the case of R ¼ Bl ðl � 3Þ, we showed that there

are no austere orbits except orbits through a restricted root vector. Thus we also

have that there are no austere orbits except orbits through a restricted root vector

in the case of R ¼ Cl ðl � 3Þ. When l ¼ 2, C2 ¼ B2.

Finally we shall consider the case of R ¼ BCl, where Rþ ¼ fei; 2ei;

ei � ej j i < jg. From Lemma 5.3, we can put

H ¼
�

k�k �
�

k�k ð�; � 2 RþÞ:

If k�k ¼ k�k, then we can put H ¼ �� �. When � and � are both short roots or

both long roots, H is a scalar multiple of a root vector. When � and � are both

middle roots, we can assume � ¼ e1 þ e2 and

H ¼ ðe1 þ e2Þ � � ð� ¼ e1 þ e3; e2 þ e3; e3 þ e4Þ:

By the action of the Weyl group, these are equivalent to

H ¼ 2e1 þ e2 þ e3; H ¼ e1 þ e2 þ e3 þ e4

or a restricted root vector. In the case of H ¼ 2e1 þ e2 þ e3, we have l ¼ 3 and

Rþ � R�
þ ¼ fe1; e2; e3; 2e1; 2e2; 2e3; e1 � e2; e1 � e3; e2 þ e3g:

Since there is no f which satisfies (5.3), this orbit is not austere. In the case of

H ¼ e1 þ e2 þ e3 þ e4, we have l ¼ 4 and

Rþ � R�
þ ¼ fei; 2ei j 1 � i � 4g

[ fe1 þ e2; e1 þ e3; e1 þ e4; e2 þ e3; e2 þ e4; e3 þ e4g:

Since there is no f which satisfies (5.3), this orbit is not austere.

It remains the case where k�k < k�k. When � is a short root and � is a long

root, H is a scalar multiple of a root vector. By the dual mapping, we can identify

two cases, where � is a short root and � is a middle root, and where � is a middle

root and � is a long root. Therefore we shall discuss the former. In this case, we
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can assume � ¼ e1 and

H ¼ e1 �
�ffiffiffi
2

p where � ¼ e1 þ e2; e2 þ e3:

Similarly with the case of the restricted root system of type B,

H ¼ e1 þ
e1 þ e2ffiffiffi

2
p ; H ¼ e1 þ

e2 þ e3ffiffiffi
2

p

have a possibility to be austere. When H ¼ e1 þ e2þe3ffiffi
2

p , we have l ¼ 3 and

Rþ � R�
þ ¼ fe1; e2; e3; 2e1; 2e2; 2e3; e1 � e2; e1 � e3; e2 þ e3g:

Since there is no f which satisfies (5.3), this orbit is not austere. When

H ¼ e1 þ ðe1 þ e2Þ=
ffiffiffi
2

p
, the orbit has a possibility to be austere if l ¼ 2. In this

case, the orbit is a principal orbit. This orbit is austere if the sum of the

multiplicities of long roots and short roots coincides with the multiplicity of

middle roots. From the classification of symmetric pairs, there does not exist such

a symmetric pair. �

PROPOSITION 5.8. In the case where R is of type G2, the orbit through

H ¼ �1 þ
�2ffiffiffi
3

p

is the only austere orbit except orbits through a restricted root vector. This orbit is

a principal orbit.

REMARK 5.9. By the same discussion in Remark 5.7, this principal austere

orbit is not a weakly reflective submanifold from Proposition 2.9.

PROOF. The fundamental system F of the restricted root system of type G2

is given by F ¼ f�1 ¼ e1 � e2; �2 ¼ �2e1 þ e2 þ e3g and the set Rþ of positive

roots is

Rþ ¼ F [
�1 þ �2 ¼ �e1 þ e3; 2�1 þ �2 ¼ �e2 þ e3;

3�1 þ �2 ¼ e1 � 2e2 þ e3; 3�1 þ 2�2 ¼ �e1 � e2 þ 2e3

( )
:

In the case of G2, since all restricted roots have constant multiplicities, the
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condition (5.4) of Lemma 5.3 is always satisfied. From Lemma 5.3, we can put

H ¼
�

k�k
� �

k�k
ð�; � 2 RþÞ:

When � and � are both short roots, we can put H ¼ �� � ð� 6¼ �Þ.
Furthermore, since any short root � can be translated to �1 by the action of the

Weyl group, we can assume

H ¼ �1 � � where � ¼ �1 þ �2; 2�1 þ �2:

In the case of � ¼ �1 þ �2,

H ¼ �1 � ð�1 þ �2Þ ¼ 2�1 þ �2; ��2:

Then H is a root vector. In the case of � ¼ 2�1 þ �2,

H ¼ �1 � ð2�1 þ �2Þ ¼ 3�1 þ �2; ��1 � �2:

Then H is a root vector.

When � and � are both long roots, we can put H ¼ �� � ð� 6¼ �Þ. Since any

long root � can be translated to �2 by the action of the Weyl group, we can

assume

H ¼ �2 � � where � ¼ 3�1 þ �2; 3�1 þ 2�2:

In the case of � ¼ 3�1 þ �2,

H ¼ �2 � ð3�1 þ �2Þ ¼ �3�1; 3�1 þ 2�2:

Then H is a scalar multiple of a root vector. In the case of � ¼ 3�1 þ 2�2,

H ¼ �2 � ð3�1 þ 2�2Þ ¼ �3�1 � �2; 3ð�1 þ �2Þ:

Then H is a scalar multiple of a root vector.

When � is a short root and � is a long root, we can assume � ¼ �1 and

H ¼ �1 �
�ffiffiffi
3

p where � ¼ �2; 3�1 þ �2; 3�1 þ 2�2:

We note that the orbit though H is a principal orbit. In these cases, H is
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equivalent to a scalar multiple of �1 þ �2=
ffiffiffi
3

p
by the action of the Weyl group. In

the case of H ¼ �1 þ ð�2=
ffiffiffi
3

p
Þ,

H ¼
1ffiffiffi
3

p
þ 1

�1 þ �2 þ
3�1 þ �2ffiffiffi

3
p

� �
¼

1ffiffiffi
3

p
þ 2

2�1 þ �2 þ
3�1 þ 2�2ffiffiffi

3
p

� �
:

Thus from Lemma 5.3 this orbit is austere. This completes the proof. �

PROPOSITION 5.10. In the case of R ¼ F4, there are no austere orbits except

orbits through a restricted root vector.

PROOF. In this case Rþ is given by

Rþ ¼ feig1�i�4 [ fei � ejg1�i<j�4 [
1

2
ðe1 � e2 � e3 � e4Þ

� �
:

From Lemma 5.3, we can assume

H ¼
�

k�k �
�

k�k ð�; � 2 RþÞ:

When � and � are both short roots, we can put H ¼ �� �. In this case, since any

short root can be translated to e1 by the action of the Weyl group, we can put

H ¼ e1 � � where � ¼ ei ði � 2Þ;
1

2
ðe1 � e2 � e3 � e4Þ:

In the case of � ¼ ei, H is a root vector. In the case of � ¼ ð1=2Þðe1 � e2 � e3 � e4Þ.

H ¼ e1 �
1

2
ðe1 � e2 � e3 � e4Þ ¼

e1 þ 1
2
ðe1 � e2 � e3 � e4Þ;

1
2ðe1 � e2 � e3 � e4Þ (a root):

(

Thus we consider the case of H ¼ e1 þ ð1=2Þðe1 � e2 � e3 � e4Þ. In this case,

he4; Hi 6¼ 0, however, there does not exist � 2 Rþ such that

H ¼ n e4 �
�

k�k

� �
:

Hence from Lemma 5.3 this orbit is not austere.

When � and � are both long root, we can assume H ¼ e1 þ e2 � ei � ej
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ði < jÞ. Moreover, we exclude H which is a scalar multiple of a root vector. Then

H ¼ 2e1 þ e2 � ei; e1 þ 2e2 � ei ði ¼ 3; 4Þ:

The reflection se3�e4 permutes e3 and e4, and fixes e1; e2. Therefore we can put

H ¼ 2e1 þ e2 � e3:

In this case, he3; Hi 6¼ 0, however, there does not exist � 2 Rþ such that

H ¼ n e3 �
�

k�k

� �
:

Hence this orbit is not austere.

When � is a short root and � is a long root, we can put

H ¼ e1 þ
�ei � ejffiffiffi

2
p ði < jÞ:

Moreover, by the action of the Weyl group we can assume

H ¼ e1 þ
�e1 þ e2ffiffiffi

2
p or H ¼ e1 þ

e2 þ e3ffiffiffi
2

p :

In the case of H ¼ e1 þ ðe2 þ e3Þ=
ffiffiffi
2

p
, we have he3; Hi 6¼ 0. However, there does

not exist � 2 Rþ such that

H ¼ n e3 �
�

k�k

� �
:

Hence this orbit is not austere. In the case of H ¼ e1 þ ð�e1 þ e2Þ=
ffiffiffi
2

p
, we have

he2 þ e3; Hi 6¼ 0. However, there does not exist � 2 Rþ such that

H ¼ n
e2 þ e3ffiffiffi

2
p þ

�

k�k

� �
:

Hence this orbit is not austere. �

PROPOSITION 5.11. In the case of R ¼ E8, there are no austere orbits except

the orbits through a restricted root vector.

PROOF. In the case of R ¼ E8, Rþ is given by
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Rþ ¼ f�ei þ ej j 1 � i < j � 8g [
1

2
ðe8 þ

X7
i¼1

ð�1Þ�ðiÞeiÞ
�����
X7
i¼1

�ðiÞ 2 2Z

( )
:

Since all restricted roots have constant multiplicities, the condition (5.4) of

Lemma 5.3 is always satisfied. From Lemma 5.3, we can put H ¼ e1 þ e2 þ �

where

� ¼

�e1 � e2;

�e1 � ei ð3 � i � 8Þ,
�e2 � ei ð3 � i � 8Þ,
�ei � ej ð3 � i < j � 8Þ,
1
2

P�ðiÞ
i¼1ð�1Þ�ðiÞei ð

P8
i¼1 �ðiÞ 2 2ZÞ.

8>>>>>>><
>>>>>>>:

i) In the case of � ¼ �e1 � e2,

H ¼

e1 þ e2 þ e1 þ e2 ¼ 2ðe1 þ e2Þ (twice of a root),

e1 þ e2 þ e1 � e2 ¼ 2e1;

e1 þ e2 � e1 þ e2 ¼ 2e2;

e1 þ e2 � e1 � e2 ¼ 0:

8>>><
>>>:

When H ¼ 2e1,

R� R� ¼ f�e1 � ej j 2 � j � 8g [ �
1

2
ðe1 þ

X8
i¼2

ð�1Þ�ðiÞeiÞ
�����
X8
i¼2

�ðiÞ 2 2Z

( )
:

Then there does not exist � 2 Rþ such that H ¼ nð12
P8

i¼1 ei � �Þ. Hence this orbit

is not austere. When H ¼ 2e2, since the reflection se1�e2 permutes e1 and e2, this

orbit is equivalent to the orbit through H ¼ 2e1. Hence this orbit is not austere.

ii) In the case of � ¼ �e1 � ei ð3 � i � 8Þ,

H ¼
2e1 þ e2 � ei;

e2 � ei (a root):

�

The reflection se3�ei ði � 4Þ fixes e1, e2 and permutes e3 and ei. Thus the orbit

through H ¼ 2e1 þ e2 � ei is equivalent to the orbit through H ¼ 2e1 þ e2 � e3.

Then he1 þ e4; Hi 6¼ 0, however, there does not exist � 2 Rþ such that H ¼
nðe1 þ e4 � �Þ. Hence this orbit is not austere.
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iii) In the case of � ¼ �e2 � ei ð3 � i � 8Þ,

H ¼
e1 þ 2e2 � ei;

e1 � ei (a root):

�

By the action of the Weyl group, the orbit through H ¼ e1 þ 2e2 � ei is equivalent

to the orbit through H ¼ 2e1 þ e2 � ei. Hence this orbit is not austere.

iv) In the case of � ¼ �ei � ej ð3 � i < j � 8Þ, we can assume

H ¼ e1 þ e2 � e3 � e4:

Then he1 þ e5; Hi 6¼ 0, however, there does not exist � 2 Rþ such that

H ¼ nðe1 þ e5 � �Þ. Thus this orbit is not austere.
v) v-1) In the case of

� ¼
1

2
ð�e1 � e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ;
X8
i¼3

�ðiÞ 2 2Z ;

then

H ¼
1

2
ðe1 þ e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ (a root):

v-2) In the case of

� ¼ 1

2
ð�e1 þ e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ;
X8
i¼3

�ðiÞ 2 2Z þ 1;

then

H ¼
1

2
ðe1 þ 3e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ 

1

2
ð3e1 þ e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ:

v-3) In the case of

� ¼ 1

2
ðe1 � e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ;
X8
i¼3

�ðiÞ 2 2Z þ 1;
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then

H ¼
1

2
ð3e1 þ e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ:

In this case, there exists an i such that �ðiÞ ¼ 1. Permuting ei and e3 by the action

of the Weyl group, we have

H ¼
1

2
ð3e1 þ e2 � e3 þ

X8
i¼4

ð�1Þ�ðiÞeiÞ;
X8
i¼4

�ðiÞ 2 2Z :

Then he2 � e3; Hi 6¼ 0, however, there does not exist � 2 Rþ such that

H ¼ nðe2 � e3 � �Þ. Thus this orbit is not austere.
vi) In the case of

� ¼ 1

2
ðe1 þ e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ;
X8
i¼3

�ðiÞ 2 2Z ;

then

H ¼
1

2
ð3e1 þ 3e2 þ

X8
i¼3

ð�1Þ�ðiÞeiÞ:

In this case he1 þ e3; Hi 6¼ 0, however, there does not exist � 2 Rþ such that

H ¼ nðe1 þ e3 � �Þ. Thus this orbit is not austere. �

PROPOSITION 5.12. In the case of R ¼ E7, there are no austere orbits except

the orbits through a restricted root vector.

PROOF. In the case of R ¼ E7, all restricted roots have constant multi-

plicities. Thus the condition (5.4) of Lemma 5.3 is always satisfied. a ¼
f
P8

i¼1 �iei j �8 ¼ ��7g and

Rþ ¼ f�ei þ ej j 1 � i < j � 6g [ fe8 � e7g

[
1

2
ðe8 � e7 þ

X6
i¼1

ð�1Þ�ðiÞeiÞ
�����
X6
i¼1

�ðiÞ 2 2Z þ 1

( )
:

From Lemma 5.3, we can assume H ¼ e7 � e8 þ � where
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� ¼
�ei � ej ð1 � i < j � 6Þ;
�1

2
ðe7 � e8 þ

P6
i¼1ð�1Þ�ðiÞeiÞ:

(

In the case of � ¼ �ei � ej ð1 � i < j � 6Þ, we take k such that 1 � k � 6 and

k 6¼ i; j. Then ej þ ek 2 Rþ and hH; ej þ eki 6¼ 0, however, there does not exist

� 2 R such that H ¼ nðej þ ek þ �Þ. Thus this orbit is not austere.
In the case of � ¼ � 1

2 ðe7 � e8 þ
P6

i¼1ð�1Þ�ðiÞeiÞ then

H ¼
1
2
ð3e7 � 3e8 þ

P6
i¼1ð�1Þ�ðiÞeiÞ;

1
2
ðe7 � e8 �

P6
i¼1ð�1Þ�ðiÞeiÞ (a root):

(

Therefore it suffices to consider the case of H ¼ ð1=2Þð3e7 � 3e8 þ
P6

i¼1ð�1Þ�ðiÞeiÞ.
In this case, either e1 þ e2 or e1 � e2 is an element of Rþ � R�

þ . Denote this

element by �. Then there does not exist � 2 Rþ such that H ¼ nð�� �Þ. Hence

this orbit is not austere. This completes the proof. �

PROPOSITION 5.13. In the case of R ¼ E6, there are no austere orbits except

orbits through a restricted root vector.

PROOF. In the case of R ¼ E6, all restricted roots have constant multi-

plicities. Thus the condition (5.4) of Lemma 5.3 is always satisfied. a ¼
f
P8

i¼1 �iei j �6 ¼ �7 ¼ ��8g and

Rþ ¼ f�ei þ ej j 1 � i < j � 5g

[
1

2
ðe8 � e7 � e6 þ

X5
i¼1

ð�1Þ�ðiÞeiÞ
�����
X5
i¼1

�ðiÞ 2 2Z

( )
:

From Lemma 5.3, we can assume H ¼ e1 þ e2 þ � where

� ¼

�ðe1 � e2Þ;
�e2 � ei ð3 � i � 5Þ;
�ei � ej ð3 � i < j � 5Þ;
�1

2ðe8 � e7 � e6 þ
P5

i¼1ð�1Þ�ðiÞeiÞ:

8>>>><
>>>>:

i) In the case of � ¼ �ðe1 � e2Þ, then H ¼ 2e1, 2e2. For
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� ¼
1

2
ðe8 � e7 � e6 þ e1 þ e2 þ e3 � e4 � e5Þ 2 Rþ � R�

þ

there does not exist � 2 Rþ such that H ¼ nð�� �Þ. Thus this orbit is not

austere.

ii) In the case of � ¼ �e2 � ei ð3 � i � 5Þ, then

H ¼ e1 þ e2 � e2 � ei ¼
e1 þ 2e2 � ei;

e1 � ei (root):

�

Therefore it suffices to consider the case of H ¼ e1 þ 2e2 � ei. In this case, for j

with 3 � j � 5 and j 6¼ i, we have e1 þ ej 2 Rþ � R�
þ . However, there does not

exist � 2 Rþ such that H ¼ nðe1 þ ej � �Þ. Thus this orbit is not austere.
iii) In the case of � ¼ �ei � ej ð3 � i < j � 5Þ, then H ¼ e1 þ e2 � ei � ej. For

k with 3 � k � 5 and k 6¼ i; j, we have e1 þ ek 2 Rþ �R�
þ . However, there does not

exist � 2 Rþ such that H ¼ nðe1 þ ek � �Þ. Thus this orbit is not austere.

iv) In the case of

� ¼ �
1

2
ðe8 � e7 � e6 þ

X5
i¼1

ð�1Þ�ðiÞeiÞ where
X5
i¼1

�ðiÞ 2 2Z ;

then

H ¼ e1 þ e2 �
1

2
ðe8 � e7 � e6 þ

X5
i¼1

ð�1Þ�ðiÞeiÞ:

Here

H ¼
e1 þ e2 þ

1

2
ðe8 � e7 � e6 � e1 � e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

e1 þ e2 �
1

2
ðe8 � e7 � e6 þ e1 þ e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ

8>>>><
>>>>:

are root vectors.

In the case of
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H ¼

e1 þ e2 þ
1

2
ðe8 � e7 � e6 þ e1 � e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

e1 þ e2 þ
1

2
ðe8 � e7 � e6 � e1 þ e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

e1 þ e2 �
1

2
ðe8 � e7 � e6 þ e1 � e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

e1 þ e2 �
1

2
ðe8 � e7 � e6 � e1 þ e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

we have he1 � e2; Hi 6¼ 0. However there does not exist � 2 Rþ such that

H ¼ nðe1 � e2 � �Þ. Thus this orbit is not austere.
Finally, in the case of

H ¼
e1 þ e2 þ

1

2
ðe8 � e7 � e6 þ e1 þ e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ;

e1 þ e2 �
1

2
ðe8 � e7 � e6 � e1 � e2 þ

X5
i¼3

ð�1Þ�ðiÞeiÞ

8>>>><
>>>>:

we have he1 þ e3; Hi 6¼ 0. However there does not exist � 2 Rþ such that

H ¼ nðe1 þ e3 � �Þ. Thus this orbit is not austere. This completes the proof. �

By discussions above, we completed the proof of Theorem 5.1 and Theorem

4.1.

6. Miscellaneous results.

In this section, we shall concern with some results on weakly reflective

submanifolds besides orbits of s-representations.

PROPOSITION 6.1. Let M1 and M2 be weakly reflective submanifolds in

Riemannian manifolds ~M1 and ~M2, respectively. Then M1 �M2 is a weakly

reflective submanifold in ~M1 � ~M2.

PROOF. We take ðx1; x2Þ 2 M1 �M2 and a normal vector ð�1; �2Þ 2
T?
ðx1;x2ÞðM1 �M2Þ. Let ��1 and ��2 be reflections of M1 and M2 in ~M1 and ~M2

with respect to �1 and �2, respectively. Then ��1 � ��2 is an isometry of ~M1 � ~M2

and satisfies
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ð��1 � ��2Þðx1; x2Þ ¼ ðx1; x2Þ;
dð��1 � ��2Þðx1;x2Þð�1; �2Þ ¼ �ð�1; �2Þ;

ð��1 � ��2ÞðM1 �M2Þ ¼ M1 �M2:

Thus M1 �M2 is a weakly reflective submanifold in ~M1 � ~M2. �

The following proposition states that the cone over a weakly reflective

submanifold in a sphere is also a weakly reflective submanifold in a Euclidean

space.

PROPOSITION 6.2. Let M be a weakly reflective submanifold in a unit sphere

Sn�1ð1Þ. Then the cone

CðMÞ ¼ ftx j t 2 R; t > 0; x 2 Mg

over M is a weakly reflective submanifold in a Euclidean space Rn.

PROOF. Fix x 2 M. We note that for arbitrary t 2 R ðt > 0Þ, we have

T?
txðCðMÞÞ ¼ T?

x M � TxS
n�1ð1Þ:

For � 2 T?
x M, a reflection �� of M with respect to � satisfies

��ðxÞ ¼ x; ðd��Þx� ¼ ��; ��ðMÞ ¼ M:

Since �� is an isometry of Sn�1ð1Þ, it can be expressed as an orthogonal matrix.

Thus �� acts on Rn and satisfies

��ðtxÞ ¼ t��ðxÞ ¼ tx; ðd��Þx� ¼ ��:

In addition, for x0 2 M, t0 2 R, t0 > 0, we have

��ðt0x0Þ ¼ t0��ðx0Þ 2 CðMÞ:

Therefore ��ðCðMÞÞ ¼ CðMÞ. Hence CðMÞ is a weakly reflective submanifold in

Rn. �

Next we shall describe the relationship between weakly reflective submani-

folds in an odd dimensional sphere and in a complex projective space.

PROPOSITION 6.3. Let M be a weakly reflective submanifold in the hyper-
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sphere S � Cnþ1. If M is invariant under the Uð1Þ-action, that is the multi-

plication of ei� on Cnþ1, and if a reflection of M with respect to each normal vector

is a unitary transformation, then the image P ðMÞ of M is a weakly reflective

submanifold in CPn, where P is the natural projection P : S ! CPn.

PROOF. By the definition of P , TxðUð1ÞxÞ ¼ ker dPx at each point x 2 S.

Thus dPx : T?
x ðUð1ÞxÞ ! TxðCPnÞ is an isometric linear isomorphism. Since M is

invariant under the Uð1Þ-action, P ðMÞ is a submanifold in CPn. Moreover, since

TxðUð1ÞxÞ � TxM for x 2 M, we have T?
x ðUð1ÞxÞ � T?

x M. Thus dPx : T?
x M !

T?
pðxÞðP ðMÞÞ also gives an isometric linear isomorphism. Let �� denote a reflection

of M with respect to � 2 T?
x M. From the assumption, �� is a unitary trans-

formation of Cnþ1. Hence �� induces an isometry of CPn. Since ��ðxÞ ¼ x and

��ðMÞ ¼ M, we have ��ðP ðxÞÞ ¼ P ðxÞ and ��ðP ðMÞÞ ¼ P ðMÞ. In addition we

have

d��ðdPxð�ÞÞ ¼ dð��  P Þxð�Þ ¼ dðP  ��Þxð�Þ
¼ dPx��ð�Þ ¼ dPxð��Þ ¼ �dPxð�Þ:

Thus �� is a reflection of P ðMÞ with respect to a normal vector dPxð�Þ at P ðxÞ.
Hence P ðMÞ is a weakly reflective submanifold in CPn. �

COROLLARY 6.4. An orbit of the s-representation of an irreducible compact

Hermitian symmetric pair through a restricted root vector induces a weakly

reflective submanifold in a complex projective space.

PROOF. The center of the linear isotropy subgroup of an irreducible

compact Hermitian symmetric pair is Uð1Þ ([5]). Thus all orbits are invariant

under Uð1Þ. Furthermore an orbit in the hypersphere S through a restricted root

vector is a weakly reflective submanifold. From the proof of Proposition 4.4, a

reflection of an orbit through a restricted root vector with respect to each normal

vector is a unitary transformation. Hence, from Proposition 6.3, we have the

conclusion. �
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